
12/19/2013

1

IMPLEMENTATION

DESIGN FLOW

Hà Minh Trần Hạnh – Nguyễn Duy Thái
Course: Reconfigurable Computing

Outline

Over

view

Design

flow
Design entry

Functional simulation

Synthesis

Place & Route

Configuration bitstream

Logic

synthesis

Node representation

Node manipulation

LUT-based mapping

Chortle algorithm

Flowmap algorithm

Conclu

sion

Integra

tion

12/19/2013

2

Outline

Over

view

Design

flow
Design entry

Functional simulation

Synthesis

Place & Route

Configuration bitstream

Logic

synthesis

Node representation

Node manipulation

LUT-based mapping

Chortle algorithm

Flowmap algorithm

Conclu

sion

Integra

tion

Overview

 The steps required to implement an application.

 FPGA design flow:

 Not aim at generating a set of instructions but

hardware components that will be loaded at different

time on available resources.

 Technology mapping targets look-up tables rather than

NAND gates.

12/19/2013

3

Outline

Over

view

Design

flow
Design entry

Functional simulation

Synthesis

Place & Route

Configuration bitstream

Logic

synthesis

Node representation

Node manipulation

LUT-based mapping

Chortle algorithm

Flowmap algorithm

Conclu

sion

Integra

tion

Integration

• Emulator for another digital devices such as ASIC.

Rapid prototyping

• For testing and initialization at startup and for upgrading
purpose.

• No reconfiguration happens during operation.

Non-frequently reconfigurable system

• Usually coupled with a host processor to reconfigure device and
control complete system.

Frequently reconfigurable system

Usage

12/19/2013

4

Integration
Reconfiguration time

Never change during
computation.

More interesting for only
fully-reconfigurable
devices.

Compile-time
reconfiguration

Not known at compile
time. Given task is known
at run time.

Reconfiguration process
exchanged parts of
devices to accommodate
the system to change
operational and
environmental conditions.

Run-time
reconfiguration

Integration
Management of

Reconfigurable device
Common architecture

12/19/2013

5

Integration
Management of

Reconfigurable device
Common operation flow

Integration Design flow of

dynamic reconfigurable system

 Hardware/software partitioning process:

 The part of the code to be executed on the host

processor is determined.

 The parts of the code to be executed on the

reconfigurable device are identified.

 The interface between the processor and the

reconfigurable device is implemented.

12/19/2013

6

Outline

Over

view

Design

flow
Design entry

Functional simulation

Synthesis

Place & Route

Configuration bitstream

Logic

synthesis

Node representation

Node manipulation

LUT-based mapping

Chortle algorithm

Flowmap algorithm

Conclu

sion

Integra

tion

Design flow

Design
entry

• Make description of function.

• Tools: HDL, schematic, FSM editor, …

Functional
simulation

• Simulate function to check correctness.

Synthesis

• Compile and optimize.

• Implement function with available modules in function library of
target device to create netlist.

Place &
route

• Place operators (mux, LUTs, FF, …) and connect together through
routing on FPGA device.

• Normally achieve by CAD tools to generate a bitstream to
download to device later.

12/19/2013

7

Design flow
Design tools

Outline

Over

view

Design

flow
Design entry

Functional simulation

Synthesis

Place & Route

Configuration bitstream

Logic

synthesis

Node representation

Node manipulation

LUT-based mapping

Chortle algorithm

Flowmap algorithm

Conclu

sion

Integra

tion

12/19/2013

8

Logic synthesis
Overview

 Function is described as a digital structured system

(register transfer description):

 Combinational logic blocks. are nodes.

 Registers to store results of combinational logic blocks.

 Goals is producing an optimal implementation of

system on given hardware platform. In case of

FPGA, it’s generating configuration data.

Logic synthesis
Structured digital system

12/19/2013

9

Logic synthesis
Synthesis Approaches

Two-level logic synthesis

• Natural and
straightforward method
to implement Boolean
functions.

• All functions can
represented as a sum of
product terms.

• Longest path is two.

• Most appropriate for PAL
and PLA.

Multi-level logic synthesis

• Present as multi-level
logic.

• Longest path is greater
than two.

• Smaller, faster and less
power in most case.

• Used for standard cells,
mask-programmable or
field-programmable
devices.

Outline

Over

view

Design

flow
Design entry

Functional simulation

Synthesis

Place & Route

Configuration bitstream

Logic

synthesis

Node manipulation

LUT-based mapping

Chortle algorithm

Flowmap algorithm

Conclu

sion

Integra

tion

12/19/2013

10

Node representation
Synthesis Approaches

Technology dependent

• Only valid gates
chosen from target
library are used.

• Final implementation
matches the node
presentation.

Technology
independent

• Design is not tied to
any library.

• 2 steps:

• Optimizing
Boolean equations.

• Mapping parts of
Boolean network to
set of LUTs.

Node representation

 Efficiently use memory and easy to manipulate.

 Technology-independent synthesis method is most

used for easier optimization.

 In FPGA, synthesis follows 2 steps:

Minimize Boolean equations.

Map Boolean networks to a set of LUTs.

12/19/2013

11

Node representation
Representation approaches

SOP form

• Representing as Sum Of Products.

• Being well understood, easy to manipulate.

• Non-representativity of logic complexity.

Factored Factored
form

• c [a+b(d+e)].

• Representative of the logic complexity, easy to estimate comlexity of logic
implementation.

• Lack of manipulation algorithms.

BDD form

• Representing as Binary Decision Diagram.

• Manipulations of BDDs are well defined and efficient.

