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Current/Future Directions
• FPGA (Field-programmable gate arrays) - mid 

1980s
– Misleading name - there is no array of gates
– Array of fine-grained configurable components

• Will discuss architecture shortly
– Currently support millions of gates

• Coarse-grained RC architectures
– Array of coarse-grained components

• Multipliers, DSP units, etc.
– Potentially, larger capacity than FPGA

• But, applications may not map well
– Wasted resources
– Inefficient execution
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FPGA Architectures

• How can we implement any circuit in an 
FPGA?
– First, focus on combinational logic
– Example: Half adder

• Combinational logic represented by truth table
• What kind of hardware can implement a truth 

table?

Input Out

A B S

0 0 0

0 1 1

1 0 1

1 1 0

Input Out

A B C

0 0 0
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1 0 0

1 1 1
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Look-up-tables (LUTs)
• Implement truth table in small memories (LUTs)

– Usually SRAM
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Look-up-tables (LUTs)
• Alternatively, could have used a 2-input, 2-

output LUT
– Outputs commonly use same inputs
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Look-up-tables (LUTs)

• Slightly bigger example: Full adder
– Combinational logic can be implemented in a LUT 

with same number of inputs and outputs
• 3-input, 2-ouput LUT

Inputs Outputs

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

0 0

1 0

1 0

0 1

1 0

0 1

0 1

1 1

A

B

Cin

S Cout

Truth Table 3-input, 2-output LUT
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Look-up-tables (LUTs)

• Why aren’t FPGAs just a big LUT?
– Size of truth table grows exponentially based on # of inputs

• 3 inputs = 8 rows, 4 inputs = 16 rows, 5 inputs = 32 rows, etc.
– Same number of rows in truth table and LUT
– LUTs grow exponentially based on # of inputs

• Number of SRAM bits in a LUT = 2i * o
– i = # of inputs, o = # of outputs
– Example: 64 input combinational logic with 1 output would 

require 264 SRAM bits
• 1.84 x 1019

• Clearly, not feasible to use large LUTs
– So, how do FPGAs implement logic with many inputs?
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Look-up-tables (LUTs)
• Fortunately, we can map circuits onto multiple LUTs

– Divide circuit into smaller circuits that fit in LUTs (same # of
inputs and outputs)

– Example: 3-input, 2-output LUTs
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Look-up-tables (LUTs)
• What if circuit doesn’t map perfectly?

– More inputs in LUT than in circuit
• Truth table handles this problem
• Unused inputs are ignored

– More outputs in LUT than in circuit
• Extra outputs simply not used

– Space is wasted, so should use multiple outputs 
whenever possible
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Look-up-tables (LUTs)
• Important Point

– The number of gates in a circuit has no effect on the 
mapping into a LUT

• All that matters is the number of inputs and outputs
• Unfortunately, it isn’t common to see large circuits with a few 

inputs

1 gate 1,000,000 gates

Both of these circuits can be implemented in a single 
3-input, 1-output LUT
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Sequential Logic
• Problem: How to handle sequential logic

– Truth tables don’t work
• Possible solution: 

– Add a flip-flop to the output of LUT

3-in, 2-out 
LUT

FF FF

3-in, 1-out 
LUT

FF

etc.
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Sequential Logic
• Example: 8-bit register using 3-input, 2-output LUTs

– Input: x, Output: y

– What does LUT need to do to implement register?

3-in, 2-out 
LUT

FF FF

3-in, 2-out 
LUT

FF FF

3-in, 2-out 
LUT

FF FF

3-in, 2-out 
LUT

FF FF

x(7) x(6) x(5) x(4) x(3) x(2) x(1) x(0)

y(7) y(6) y(5) y(4) y(3) y(2) y(1) y(0)
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Sequential Logic
• Example, cont.

