http:/ /www.cse.hcmut.edu.vn/~tnthinh/rc

2. SRAM-based FPGA

e
Q Reconfigurable Computing

FPGA Architectures

* How can we implement any circuit in an
FPGA?
— First, focus on combinational logic
— Example: Half adder

« Combinational logic represented by truth table

« What kind of hardware can implement a truth
table?

A—y Input Out Input Out

B ®_e A A [

0

G 0

0

" i

u Reconfigurable Computing

r|r|o|o
rlo|r|o|lm
o|r|rlo|ln
klrlo|o

rlolr|o|lw

Look-up-tables (LUTS)

« Alternatively, could have used a 2-input, 2-
output LUT

— Outputs commonly use same inputs

Addr Addr

~
u Reconfigurable Computing

Current/Future Directions

* FPGA (Field-programmable gate arrays) - mid
1980s
— Misleading name - there is no array of gates
— Array of fine-grained configurable components
< Will discuss architecture shortly
— Currently support millions of gates
» Coarse-grained RC architectures
— Array of coarse-grained components
« Multipliers, DSP units, etc.
— Potentially, larger capacity than FPGA
« But, applications may not map well

— Wasted resources
— Inefficient execution

Q Reconfigurable Computing

* Implement truth table in small memories (LUTSs)
— Usually SRAM A B s A B C
0 ofo 0 ofo
L 0o 1|1 0o 1|0
B 1 0|1 1 0|0
1 1|0 1 1)1
G L] L]
@ 2-input, @
1-output
o] o LUIS“ 0 00
Add || ddr | —]
Logic inputs connect to ,q_.y 1] o1 A———0 | 01
address inputs, logic | o1 .
output is memory output & 'i 10 |
0l L T
. T Output T Output
u Reconfigurable Computing s _

Look-up-tables (LUTS)

« Slightly bigger example: Full adder

— Combinational logic can be implemented in a LUT
with same number of inputs and outputs
« 3-input, 2-ouput LUT

Truth Table 3-input, 2-output LUT

Inputs Outputs
B | Cin Cout A

e
u Reconfigurable Computing

=
elele]nlololo|o|>

«—]r|o|olr|o|r|r|o
«—]r|r|r|lo|lr|o|ele

wlrlo|o|r|rlo]e
rlolrlolrlolr]|e
rlolo|r|olr|r|o|n
wlrlr|o|r]olo

reconfigurable computing

http:/ /www.cse.hcmut.edu.vn/~tnthinh/rc

E Look-up-tables (LUTS)

e Why aren’t FPGAs just a big LUT?
— Size of truth table grows exponentially based on # of inputs
« 3inputs = 8 rows, 4 inputs = 16 rows, 5 inputs = 32 rows, etc.
— Same number of rows in truth table and LUT
— LUTs grow exponentially based on # of inputs
» Number of SRAM bitsina LUT =2 * o
— i=#of inputs, o = # of outputs
— Example: 64 input combinational logic with 1 output would
require 264 SRAM bits
« 1.84x 10%°
» Clearly, not feasible to use large LUTs
— So, how do FPGAs implement logic with many inputs?

o
u Reconfigurable Computing

e
Q Reconfigurable Computing

Look-up-tables (LUTS)

» What if circuit doesn’t map perfectly?
— More inputs in LUT than in circuit
* Truth table handles this problem
» Unused inputs are ignored
— More outputs in LUT than in circuit

« Extra outputs simply not used

— Space is wasted, so should use multiple outputs
whenever possible

u Reconfigurable Computing

Sequential Logic

» Problem: How to handle sequential logic
— Truth tables don’t work

» Possible solution:
— Add a flip-flop to the output of LUT

Ll L
3-in, 1-out 3-in, 2-out etc.
LUT LUT

u Reconfigurable Computing

~
ed

Q Reconfigurable Computing

Look-up-tables (LUTS)

« Fortunately, we can map circuits onto multiple LUTs

— Divide circuit into smaller circuits that fit in LUTs (same # of
inputs and outputs)

— Example: 3-input, 2-output LUTs

=1 S <E R - E R N -
{ Y

Look-up-tables (LUTS)

* Important Point
— The number of gates in a circuit has no effect on the
mapping into a LUT
« All that matters is the number of inputs and outputs
« Unfortunately, it isn’t common to see large circuits with a few

inputs

Ll Ll

1 gate 1,000,000 gates
! !

