Matrix Multiplication

Prepared by: Thoai Nam
Lectured by: Tran Vu Pham
Outline

- Sequential matrix multiplication
- Algorithms for processor arrays
 - Matrix multiplication on 2-D mesh SIMD model
 - Matrix multiplication on hypercube SIMD model
- Matrix multiplication on UMA multiprocessors
- Matrix multiplication on multicomputers
Sequential Matrix Multiplication

Global a[0..l-1,0..m-1], b[0..m-1][0..n-1], \{Matrices to be multiplied\}
c[0..l-1,0..n-1], \{Product matrix\}
t, \{Accumulates dot product\}
i, j, k;

Begin
 for i:=0 to l-1 do
 for j:=0 to n-1 do
 t:=0;
 for k:=0 to m-1 do
 t:=t+a[i][k]*b[k][j];
 endfor k;
 c[i][j]:=k;
 endfor j;
 endfor i;
End.
Algorithms for Processor Arrays

- Matrix multiplication on 2-D mesh SIMD model
- Matrix multiplication on Hypercube SIMD model
Matrix Multiplication on 2D-Mesh SIMD Model

- Gentleman (1978) has shown that multiplication of two \(n \times n \) matrices on the 2-D mesh SIMD model requires \(0(n) \) routing steps.

- We will consider a multiplication algorithm on a 2-D mesh SIMD model with wraparound connections.
Matrix Multiplication on 2D-Mesh SIMD Model (cont’d)

- For simplicity, we suppose that
 - Size of the mesh is n*n
 - Size of each matrix (A and B) is n*n
 - Each processor $P_{i,j}$ in the mesh (located at row i, column j) contains $a_{i,j}$ and $b_{i,j}$

- At the end of the algorithm, $P_{i,j}$ will hold the element $c_{i,j}$ of the product matrix
Matrix Multiplication on 2D-Mesh SIMD Model (cont’d)

- Major phases

(a) Initial distribution of matrices A and B

(b) Staggering all A’s elements in row i to the left by i positions and all B’s elements in col j upwards by i positions

Khoa Khoa Học & Kỹ Thuật Máy Tính – Trường Đại Học Bách Khoa TP. HCM
Matrix Multiplication on 2D-Mesh SIMD Model (cont’d)

Each processor $P(i,j)$ has a pair of elements to multiply $a_{i,k}$ and $b_{k,j}$

(b) Staggering all A’s elements in row i to the left by i positions and all B’s elements in col j upwards by i positions

(c) Distribution of 2 matrices A and B after staggering in a 2-D mesh with wraparound connection

<table>
<thead>
<tr>
<th></th>
<th>$a_{0,0}$</th>
<th>$a_{0,1}$</th>
<th>$a_{0,2}$</th>
<th>$a_{0,3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_{0,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{1,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{2,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{3,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$a_{1,0}$</th>
<th>$a_{1,1}$</th>
<th>$a_{1,2}$</th>
<th>$a_{1,3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_{0,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{1,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{2,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{3,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$a_{2,0}$</th>
<th>$a_{2,1}$</th>
<th>$a_{2,2}$</th>
<th>$a_{2,3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_{0,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{1,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{2,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{3,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$a_{3,0}$</th>
<th>$a_{3,1}$</th>
<th>$a_{3,2}$</th>
<th>$a_{3,3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_{0,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{1,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{2,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{3,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$a_{0,0}$</th>
<th>$a_{0,1}$</th>
<th>$a_{0,2}$</th>
<th>$a_{0,3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_{0,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{1,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{2,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{3,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$a_{1,1}$</th>
<th>$a_{1,2}$</th>
<th>$a_{1,3}$</th>
<th>$a_{1,0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_{0,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{1,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{2,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{3,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$a_{2,2}$</th>
<th>$a_{2,3}$</th>
<th>$a_{2,0}$</th>
<th>$a_{2,1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_{0,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{1,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{2,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{3,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$a_{3,3}$</th>
<th>$a_{3,0}$</th>
<th>$a_{3,1}$</th>
<th>$a_{3,2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b_{0,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{1,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{2,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$b_{3,0}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The rest steps of the algorithm from the viewpoint of processor P(1,2)