– LUT simply passes inputs to appropriate output

3-in, 2-out 
LUT

FF FF

x(1) x(0)

y(1) y(0)

0 0

0 1

1 0

1 1

0 0

0 1

1 0

1 1

y(1) y(0)

x(1) x(0)

FF FF

x(1) x(0)

y(1) y(0)

0    0 0

0    1 0

0    0 1

0    1 1

1    0 0

1    0 1

1    1 0

1    1 1

x(0)x(1)

Inputs/Outputs LUT functionality Corresponding 
Truth Table

0 0

1 0

0 1

1 1

0 0

0 1

1 0

1 1

y(1) y(0)

Corresponding 
LUT
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Sequential Logic
• Isn’t it a waste to use LUTs for registers?
• YES! (when it can be used for something else)

– Commonly used for pipelined circuits
• Example: Pipelined adder

3-in, 2-out 
LUT

FF FF

+

Register

+

+

Register

Register

3-in, 2-out 
LUT

FF FF

. . . .

Adder and output register combined – not a 
separate LUT for each
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Sequential Logic
• Existing FPGAs don’t have a flip flop 

connected to LUT outputs
• Why not?

– Flip flop has to be used!
• Impossible to have pure combinational logic 

– Adds latency to circuit
• Actual Solution:

– Configurable Logic Blocks (CLBs)
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Configurable Logic Blocks (CLBs)

• CLBs: the basic FPGA functional unit
– First issue: How to make flip-flop optional?

• Simplest way: use a mux
– Circuit can now use output from LUT or from FF
– Where does select come from? (will be answered shortly)

3-in, 1-out 
LUT

FF

2x1

CLB
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Configurable Logic Blocks (CLBs)
• CLBs usually contain more than 1 LUT

– Why?
• Efficient way of handling common I/O between adjacent LUTs
• Saves routing resources (we haven’t discussed yet)

3-in, 2-out 
LUT

FF

2x1

FF

2x1

3-in, 2-out 
LUT

FF

2x1

FF

2x1

2x1

CLB
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Configurable Logic Blocks (CLBs)
• Example: Ripple-carry adder

– Each LUT implements 1 full adder
– Use efficient connections between LUTs for carry signals

3-in, 2-out 
LUT

FF

2x1

FF

2x1

3-in, 2-out 
LUT

FF

2x1

FF

2x1

2x1

CLB

A(0) B(0) Cin(0)

S(0)

Cin(1)

A(1) B(1)

S(1)

Cout(0)

Cout(1)
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Configurable Logic Blocks (CLBs)

• CLBs often have specialized connections 
between adjacent CLBs
– Further improves carry chains
– Avoids routing resources

• Some commercial CLBs even more complex
– Xilinx Virtex 4 CLB consists of 4 “slices”

• 1 slice = 2 LUTs + 2 FFs + other stuff
• 1 Virtex 4 CLB = 8 LUTs

– Altera devices has LABs (Logic Array Blocks)
• Consist of 16 LEs (logic elements) which each have 4 input 

LUTs 
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What Else?
• Basic building block is CLB

– Can implement combinational+sequential 
logic

– All circuits consist of combinational and 
sequential logic

• So what else is needed?
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Reconfigurable Interconnect
• FPGAs need some way of connecting 

CLBs together
– Reconfigurable interconnect
– But, we can only put fixed wires on a chip

• Problem: How to make reconfigurable 
connections with fixed wires?
– Main challenge:

• Should be flexible enough to support almost any 
circuit 
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Reconfigurable Interconnect

• Problem 2: If FPGA doesn’t know which CLBs will be 
connected, where does it put wires?

• Solution:
– Put wires everywhere!

• Referred to as channel wires, routing channels, routing tracks, many 
others

– CLBs typically arranged in a grid, with wires on all sides

CLB CLB CLB

CLB CLB CLB
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Reconfigurable Interconnect

• Problem 3: How to connect CLB to wires?
• Solution: Connection box

– Device that allows inputs and outputs of CLB to 
connect to different wires

CLB CLB

Connection box

2010
dce

Reconfigurable Computing

Reconfigurable Interconnect

• Connection box characteristics
– Flexibility

• The number of wires a CLB input/output can 
connect to

CLB CLB CLB CLB

Flexibility = 2 Flexibility = 3

*Dots represent possible connections
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Reconfigurable Interconnect

• Connection box characteristics
– Topology

• Defines the specific wires each CLB I/O can 
connect to

• Examples: same flexibility, different topology

CLB CLB CLB CLB

*Dots represent possible connections
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Reconfigurable Interconnect

• Connection boxes allow CLBs to connect 
to routing wires
– But, that only allows us to move signals along 

a single wire
– Not very useful

• Problem 4: How do FPGAs connect wires 
together?

