
http://www.cse.hcmut.edu.vn/~tnthinh/rc

reconfigurable computing

2010
dce

Reconfigurable Computing

2. SRAM2. SRAM--based FPGAbased FPGA

2010
dce

Reconfigurable Computing

Current/Future Directions
• FPGA (Field-programmable gate arrays) - mid

1980s
– Misleading name - there is no array of gates
– Array of fine-grained configurable components

• Will discuss architecture shortly
– Currently support millions of gates

• Coarse-grained RC architectures
– Array of coarse-grained components

• Multipliers, DSP units, etc.
– Potentially, larger capacity than FPGA

• But, applications may not map well
– Wasted resources
– Inefficient execution

2010
dce

Reconfigurable Computing

FPGA Architectures

• How can we implement any circuit in an
FPGA?
– First, focus on combinational logic
– Example: Half adder

• Combinational logic represented by truth table
• What kind of hardware can implement a truth

table?

Input Out

A B S

0 0 0

0 1 1

1 0 1

1 1 0

Input Out

A B C

0 0 0

0 1 0

1 0 0

1 1 1

2010
dce

Reconfigurable Computing

Look-up-tables (LUTs)
• Implement truth table in small memories (LUTs)

– Usually SRAM

0

1

1

0

A B S

0 0 0

0 1 1

1 0 1

1 1 0

A B C

0 0 0

0 1 0

1 0 0

1 1 1

Addr

Output

0

0

0

1

Output

Logic inputs connect to
address inputs, logic

output is memory output

2-input,
1-output

LUTs
00

01

10

11

00

01

10

11

A

B

Addr
A

B

S C

2010
dce

Reconfigurable Computing

Look-up-tables (LUTs)
• Alternatively, could have used a 2-input, 2-

output LUT
– Outputs commonly use same inputs

0

1

1

0

S

0

0

0

1

C

0

1

1

0

S

0

0

0

1

C

00

01

10

11

00

01

10

11

00

01

10

11

Addr
A

B

Addr
A

B

Addr
A

B

2010
dce

Reconfigurable Computing

Look-up-tables (LUTs)

• Slightly bigger example: Full adder
– Combinational logic can be implemented in a LUT

with same number of inputs and outputs
• 3-input, 2-ouput LUT

Inputs Outputs

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

0 0

1 0

1 0

0 1

1 0

0 1

0 1

1 1

A

B

Cin

S Cout

Truth Table 3-input, 2-output LUT

http://www.cse.hcmut.edu.vn/~tnthinh/rc

reconfigurable computing

2010
dce

Reconfigurable Computing

Look-up-tables (LUTs)

• Why aren’t FPGAs just a big LUT?
– Size of truth table grows exponentially based on # of inputs

• 3 inputs = 8 rows, 4 inputs = 16 rows, 5 inputs = 32 rows, etc.
– Same number of rows in truth table and LUT
– LUTs grow exponentially based on # of inputs

• Number of SRAM bits in a LUT = 2i * o
– i = # of inputs, o = # of outputs
– Example: 64 input combinational logic with 1 output would

require 264 SRAM bits
• 1.84 x 1019

• Clearly, not feasible to use large LUTs
– So, how do FPGAs implement logic with many inputs?

2010
dce

Reconfigurable Computing

Look-up-tables (LUTs)
• Fortunately, we can map circuits onto multiple LUTs

– Divide circuit into smaller circuits that fit in LUTs (same # of
inputs and outputs)

– Example: 3-input, 2-output LUTs

2010
dce

Reconfigurable Computing

Look-up-tables (LUTs)
• What if circuit doesn’t map perfectly?