Both of these circuits can be implemented in a single
3-input, 1-output LUT

Sequential Logic

« Example: 8-bit register using 3-input, 2-output LUTs
— Input: X, Output: y

X(7) x(6) X(5) x(4) x(3) X(2) x(1) x(0)
L L
3-in, 2-out 3-in, 2-out 3-in, 2-out 3-in, 2-out
LUT LUT LUT LuT
i !
y(7) () yi5) v y@) y@ y@) y(0)

— What does LUT need to do to implement register?

Reconfigurable Computing

reconfigurable computing

http:/ /www.cse.hcmut.edu.vn/~tnthinh/rc

Sequential Logic

« Example, cont.
— LUT simply passes inputs to appropriate output

Corresponding

Inputs/Outputs LUT functionality Corresponding LUT

«(1) x(0) (1) X(0) Truth Table x(1) x(0)

| X(1) %(0) y(1) ¥(©) VL

R 0 0 0 0 0 0 0

3-in, 2-out I:l‘> |::> 001 o l|::> 5 T

LUT 010 10 1 0

011 11 1 1

101 01) 1

y@®) y(0) y(1) y(0) 110 10 1 0

111 11 1 1

Pl

e
Q Reconfigurable Computing

Sequential Logic

 Existing FPGAs don't have a flip flop
connected to LUT outputs
* Why not?
— Flip flop has to be used!
« Impossible to have pure combinational logic
— Adds latency to circuit
e Actual Solution:
— Configurable Logic Blocks (CLBs)

Configurable Logic Blocks (CLBS)

¢ CLBs usually contain more than 1 LUT
— Why?
« Efficient way of handling common 1/O between adjacent LUTs
« Saves routing resources (we haven't discussed yet)

Il

3-in, 2-out 3-in, 2-out

CLB

LUT LUT
-
| —
12 v

=
u Reconfigurable Compthing v

Sequential Logic

« Isn'tit a waste to use LUTs for registers?
* YES! (when it can be used for something else)

— Commonly used for pipelined circuits
* Example: Pipelined adder

............................ Lil Ly
\ +/ ~ +/ 3-in, 2-out 3-in, 2-out
4 ‘ LUT LUT
V=l B as
v
Adder and output register combined — not a

separate LUT for each

5
Q Reconfigurable Computing

Configurable Logic Blocks (CLBS)

» CLBs: the basic FPGA functional unit

— First issue: How to make flip-flop optional?
« Simplest way: use a mux
— Circuit can now use output from LUT or from FF
— Where does select come from? (will be answered shortly)

| —
v v ¥

3-in, 1-out
LUT

CLB

. 2x1
u Reconfigurable Computing v

Configurable Logic Blocks (CLBS)

« Example: Ripple-carry adder
— Each LUT implements 1 full adder
— Use efficient connections between LUTSs for carry signals

A(1) B(1) A(0) B(0) Cin(0)
| ! | Il |
3-in, 2-out 3-in, 2-out

CLB

LUT LUT
” T { — ;
5(0)

&
u Reconfig@reble Cpmputing)

reconfigurable computing

e
Q Reconfigurable Computing

http:/ /www.cse.hcmut.edu.vn/~tnthinh/rc

Configurable Logic Blocks (CLBs)

« CLBs often have specialized connections
between adjacent CLBs
— Further improves carry chains
— Avoids routing resources
¢ Some commercial CLBs even more complex
— Xilinx Virtex 4 CLB consists of 4 “slices”
« 1slice =2 LUTs + 2 FFs + other stuff
« 1Virtex 4 CLB = 8 LUTs

— Altera devices has LABs (Logic Array Blocks)
 Consist of 16 LEs (logic elements) which each have 4 input

LUTs

Reconfigurable Interconnect

* FPGAs need some way of connecting

CLBs together
— Reconfigurable interconnect
— But, we can only put fixed wires on a chip

Q Reconfigurable Computing

What Else?

