Parallel Algorithms

Prepared by: Thoai Nam
Lectured by: Tran Vu Pham
Outline

- Introduction to parallel algorithms development
- Reduction algorithms
- Broadcast algorithms
- Prefix sums algorithms
Introduction to Parallel Algorithm Development

- Parallel algorithms mostly depend on destination parallel platforms and architectures
- MIMD algorithm classification
 - Pre-scheduled data-parallel algorithms
 - Self-scheduled data-parallel algorithms
 - Control-parallel algorithms
- According to M.J. Quinn (1994), there are 7 design strategies for parallel algorithms
Basic Parallel Algorithms

- 3 elementary problems to be considered
 - Reduction
 - Broadcast
 - Prefix sums

- Target Architectures
 - Hypercube SIMD model
 - 2D-mesh SIMD model
 - UMA multiprocessor model
 - Hypercube Multicomputer
Reduction Problem

- **Description:** Given \(n \) values \(a_0, a_1, a_2 \ldots a_{n-1} \), an associative operation \(\oplus \), let’s use \(p \) processors to compute the **sum**:

\[
S = a_0 \oplus a_1 \oplus a_2 \oplus \ldots \oplus a_{n-1}
\]

- **Design strategy 1**
 - “If a cost optimal CREW PRAM algorithms exists and the way the PRAM processors interact through shared variables maps onto the target architecture, a PRAM algorithm is a reasonable starting point”
Cost Optimal PRAM Algorithm for the Reduction Problem

- Cost optimal PRAM algorithm complexity:
 \(O(\log n) \) (using \(n \) div 2 processors)

- Example for \(n=8 \) and \(p=4 \) processors
Cost Optimal PRAM Algorithm for the Reduction Problem (cont’d)

Using \(p= n \text{ div } 2 \) processors to add \(n \) numbers:

Global \(a[0..n-1], n, i, j, p; \)
Begin

\[
\text{spawn}(P_0, P_1, \ldots, P_{p-1});
\]

for all \(P_i \) where \(0 \leq i \leq p-1 \) do

for \(j=0 \) to ceiling(\(\log p \))-1 do

if \(i \mod 2^j = 0 \) and \(2i + 2^j < n \) then

\[
a[2i] := a[2i] \oplus a[2i + 2^j];
\]

endif;

endfor j;

endfor all;

End.

Notes: the processors communicate in a biominal-tree pattern.
Solving Reducing Problem on Hypercube SIMD Computer

Step 1:
Reduce by dimension \(j=2 \)

Step 2:
Reduce by dimension \(j=1 \)

Step 3:
Reduce by dimension \(j=0 \)
The total sum will be at \(P_0 \)
Solving Reducing Problem on Hypercube SIMD Computer (cond’t)

Using p processors to add n numbers (p << n)
Global j;
Local local.set.size, local.value[1..n div p +1], sum, tmp;
Begin
spawn(P_0, P_1, … , P_{p-1});
for all P_i where 0 ≤ i ≤ p-1 do
if (i < n mod p) then local.set.size := n div p + 1
else local.set.size := n div p;
endif;
sum[i]:=0;
endforall;

Allocate workload for each processors
Solving Reducing Problem on Hypercube SIMD Computer (cond’t)

Calculate the partial sum for each processor

\[
\begin{align*}
\text{for } j:=1 \text{ to } (n \div p +1) \text{ do} \\
\text{for all } P_i \text{ where } 0 \leq i \leq p-1 \text{ do} \\
\quad \text{if } \text{local.set.size} \geq j \text{ then} \\
\quad \quad \text{sum}[i]:= \text{sum} \oplus \text{local.value}[j]; \\
\quad \text{endforall;} \\
\text{endfor } j;
\end{align*}
\]
Solving Reducing Problem on Hypercube SIMD Computer (cond’t)

Calculate the total sum by reducing for each dimension of the hypercube

\[
\text{for } j \coloneqq \text{ceiling}(\log_2 p) - 1 \text{ downto } 0 \text{ do}
\]

\[
\text{for all } P_i \text{ where } 0 \leq i \leq p-1 \text{ do}
\]

\[
\text{if } i < 2^j \text{ then}
\]

\[
\text{tmp} \coloneqq [i + 2^j] \text{sum};
\]

\[
\text{sum} \coloneqq \text{sum} \oplus \text{tmp};
\]

\[
\text{endif;}
\]

\[
\text{endforall;}
\]

\[
\text{endfor } j;
\]
Solving Reducing Problem on 2D-Mesh SIMD Computer

- A 2D-mesh with \(p \times p \) processors need at least \(2(p-1) \) steps to send data between two farthest nodes.

- The lower bound of the complexity of any reduction sum algorithm is \(O(n/p^2 + p) \)

Example: a 4*4 mesh need 2*3 steps to get the subtotals from the corner processors.
Example: compute the total sum on a 4*4 mesh

Stage 1
Step i = 3

Stage 1
Step i = 2

Stage 1
Step i = 1
Example: compute the total sum on a 4*4 mesh

Stage 2
Step i = 3

Stage 2
Step i = 2

Stage 2
Step i = 1
(the sum is at P_{1,1})
Summation (2D-mesh SIMD with \(l\times l\) processors)

Global \(i\);

Local \(tmp, sum\);

Begin

{Each processor finds sum of its local value → code not shown}

for \(i:=l-1\) downto 1 do

for all \(P_{j,i}\) where \(1 \leq i \leq l\) do

{Processing elements in column \(i\) active}

\(tmp := \text{right}(sum)\);

\(sum := sum \oplus tmp\);

end forall;

endfor;
Stage2:
Compute the total sum and store it at $P_{1,1}$

for i := l-1 downto 1 do
 for all $P_{i,1}$ do
 {Only a single processing element active}
 tmp := down(sum);
 sum := sum \oplus tmp;
 end forall;
end for;
End.

