
12/19/2013

1

Temporal Placement

HV: Hồ Hoàng Nguyên

GVHD: TS. Trần Ngọc Thịnh

Reconfigurable Computing

Outline

1. Offline Temporal Placement

 First-Fit and Best-Fit Placement

 Packing Approach for Temporal Placement

2. Online Temporal Placement

 Managing the Device’s Free Space with Empty

Rectangles

 Managing the Device’s Occupied Space

2

12/19/2013

2

3

Wasted Resources
• Wasted resource wr(vi) of a node vi:

 Unused area occupied by the node vi during the computation of a
partition.

wr(vi) = (t(Pi)−ti)×ai,

t(Pi): run-time of partition Pi.

ti: run-time of the component vi

ai: area of vi

• Wasted resource avoidance:

 A component is placed on the chip only when its computation is
required

 and remains on the device only for time it is active.
−  Idle components can be replaced by new ones.

 Partial reconfiguration

• Assumptions:

 There is partial reconfiguration support.

 Blocks are hard

Temporal placement -Motivation

• Temporal partitioning

 Advantages:

− Off-line computation

− Technically easy to implement

− Can be implemented on each reconfigurable device

 Drawbacks:

− Lack of dynamics

− Resource wasting

• Temporal placement

 Reduce the amount of wasted resources

 Dynamic decision-making

 Two approaches

− Off-line (pre-defined placement sequence)

− On-line (dynamic placement sequence)

4

12/19/2013

3

5

• Temporal placement:

 Time-dependent placement

 Management of task execution at run-time

• Graphical Representation:

 t axis: life time of a configuration.

 Some overlaps (resource sharing) in 2-D is
allowed:

− If not at the same time.

Temporal Placement

 A horizontal cut:
configuration at a
given time

6

Temporal Placement

• Off-line (compile time)

 Pre-defined placement sequence

− In DSP applications, program flow can be predicted.

• On-line (during execution)

 Computation sequence is not known in advance.

−  Dynamically at run time.

Needs to solve computational intensive problems in a

fraction of millisecond:

− Efficient management of the free space

− Selection of the best site for a new component

− Management of communication

12/19/2013

4

Outline

1. Offline Temporal Placement

 First-Fit and Best-Fit Placement

 Packing Approach for Temporal Placement

7

8

Off-Line Temporal Placement

• Off-line temporal placement:

Given a DFG G = (V,E) and a reconfigurable device H

(with length Hx and width Hy), a temporal placement is

a 3-dimensional vector function:

p = (px, py, pt) : V → R3,

pt defines a feasible schedule (pt(vi): Starting time of vi.)

px(vi), py(vi): Coordinates of vi on H,

12/19/2013

5

9

First/Best Fit Algorithm

• First fit:

1. Select a node among ready nodes.

− i.e. nodes whose predecessors have been placed

2. Place it in the first free location.

• Advantages:

 Fast (linear w.r.t. number of free locations)

• Disadvantages:

 Unused resources very high

 Fragmentation

10

First/Best Fit Algorithm

• Best fit:

1. Select a node among ready nodes.

2. Place it in the best free location.

• Advantages:

 Better area utilization

• Disadvantages:

 Much slower:

− Complete list of free locations must be searched.

 Fragmentation

• Simplifying the problem:

 Restricting the modules to columns (Virtex II) or part
of a column (Virtex 4 / Virtex 5 / Virtex 6).

