Introduction

- So far we have seen Combinational Logic
 - The output(s) depends only on the current values of the input variables
- Here we will look at Sequential Logic circuits
 - The output(s) can depend on present and also past values of the input and the output variables
- Sequential circuits exist in one of a defined number of states at any one time
 - They move “sequentially” through a defined sequence of transitions from one state to the next
 - The output variables are used to describe the state of a sequential circuit either directly or by deriving state variables from them

Synchronous and Asynchronous Sequential Logic

- Synchronous
 - The timing of all state transitions is controlled by a common clock
 - Changes in all variables occur simultaneously
- Asynchronous
 - State transitions occur independently of any clock and normally dependent on the timing of transitions in the input variables
 - Changes in more than one output do not necessarily occur simultaneously
- Clock
 - A clock signal is a square wave of fixed frequency
 - Often, transitions will occur on one of the edges of clock pulses
 - i.e. the rising edge or the falling edge

General flip-flop symbol and definition of its two possible output states

- We now introduce the concept of memory. The flip-flop, abbreviated FF, is a key memory element.
- The outputs of a flip flop are Q and Q’
- Q is understood to be the normal output, Q’ is always the opposite.

NAND Gate Latch

- The NAND gate latch or simply latch is a basic FF.
- The inputs are set and clear (reset)
- The inputs are active low, that is, the output will change when the input is pulsed low.
- When the latch is set
 \[Q = 1 \text{ and } Q' = 0 \]
- When the latch is clear or reset
 \[Q = 0 \text{ and } Q' = 1 \]
A NAND latch is an example of a bistable device

<table>
<thead>
<tr>
<th>SET</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Q̅</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Setting the NAND Flip-Flop

| SET | 1 |
|-----|
| Q | 0 |
| Q̅ | 1 |

Resetting the NAND Flip-Flop

| RESET | 1 |
|-------|
| Q | 0 |
| Q̅ | 1 |

Function table of a NAND latch

<table>
<thead>
<tr>
<th>Set</th>
<th>Reset</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>No change</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Q = 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Q̅ = 0, Invalid*</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>Produces Q = Q̅ = 1.</td>
</tr>
</tbody>
</table>

NAND Gate Latch

- Summary of the NAND latch:
 - SET = RESET = 1. Normal resting state, outputs remain in state prior to input.
 - SET = 0, RESET = 1. Q will go high and remain high even if the SET input goes high.
 - SET = 1, RESET = 0. Q will go low and remain low even if the RESET input goes high.
 - SET = RESET = 0. Output is unpredictable because the latch is being set and reset at the same time.

Other Representations of a NAND latch

- Symbols indicate Q is set (high) when S is low.
NOR Gate Latch

- The NOR latch is similar to the NAND latch except that the Q and Q' outputs are reversed.
- The SET and RESET inputs are active high, that is, the output will change when the input is pulsed high.
- In order to ensure that a FF begins operation at a known level, a pulse may be applied to the SET or RESET inputs when a device is powered up.

Digital Pulses

- The transition from low to high on a positive pulse is called rise time (t_r).
 - Rise time is measured between the 10% and 90% points on the leading edge of the voltage waveform.
- The transition from high to low on a positive pulse is called fall time (t_f).
 - Fall time is measured between the 90% and 10% points on the trailing edge of the voltage waveform.

Clock Signals and Clocked Flip-Flops

- Asynchronous system – outputs can change state at any time the input(s) change.
- Synchronous system – output can change state only at a specific time in the clock cycle.
 - The clock signal is a rectangular pulse train or square wave.
 - Positive going transition (PGT) – when clock pulse goes from 0 to 1.
 - Negative going transition (NGT) – when clock pulse goes from 1 to 0.
 - Transitions are also called edges.
Ideal Clock Signals

Positive-going transition (PGT)
Negative-going transition (NGT)

- Clock inputs are labeled CLK, CK, or CP.
- A small triangle at the CLK input indicates that the input is activated with a PGT.
- A bubble and a triangle indicates that the CLK input is activated with an NGT.
- Control inputs have an effect on the output only at the active clock transition (NGT or PGT). These are also called synchronous control inputs.
- The control inputs get the FF outputs ready to change, but the change is not triggered until the CLK edge.

Clock Signals and Clocked Flip-Flops

- Setup time \((t_S) \) is the minimum time interval before the active CLK transition that the control input must be kept at the proper level.
- Hold time \((t_H) \) is the time after the active CLK transition during which the control input must kept at the proper level.

Clocked Flip-Flops

- Control inputs

Clocked S-R Flip-Flop

- The SET-RESET (or SET-CLEAR) FF will change states at the positive going or negative going clock edge.

Clocked SR Flip-Flop

- Clocked S-R flip-flop that triggers only on negative-going transitions.

Simplified version of the internal circuitry for an edge-triggered S-R flip-flop.
Clocked SR Flip-Flop
- Implementation of edge-detector circuits used in edge-triggered flip-flops: (a) PGT; (b) NGT. The duration of the CLK* pulses is typically 2–5 ns.

Clocked J-K Flip-Flop
- Operates like the S-R FF. J is set, K is clear.
- When J and K are both high the output is toggled from whatever state it is in to the opposite state.
- May be positive going or negative going clock trigger.
- Has the ability to do everything the S-C FF does, plus operate in toggle mode.

Clocked JK Flip-Flop

Clocked D Flip-Flop
- One data input.
- The output changes to the value of the input at either the positive going or negative going clock trigger.

Edge-triggered J-K flip-flop
CLK* must be high for FF to change states. This condition only occurs at the edge of a CLK transition.

Edge-triggered D flip-flop
implementation from a J-K flip-flop
D Latch (Transparent Latch)

- One data input.
- The clock has been replaced by an enable line.
- The device is NOT edge triggered.
- The output follows the input only when EN is high.