– More inputs in LUT than in circuit
• Truth table handles this problem
• Unused inputs are ignored

– More outputs in LUT than in circuit
• Extra outputs simply not used

– Space is wasted, so should use multiple outputs
whenever possible

2010
dce

Reconfigurable Computing

Look-up-tables (LUTs)
• Important Point

– The number of gates in a circuit has no effect on the
mapping into a LUT

• All that matters is the number of inputs and outputs
• Unfortunately, it isn’t common to see large circuits with a few

inputs

1 gate 1,000,000 gates

Both of these circuits can be implemented in a single
3-input, 1-output LUT

2010
dce

Reconfigurable Computing

Sequential Logic
• Problem: How to handle sequential logic

– Truth tables don’t work
• Possible solution:

– Add a flip-flop to the output of LUT

3-in, 2-out
LUT

FF FF

3-in, 1-out
LUT

FF

etc.

2010
dce

Reconfigurable Computing

Sequential Logic
• Example: 8-bit register using 3-input, 2-output LUTs

– Input: x, Output: y

– What does LUT need to do to implement register?

3-in, 2-out
LUT

FF FF

3-in, 2-out
LUT

FF FF

3-in, 2-out
LUT

FF FF

3-in, 2-out
LUT

FF FF

x(7) x(6) x(5) x(4) x(3) x(2) x(1) x(0)

y(7) y(6) y(5) y(4) y(3) y(2) y(1) y(0)

http://www.cse.hcmut.edu.vn/~tnthinh/rc

reconfigurable computing

2010
dce

Reconfigurable Computing

Sequential Logic
• Example, cont.

– LUT simply passes inputs to appropriate output

3-in, 2-out
LUT

FF FF

x(1) x(0)

y(1) y(0)

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

y(1) y(0)

x(1) x(0)

FF FF

x(1) x(0)

y(1) y(0)

0 0 0

0 1 0

0 0 1

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

x(0)x(1)

Inputs/Outputs LUT functionality Corresponding
Truth Table

0 0

1 0

0 1

1 1

0 0

0 1

1 0

1 1

y(1) y(0)

Corresponding
LUT

2010
dce

Reconfigurable Computing

Sequential Logic
• Isn’t it a waste to use LUTs for registers?
• YES! (when it can be used for something else)

– Commonly used for pipelined circuits
• Example: Pipelined adder

3-in, 2-out
LUT

FF FF

+

Register

+

+

Register

Register

3-in, 2-out
LUT

FF FF

. . . .

Adder and output register combined – not a
separate LUT for each

2010
dce

Reconfigurable Computing

Sequential Logic
• Existing FPGAs don’t have a flip flop

connected to LUT outputs
• Why not?

– Flip flop has to be used!
• Impossible to have pure combinational logic

– Adds latency to circuit
• Actual Solution:

– Configurable Logic Blocks (CLBs)

2010
dce

Reconfigurable Computing

Configurable Logic Blocks (CLBs)

• CLBs: the basic FPGA functional unit
– First issue: How to make flip-flop optional?

• Simplest way: use a mux
– Circuit can now use output from LUT or from FF
– Where does select come from? (will be answered shortly)

3-in, 1-out
LUT

FF

2x1

CLB

2010
dce

Reconfigurable Computing

Configurable Logic Blocks (CLBs)
• CLBs usually contain more than 1 LUT

– Why?
• Efficient way of handling common I/O between adjacent LUTs
• Saves routing resources (we haven’t discussed yet)

3-in, 2-out
LUT

FF

2x1

FF

2x1

3-in, 2-out
LUT

FF

2x1

FF

2x1

2x1

CLB

2010
dce

Reconfigurable Computing

Configurable Logic Blocks (CLBs)
• Example: Ripple-carry adder

– Each LUT implements 1 full adder
– Use efficient connections between LUTs for carry signals

3-in, 2-out
LUT

FF

2x1

FF

2x1

3-in, 2-out
LUT

FF

2x1

FF

2x1

2x1

CLB

A(0) B(0) Cin(0)

S(0)

Cin(1)

A(1) B(1)

S(1)

Cout(0)