* Basic building block is CLB
— Can implement combinational+sequential

logic
— All circuits consist of combinational and
sequential logic

* So what else is needed?

Reconfigurable Interconnect

* Problem 2: If FPGA doesn’t know which CLBs will be
connected, where does it put wires?

* Solution:

— Put wires everywhere!
Referred to as channel wires, routing channels, routing tracks, many

others

— CLBs typically arranged in a grid, with wires on all sides

* Problem: How to make reconfigurable
connections with fixed wires?

— Main challenge:
* Should be flexible enough to support almost any CLB CLB CLB
circuit
CLB CLB CLB

Reconfigurable Interconnect Reconfigurable Interconnect

* Problem 3: How to connect CLB to wires? . ..
» Connection box characteristics

« Solution: Connection box Flexibil
— Device that allows inputs and outputs of CLB to — Flexibility))
connect to different wires * The number of wires a CLB input/output can
connect to
Flexibility = 2 Flexibility = 3
Connection box
CLB CLB CLB CLB

CLB CLB

‘,

*Dots represent possible connections

.

reconfigurable computing

http:/ /www.cse.hcmut.edu.vn/~tnthinh/rc

Reconfigurable Interconnect

« Connection box characteristics

— Topology

« Defines the specific wires each CLB I/O can
connect to

« Examples: same flexibility, different topology

CLB CLB CLB CLB

u Reconfigurable Computing

e
Q Reconfigurable Computing

*Dots represent possible connections

Reconfigurable Interconnect

« Solution: Switch boxes, switch matrices
— Connects horizontal and vertical routing channels

CLB CLB Switch box/matrix

CLB CLB

Reconfigurable Interconnect

* Why do flexiblity and topology matter?
— Routability: a measure of the number of circuits that can be
routed
« Higher flexibility = better routability
« Wilton switch box topology = better routability

Src
. S v
CLB CLB No possible
route from
src to dest
Dest
Dest |
~
S Chrmbus B

Reconfigurable Interconnect

« Connection boxes allow CLBs to connect
to routing wires

— But, that only allows us to move signals along
a single wire

— Not very useful

* Problem 4: How do FPGASs connect wires
together?

Q Reconfigurable Computing

Reconfigurable Interconnect

» Switch boxes
— Flexibility - defines how many wires a single wire can
connect to
— Topology - defines which wires can be connected

« Planar/subset switch box: only connects same channels (e.g.
0to0,1to1,etc.)

« Wilton switch box: connects different channels

0123 012 3
0 N o 0 T .
Planar 1 1 Wilton 1 .
2 2
SN 1
. 1 2 3 *Not all possible

o 0 0 123
u Reconfigurable Computing connections shown _

Reconfigurable Interconnect

» Switch boxes
— Short channels
« Useful for connecting adjacent CLBs
— Long channels
« Useful for connecting CLBs that are separated
« Allows for reduced routing delay for non-adjacent CLBs

Short
channel

R LCHF

. channel
o
u Reconfigurable Computing

reconfigurable computing

http:/ /www.cse.hcmut.edu.vn/~tnthinh/rc

oc2 FPGA Fabrics

* FPGA layout called a “fabric”
— 2-dimensional array of CLBs and programmable interconnect
— Sometimes referred to as an “island style” architecture

— Can implemént any circlit
« But, should fabric include something else?

e
Q Reconfigurable Computing

E FPGA Memory Components

» Solution 1: Use LUTs for logic or memory
— LUTs are small SRAMs, why not use them as
memory?
— Xilinx refers to as distributed RAM

