Chapter 2
Abstract Machine Models

Lectured by: Phạm Trần Vũ
Prepared by: Thoại Nam
A parallel machine model (also known as *programming model*, *type architecture*, *conceptual model*, or *idealized model*) is an abstract parallel computer from programmer’s viewpoint, analogous to the von Neumann model for sequential computing.

- The abstraction need not imply any structural information, such as the number of processors and interprocessor communication structure, but it should capture implicitly the relative costs of parallel computation.
- Every parallel computer has a native model that closely reflects its own architecture.
Five semantic attributes

- **Homogeneity**: how alike the processors of a parallel computer behave
- **Synchrony**: how tightly synchronised the processes are
- **Interaction mechanism**: how parallel processes interact
- **Address space**: the set of memory locations accessible by a process
- **Memory model**: how to handle shared-memory and access conflict
Several performance attributes

- **Machine size**: number of processors
- **Clock rate**: speed of processors (MHz)
- **Workload**: number of computation operations (Mflop)
- **Speedup, efficiency, utilization**
- **Startup time**
Abstract Machine Models

- An abstract machine model is mainly used in the design and analysis of parallel algorithms without worry about the details of physics machines.

- Three abstract machine models:
 - PRAM
 - BSP
 - Phase Parallel
 RAM (random access machine)

- **Read-only input tape:**
 - x_1, x_2, \ldots, x_n

- **Location counter**

- **Program**

- **Write-only output tape:**
 - x_1, x_2, \ldots

- **Memory**
 - $r_0, r_1, r_2, r_3, \ldots$
- Parallel random-access machine

![Diagram of PRAM (1)]
PRAM (2)

- A control unit
- An unbounded set of processors, each with its own private memory and an unique index
- Input stored in global memory or a single active processing element
- Step: (1) read a value from a single private/global memory location
 (2) perform a RAM operation
 (3) write into a single private/global memory location
- During a computation step: a processor may activate another processor
- All active, enabled processors must execute the same instruction (albeit on different memory location)
- Computation terminates when the last processor halts
Definition:

The cost of a PRAM computation is the product of the parallel time complexity and the number of processors used.

Ex: a PRAM algorithm that has time complexity $O(\log p)$ using p processors has cost $O(p \log p)$.
Time Complexity Problem

- Time complexity of a PRAM algorithm is often expressed in the big-O notation
- Machine size n is usually small in existing parallel computers
- Ex:
 - Three PRAM algorithms A, B and C have time complexities if $7n$, $(n \log n)/4$, $n \log \log n$.
 - Big-O notation: $A(O(n)) < C(O(n \log \log n)) < B(O(n \log n))$
 - Machines with no more than 1024 processors:
 - $\log n \leq \log 1024 = 10$ and $\log \log n \leq \log \log 1024 < 4$
 - and thus: $B < C < A$
Conflicts Resolution Schemes (1)

- PRAM execution can result in simultaneous access to the same location in shared memory.
 - Exclusive Read (ER)
 » No two processors can simultaneously read the same memory location.
 - Exclusive Write (EW)
 » No two processors can simultaneously write to the same memory location.
 - Concurrent Read (CR)
 » Processors can simultaneously read the same memory location.
 - Concurrent Write (CW)
 » Processors can simultaneously write to the same memory location, using some conflict resolution scheme.
Conflicts Resolution Schemes(2)

- **Common/Identical CRCW**
 - All processors writing to the same memory location must be writing the same value.
 - The software must ensure that different values are not attempted to be written.

- **Arbitrary CRCW**
 - Different values may be written to the same memory location, and an arbitrary one succeeds.

- **Priority CRCW**
 - An index is associated with the processors and when more than one processor write occurs, the lowest-numbered processor succeeds.
 - The hardware must resolve any conflicts
Begin with a single active processor active

Two phases:
- A sufficient number of processors are activated
- These activated processors perform the computation in parallel

\[\lceil \log p \rceil \] activation steps: \(p \) processors to become active

The number of active processors can be double by executing a single instruction
Parallel Reduction (1)
Parallel Reduction (2)

(EREW PRAM Algorithm in Figure 2-7, page 32, book [1])
Ex: SUM(EREW)

Initial condition: List of \(n \geq 1 \) elements stored in \(A[0..(n-1)] \)
Final condition: Sum of elements stored in \(A[0] \)
Global variables: \(n, A[0..(n-1)], j \)

begin
 spawn (\(P_0, P_1, \ldots, P_{\lfloor n/2 \rfloor - 1} \))
 for all \(P_i \) where \(0 \leq i \leq \lfloor n/2 \rfloor - 1 \) do
 for \(j \leftarrow 0 \) to \(\lceil \log n \rceil - 1 \) do
 if \(i \) modulo \(2^j = 0 \) and \(2^j + 2^j < n \) the
 endif
 endfor
 endfor
end
BSP – Bulk Synchronous Parallel

- **BSP Model**
 - Proposed by Leslie Valiant of Harvard University
 - Developed by W.F. McColl of Oxford University

Node (w)

Node

Node

Barrier (l)

Communication Network (g)
BSP Model

- A set of n nodes (processor/memory pairs)
- Communication Network
 - Point-to-point, message passing (or shared variable)
- Barrier synchronizing facility
 - All or subset
- Distributed memory architecture
A BSP program:

- n processes, each residing on a node
- Executing a strict sequence of supersteps
- In each superstep, a process executes:
 - Computation operations: w cycles
 - Communication: gh cycles
 - Barrier synchronization: l cycles
Three Parameters

- The basic time unit is a cycle (or time step)
 - \(w \) parameter
 - Maximum computation time within each superstep
 - Computation operation takes at most \(w \) cycles.
 - \(g \) parameter
 - Number of cycles for communication of unit message when all processors are involved in communication - network bandwidth
 - (total number of local operations performed by all processors in one second) / (total number of words delivered by the communication network in one second)
 - \(h \) relation coefficient
 - Communication operation takes \(gh \) cycles.
 - \(l \) parameter
 - Barrier synchronization takes \(l \) cycles.
A Figure of BSP Programs

Superstep 1
- Computation
- Communication
- Barrier

Superstep 2
- Computation
- Communication
- Barrier
Time Complexity of BSP Algorithms

- Execution time of a superstep:
 - Sequence of the computation, the communication, and the synchronization operations: \(w + gh + l \)
 - Overlapping the computation, the communication, and the synchronization operations: \(\max\{w, gh, l\} \)
Phase Parallel

- Proposed by Kai Hwang & Zhiwei Xu
- Similar to the BSP:
 - A parallel program: sequence of phases
 - Next phase cannot begin until all operations in the current phase have finished
 - Three types of phases:
 - Parallelism phase: the overhead work involved in process management, such as process creation and grouping for parallel processing
 - Computation phase: local computation (data are available)
 - Interaction phase: communication, synchronization or aggregation (e.g., reduction and scan)
- Different computation phases may execute different workloads at different speed.