Frames

CLBs

12/19/2013

6

11

First Fit Algorithm

• Algorithm: First-fit temporal placement of clusters

1. While all the clusters are not placed do

1.1. Select one cluster Cact from the list of ready-to-run clusters

1.2. From the clusters already placed, select the cluster Ctop with

the smallest finishing-time such that

Ctop ≤ Cact

1.3. Place the cluster Cact on top

of Ctop

2. end while

12

First Fit Algorithm

• Configuration sequence

produced:

a) {0, 1, 2, 3, 4}

b) {5, 1, 2, 3, 4}

c) {5, 1 , 6, 7, 4}

d) {5, 1 , 6, 7, 8}

e) {5, 9 , 6, 7, 8}

f) {10, 9 , 6, 7, 8}

12/19/2013

7

13

Packing Approach

• Variations of Packing Problem:

1. Base Minimization Problem (BMP):

 Given a set of boxes B and a height H, find a container with
minimal size (x, y, H) that can accommodate the set of boxes B

 i.e. in temporal placement:
− Find the device with minimum size (x, y) on which a set of

components can be implemented given an overall run-time t = H.

2. Strip Packing Problem (SPP):

 Given a set of boxes and a base (X, Y), find the minimum height h
container with size (X, Y, h) that can hold all the boxes.

 i.e. in temporal
− Find the minimum run-time t = h for a set of components given a

reconfigurable device with size (X, Y).

• The device is usually fixed

  SPP is more common.

14

Packing Classes

• Interval Graph:

Given a DFG G = (V,E), a reconfigurable device H and

a packing of V into H, (i.e. a 3-D placement of the

components of V on the device H), an interval graph of

G is a graph Gi = (V,Ei), i  {1, 2, 3} such that:

(vk, vl)  Ei  the projections of the nodes vk and vl

overlap in the i-th dimension.

• Complement Graph:

 Complement of interval graph:

Gi = (V,Ei)

12/19/2013

8

15

Packing Class

• Packing class:

 A d-tuple of interval graphs with the following properties:

− C1: Any independent set S  Gi is i-admissible

vS wi(v)  hi) (each set of boxes must fit in the

container in the i-th direction)

− C2: i=1...d Ei = . There must be at least one dimension in

which the boxes do not overlap.

• The Gi are called component graphs of E = {E1, E2, E3}.

wi = length of projection of vi in i-th direction

hi is the length of the device in the same dimension.

16

Packing Class

12/19/2013

9

17

Packing Class

 Invalid two-dimensional packing:

18

Packing Class

• Theorem:

 A d-tuple of graphs Gi(Vi,Ei) corresponds to a feasible
packing, if and only if it is a packing class.

• Comparability Graph:

 Given a DFG G = (V,E), a reconfigurable device H
and a packing of V into H, The comparability graph
of an interval graph Gi = (V,Ei), i  {1, 2} is the
directed graph Gi = (V,Ei), where (vk, vl)  Ei  vl is
‘placed after’ vk in 3-rd dimension, i.e. (pt(vk) + tk ≤
pt(vl)).

− The relation ‘place after’ defined by the comparability
graph is a transitive relation also known as transitive
orientation that can be used for orienting the packing
classes.

12/19/2013

10

19

Packing Class Orientation

• Packing Class Orientation:

Given G(V, E), H and packing of V on H, orientation of

the packing class corresponding to the packing is

defined by constructing the comparability graph of the

interval graph in the time dimension.

20

12/19/2013

11

Outline

1. Offline Temporal Placement

 First-Fit and Best-Fit Placement

 Packing Approach for Temporal Placement

2. Online Temporal Placement

 Managing the Device’s Free Space with Empty

Rectangles

 Managing the Device’s Occupied Space

21

Online Temporal Placement

• Possible scenario

1. The scheduler requests the placement of a

new task

2. The placer tries to find a place on the

device for the new task

1. Upon success, it acknowledges the

scheduler and downloads the corresponding

module to the device. Fine!

2. Upon failure, it acknowledges the scheduler.

The scheduler can now decide to reject the

request or to try it later again

3. In all cases, we have to decide on-line, if a

new component can be placed on a device

where other components are already

running

22

12/19/2013

12

Online Temporal Placement

• Definition:

Given a reconfigurable processing unit H at time t with a

given configuration Ct.