* Solution 2: Include dedicated RAM

components in the FPGA fabric
— Xilinx refers to as Block RAM

« Can be single/dual-ported

« Can be combined into arbitrary sizes

« Can be used as FIFO

— Different clock speeds for reads/writes

— Altera has Memory Blocks

o~ * M4K: 4k bits of RAM
u « Others: MOK, M20k, M144K

Reconfigurable Compuing

E DSP Components

* FPGAs commonly used for DSP apps
— Makes sense to include custom DSP units instead of mapping onto
LUTs

« Custom unit = faster/smaller
« Example: Xilinx DSP48
— Includes multipliers, adders, subtractors, etc.
« 18x18 multiplication
 48-bit addition/subtraction
— Provides efficient way of implementing
« Add/subtract/multiply
¢ MAC (Multiply-accumulate)
« Barrel shifter
¢ FIR Filter
« Square root
« Etc.
« Altera devices have multiplier blocks
— Can be configured as 18x18 or 2 separate 9x9 multipliers

d

oc FPGA Fabrics

* What about memory?

— Could use FF’s in CLBs to create a memory
« Example: Create a 1 MB memory with:
— CLB with a single 3-input, 2-output LUT
« Each CLB = 2 bits of memory (because of 2 outputs)
« Total CLBs = (1 MB * 8 bits/byte) / 2 bits/CLB
— 4 million CLBs!!!!
— FPGAs commonly have tens of thousands of LUTs
» Large devices have 100-200k LUTs
» State-of-the-art devices ~800k LUTs
— Even if FPGAs were large enough, using a chip to implement 1
MB of memory is not smart
— Conclusion:
« Bad Idea!! Huge waste of resources!

Q Reconfigurable Computing

B FPGA Memory Components

* Fabric with Block RAM
— Block RAM can be placed anywhere
— Typically, placed in columns of the fabric
(]

migietaiei
G G i
-I'i--ul'i--ul'i--l'i--l'i-
Lyl el

u Reconfigurable Computing

Existing Fabrics

« Existing FPGAs are 2-dimensional arrays of CLBs, DSP, Block
RAM, and programmable interconnect
— Actual layout/placement differs for different FPGAs

BB
Hﬂ.-ﬁ“
A A AR AR Ao
-.I'i--ulll--.lllr-ul'lnl'i-

Botid tidpididm
"y

e
u Reconfigurable Computing

reconfigurable computing

http:/ /www.cse.hcmut.edu.vn/~tnthinh/rc

Programming FPGAS

¢ How to program/configure FPGA to implement
circuit?
— So far, we’ve mapped a circuit onto FPGA fabric

« Known as technology mapping
— Process of converting a circuit in one representation into a
representation that corresponds to physical components
» Gates to LUTs
» Memory to Block RAMs
» Multiplications to DSP48s
» Etc.

— But, we need some way of configuring each
component to behave as desired
* Examples:
— How to store truth tables in LUTs?
— How to connect wires in switch boxes?

— Etc.
e
" Reconfigurable Computing

N
Programming FPGAs
» Example 2:
— Connection/switch boxes
— Need FFs to specify connections
- 1
JEoA recontguraie compuing |

Programming FPGAs

 Solution: Shift Registers

— General Idea

* Make a huge shift register out of all programmable
components (LUTs, control FFs)

« Shift in bitfile one bit at a time

Configuration

bits input here = ,J_‘] ,J_‘] ,J_‘

T

Shift register
~ B B e N shifts bits to
T LIJ T I T " appropriate

~
u Reconfigurable Computing

u Reconfigurable Computing

v
. Reconfigurable Computing

Programming FPGAS

» General Idea: include FF’s in fabric to
control programmable components
— Example: CLB
« Need a way to specify select for mux

| | |

v v v
3-in, 1-out
LUT
CLB
FPGA can be
programmed to
use/skip muxm Select?|
storing appropriate bit 2x1