D Latch

- D latch: (a) structure; (b) function table; (c) logic symbol.

Asynchronous Inputs

- Inputs that depend on the clock are synchronous.
- Most clocked FFs have asynchronous inputs that do not depend on the clock.
- The labels PRE and CLR are used for asynchronous inputs.
- Active low asynchronous inputs will have a bar over the labels and inversion bubbles.
- If the asynchronous inputs are not used they will be tied to their inactive state.

D Latch

- Waveforms showing the two modes of operation of the transparent D latch.

Clocked J-K flip-flop with asynchronous inputs

- Synchronous inputs or PRE and CLR
- Asynchronous clear on PRE and CLR
- Asynchronous clear on D input
- Asynchronous clear on J or K
- Synchronous clear
Flip-Flop Timing Considerations

- Important timing parameters:
 - Setup and hold times
 - Propagation delay: the time for a signal at the input to be shown at the output.
 - Maximum clocking frequency: highest clock frequency that will give a reliable output.
 - Clock pulse high and low times: minimum time that the clock must be high before going low, and low before going high.
 - Asynchronous active pulse width: the minimum time PRESET or CLEAR must be held for the FF to set or clear reliably.
 - Clock transition times: maximum time for the clock transitions, generally less than 50 ns for TTL, or 200 ns for CMOS devices.

Flip-Flop Propagation Delays

- Clock LOW and HIGH time
 - $t_{\text{w(L)}}$ is the minimum time that the CLK must remain low before it goes high.
 - $t_{\text{w(H)}}$ is the minimum time that the CLK must remain high before it goes low.

- Similarly for asynchronous signals - but may have a different value than the CLK signal.

Potential Timing Problems in FF Circuits

- When the output of one FF is connected to the input of another FF and both devices are triggered by the same clock, there is a potential timing problem.
- Propagation delay may cause unpredictable outputs.
- The low hold time parameter of most FFs mean this won't normally be a problem.

Flip-Flop Synchronization

- Most systems are primarily synchronous in operation, in that changes depend on the clock.
- Asynchronous and synchronous operations are often combined.
- The random nature of asynchronous inputs can result in unpredictable results.
Asynchronous Signals may have Undesirable Side Effects

- Asynchronous signal A can produce partial pulses at X

Edge-triggered flip-flop can Synchronize Circuit

- The signal A has no effect until negative edge of clock.

Data Storage and Transfer

- Asynchronous transfers are controlled by PRE and CLR inputs.
- Transferring the bits of a register simultaneously is a parallel transfer.
- Transferring the bits of a register a bit at a time is a serial transfer.

Asynchronous Data Transfer Operation

- Uses PRE and CLR inputs to load data into FF
- PRE and CLR won’t be both low at the same time
 A = 1, EN =1, PRE = 0, sets B = 1
 A =0, EN =1, CLR = 0, sets B = 0

Serial Data Transfer: Shift Registers

- When FFs are arranged as a shift register, bits will shift with each clock pulse.
- FFs used as shift registers must have very low hold time parameters to perform predictably. Modern FFs have t_H values well within what is required.
- The direction of data shifts will depend on the circuit requirements and the design.
Serial Data Transfer: Shift Registers

- **Parallel transfers** – register contents are transferred simultaneously with a single clock cycle.
- **Serial transfers** – register contents are transferred one bit at a time, with a clock pulse for each bit.
- Serial transfers are slower, but the circuitry is simpler. Parallel transfers are faster, but circuitry is more complex.
- Serial and parallel are often combined to exploit the benefits of each.

Four-bit Shift Register

Serial transfer from X register into Y register

Frequency Division and Counting

- FFs are often used to divide a frequency as illustrated in next slide. Here the output frequency is 1/8th the input (clock) frequency.
- The same circuit is also acting as a binary counter. The outputs will count from 000₂ to 111₂.
- The number of states possible in a counter is the modulus or MOD number. Next slide is a MOD-8 (2³) counter. If another FF is added it would become a MOD-16 (2⁴) counter.
Schmitt-Trigger Devices

- Not a FF but shows a memory characteristic
- Accepts slow changing signals and produces a signal that transitions quickly.
- A Schmitt trigger device will not respond to an input until it exceeds the positive or negative going threshold.
- There is a separation between the two threshold levels. This means that the device will “remember” the last threshold exceeded until the input goes to the opposite threshold.

Schmitt-Trigger Response (two thresholds)

Standard inverter response to slow noisy input, and
Often used with noisy signals

One-shot (Monostable Multivibrator)

- Changes from stable state to quasi-stable state for a period of time determined by external components (usually resistors and capacitors).
- Nonretriggerable devices will trigger and return to stable state.
- Retriggerable devices can be triggered while in the quasi-stable state to begin another pulse.
- One shots are called monostable multivibrators because they have only one stable state.
- They are prone to triggering by noise so, tend to be used in simple timing applications.
Logic symbols for the 74121 nonretriggerable one-shot

Clock Generator Circuits

- **FFs have two stable states**, so are considered bistable multivibrators.
- **One shots have one stable state** and are considered monostable multivibrators.
- **Astable or free-running multivibrators** switch back and forth between two unstable states. This makes it useful for generating clock signals for synchronous circuits.
- **Crystal control** may be used if a very stable clock is needed. Crystal control is used in microprocessor based systems and microcomputers where accurate timing intervals are essential.

Clock Generator Circuit: Schmitt-trigger Oscillator

Schmitt-trigger oscillator using a 7414 INVERTER. A 7413 Schmitt-trigger NAND may also be used.

Clock Generator Circuit: 555 Timer

555 timer IC used astable multivibrator.