Parallel Algorithms

Thoai Nam
Outline

- Introduction to parallel algorithms development
- Reduction algorithms
- Broadcast algorithms
- Prefix sums algorithms
Parallel algorithms mostly depend on destination parallel platforms and architectures.

MIMD algorithm classification:
- Pre-scheduled data-parallel algorithms
- Self-scheduled data-parallel algorithms
- Control-parallel algorithms

According to M.J. Quinn (1994), there are 7 design strategies for parallel algorithms.
Basic Parallel Algorithms

- 3 elementary problems to be considered
 - Reduction
 - Broadcast
 - Prefix sums

- Target Architectures
 - Hypercube SIMD model
 - 2D-mesh SIMD model
 - UMA multiprocessor model
 - Hypercube Multicomputer
Reduction Problem

- Description: Given n values $a_0, a_1, a_2...a_{n-1}$, an associative operation \oplus, let's use p processors to compute the sum:

$$S = a_0 \oplus a_1 \oplus a_2 \oplus ... \oplus a_{n-1}$$

- Design strategy 1
 - “If a cost optimal CREW PRAM algorithms exists and the way the PRAM processors interact through shared variables maps onto the target architecture, a PRAM algorithm is a reasonable starting point”
Cost Optimal PRAM Algorithm for the Reduction Problem

- Cost optimal PRAM algorithm complexity:
 \(O(\log n) \) (using \(n \) div 2 processors)
- Example for \(n=8 \) and \(p=4 \) processors
Cost Optimal PRAM Algorithm for the Reduction Problem (cont’d)

Using \(p = \lfloor n/2 \rfloor \) processors to add \(n \) numbers:

Global \(a[0..n-1], n, i, j, p; \)

Begin

\[
\text{spawn}(P_0, P_1, \ldots, P_{p-1});
\]

\[
\text{for all } P_i \text{ where } 0 \leq i \leq p-1 \text{ do}
\]

\[
\text{for } j = 0 \text{ to ceiling}(\log p)-1 \text{ do}
\]

\[
\text{if } i \text{ mod } 2^j = 0 \text{ and } 2i + 2^j < n \text{ then}
\]

\[
a[2i] := a[2i] \oplus a[2i + 2^j];
\]

\[
\text{endif}
\]

\[
\text{endfor } j;
\]

\[
\text{endfor all};
\]

End.

Notes: the processors communicate in a biominal-tree pattern
Solving Reducing Problem on Hypercube SIMD Computer

Step 1: Reduce by dimension j=2
Step 2: Reduce by dimension j=1
Step 3: Reduce by dimension j=0
The total sum will be at P₀
Solving Reducing Problem on Hypercube SIMD Computer (cond’t)

Using p processors to add n numbers (p << n)

Global j;

Local local.set.size, local.value[1..n div p +1], sum, tmp;

Begin

spawn(P_0, P_1, …, P_{p-1});

for all P_i where 0 ≤ i ≤ p-1 do

 if (i < n mod p) then local.set.size := n div p + 1
 else local.set.size := n div p;

 endif;

 sum[i]:=0;

endforall;

Allocate workload for each processors
Solving Reducing Problem on Hypercube SIMD Computer (cond’t)

Calculate the partial sum for each processor

\[
\begin{align*}
&\text{for } j:=1 \text{ to } (n \div p +1) \text{ do} \\
&\quad \text{for all } P_i \text{ where } 0 \leq i \leq p-1 \text{ do} \\
&\quad\quad \text{if } \text{local.set.size} \geq j \text{ then} \\
&\quad\quad\quad \text{sum}[i] := \text{sum} \oplus \text{local.value}[j]; \\
&\quad\quad \text{endforall;} \\
&\quad \text{endfor } j;
\end{align*}
\]
Solving Reducing Problem on Hypercube SIMD Computer (cond’t)

Calculate the total sum by reducing for each dimension of the hypercube

for \(j = \text{ceiling}(\log p) - 1 \) downto 0 do
 for all \(P_i \) where \(0 \leq i \leq p - 1 \) do
 if \(i < 2^j \) then
 \(\text{tmp} := [i + 2^j] \text{sum} \);
 \(\text{sum} := \text{sum} \oplus \text{tmp} \);
 endif;
 endforall;
endfor \(j \);
A 2D-mesh with $p \times p$ processors need at least $2(p-1)$ steps to send data between two farthest nodes.