Programming FPGAs

* FPGAs programmed with a “bitfile”
— File containing all information needed to
program FPGA
« Contains bits for each control FF
« Also, contains bits to fill LUTs
» But, how do you get the bitfile into the
FPGA?
—>10k LUTs
— Small number of pins

« Example:

Programming FPGAs

— Program CLB with 3-input, 1-output LUT to implement sum output of full
adder

Assume data

n is shifted in
this direction
Should look”™”

like this after

programming

o
5

klr|r|r|olo|olo|»

klr|olo|r|r|olo|m
rlo|rlo|r|o|r]|e

ﬂ

reconfigurable computing

http://www.cse.hcmut.edu.vn/~tnthinh/rc

e
Q Reconfigurable Computing

n Reconfigurable Computing

o
u Reconfigurable Computing

" Programming FPGAs

« Example, Cont:
— Bitfile is just a sequence of bits based on order of shift register

After programming

During programming

011010011

! Programming FPGAs

« Example, Cont:
— Bitfile is just a sequence of bits based on order of shift register

During programming After programming

0110100

" Programming FPGAs

« Example, Cont:
— Bitfile is just a sequence of bits based on order of shift register

During programming After programming

dos Programming FPGAS

« Example, Cont:
— Bitfile is just a sequence of bits based on order of shift register

After programming

During programming

01101001

5
Q Reconfigurable Computing

B Programming FPGAs

« Example, Cont:
— Bitfile is just a sequence of bits based on order of shift register

During programming After programming

u Reconfigurable Computing

E Programming FPGAs

+ Example, Cont:
— Bitfile is just a sequence of bits based on order of shift register

During programming After programming

”
u Reconfigurable Computing

reconfigurable computing

http:/ /www.cse.hcmut.edu.vn/~tnthinh/rc

Programming FPGAS

« Example, Cont:
— Bitfile is just a sequence of bits based on order of shift register

During programming After programming

e
Q Reconfigurable Computing

Programming FPGAs

* Example, Cont:
— Bitfile is just a sequence of bits based on order of shift register

During programming After programming

u Reconfigurable Computing

dce] .
Programming FPGAs

* Problem: Reconfiguring FPGA is slow
— Shifting in 1 bit at a time not efficient
— Bitfiles can be greater than 1 MB
— Eliminates one of the main advantages of RC
« Partial reconfiguration
« With shift registers, entire FPGA has to be reconfigured
e Solutions?
— Virtex Il allows columns to be reconfigured
— Virtex IV allows custom regions to be reconfigured
— Requires a lot of user effort
* Better tools needed

',\.
u Reconfigurable Computing

Programming FPGAS

« Example, Cont:
— Bitfile is just a sequence of bits based on order of shift register

During programming After programming

5
Q Reconfigurable Computing

Programming FPGAs

+ Example, Cont:
— Bitfile is just a sequence of bits based on order of shift register

During programming After programming

CLB is programmed to
implement full adder!

Easily extended to
program entire FPGA

u Reconfigurable Computing

oc] FPGA Architecture Tradeoffs

» LUTSs with many inputs can implement large
circuits efficiently
— Why not just use LUTs with many inputs?

« High flexibility in routing resources improves
routability
— Why not just allow all possible connections?
« Answer: architectural tradeoffs
— Anytime one component is increased/improved, there
is less area for other components
« Larger LUTs => less total LUTSs, less routing resources
« More Block RAM => less LUTSs, less DSPs
* More DSPs => less LUTs, less Block RAM
« Etc.

