Parallel Job Schedulings

Lectured by: Pham Tran Vu
Prepared by: Thoai Nam
Scheduling on UMA Multiprocessors

- **Schedule:**
 - allocation of tasks to processors

- **Dynamic scheduling**
 - A single queue of ready processes
 - A physical processor accesses the queue to run the next process
 - The binding of processes to processors is not tight

- **Static scheduling**
 - Only one process per processor
 - Speedup can be predicted
Deterministic model

- A parallel program is a collection of tasks, some of which must be completed before others begin
- Deterministic model: The execution time needed by each task and the precedence relations between tasks are fixed and known before run time
- Task graph
Gantt chart

- Gantt chart indicates the time each task spends in execution, as well as the processor on which it executes.
Optimal schedule

- If all of the tasks take unit time, and the task graph is a forest (i.e., no task has more than one predecessor), then a polynomial time algorithm exists to find an optimal schedule.
- If all of the tasks take unit time, and the number of processors is two, then a polynomial time algorithm exists to find an optimal schedule.
- If the task lengths vary at all, or if there are more than two processors, then the problem of finding an optimal schedule is NP-hard.
Graham’s list scheduling algorithm

- $T = \{T_1, T_2, \ldots, T_n\}$
 - a set of tasks
- $\mu : T \rightarrow (0, \infty)$
 - a function associates an execution time with each task
- A partial order \prec on T
- L is a list of task on T
- Whenever a processor has no work to do, it instantaneously removes from L the first ready task; that is, an unscheduled task whose predecessors under \prec have all completed execution. (The processor with the lower index is prior)
Graham’s list scheduling algorithm - Example

L = \{T_1, T_2, T_3, T_4, T_5, T_6, T_7\}

Time

Processors

T_1 T_2 T_3 T_4 T_5 T_6 T_7
Graham’s list scheduling algorithm - Problem

L = \{T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9\}
Coffman-Graham’s scheduling algorithm (1)

- Graham’s list scheduling algorithm depends upon a prioritized list of tasks to execute.
- Coffman and Graham (1972) construct a list of tasks for the simple case when all tasks take the same amount of time.
Coffman-Graham’s scheduling algorithm (2)

- Let $T = T_1, T_2, \ldots, T_n$ be a set of n unit-time tasks to be executed on p processors.
- If $T_i < T_j$, then task is T_i an immediate predecessor of task T_j, and T_j is an immediate successor of task T_i.
- Let $S(T_i)$ denote the set of immediate successor of task T_i.
- Let $\alpha(T_i)$ be an integer label assigned to T_i.
- $N(T)$ denotes the decreasing sequence of integers formed by ordering of the set $\{\alpha(T') | T' \in S(T)\}$.
Coffman-Graham’s scheduling algorithm (3)

1. Choose an arbitrary task T_k from T such that $S(T_k) = 0$, and define $\alpha(T_k)$ to be 1.
2. for $i \leftarrow 2$ to n do
 a. R be the set of unlabeled tasks with no unlabeled successors.
 b. Let T^* be the task in R such that $N(T^*)$ is lexicographically smaller than $N(T)$ for all T in R.
 c. Let $\alpha(T^*) \leftarrow i$
 endfor
3. Construct a list of tasks $L = \{U_n, U_{n-1}, \ldots, U_2, U_1\}$ such that $\alpha(U_i) = i$ for all i where $1 \leq i \leq n$.
4. Given (T, \langle, L), use Graham’s list scheduling algorithm to schedule the tasks in T.

-11-
Coffman-Graham’s scheduling algorithm – Example (1)
Coffman-Graham’s scheduling algorithm – Example (2)

Step 1 of algorithm

Task T_9 is the only task with no immediate successor. Assign 1 to $\alpha(T_9)$

Step 2 of algorithm

- $i=2$: $R = \{T_7, T_8\}$, $N(T_7) = \{1\}$ and $N(T_8) = \{1\}$ \Rightarrow Arbitrarily choose task T_7 and assign 2 to $\alpha(T_7)$
- $i=3$: $R = \{T_3, T_4, T_5, T_8\}$, $N(T_3) = \{2\}$, $N(T_4) = \{2\}$, $N(T_5) = \{2\}$ and $N(T_8) = \{1\}$ \Rightarrow Choose task T_8 and assign 3 to $\alpha(T_8)$
- $i=4$: $R = \{T_3, T_4, T_5, T_6\}$, $N(T_3) = \{2\}$, $N(T_4) = \{2\}$, $N(T_5) = \{2\}$ and $N(T_6) = \{3\}$ \Rightarrow Arbitrarily choose task T_4 and assign 4 to $\alpha(T_4)$
- $i=5$: $R = \{T_3, T_5, T_6\}$, $N(T_3) = \{2\}$, $N(T_5) = \{2\}$ and $N(T_6) = \{3\}$ \Rightarrow Arbitrarily choose task T_5 and assign 5 to $\alpha(T_5)$
- $i=6$: $R = \{T_3, T_6\}$, $N(T_3) = \{2\}$ and $N(T_6) = \{3\}$ \Rightarrow Choose task T_3 and assign 6 to $\alpha(T_3)$
Coffman-Graham’s scheduling algorithm – Example (3)

