
12/19/2013

1

High-Level Synthesis

for Reconfigurable Systems

HV: Phạm Viết Nguyên 12073127

Trần Thanh Bình 12073117

GV: Ts.Trần Ngọc Thịnh

Agenda

• Modeling

• Dataflow Graphs

• Sequencing Graph

• Finite State Machine with Data path

• Fundamental differences in HLS for reconfigurable
computing

• Temporal Partitioning

• Temporal Partitioning Algorithms

• Unconstrained Scheduling

• The List Scheduling Approach

• Integer Linear Programming

• Network Flow

• Spectral Methods

12/19/2013

2

3

Agenda

• Modeling

1. Dataflow graphs

2. Sequencing graphs

3. Finite State Machine

with data-path

• High-level synthesis and

temporal partitioning

4

Modeling

• High-level descriptions:

Modeling is a key aspect in the design of a system

Models used must be powerful enough

− Capture all user’s need

− Easy to understand and manipulate

• Several powerful models exists:

FSM,

State Charts,

DFG,

Petri Nets,

…

• Focus in this course:

Dataflow graphs,

Sequencing graphs,

Finite State Machine with Datapath (FSMD)

12/19/2013

3

5

Dataflow Graph

• DFG:

 Means to describe a computing task in a
streaming mode.

 Operators: nodes

 Operands: Inputs of the nodes

 Node’s output can be used as input to
other nodes

− Data dependency in the graph.

• Given a set of tasks {T1,…,Tk}, a DFG is a DAG
G(V,E), where

 V (= T): the set of nodes representing
operators and

 E: the set of edges representing data
dependency between tasks.

DFG for the quadratic

root computation using:

2a

4 2

1

2 bac)(b
=x



6

Definitions

 The latency ti of vi :

− The time it takes to compute the function of vi using Hvi

E)v,(v=e=e jiij 

node vi  V

hi

li

ai = li × hi

implementation Hvi

vi

vi

vj

wij

 Weight wij of eij  E:

− width of bus connecting two

components Hvi and Hvj

 Latency tij of eij:

− the time needed to transmit

data from Hvi to Hvj

.

12/19/2013

4

7

DFG

Any high-level program can be compiled

into a DFG, provided that:

− No loops

− No branching instructions.

• Therefore:

DFG is used for parts of a program.

Extend to other models:

− Sequencing graph

− FSMD

8

Sequencing Graph

• Sequencing Graph:

 Hierarchical DFG with two different types of nodes:

1. Operation nodes: normal ”task nodes” in a DFG

2. Link nodes or branching nodes: point to another sequencing

graph in a lower level of the hierarchy.

12/19/2013

5

9

Sequencing Graph
• Example:

According to the conditions that node BR evaluates, one of the

two sub-sequencing graphs (1 or 2) can be activated.

Loop description:

− Body of the loop is described in only one sub-sequencing

graph: BR evaluates the loop exit condition

10

Finite State Machine with Datapath

(FSMD)
• FSMD:

 Extension of DFG with an FSM

 is a 6-tuple <S, I, O, F, H, s0>:

 S = {s0, …, sl}: states,

 I = {i0, …, im}: inputs,

 O = {o0, …, on}: outputs,

 F: S × I × O  S: a transition function that maps a tuple (si , ij,ok) to
a state,

 H: S  O: an action function that maps the current state to output,

 s0: an initial state.

• FSMD vs. FSM

 FSMD operates on arbitrary complex data types
− Not just Boolean vars

 Transition may include arithmetic operations

12/19/2013

6

11

FSMD

1. Assignment statement

 a single state is created that executes the

assignment action.

 An arc connecting the state with the state of

the next statement is created.

a = b

next

statement

a = b;

next statement

• Modeling with FSMD:

 The transformation of a program into a

FSMD is done by

− Transforming the statements of the

program into FSMD states.

− The statements are first classified in

three categories:
1. assignment statements,

2. branch statements and

3. loop statements

12

FSMD: Loop

2. Loop statement:

 A condition state C and a join state
J, both with no action are created.

 an arc is added:
− label: the loop condition

− connects C to the state of the first
statement in the loop body.

 another arc is added:
− label: complement of the loop

condition

− connects C to the first statement after
the loop body.

 an edge is added:
− connects: the state of the last statement

in the loop to the join state

 another edge is added:
− connects: join state back to the

conditional state.