Cout(1)

http://www.cse.hcmut.edu.vn/~tnthinh/rc

reconfigurable computing

2010
dce

Reconfigurable Computing

Configurable Logic Blocks (CLBs)

• CLBs often have specialized connections
between adjacent CLBs
– Further improves carry chains
– Avoids routing resources

• Some commercial CLBs even more complex
– Xilinx Virtex 4 CLB consists of 4 “slices”

• 1 slice = 2 LUTs + 2 FFs + other stuff
• 1 Virtex 4 CLB = 8 LUTs

– Altera devices has LABs (Logic Array Blocks)
• Consist of 16 LEs (logic elements) which each have 4 input

LUTs

2010
dce

Reconfigurable Computing

What Else?
• Basic building block is CLB

– Can implement combinational+sequential
logic

– All circuits consist of combinational and
sequential logic

• So what else is needed?

2010
dce

Reconfigurable Computing

Reconfigurable Interconnect
• FPGAs need some way of connecting

CLBs together
– Reconfigurable interconnect
– But, we can only put fixed wires on a chip

• Problem: How to make reconfigurable
connections with fixed wires?
– Main challenge:

• Should be flexible enough to support almost any
circuit

2010
dce

Reconfigurable Computing

Reconfigurable Interconnect

• Problem 2: If FPGA doesn’t know which CLBs will be
connected, where does it put wires?

• Solution:
– Put wires everywhere!

• Referred to as channel wires, routing channels, routing tracks, many
others

– CLBs typically arranged in a grid, with wires on all sides

CLB CLB CLB

CLB CLB CLB

2010
dce

Reconfigurable Computing

Reconfigurable Interconnect

• Problem 3: How to connect CLB to wires?
• Solution: Connection box

– Device that allows inputs and outputs of CLB to
connect to different wires

CLB CLB

Connection box

2010
dce

Reconfigurable Computing

Reconfigurable Interconnect

• Connection box characteristics
– Flexibility

• The number of wires a CLB input/output can
connect to

CLB CLB CLB CLB

Flexibility = 2 Flexibility = 3

*Dots represent possible connections

http://www.cse.hcmut.edu.vn/~tnthinh/rc

reconfigurable computing

2010
dce

Reconfigurable Computing

Reconfigurable Interconnect

• Connection box characteristics
– Topology

• Defines the specific wires each CLB I/O can
connect to

• Examples: same flexibility, different topology

CLB CLB CLB CLB

*Dots represent possible connections

2010
dce

Reconfigurable Computing

Reconfigurable Interconnect

• Connection boxes allow CLBs to connect
to routing wires
– But, that only allows us to move signals along

a single wire
– Not very useful

• Problem 4: How do FPGAs connect wires
together?

2010
dce

Reconfigurable Computing

Reconfigurable Interconnect

• Solution: Switch boxes, switch matrices
– Connects horizontal and vertical routing channels

CLB CLB

CLB CLB

Switch box/matrix

2010
dce

Reconfigurable Computing

Reconfigurable Interconnect

• Switch boxes
– Flexibility - defines how many wires a single wire can

connect to
– Topology - defines which wires can be connected

• Planar/subset switch box: only connects same channels (e.g.
0 to 0, 1 to 1, etc.)

• Wilton switch box: connects different channels

0 1 2 3

0 1 2 3

0

1

2

3

0

1

2

3

0 1 2 3

0 1 2 3

0

1

2

3

0

1

2

3

Planar Wilton

*Not all possible
connections shown

2010
dce

Reconfigurable Computing

Reconfigurable Interconnect
• Why do flexiblity and topology matter?

