Grid applications
Computing GRID: the issue

- Supercomputer, cluster, ...
 - How to extract the 99,999999% of the computing power of my limited powered expensive environment

- GRID environment
 - How to extract the very power I need from the theoretically infinite powered cheap environment

- Consequence
 - Speedup/efficiency curves are not any more relevant information..
Grid vs. Cluster computing from application view

- **Cluster**
 - Have applications, build a cluster for those applications
 - High efficiency but expensive

- **Grid infrastructure**
 - Have existing platforms, find applications that can efficiently run on those platforms
 - Cheap but not well tailored to every application
Types of Grid applications

- Type 1:
 - Traditional HPC applications running within a site (VO)
 - Using traditional models (MPI, PVM,…)
 - Ready-to-run, no need to modify/re-compile
 - Role of the Grid middleware
 - Resource discovery
 - Deploy and run the application remotely, securely on the discovered resource
Types of Grid applications

- Type 2:
 - New HPC applications running across multiple sites (VOs)
 - Require new programming models/tools
 - Multiple level parallelism
 - Embracing parallelism
 - Example: bio-informatics, parameter sweeping
 - Huge speedup can be achieved
 - Very few applications
 - Role of the Grid middleware
 - Resource discovery
 - Resource allocation and co-allocation
 - Application supporting services
 - Dynamic deployments and executions of application components
Issues

- Missing high-level services
 - QoS of resources

- Heterogeneity

- Code portability
 - Binary/Byte code or source code?

- Resource connectivity
 - Firewall/NAT/ Virtual IP

- Fault tolerance
 - Resource volatility

- Data protection
 - Protect sensitive data from stealing
Grid in the world
United Kingdom

- **E-Science, 215M€ over 5 years**
 - e-Science will refer to the large scale science that will increasingly be carried out through distributed global collaborations enabled by the Internet.

1 - National Network of Grid Centers
2 - Development of Generic Grid Middleware
3 - Support for e-Science Projects.

- **e-Science support centre**
- **Grid Network Team**
- **Grid Engineering Task Force**
Virtual Laboratory for e-science (VL-e), 55 M€ over 5 years
- 21 partners in 19 institutions

The mission of the VL-E project is:
- To boost e-Science by the creation of an e-Science environment and doing research on methodologies.

The strategy will be:
- To carry out concerted research along the complete e-Science technology chain, ranging from applications to networking, focused on new methodologies and reusable components.

The essential components of the total e-Science technology chain are:
- e-Science development areas,
- a Virtual Laboratory development area,
- a Large Scale Distributed computing development area, consisting of high performance networking and grid parts.
ACI-GRID, ~8 M€ 2001-2004
 - Based on « call for proposals »
 - Use RENATER network

GRID 5000
 - Building a nation wide experimental platform for Grid researches (like a particle accelerator for the computer scientists)
 - 10/11 geographically distributed sites, every site hosts a cluster (from 256 CPUs to 1K CPUs)
 - All sites are connected by RENATER (French Academ. Network)
 - RENATER hosts probes to trace network condition load
 - Design and develop a system/middleware environment for safely test and repeat experiments
 - Only experimental platform (no production)
Europe - CERN

- DATAGRID 10M€, ended beginning 2004
 - 21 partners
 - Feasibility project, final test bed
 - 1000 computers, 15 Terabytes on 25 sites
 - Followed by…

- EGEE, 4 years, 40 M€ for the first two years
 - 70 partners in 27 countries
 - To provide the necessary storage and computing infrastructure to LHC (and others..)
...and at HCMUT....
VN-Grid: toward a national-scale computing Grid

- **Main focus:** *infrastructure*
 - High-level services
 - Resource discovery and reservation
 - Scheduling
 - VO and policy management
 - OGSA and WSRF compliance
 - Programming support
 - MPI
 - POP-C++

- We do not develop from scratch!
 - Using GT for providing base services
A VN-Grid scenario

Site

Resource Discovery

Learning

Scheduling

Data warehouse

Monitoring

Resource Allocation/Reservation
Our first prototype-to-be-built

- Keep in mind the heterogeneity the dynamics
 - “Virtual site” concept (VSite)
 - Combine the flexibility of P2P technologies (partial view assumption) with the efficiency of centralized management on each VSite
 - Flexible to involve more resources
 - Flexible security management
 - Multiple level authentication and authorization (VO, user, …)

- Programming supports
 - Parallel object model (POP-C++)
 - MPI

- Applications
 - Oil exploitation (geo-physic data computation of oil fields)
 - Supraconductor study
 - Aviation
 - Chip Design