Node representation
Binary Decision Diagram

Constant node: value = {0; 1}

Variable node: index = {0 .. N}

F(c) = c.F(a) + (~c).F(d)

12/19/2013

12

Outline

Over

view

Design

flow
Design entry

Functional simulation

Synthesis

Place & Route

Configuration bitstream

Logic

synthesis

Node representation

LUT-based mapping

Chortle algorithm

Flowmap algorithm

Conclu

sion

Integra

tion

Node manipulation

 Transformations to get optimized representation in

previous section:

dcg

dcbadacbggaf

Collapse

edgedbcaf

Substitute

edcbaebdbcadacf

Factor

exebcag

exdedbcaf

Extract

XYXYdcbadcba

dcbadcbadbcdcadbacbaf

Decompose

:

)())((

:

))((

:

)(

)(

:

)()(

)()(

:

12/19/2013

13

Outline

Over

view

Design

flow
Design entry

Functional simulation

Synthesis

Place & Route

Configuration bitstream

Logic

synthesis

Node representation

Node manipulation

Chortle algorithm

Flowmap algorithm

Conclu

sion

Integra

tion

LUT-based mapping

• Chortle-crf.

• MIS-fpga

• Xmap.

Algs for minimizing the Area

• FlowMap.

• Chortle-d.

• DAG-map.

• MIS-pga-delay.

Algs for minimizing the Delay

• Bhat and Hill.

• Schlag.

• Kong and Chang.

Algs for maximizing the Routability

12/19/2013

14

LUT-based mapping
Prerequisite definitions

 Primary input (PI) node: node without any predecessor.

 Primary output (PO) node: node without any successor.

 The level l(v) of a node: the length of the longest path from
the primary inputs to that node.

 The depth of a network G: the largest level of a node in G.

 The fan-in of a node v: the set of gates whose outputs are
inputs of v.

 The fan-out of v: the set of gates that use the output of v as
input.

 Given a node v ∈ G , input(v) is defined as the set of node
of G, which are fan-in of v, i.e. the set of predecessors of v.

Begins with an AND/OR representation of the optimized

Boolean network.

 Decomposing network into a forest of trees.

 Optimal mapping of each tree into LUTs.

 Assembling together.

28

An example of Boolean network.

Modified tree-covering approaches

LUT-based mapping

12/19/2013

15

Outline

Over

view

Design

flow
Design entry

Functional simulation

Synthesis

Place & Route

Configuration bitstream

Logic

synthesis

Node representation

Node manipulation

Flowmap algorithm

Conclu

sion

Integra

tion

Chortle Algorithm
Concepts

 Specifically designed for TLU-based FPGAs.

 The input: Boolean network as a forest of directed

acyclic graphs (DAGs):

 Leaves : inputs.

 Root : output

 Internal nodes : logic functions AND/OR.

 Edges : inverting or non-inverting signal paths.

 Goal : implementing the circuit using the fewest number

of K-input CLBs in minimal running time.

12/19/2013

16

Boolean network and DAG representation.

Concepts

Chortle Algorithm

Operation Flow

Chortle Algorithm

 Tree mapping

 Converting the input graph to forest of fan-out-free trees,

where each logic function has exactly one output.

 Evaluating each sub-tree independently.

Forest of fan-out-free trees.

12/19/2013

17

Operation Flow

Chortle Algorithm

 Decomposing

Operation Flow

Chortle Algorithm

 Decomposing

 Required if the original circuit has a fan-in greater than K.

 Two steps:

1. Two-level decomposing.

2. Converting into a multi-level decomposition.

12/19/2013

18

Operation Flow

Chortle Algorithm

 Decomposition

Chortle mapping example.

For this example, we will

assume that each CLB may have as many

as four inputs (i.e., K = 4). The inputs,

{A,B,C,D,E,F}, perform the logic function:

A * B + (C * D) E + F.

In the postorder traversal n1 is visited first,

followed by n2

… n5. For n1, there is only one possible

mapping function,

namely, U = 2, u = {1,1}. The same is true

for n2.

Chortle Algorithm
Example

12/19/2013

19

When n3 is evaluated, there are

two possibilities, as illustrated

First, the function could be

implemented

as a new CLB with two inputs

(U = 2), driven from the outputs

of n2 and E. This sub-graph

would use two TLBs; thus, it

would have a cost function of 2.

For U = 3,only one utilization

vector is possible, namely, u =

{2,1}. All three primary inputs C,

D, and E are grouped

into one CLB, thus producing a

cost function of 1.

Mapping of node 3.

Chortle Algorithm
Example

Mapping of node 4.

Chortle Algorithm
Example

12/19/2013

20

Mapping of node 5

Finally, we evaluate the

output node, n5, as

illustrated. We see that

there are four possible

mappings and, of those,

two minimal mappings are

possible. Chortle may

return either of the

mappings

where two CLBs

implement: n5 = (A * B) +

n3 + F and n3 = (C * D) *

E.

Chortle Algorithm
Example

1. Exploiting the reconvergent paths.

Improvement of the Chortle

12/19/2013

21

2. Logic replication at fan-out LUTs.

Improvement of the Chortle

Outline

Over

view

Design

flow
Design entry

Functional simulation

Synthesis

Place & Route

Configuration bitstream

Logic

synthesis

Node representation

Node manipulation

Chortle algorithm

Conclu

sion

Integra

tion

12/19/2013

22

Flowmap

 Optimal solution in polynomial time.

 Two steps:

1. Decomposing:

 For a given FPGA device, with a k-input TLU, all nodes of the

network with more than k inputs must be decomposed.

 Different methods decompose the network in different ways.

2. Node Mapping.:

 Example: Local Elimination: The operation used for local

elimination is collapsing, which merges node ni into node nj

whenever ni is a fan-in node to nj and the new node obtained is

feasible.

Concepts

Flowmap
Decomposing

12/19/2013

23

Flowmap
Node-mapping

Questions/Discussions

 Any question?

12/19/2013

24

Thank you!