The lower bound of the complexity of any reduction sum algorithm is $O(n/p^2 + p)$

Example: a 4×4 mesh need 2×3 steps to get the subtotals from the corner processors.
Example: compute the total sum on a 4*4 mesh
Example: compute the total sum on a 4*4 mesh

Stage 2
Step i = 3

Stage 2
Step i = 2

Stage 2
Step i = 1
(the sum is at P_{1,1})
Solving Reducing Problem on 2D-Mesh SIMD Computer (cont’d)

Summation (2D-mesh SIMD with l*l processors)

Global i;
Local tmp, sum;
Begin
{Each processor finds sum of its local value \(\rightarrow\) code not shown}
for i:=l-1 downto 1 do
 for all P\(_{j,i}\) where 1 \(\leq\) i \(\leq\) l do
 {Processing elements in column i active}
 tmp := right(sum);
 sum:= sum \(\oplus\) tmp;
 end forall;
endfor;

Stage 1: \(P_{i,1}\) computes the sum of all processors in row i\(^{-}\)th
Stage 2:
Compute the total sum and store it at $P_{1,1}$

for $i : = l - 1$ downto 1 do
 for all $P_{i,1}$ do
 \{Only a single processing element active\}
 \text{tmp} := \text{down}(\text{sum});
 \text{sum} := \text{sum} \oplus \text{tmp};
 \text{end forall;}
 \text{end for;}
End.
Solving Reducing Problem on UMA Multiprocessor Model (MIMD)

- Easily to access data like PRAM
- Processors execute asynchronously, so we must ensure that no processor access an “unstable” variable

Variables used:

Global
 a[0..n-1], \{values to be added\}
 p, \{number of processor, a power of 2\}
 flags[0..p-1], \{Set to 1 when partial sum available\}
 partial[0..p-1], \{Contains partial sum\}
 global_sum; \{Result stored here\}

Local
 local_sum;
Example for UMA multiprocessor with \(p = 8 \) processors

- **Step j=1**
 - The total sum is at \(P_0 \)

- **Step j=2**

- **Step j=4**

- **Step j=8**

Stage 2

- \(P_0 \)
- \(P_1 \)
- \(P_2 \)
- \(P_3 \)
- \(P_4 \)
- \(P_5 \)
- \(P_6 \)
- \(P_7 \)
Solving Reducing Problem on UMA Multiprocessor Model (cont’d)

Summation (UMA multiprocessor model)

Begin
\[
\text{for } k := 0 \text{ to } p-1 \text{ do flags}[k] := 0; \\
\text{for all } P_i \text{ where } 0 \leq i < p \text{ do} \\
\quad \text{local}_\text{sum} := 0; \\
\quad \text{for } j := i \text{ to } n-1 \text{ step } p \text{ do} \\
\qquad \text{local}_\text{sum} := \text{local}_\text{sum} \oplus a[j]; \\
\]

Stage 1:
Each processor computes the partial sum of \(n/p\) values
Solving Reducing Problem on UMA Multiprocessor Model (cont’d)

Stage 2:
Compute the total sum

Each processor waits for the partial sum of its partner available

j:=p;
while j>0 do begin
 if i \geq j/2 then
 partial[i]:=local_sum;
 flags[i]:=1;
 break;
 else
 while (flags[i+j/2]=0) do;
 local_sum:=local_sum \oplus partial[i+j/2];
 endif;
 j=j/2;
end while;
if i=0 then global_sum:=local_sum;
end forall;
End.
Solving Reducing Problem on UMA Multiprocessor Model (cont’d)

- Algorithm complexity $0(n/p+p)$
- What is the advantage of this algorithm compared with another one using critical-section style to compute the total sum?

