Distributed System

THOAI NAM
Chapter 1: Introduction

- Distributed Systems
- Challenges
- Transparency
- Scalability
- Distributed OS
Definition of a Distributed System

- A distributed system:
 - Multiple connected CPUs working together.
 - Components located at networked computers communicate and coordinate their actions only by message passing.
 - A collection of independent computers that appears to its users as a single coherent system.

- Examples: networked machines, Internet, Intranet, mobile and ubiquitous computing
Advantages and Disadvantages

- Advantages
 - Communication and resource sharing possible
 - Economics – price-performance ratio
 - Reliability, scalability
 - Potential for incremental growth

- Disadvantages
 - Distribution-aware PLs, OSs and applications
 - Network connectivity essential
 - Security and privacy
Challenges

- Heterogeneity
- Openness
- Security
- Scalability
- Failure handling
- Concurrency
- Transparency
Transparency in a Distributed System

<table>
<thead>
<tr>
<th>Transparency</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access</td>
<td>Hide differences in data representation and how a resource is accessed</td>
</tr>
<tr>
<td>Location</td>
<td>Hide where a resource is located</td>
</tr>
<tr>
<td>Migration</td>
<td>Hide that a resource may move to another location</td>
</tr>
<tr>
<td>Relocation</td>
<td>Hide that a resource may be moved to another location while in use</td>
</tr>
<tr>
<td>Replication</td>
<td>Hide that a resource may have many copies</td>
</tr>
<tr>
<td>Concurrency</td>
<td>Hide that a resource may be shared by several competitive users</td>
</tr>
<tr>
<td>Failure</td>
<td>Hide the failure and recovery of a resource</td>
</tr>
<tr>
<td>Persistence</td>
<td>Hide whether a (software) resource is in memory or on disk</td>
</tr>
</tbody>
</table>

Different forms of transparency in a distributed system.
Scalability Problems

<table>
<thead>
<tr>
<th>Concept</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralized services</td>
<td>A single server for all users</td>
</tr>
<tr>
<td>Centralized data</td>
<td>A single on-line telephone book</td>
</tr>
<tr>
<td>Centralized algorithms</td>
<td>Doing routing based on complete information</td>
</tr>
</tbody>
</table>

Examples of scalability limitations.
Distributed Systems Models

- **Minicomputer model**
 - Each user has local machine
 - Local processing but can fetch remote data (files, databases)

- **Workstation model**
 - Processing can also migrate

- **Client-server Model**
 - User has local workstation
 - Powerful workstations serve as servers (file, print, DB servers)

- **Processor pool model**
 - Terminals are Xterms or diskless terminals
 - Pool of backend processors handle processing
Uniprocessor Operating Systems

- An OS acts as a resource manager or an arbitrator
 - Manages CPU, I/O devices, memory
- OS provides a virtual interface that is easier to use than hardware
- Structure of uniprocessor operating systems
 - Monolithic (e.g., MS-DOS, early UNIX)
 » One large kernel that handles everything
 - Layered design
 » Functionality is decomposed into N layers
 » Each layer uses services of layer N-1 and implements new service(s) for layer N+1
Microkernel architecture

- Small kernel
- user-level servers implement additional functionality

![Diagram of Microkernel Architecture](image-url)
Distributed Operating System

- Manages resources in a distributed system
 - Seamlessly and transparently to the user
- Looks to the user like a centralized OS
 - But operates on multiple independent CPUs
- Provides transparency
 - Location, migration, concurrency, replication,…
- Presents users with a virtual uniprocessor
Types of Distributed OSs

<table>
<thead>
<tr>
<th>System</th>
<th>Description</th>
<th>Main Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOS</td>
<td>Tightly-coupled operating system for multi-processors and homogeneous multicomputers</td>
<td>Hide and manage hardware resources</td>
</tr>
<tr>
<td>NOS</td>
<td>Loosely-coupled operating system for heterogeneous multicomputers (LAN and WAN)</td>
<td>Offer local services to remote clients</td>
</tr>
<tr>
<td>Middleware</td>
<td>Additional layer atop of NOS implementing general-purpose services</td>
<td>Provide distribution transparency</td>
</tr>
</tbody>
</table>
Multiprocessor Operating Systems

- Like a uniprocessor operating system
- Manages multiple CPUs transparently to the user
- Each processor has its own hardware cache
 - Maintain consistency of cached data
Multicomputer Operating Systems

- Machine A
- Machine B
- Machine C

- Distributed applications
- Distributed operating system services
- Kernel
- Kernel
- Kernel

Network
Network Operating System (1)
Network Operating System (2)

- Employs a client-server model
 - Minimal OS kernel
 - Additional functionality as user processes

![Diagram of client-server model with two clients requesting from a file server on the network.](image)
Middleware-based Systems

- General structure of a distributed system as middleware

Machine A

- Distributed applications
- Middleware services
- Network OS services
- Kernel

Machine B

- Distributed applications
- Middleware services
- Network OS services
- Kernel

Machine C

- Distributed applications
- Middleware services
- Network OS services
- Kernel

Network
Comparison between Systems

<table>
<thead>
<tr>
<th>Item</th>
<th>Distributed OS</th>
<th>Network OS</th>
<th>Middleware-based OS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Multproc.</td>
<td>Multicomp.</td>
<td></td>
</tr>
<tr>
<td>Degree of transparency</td>
<td>Very High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Same OS on all nodes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Number of copies of OS</td>
<td>1</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Basis for communication</td>
<td>Shared memory</td>
<td>Messages</td>
<td>Files</td>
</tr>
<tr>
<td>Resource management</td>
<td>Global, central</td>
<td>Global, distributed</td>
<td>Per node</td>
</tr>
<tr>
<td>Scalability</td>
<td>No</td>
<td>Moderately</td>
<td>Yes</td>
</tr>
<tr>
<td>Openness</td>
<td>Closed</td>
<td>Closed</td>
<td>Open</td>
</tr>
</tbody>
</table>