(a) First scalar multiplication step

(b) Second scalar multiplication step after elements of A are cycled to the left and elements of B are cycled upwards
Matrix Multiplication on 2D-Mesh SIMD Model (cont’d)

(c) Third scalar multiplication step after second cycle step

(d) Third scalar multiplication step after second cycle step. At this point processor P(1,2) has computed the dot product $c_{1,2}$
Matrix Multiplication on 2D-Mesh SIMD Model (cont’d)

Stagger 2 matrices
\(a[0..n-1,0..n-1]\) and \(b[0..n-1,0..n-1]\)

Detailed Algorithm

```
Global n, \{Dimension of matrices\}
k ;
Local a, b, c;
Begin
  for k:=1 to n-1 do
    forall P(i,j) where 1 \leq i,j < n do
      if i \geq k then a:= fromleft(a);
      if j \geq k then b:=fromdown(b);
    endforall;
  endfor k;
```

Matrix Multiplication on 2D-Mesh SIMD Model (cont’d)

Compute dot product

forall P(i,j) where 0 ≤ i,j < n do
 c := a*b;
end forall;
for k:=1 to n-1 do
 forall P(i,j) where 0 ≤ i,j < n do
 a := fromleft(a);
 b := fromdown(b);
 c := c + a*b;
 end forall;
end for k;
End.
Can we implement the above mentioned algorithm on a 2-D mesh SIMD model without wrapping around connection?
Matrix Multiplication Algorithm for Multiprocessors

- **Design strategy 5**
 - If load balancing is not a problem, *maximize grain size*
 - Grain size: the amount of work performed between processor interactions

- **Things to be considered**
 - Parallelizing the most outer loop of the sequential algorithm is a good choice since the attained grain size \(O(n^3/p) \) is the biggest
 - Resolving memory contention as much as possible
Matrix Multiplication Algorithm for UMA Multiprocessors

Algorithm using p processors

Global \(n \), \(a[0..n-1,0..n-1] \), \(b[0..n-1,0..n-1] \), \(c[0..n-1,0..n-1] \);
{Dimension of matrices}

{Two input matrices}

{Product matrix}

Local \(i,j,k,t \);

Begin

forall \(P_m \) where 1 \(\leq m \leq p \) do

for \(i:=m \) to \(n \) step \(p \) do

for \(j:=1 \) to \(n \) to

\(t:=0 \);

for \(k:=1 \) to \(n \) do \(t:=t+a[i,k]*b[k,j] \);

endfor j;

\(c[i][j]:=t \);

endfor i;

end forall;

End.
Matrix Multiplication Algorithm for NUMA Multiprocessors

- Things to be considered
 - Try to resolve memory contention as much as possible
 - Increase the locality of memory references to reduce memory access time

- Design strategy 6
 - Reduce average memory latency time by increasing locality

- The block matrix multiplication algorithm is a reasonable choice in this situation
 - Section 7.3, p.187, Parallel Computing: Theory and Practice
Matrix Multiplication Algorithm for Multicomputers

- We will study 2 algorithms on multicomputers
 - Row-Column-Oriented Algorithm
 - Block-Oriented Algorithm
Row-Column-Oriented Algorithm

The processes are organized as a ring

- **Step 1:** Initially, each process is given 1 row of the matrix A and 1 column of the matrix B
- **Step 2:** Each process uses vector multiplication to get 1 element of the product matrix C.
- **Step 3:** After a process has used its column of matrix B, it fetches the next column of B from its successor in the ring
- **Step 4:** If all rows of B have already been processed, quit. Otherwise, go to step 2
Why do we have to organize processes as a ring and make them use B’s rows in turn?

Design strategy 7:
- Eliminate contention for shared resources by changing the order of data access
Example: Use 4 processes to multiply two matrices $A_{4 \times 4}$ and $B_{4 \times 4}$.
Row-Column-Oriented Algorithm (cont’d)

Example: Use 4 processes to multiply two matrices $A_{4 \times 4}$ and $B_{4 \times 4}$

2nd iteration
Row-Column-Oriented Algorithm (cont’d)

Example: Use 4 processes to multiply two matrices $A_{4 \times 4}$ and $B_{4 \times 4}$
Row-Column-Oriented Algorithm (cont’d)

Example: Use 4 processes to multiply two matrices $A_{4 \times 4}$ and $B_{4 \times 4}$

4th iteration (the last)