- Design strategy 2:
 - Look for a data-parallel algorithm before considering a control-parallel algorithm

- On MIMD computer, we should exploit both data parallelism and control parallelism (try to develop SPMD program if possible)
Broadcast

- Description:
 - Given a message of length M stored at one processor, let’s send this message to all other processors

- Things to be considered:
 - Length of the message
 - Message passing overhead and data-transfer time
Broadcast Algorithm on Hypercube SIMD

- If the amount of data is small, the best algorithm takes $\log p$ communication steps on a p-node hypercube.
- Examples: broadcasting a number on a 8-node hypercube

Step 1: Send the number via the 1st dimension of the hypercube
Step 2: Send the number via the 2nd dimension of the hypercube
Step 3: Send the number via the 3rd dimension of the hypercube
Broadcasting a number from \(P_0\) to all other processors

Local \(i\), \{Loop iteration\}

\(p\), \{Partner processor\}

\(position\), \{Position in broadcast tree\}

\(value\); \{Value to be broadcast\}

Begin

\(\text{spawn}(P_0, P_1, \ldots, P_{p-1})\);

for \(j\) := 0 to \(\log_2 p - 1\) do

for all \(P_i\) where \(0 \leq i \leq p-1\) do

if \(i < 2^j\) then

\(\text{partner} := i + 2^j\);

\([\text{partner}]\text{value} := \text{value}\);

endif;

endforall;

end forj;

End.
Broadcast Algorithm on Hypercube SIMD (cont.’d)

- The previous algorithm
 - Uses at most $p/2$ out of $p \log p$ links of the hypercube
 - Requires time $M \log p$ to broadcast a length M msg

- not efficient to broadcast long messages

- Johhsson and Ho (1989) have designed an algorithm that executes $\log p$ times faster by:
 - Breaking the message into $\log p$ parts
 - Broadcasting each parts to all other nodes through a different biominal spanning tree
Time to broadcast a msg of length M is $M \log_2 p / \log_2 p = M$

The maximum number of links used simultaneously is $p \log_2 p$, much greater than that of the previous algorithm.
Design strategy 3

– As problem size grow, use the algorithm that makes best use of the available resources
Prefix SUMS Problem

- **Description:**
 - Given an associative operation \(\oplus \) and an array \(A \) containing \(n \) elements, let’s compute the \(n \) quantities
 - \(A[0] \)
 - \(A[0] \oplus A[1] \)
 - \(\ldots \)

- **Cost-optimal PRAM algorithm:**
 - ”Parallel Computing: Theory and Practice”, section 2.3.2, p. 32
Prefix SUMS Problem on Multicomputers

- Finding the prefix sums of 16 values

<table>
<thead>
<tr>
<th>Processor 0</th>
<th>Processor 1</th>
<th>Processor 2</th>
<th>Processor 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 3 2 7 6</td>
<td>0 5 4 8</td>
<td>2 0 1 5</td>
<td>2 3 8 6</td>
</tr>
<tr>
<td>(b) 18</td>
<td>17</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>(c) 18 35 43 62</td>
<td>18 35 43 62</td>
<td>18 35 43 62</td>
<td>18 35 43 62</td>
</tr>
<tr>
<td>(d) 3 5 12 18</td>
<td>18 23 27 35</td>
<td>37 37 38 43</td>
<td>45 48 56 62</td>
</tr>
</tbody>
</table>
Prefix SUMS Problem on Multicomputers (cont’d)

- Step (a)
 - Each processor is allocated with its share of values

- Step (b)
 - Each processor computes the sum of its local elements

- Step (c)
 - The prefix sums of the local sums are computed and distributed to all processors

- Step (d)
 - Each processor computes the prefix sum of its own elements and adds to each result the sum of the values held in lower-numbered processors