Find an optimal position for a new incoming task v such

that v does not overlap with any running component in the

configuration Ct

23

Outline

1. Offline Temporal Placement

 First-Fit and Best-Fit Placement

 Packing Approach for Temporal Placement

2. Online Temporal Placement

 Managing the Device’s Free Space with Empty

Rectangles

− KAMER

 Managing the Device’s Occupied Space

24

12/19/2013

13

25

KAMER

• Empty Rectangle (ER):

 A rectangle that does not overlap a placed module on the

chip

• Maximum Empty Rectangle (MER):

 An ER not included in any other rectangle than the device

bounding box

26

Example

• Non-ER:

 (E,F)

• ER:

 (E,D): MER

 (A,D): MER

 (E,C): not MER

• KAMER method:

 keeping all maximum empty rectangles:

− Permanently keeps track of all MERs

− Whenever a request for placing a component v arrives, the list

of MERs is searched for a rectangle that can accommodate v.

 Possible to have many MERs in which v can fit

=> Strategies: first-fit or best-fit

12/19/2013

14

27

KAMER

Once a rectangle is chosen:

− Candidate points are those that do not allow an overlap

with the external part of the rectangle.

• Problem 1:

 Number of empty rectangles does not grow linear with

the number of components included

28

KAMER

 Run-time of free rectangle placement: O(n2)

• Heuristic:

 Keep only the non-overlapping empty rectangles

−  Linear time, lower quality

• Problem 2:

 Several non-overlapping rectangle representations

12/19/2013

15

29

Keeping Non-Overlapping ERs

• Problem 3:

 Non-overlapping empty rectangles are not necessarily

maximal

−  A module may exists that could fit onto the device, but

cannot be placed

Can fit
Can’t fit

(bad decomposition)

30

Keeping Non-Overlapping ERs

• Problem 2:

 Non-overlapping empty rectangles are not necessarily

maximal

−  A module may exists that could fit onto the device, but

cannot be placed

Can fitCan’t fit

12/19/2013

16

31

Keeping Non-Overlapping ERs

• Incremental update:

Whenever a new component v1 is placed in a rectangle,

two possibilities:

− Horizontal splitting

− Vertical splitting

 Negative impact on

next components

32

Keeping Non-Overlapping ERs

• Horizontal

Can’t fit

Can fit

• Vertical

•Solution:

Delaying the

split decision for a

number of steps

later

12/19/2013

17

Outline

1. Offline Temporal Placement

 First-Fit and Best-Fit Placement

 Packing Approach for Temporal Placement

2. Online Temporal Placement

 Managing the Device’s Free Space with Empty

Rectangles

 Managing the Device’s Occupied Space

33

Managing the Device’s Occupied Space

• Observation:

 The number of free rectangles increases much faster

than the number of occupied rectangles.

• Method:

 Instead of managing the empty space, we manage the

occupied space

34

12/19/2013

18

Managing the Device’s Occupied Space

• Definition :

 The impossible placement region of a module C

relative to a running module C‘, Ic’ (c) is the area where

C cannot be placed without overlapping with C'.

35

Managing the Device’s Occupied Space

• Definition :

 The impossible placement region of a module C

relative to a set S of running modules is the union of

the impossible placement regions of C relative to each

module in S.

36

12/19/2013

19

Managing the Device’s Occupied Space

• Definition :

 The impossible placement region of a module C

relative to the device is the region where the module

cannot be placed without overlapping with the border

of the device.

37

Managing the Device’s Occupied Space

• Definition:

 The impossible placement region of a module C is the

union of all impossible placement regions

• C may be placed everywhere in the complement of the

impossible placement region.

38

12/19/2013

20

Summary

• Temporal placement

Offline Temporal Placement

− First-Fit and Best-Fit Placement

− Packing Approach for Temporal Placement

Online Temporal Placement

− Managing the Device’s Free Space with Empty

Rectangles

− KAMER

− Managing the Device’s Occupied Space

 Advantages:

− Highly flexible and efficient in terms of device utilization

 Disadvantages:

− Algorithms are difficult and cost-intensive

39

Thank you

40