– Routability: a measure of the number of circuits that can be
routed

• Higher flexibility = better routability
• Wilton switch box topology = better routability

CLB CLB

Src

Dest
Dest

Src

No possible
route from
src to dest

2010
dce

Reconfigurable Computing

Reconfigurable Interconnect

• Switch boxes
– Short channels

• Useful for connecting adjacent CLBs

– Long channels
• Useful for connecting CLBs that are separated
• Allows for reduced routing delay for non-adjacent CLBs

Short
channel

Long
channel

http://www.cse.hcmut.edu.vn/~tnthinh/rc

reconfigurable computing

2010
dce

Reconfigurable Computing

FPGA Fabrics
• FPGA layout called a “fabric”

– 2-dimensional array of CLBs and programmable interconnect
– Sometimes referred to as an “island style” architecture

– Can implement any circuit
• But, should fabric include something else?

CLB CLB

CLB CLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

. . .

. . .

2010
dce

Reconfigurable Computing

FPGA Fabrics
• What about memory?

– Could use FF’s in CLBs to create a memory
• Example: Create a 1 MB memory with:

– CLB with a single 3-input, 2-output LUT
• Each CLB = 2 bits of memory (because of 2 outputs)
• Total CLBs = (1 MB * 8 bits/byte) / 2 bits/CLB

– 4 million CLBs!!!!
– FPGAs commonly have tens of thousands of LUTs

» Large devices have 100-200k LUTs
» State-of-the-art devices ~800k LUTs

– Even if FPGAs were large enough, using a chip to implement 1
MB of memory is not smart

– Conclusion:
• Bad Idea!! Huge waste of resources!

2010
dce

Reconfigurable Computing

FPGA Memory Components

• Solution 1: Use LUTs for logic or memory
– LUTs are small SRAMs, why not use them as

memory?
– Xilinx refers to as distributed RAM

• Solution 2: Include dedicated RAM
components in the FPGA fabric
– Xilinx refers to as Block RAM

• Can be single/dual-ported
• Can be combined into arbitrary sizes
• Can be used as FIFO

– Different clock speeds for reads/writes

– Altera has Memory Blocks
• M4K: 4k bits of RAM
• Others: M9K, M20k, M144K

2010
dce

Reconfigurable Computing

FPGA Memory Components
• Fabric with Block RAM

– Block RAM can be placed anywhere
– Typically, placed in columns of the fabric

CLB CLB

CLB CLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

BR

BR

BR

BR

BR

BR

. . .

. . . .

2010
dce

Reconfigurable Computing

DSP Components
• FPGAs commonly used for DSP apps

– Makes sense to include custom DSP units instead of mapping onto
LUTs

• Custom unit = faster/smaller
• Example: Xilinx DSP48

– Includes multipliers, adders, subtractors, etc.
• 18x18 multiplication
• 48-bit addition/subtraction

– Provides efficient way of implementing
• Add/subtract/multiply
• MAC (Multiply-accumulate)
• Barrel shifter
• FIR Filter
• Square root
• Etc.

• Altera devices have multiplier blocks
– Can be configured as 18x18 or 2 separate 9x9 multipliers

2010
dce

Reconfigurable Computing

DSP DSP DSP DSPBR BR

Existing Fabrics

• Existing FPGAs are 2-dimensional arrays of CLBs, DSP, Block
RAM, and programmable interconnect
– Actual layout/placement differs for different FPGAs

CLB CLB

CLB CLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

BR

BR

BR

BR

BR

BR

. . .

. . . .

http://www.cse.hcmut.edu.vn/~tnthinh/rc

reconfigurable computing

2010
dce

Reconfigurable Computing

Programming FPGAs
• How to program/configure FPGA to implement

circuit?
– So far, we’ve mapped a circuit onto FPGA fabric

• Known as technology mapping
– Process of converting a circuit in one representation into a

representation that corresponds to physical components
» Gates to LUTs
» Memory to Block RAMs
» Multiplications to DSP48s
» Etc.

– But, we need some way of configuring each
component to behave as desired

• Examples:
– How to store truth tables in LUTs?
– How to connect wires in switch boxes?
– Etc.

2010
dce

Reconfigurable Computing

Programming FPGAs
• General Idea: include FF’s in fabric to

control programmable components
– Example: CLB

• Need a way to specify select for mux

3-in, 1-out
LUT

FF

2x1

CLB

Select?