4

reconfigurable computing

http://www.cse.hcmut.edu.vn/~tnthinh/rc

oc2 FPGA Architecture Tradeoffs

* Example:
— Determine best LUTs for following circuit

* Choices
— 4-input, 2-output LUT (delay = 2 ns)
— 5-input, 2-output LUT (delay = 3 ns)

* Assume each SRAM cell is 6 transistors
— 4-input LUT = 6 * 24 * 2 = 192 transistors
— 5-input LUT = 6 * 25 * 2 = 384 transistors

4

e
Q Reconfigurable Computing

dce] FPGA Architecture Tradeoffs

* Example:
— Determine best LUTs for following circuit

+ Choices
— 4-input, 2-output LUT (delay = 2 ns)
— 5-input, 2-output LUT (delay = 3 ns)

» Assume each SRAM cell is 6 transistors
— 4-input LUT = 6 * 24 * 2 = 192 transistors
— 5-input LUT = 6 * 25 * 2 = 384 transistors

4-input
LUT

Propagation delay = 4 ns
.:" Total transistors = 192 * 2 = 384

4-input LUTSs are 1.5x faster and
use 1/2 the area

n Reconfigurable Computing

B FPGA Architecture Tradeoffs

» Example 2

— Determine best LUTs for following circuit
« Choices
— 4-input, 2-output LUT (delay = 2 ns)
— 5-input, 2-output LUT (delay = 3 ns)
» Assume each SRAM cell is 6 transistors
— 4-input LUT = 6 * 24 * 2 = 192 transistors
— 5-input LUT = 6 * 25 * 2 = 384 transistors

5-input
LUT

Propagation delay = 3 ns

Total transistors = 384

d

oc FPGA Architecture Tradeoffs

» Example:
— Determine best LUTSs for following circuit

« Choices
— 4-input, 2-output LUT (delay = 2 ns)
— 5-input, 2-output LUT (delay = 3 ns)

« Assume each SRAM cell is 6 transistors
— 4-input LUT = 6 * 24 * 2 = 192 transistors
— 5-input LUT = 6 * 25 * 2 = 384 transistors

Propagation delay = 6 ns

Total transistors = 384 * 2 = 768

5
Q Reconfigurable Computing

dcg FPGA Architecture Tradeoffs

» Example 2

— Determine best LUTSs for following circuit
 Choices
— 4-input, 2-output LUT (delay = 2 ns)
— 5-input, 2-output LUT (delay = 3 ns)
« Assume each SRAM cell is 6 transistors
— 4-input LUT = 6 * 24 * 2 = 192 transistors
— 5-input LUT = 6 * 25 * 2 = 384 transistors

u Reconfigurable Computing

oc] FPGA Architecture Tradeoffs

» Example 2

— Determine best LUTSs for following circuit
« Choices
— 4-input, 2-output LUT (delay = 2 ns)
— 5-input, 2-output LUT (delay = 3 ns)
» Assume each SRAM cell is 6 transistors
— 4-input LUT = 6 * 24 * 2 = 192 transistors
— 5-input LUT = 6 * 25 * 2 = 384 transistors

1 i
4-input
LUT
|]

e
u Reconfigurable Computing

Propagation delay = 4 ns

Total transistors = 384 transistors

5-input LUTs are 1.3x faster and
use same area

reconfigurable computing

http:/ /www.cse.hcmut.edu.vn/~tnthinh/rc

des] FPGA Architecture Tradeoffs

» Large LUTs
— Fast when using all inputs
— Wastes transistors otherwise
» Must also consider total chip area

— Wasting transistors may be ok if there are
plently of LUTs
« Virtex V uses 6 input LUTs
« Virtex IV uses 4 input LUTs

e
a Reconfigurable Computing

FPGA Architecture Tradeoffs

» How to design FPGA fabric?
— There is no overall best
— Design fabric based on different domains
« DSP will require many of DSP units
« HPC may require balance of units
« Embedded systems may require microprocessors
« Example: Xilinx Virtex IV
— Three different devices
« LX - designed for logic intensive apps
« SX - designed for signal processing apps
* FX - designed for embedded systems apps
— Has 450 MHz PowerPC cores embedded in fabric

Q Reconfigurable Computing

reconfigurable computing