- i=7: \(R = \{T_1, T_6\}, N(T_1) = \{6, 5, 4\} \) and \(N(T_6) = \{3\} \) ⇒ Choose task \(T_6 \) and assign 7 to \(\alpha(T_6) \)

- i=8: \(R = \{T_1, T_2\}, N(T_1) = \{6, 5, 4\} \) and \(N(T_2) = \{7\} \) ⇒ Choose task \(T_1 \) and assign 8 to \(\alpha(T_1) \)

- i=9: \(R = \{T_2\}, N(T_2) = \{7\} \) ⇒ Choose task \(T_2 \) and assign 9 to \(\alpha(T_2) \)

Step 3 of algorithm

\[L = \{T_2, T_1, T_6, T_3, T_5, T_4, T_8, T_7, T_9\} \]

Step 4 of algorithm

Schedule is the result of applying Graham’s list-scheduling algorithm to task graph \(T \) and list \(L \)
Classes of scheduling

- **Static scheduling**
 - An application is modeled as an directed acyclic graph (DAG)
 - The system is modeled as a set of homogeneous processors
 - An optimal schedule: NP-complete

- **Scheduling in the runtime system**
 - Multithreads: functions for thread creation, synchronization, and termination
 - Parallelizing compilers: parallelism from the loops of the sequential programs

- **Scheduling in the OS**
 - Multiple programs must co-exist in the same system

- **Administrative scheduling**
Current approaches

- Global queue
- Variable partitioning
- Dynamic partitioning with two-level scheduling
- Gang scheduling
Global queue

- A copy of uni-processor system on each node, while sharing the main data structures, specifically the run queue
- Used in small-scale bus-based UMA shared memory machines
- Automatic load sharing
- Cache corruption
- Preemption inside spinlock-controlled critical sections
Variable partitioning

- Processors are partitioned into disjoined sets and each job is run only in a distinct partition

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Parameters taken into account</th>
<th>User request</th>
<th>System load</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td></td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Variable</td>
<td></td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Adaptive</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

- Distributed memory machines
- Problem: fragmentation, big jobs
Dynamic partitioning with two-level scheduling

- Changes in allocation during execution
- Work-pile model:
 - The work = an unordered pile of tasks or chores
 - The computation = a set of worker threads, one per processor, that take one chore at time from the work pile
 - Allowing for the adjustment to different numbers of processors by changing the number of the workers
 - Two-level scheduling scheme: the OS deals with the allocation of processors to jobs, while applications handle the scheduling of chores on those processors
Gang scheduling

- Problem: Interactive response times \Rightarrow time slicing
 - Global queue: uncoordinated manner

- Observation:
 - Coordinated scheduling is only needed if the job’s threads interact frequently
 - The rate of interaction can be used to drive the grouping of threads into gangs

- Samples:
 - Co-scheduling
 - Family scheduling: which allows more threads than processors and uses a second level of internal time slicing
Several specific scheduling methods

- Co-scheduling
- Smart scheduling [Zahorijan et al.]
- Scheduling in the NYU Ultracomputer [Elter et al.]
- Affinity based scheduling
- Scheduling in the Mach OS
Co-Scheduling

- Context switching between applications rather than between tasks of several applications.
- Solving the problem of “preemption inside spinlock-controlled critical sections”.
- Cache corruption???
Smart scheduling

- Avoiding:
 1. preempting a task when it is inside its critical section
 2. rescheduling tasks that were busy-waiting at the time of their preemption until the task that is executing the corresponding critical section releases it.

- The problem of “preemption inside spinlock-controlled critical sections” is solved.

- Cache corruption???.

Tasks can be formed into groups

Tasks in a group can be scheduled in any of the following ways:
- A task can be scheduled or preempted in the normal manner
- All the tasks in a group are scheduled or preempted simultaneously
- Tasks in a group are never preempted.

In addition, a task can prevent its preemption irrespective of the scheduling policy (one of the above three) of its group.
Affinity based scheduling

- Policy: a task is scheduled on the processor where it last executed [Lazowska and Squillante]
- Alleviating the problem of cache corruption
- Problem: load imbalance
Threads

Processor sets: disjoint

Processors in a processor set is assigned a subset of threads for execution.

- Priority scheduling: LQ, GQ(0),…,GQ(31)
 - Global queue (GQ)
 - LQ and GQ(0-31) are empty: the processor executes an special *idle* thread until a thread becomes ready.
 - Preemption: if an equal or higher priority ready thread is present