FF

FPGA can be
programmed to
use/skip mux by

storing appropriate bit

2010
dce

Reconfigurable Computing

Programming FPGAs
• Example 2:

– Connection/switch boxes
– Need FFs to specify connections

FF FF

FF FF

FF FF

FF FF

2010
dce

Reconfigurable Computing

Programming FPGAs
• FPGAs programmed with a “bitfile”

– File containing all information needed to
program FPGA

• Contains bits for each control FF
• Also, contains bits to fill LUTs

• But, how do you get the bitfile into the
FPGA?
– > 10k LUTs
– Small number of pins

2010
dce

Reconfigurable Computing

Programming FPGAs
• Solution: Shift Registers

– General Idea
• Make a huge shift register out of all programmable

components (LUTs, control FFs)
• Shift in bitfile one bit at a time

CLB CLB

CLB CLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

Configuration
bits input here

Shift register
shifts bits to
appropriate

location in FPGA

2010
dce

Reconfigurable Computing

Programming FPGAs
• Example:

– Program CLB with 3-input, 1-output LUT to implement sum output of full
adder

FF

2x11

0

1

1

0

1

0

0

1

In Out

A B Cin S

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Should look
like this after
programming

FF

2x11

0

1

1

0

1

0

0

1

Assume data
is shifted in

this direction

http://www.cse.hcmut.edu.vn/~tnthinh/rc

reconfigurable computing

2010
dce

Reconfigurable Computing

Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

011010011

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming

2010
dce

Reconfigurable Computing

Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

101101001

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming

2010
dce

Reconfigurable Computing

Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

1

1

0110100

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming

2010
dce

Reconfigurable Computing

Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

0

1

1

011010

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming

2010
dce

Reconfigurable Computing

Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

0

0

1

1

01101

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming

2010
dce

Reconfigurable Computing

Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

1

0

0

1

1

0110

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming

http://www.cse.hcmut.edu.vn/~tnthinh/rc

reconfigurable computing

2010
dce

Reconfigurable Computing

Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

0

1

0

0

1

1

011

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming

2010
dce

Reconfigurable Computing

Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

1

0

1

0

0

1

1

01

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming

2010
dce

Reconfigurable Computing

Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

1

1

0

1

0

0

1

1

0

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming

2010
dce

Reconfigurable Computing

Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x11

0

1

1

0

1

0

0

1

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming

CLB is programmed to
implement full adder!

Easily extended to
program entire FPGA

2010
dce

Reconfigurable Computing

Programming FPGAs
• Problem: Reconfiguring FPGA is slow

– Shifting in 1 bit at a time not efficient
– Bitfiles can be greater than 1 MB
– Eliminates one of the main advantages of RC

• Partial reconfiguration
• With shift registers, entire FPGA has to be reconfigured

• Solutions?
– Virtex II allows columns to be reconfigured
– Virtex IV allows custom regions to be reconfigured
– Requires a lot of user effort

• Better tools needed

2010
dce

Reconfigurable Computing

FPGA Architecture Tradeoffs
• LUTs with many inputs can implement large

circuits efficiently
– Why not just use LUTs with many inputs?

• High flexibility in routing resources improves
routability
– Why not just allow all possible connections?

• Answer: architectural tradeoffs
– Anytime one component is increased/improved, there

is less area for other components
• Larger LUTs => less total LUTs, less routing resources
• More Block RAM => less LUTs, less DSPs
• More DSPs => less LUTs, less Block RAM
• Etc.

http://www.cse.hcmut.edu.vn/~tnthinh/rc

reconfigurable computing

2010
dce

Reconfigurable Computing

FPGA Architecture Tradeoffs
• Example:

– Determine best LUTs for following circuit
• Choices

– 4-input, 2-output LUT (delay = 2 ns)
– 5-input, 2-output LUT (delay = 3 ns)