2010
dce

Reconfigurable Computing

Reconfigurable Interconnect

• Solution: Switch boxes, switch matrices
– Connects horizontal and vertical routing channels

CLB CLB

CLB CLB

Switch box/matrix
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Reconfigurable Interconnect

• Switch boxes
– Flexibility - defines how many wires a single wire can 

connect to
– Topology - defines which wires can be connected

• Planar/subset switch box: only connects same channels (e.g. 
0 to 0, 1 to 1, etc.)

• Wilton switch box: connects different channels

0 1 2 3

0 1 2 3

0

1

2

3

0

1

2

3

0 1 2 3

0 1 2 3

0

1

2

3

0

1

2

3

Planar Wilton

*Not all possible 
connections shown

2010
dce

Reconfigurable Computing

Reconfigurable Interconnect
• Why do flexiblity and topology matter?

– Routability: a measure of the number of circuits that can be 
routed

• Higher flexibility = better routability
• Wilton switch box topology = better routability

CLB CLB

Src

Dest
Dest

Src

No possible 
route from 
src to dest
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Reconfigurable Interconnect

• Switch boxes
– Short channels

• Useful for connecting adjacent CLBs

– Long channels
• Useful for connecting CLBs that are separated
• Allows for reduced routing delay for non-adjacent CLBs

Short 
channel

Long 
channel
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FPGA Fabrics
• FPGA layout called a “fabric”

– 2-dimensional array of CLBs and programmable interconnect
– Sometimes referred to as an “island style” architecture

– Can implement any circuit
• But, should fabric include something else?

CLB CLB

CLB CLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

. . .

. . .
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FPGA Fabrics
• What about memory?

– Could use FF’s in CLBs to create a memory
• Example: Create a 1 MB memory with: 

– CLB with a single 3-input, 2-output LUT
• Each CLB = 2 bits of memory (because of 2 outputs)
• Total CLBs = (1 MB * 8 bits/byte) / 2 bits/CLB 

– 4 million CLBs!!!!
– FPGAs commonly have tens of thousands of LUTs

» Large devices have 100-200k LUTs
» State-of-the-art devices ~800k LUTs

– Even if FPGAs were large enough, using a chip to implement 1 
MB of memory is not smart

– Conclusion: 
• Bad Idea!! Huge waste of resources!
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FPGA Memory Components

• Solution 1: Use LUTs for logic or memory
– LUTs are small SRAMs, why not use them as 

memory?
– Xilinx refers to as distributed RAM

• Solution 2: Include dedicated RAM 
components in the FPGA fabric
– Xilinx refers to as Block RAM

• Can be single/dual-ported
• Can be combined into arbitrary sizes
• Can be used as FIFO

– Different clock speeds for reads/writes

– Altera has Memory Blocks
• M4K: 4k bits of RAM
• Others: M9K, M20k, M144K
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FPGA Memory Components
• Fabric with Block RAM

– Block RAM can be placed anywhere
– Typically, placed in columns of the fabric

CLB CLB

CLB CLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

BR

BR

BR

BR

BR

BR

. . .

. . . .
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DSP Components
• FPGAs commonly used for DSP apps

– Makes sense to include custom DSP units instead of mapping onto 
LUTs

• Custom unit = faster/smaller
• Example: Xilinx DSP48

– Includes multipliers, adders, subtractors, etc.
• 18x18 multiplication
• 48-bit addition/subtraction

– Provides efficient way of implementing
• Add/subtract/multiply
• MAC (Multiply-accumulate)
• Barrel shifter
• FIR Filter
• Square root
• Etc.