Solving Reducing Problem on 2D-Mesh SIMD Computer (cont’d)
Solving Reducing Problem on UMA Multiprocessor Model (MIMD)

- Easily to access data like PRAM
- Processors execute asynchronously, so we must ensure that no processor access an “unstable” variable

Variables used:

Global
- a[0..n-1], {values to be added}
- p, {number of processors, a power of 2}
- flags[0..p-1], {Set to 1 when partial sum available}
- partial[0..p-1], {Contains partial sum}
- global_sum; {Result stored here}

Local
- local_sum;
Example for UMA multiprocessor with p=8 processors

Stage 2

Step j=8

Step j=4

Step j=2

Step j=1

The total sum is at P₀
Stage 1:
Each processor computes the partial sum of n/p values

Summation (UMA multiprocessor model)
Begin
 for $k:=0$ to $p-1$ do $\text{flags}[k]:=0$;
 for all P_i where $0 \leq i < p$ do
 $\text{local_sum} := 0$;
 for $j:=i$ to $n-1$ step p do
 $\text{local_sum} := \text{local_sum} \oplus a[j]$;

Khoa Khoa Học & Kỹ Thuật Máy Tính – Trường Đại Học Bách Khoa TP. HCM
Stage 2:
Compute the total sum

Each processor waits for the partial sum of its partner available

j:=p;
while j>0 do begin
if i ≥ j/2 then
 partial[i]:=local_sum;
 flags[i]:=1;
 break;
else
 while (flags[i+j/2]=0) do;
 local_sum:=local_sum ⊕ partial[i+j/2];
end if;
j:=j/2;
end while;
if i=0 then global_sum:=local_sum;
end forall;
End.

Khoa Khoa Học & Kỹ Thuật Máy Tính – Trường Đại Học Bách Khoa TP. HCM
- Algorithm complexity \(0(n/p+p)\)
- What is the advantage of this algorithm compared with another one using critical-section style to compute the total sum?
- **Design strategy 2:**
 - Look for a data-parallel algorithm before considering a control-parallel algorithm
- ➔ On MIMD computer, we should exploit both data parallelism and control parallelism (try to develop SPMD program if possible)
Broadcast

- Description:
 - Given a message of length M stored at one processor, let’s send this message to all other processors

- Things to be considered:
 - Length of the message
 - Message passing overhead and data-transfer time
Broadcast Algorithm on Hypercube SIMD

- If the amount of data is small, the best algorithm takes $\log p$ communication steps on a p-node hypercube.
- Examples: broadcasting a number on a 8-node hypercube.

Step 1:
Send the number via the 1st dimension of the hypercube

Step 2:
Send the number via the 2nd dimension of the hypercube

Step 3:
Send the number via the 3rd dimension of the hypercube
Broadcasting a number from P_0 to all other processors

Local i, {Loop iteration}
 p, {Partner processor}
 position; {Position in broadcast tree}
 value; {Value to be broadcast}

Begin
 spawn($P_0, P_1, \ldots, P_{p-1}$);
 for $j := 0$ to $\log p - 1$ do
 for all P_i where $0 \leq i \leq p-1$ do
 if $i < 2^j$ then
 partner := $i+2^j$;
 [partner]value := value;
 endif;
 endforall;
 end forj;
End.
Broadcast Algorithm on Hypercube SIMD (cont’d)

- The previous algorithm
 - Uses at most $p/2$ out of $p \log p$ links of the hypercube
 - Requires time $M \log p$ to broadcast a length M msg
 - not efficient to broadcast long messages

- Johhsson and Ho (1989) have designed an algorithm that executes $\log p$ times faster by:
 - Breaking the message into $\log p$ parts
 - Broadcasting each parts to all other nodes through a different binominal spanning tree
Johnsson and Ho’s Broadcast Algorithm on Hypercube SIMD

- Time to broadcast a msg of length M is $M \log p / \log p = M$
- The maximum number of links used simultaneously is $p \log p$, much greater than that of the previous algorithm
Design strategy 3
- As problem size grow, use the algorithm that makes best use of the available resources
Prefix SUMS Problem

- **Description:**
 - Given an associative operation \(\oplus \) and an array \(A \) containing \(n \) elements, let’s compute the \(n \) quantities
 - \(A[0] \)
 - \(A[0] \oplus A[1] \)
 - \(\ldots \)

- **Cost-optimal PRAM algorithm:**
 - “Parallel Computing: Theory and Practice”, section 2.3.2, p. 32
Finding the prefix sums of 16 values

<table>
<thead>
<tr>
<th>Processor 0</th>
<th>Processor 1</th>
<th>Processor 2</th>
<th>Processor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 3 2 7 6</td>
<td>0 5 4 8</td>
<td>2 0 1 5</td>
<td>2 3 8 6</td>
</tr>
<tr>
<td>(b) 18</td>
<td>17</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>(c) 18 35 43 62</td>
<td>18 35 43 62</td>
<td>18 35 43 62</td>
<td>18 35 43 62</td>
</tr>
<tr>
<td>(d) 3 5 12 18</td>
<td>18 23 27 35</td>
<td>37 37 38 43</td>
<td>45 48 56 62</td>
</tr>
</tbody>
</table>
Prefix SUMS Problem on Multicomputers (cont’d)

- Step (a)
 - Each processor is allocated with its share of values

- Step (b)
 - Each processor computes the sum of its local elements

- Step (c)
 - The prefix sums of the local sums are computed and distributed to all processors

- Step (d)
 - Each processor computes the prefix sum of its own elements and adds to each result the sum of the values held in lower-numbered processors