• Assume each SRAM cell is 6 transistors
– 4-input LUT = 6 * 24 * 2 = 192 transistors
– 5-input LUT = 6 * 25 * 2 = 384 transistors

2010
dce

Reconfigurable Computing

FPGA Architecture Tradeoffs

• Example:
– Determine best LUTs for following circuit

• Choices
– 4-input, 2-output LUT (delay = 2 ns)
– 5-input, 2-output LUT (delay = 3 ns)

• Assume each SRAM cell is 6 transistors
– 4-input LUT = 6 * 24 * 2 = 192 transistors
– 5-input LUT = 6 * 25 * 2 = 384 transistors

5-input
LUT

Propagation delay = 6 ns

Total transistors = 384 * 2 = 768

2010
dce

Reconfigurable Computing

FPGA Architecture Tradeoffs
• Example:

– Determine best LUTs for following circuit
• Choices

– 4-input, 2-output LUT (delay = 2 ns)
– 5-input, 2-output LUT (delay = 3 ns)

• Assume each SRAM cell is 6 transistors
– 4-input LUT = 6 * 24 * 2 = 192 transistors
– 5-input LUT = 6 * 25 * 2 = 384 transistors

4-input
LUT

Propagation delay = 4 ns

Total transistors = 192 * 2 = 384

4-input LUTs are 1.5x faster and
use 1/2 the area

2010
dce

Reconfigurable Computing

FPGA Architecture Tradeoffs
• Example 2

– Determine best LUTs for following circuit
• Choices

– 4-input, 2-output LUT (delay = 2 ns)
– 5-input, 2-output LUT (delay = 3 ns)

• Assume each SRAM cell is 6 transistors
– 4-input LUT = 6 * 24 * 2 = 192 transistors
– 5-input LUT = 6 * 25 * 2 = 384 transistors

2010
dce

Reconfigurable Computing

FPGA Architecture Tradeoffs
• Example 2

– Determine best LUTs for following circuit
• Choices

– 4-input, 2-output LUT (delay = 2 ns)
– 5-input, 2-output LUT (delay = 3 ns)

• Assume each SRAM cell is 6 transistors
– 4-input LUT = 6 * 24 * 2 = 192 transistors
– 5-input LUT = 6 * 25 * 2 = 384 transistors

5-input
LUT

Propagation delay = 3 ns

Total transistors = 384

2010
dce

Reconfigurable Computing

FPGA Architecture Tradeoffs
• Example 2

– Determine best LUTs for following circuit
• Choices

– 4-input, 2-output LUT (delay = 2 ns)
– 5-input, 2-output LUT (delay = 3 ns)

• Assume each SRAM cell is 6 transistors
– 4-input LUT = 6 * 24 * 2 = 192 transistors
– 5-input LUT = 6 * 25 * 2 = 384 transistors

4-input
LUT

Propagation delay = 4 ns

Total transistors = 384 transistors

5-input LUTs are 1.3x faster and
use same area

http://www.cse.hcmut.edu.vn/~tnthinh/rc

reconfigurable computing

2010
dce

Reconfigurable Computing

FPGA Architecture Tradeoffs
• Large LUTs

– Fast when using all inputs
– Wastes transistors otherwise

• Must also consider total chip area
– Wasting transistors may be ok if there are

plently of LUTs
• Virtex V uses 6 input LUTs
• Virtex IV uses 4 input LUTs

2010
dce

Reconfigurable Computing

FPGA Architecture Tradeoffs
• How to design FPGA fabric?

– There is no overall best
– Design fabric based on different domains

• DSP will require many of DSP units
• HPC may require balance of units
• Embedded systems may require microprocessors

• Example: Xilinx Virtex IV
– Three different devices

• LX - designed for logic intensive apps
• SX - designed for signal processing apps
• FX - designed for embedded systems apps

– Has 450 MHz PowerPC cores embedded in fabric