• Altera devices have multiplier blocks
– Can be configured as 18x18 or 2 separate 9x9 multipliers
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DSP DSP DSP DSPBR BR

Existing Fabrics

• Existing FPGAs are 2-dimensional arrays of CLBs, DSP, Block 
RAM, and programmable interconnect
– Actual layout/placement differs for different FPGAs

CLB CLB

CLB CLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

BR

BR

BR

BR

BR

BR

. . .

. . . .
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Programming FPGAs
• How to program/configure FPGA to implement 

circuit?
– So far, we’ve mapped a circuit onto FPGA fabric

• Known as technology mapping
– Process of converting a circuit in one representation into a 

representation that corresponds to physical components 
» Gates to LUTs
» Memory to Block RAMs
» Multiplications to DSP48s
» Etc.

– But, we need some way of configuring each 
component to behave as desired

• Examples:
– How to store truth tables in LUTs?
– How to connect wires in switch boxes?
– Etc.

2010
dce

Reconfigurable Computing

Programming FPGAs
• General Idea: include FF’s in fabric to 

control programmable components
– Example: CLB

• Need a way to specify select for mux

3-in, 1-out 
LUT

FF

2x1

CLB

Select?

FF

FPGA can be 
programmed to 
use/skip mux by 

storing appropriate bit
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Programming FPGAs
• Example 2:

– Connection/switch boxes
– Need FFs to specify connections

FF FF

FF FF

FF FF

FF FF
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Programming FPGAs
• FPGAs programmed with a “bitfile”

– File containing all information needed to 
program FPGA

• Contains bits for each control FF
• Also, contains bits to fill LUTs

• But, how do you get the bitfile into the 
FPGA?
– > 10k LUTs
– Small number of pins
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Programming FPGAs
• Solution: Shift Registers

– General Idea
• Make a huge shift register out of all programmable 

components (LUTs, control FFs)
• Shift in bitfile one bit at a time

CLB CLB

CLB CLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

Configuration 
bits input here

Shift register 
shifts bits to 
appropriate 

location in FPGA
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Programming FPGAs
• Example: 

– Program CLB with 3-input, 1-output LUT to implement sum output of full 
adder

FF

2x11

0

1

1

0

1

0

0

1

In Out

A B Cin S

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Should look 
like this after 
programming

FF

2x11

0

1

1

0

1

0

0

1

Assume data 
is shifted in 

this direction
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Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

011010011

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming
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Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

101101001

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming
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Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

1

1

0110100

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming
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Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

0

1

1

011010

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming
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Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

0

0

1

1

01101

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming
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Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

1

0

0

1

1

0110

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming
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Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

0

1

0

0

1

1

011

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming
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Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

1

0

1

0

0

1

1

01

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming
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Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x1

1

1

0

1

0

0

1

1

0

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming
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Programming FPGAs

• Example, Cont:
– Bitfile is just a sequence of bits based on order of shift register

FF

2x11

0

1

1

0

1

0

0

1

FF

2x11

0

1

1

0

1

0

0

1

After programmingDuring programming

CLB is programmed to 
implement full adder!

Easily extended to 
program entire FPGA
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Programming FPGAs
• Problem: Reconfiguring FPGA is slow

– Shifting in 1 bit at a time not efficient
– Bitfiles can be greater than 1 MB
– Eliminates one of the main advantages of RC

• Partial reconfiguration
• With shift registers, entire FPGA has to be reconfigured

• Solutions?
– Virtex II allows columns to be reconfigured
– Virtex IV allows custom regions to be reconfigured
– Requires a lot of user effort

• Better tools needed
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FPGA Architecture Tradeoffs
• LUTs with many inputs can implement large 

circuits efficiently
– Why not just use LUTs with many inputs?

• High flexibility in routing resources improves 
routability
– Why not just allow all possible connections?

• Answer: architectural tradeoffs
– Anytime one component is increased/improved, there 

is less area for other components
• Larger LUTs => less total LUTs, less routing resources
• More Block RAM => less LUTs, less DSPs
• More DSPs => less LUTs, less Block RAM
• Etc.
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FPGA Architecture Tradeoffs
• Example:

– Determine best LUTs for following circuit
• Choices 

– 4-input, 2-output LUT (delay = 2 ns)
– 5-input, 2-output LUT (delay = 3 ns)

• Assume each SRAM cell is 6 transistors
– 4-input LUT = 6 * 24 * 2 = 192 transistors
– 5-input LUT = 6 * 25 * 2 = 384 transistors
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FPGA Architecture Tradeoffs

• Example:
– Determine best LUTs for following circuit

• Choices 
– 4-input, 2-output LUT (delay = 2 ns)
– 5-input, 2-output LUT (delay = 3 ns)

• Assume each SRAM cell is 6 transistors
– 4-input LUT = 6 * 24 * 2 = 192 transistors
– 5-input LUT = 6 * 25 * 2 = 384 transistors

5-input 
LUT

Propagation delay = 6 ns

Total transistors = 384 * 2 = 768 
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FPGA Architecture Tradeoffs
• Example:

– Determine best LUTs for following circuit
• Choices 

– 4-input, 2-output LUT (delay = 2 ns)
– 5-input, 2-output LUT (delay = 3 ns)

• Assume each SRAM cell is 6 transistors
– 4-input LUT = 6 * 24 * 2 = 192 transistors
– 5-input LUT = 6 * 25 * 2 = 384 transistors

4-input 
LUT

Propagation delay = 4 ns

Total transistors = 192 * 2 = 384 

4-input LUTs are 1.5x faster and 
use 1/2 the area
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FPGA Architecture Tradeoffs
• Example 2

– Determine best LUTs for following circuit
• Choices 

– 4-input, 2-output LUT (delay = 2 ns)
– 5-input, 2-output LUT (delay = 3 ns)

• Assume each SRAM cell is 6 transistors
– 4-input LUT = 6 * 24 * 2 = 192 transistors
– 5-input LUT = 6 * 25 * 2 = 384 transistors
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FPGA Architecture Tradeoffs
• Example 2

– Determine best LUTs for following circuit
• Choices 

– 4-input, 2-output LUT (delay = 2 ns)
– 5-input, 2-output LUT (delay = 3 ns)

• Assume each SRAM cell is 6 transistors
– 4-input LUT = 6 * 24 * 2 = 192 transistors
– 5-input LUT = 6 * 25 * 2 = 384 transistors

5-input 
LUT

Propagation delay = 3 ns

Total transistors = 384 
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FPGA Architecture Tradeoffs
• Example 2

– Determine best LUTs for following circuit
• Choices 

– 4-input, 2-output LUT (delay = 2 ns)
– 5-input, 2-output LUT (delay = 3 ns)

• Assume each SRAM cell is 6 transistors
– 4-input LUT = 6 * 24 * 2 = 192 transistors
– 5-input LUT = 6 * 25 * 2 = 384 transistors

4-input 
LUT

Propagation delay = 4 ns

Total transistors = 384 transistors 

5-input LUTs are 1.3x faster and 
use same area
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FPGA Architecture Tradeoffs
• Large LUTs

– Fast when using all inputs
– Wastes transistors otherwise

• Must also consider total chip area
– Wasting transistors may be ok if there are 

plently of LUTs
• Virtex V uses 6 input LUTs
• Virtex IV uses 4 input LUTs
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FPGA Architecture Tradeoffs
• How to design FPGA fabric?

– There is no overall best
– Design fabric based on different domains

• DSP will require many of DSP units
• HPC may require balance of units
• Embedded systems may require microprocessors

• Example: Xilinx Virtex IV
– Three different devices

• LX - designed for logic intensive apps
• SX - designed for signal processing apps
• FX - designed for embedded systems apps

– Has 450 MHz PowerPC cores embedded in fabric