12/19/2013

7

13

FSMD: Branch

3. Branch statement:
 a condition state C and a join state J,

both with no action are created.

 an arc is added:
− label: the first branch condition

− connects C to the state of the first
statement of the branch.

 another arc is added:
− label: complement of the first condition

ANDed with the second branch condition

− connects C to the first statement of the
branch.

 ….

 Each state corresponding to the last
statement in a branch is connected to the
join state.

 Join state is connected to the state
corresponding to the first statement after
the branch.

if(c1)

c1-stmts

else if(c2)

c1-stmts

else

others stmts

next statement

C:

J:

next

statement

c1 stmts c1 stmts c1 stmts

c1 !c1&c2 !c1&!c2&c3

14

FSMD: Example

12/19/2013

8

15

High-Level Synthesis

• High-Level Synthesis (Architectural Synthesis):

 Transforming an abstract model of circuit behavior into a data path

and a control unit.

• Steps:

1. Allocation: defines the resource types required by the design,

and for each type the number of instances.

2. Binding: maps each operation to an instance of a given

resource.

3. Scheduling: sets the temporal assignment of resources to

operators.

− Decides which operator owns the resource at a given time

16

Allocation

• Allocation (Formal Definition):

 For a given specification with a set of

operators or tasks

T = {t1, t2, · · · , tn}

to be implemented on a set of resource

types

R = {r1, r2, · · · , rt},

allocation is a function α : R → Z+, where

α(r) = zi is the number of available

instances of resource type ri

12/19/2013

9

17

Allocation

• Example:

 T = {*, *, *, -, -, *, *, *, +, +, <}

 R = {ALU, MUL} = {1,2}

− ALU: add, sub, compare

α(1) = 5

α(2) = 6

18

Binding

• Binding (Formal Definition):

 For

T = {t1, t2, · · · , tn}

and

R = {r1, r2, · · · , rt},

binding is a function β : T → R × Z+, where

β(ti) = (ri, bi), (1 ≤ bi ≤ α(ri)) is the instance of

the resource type ri on which ti is mapped

to.

12/19/2013

10

19

Binding
• Example:

 T = {*, *, *, -, -, *, *, *, +, +, <}

 R = {ALU, MUL} = {1,2}

− ALU: add, sub, compare

β(t1) = (2,1)

β(t2) = (2,2)

β(t3) = (2,3)

β(t4) = (1,1)

β(t5) = (1,2)

β(t6) = (2,4)

β(t7) = (2,5)

β(t8) = (2,6)

…

β(t11) = (1,5)

20

Scheduling

• Scheduling (Formal Definition):

 For

T = {t1, t2, · · · , tn}

 scheduling is a function ς : V → Z+,

where ς(ti) denotes the starting time of

task ti.

12/19/2013

11

21

• Fundamental differences in RCS:

 Uniform resources:

 It is possible to implement any task on a given part of a

device (provided that the available resource are

enough).

General vs. RCS High-Level Synthesis

22

General vs. RCS High-Level Synthesis

• Assumptions on a reconfigurable

device

*

*

12/19/2013

12

23

General vs. RCS High-Level Synthesis
• Example:

))(d)((c+d))b)(c((a=x f-e

))(+)(())()((= h - gf - e - f - e - d cy 

add

sub

mul

*

*

24

High-Level Synthesis

• Fundamental differences in RCS:
 In general HLS:

- Application is specified using a structure that
encapsulates a data-path and a control part.

- Control part is synthesized.
 In RCS:

- Hardware modules implemented as data-path normally
compete for execution on the chip.

- A processor is used to control selection process of the
hardware modules by means of reconfiguration.

12/19/2013

13

25

Temporal Partitioning

 Resources on the device are not allocated

to only one operator but to a set of

operators that must be placed at the

same time and removed.

 An application must be partitioned in sets

of operators.

 The partitions will then be successively

implemented at different time on the

device.

Temporal Partitioning

26

Schedule

• Schedule:

 is a function ς : V → Z+, where ς(vi) denotes the

starting time of the node vi that implements a task

ti.

• Feasible Schedule:

ς is feasible if: eij = (vi, vj)  E,

ς(tj) ≥ ς(ti) + T(ti) + tij
− eij defines a data dependency between tasks ti and tj,

− tij is the latency of the edge eij,

− T(ti) is the time it takes the node vi to complete execution.

12/19/2013

14

27

Ordering Relation

• Ordering relation ≤

vi ≤ vj   schedule ς, ς(vi) ≤ ς(vj).

Note: ≤ is a partial ordering, as it is not defined for all pairs

of nodes in G.

28

Partition

• Partition:
 A partition P of the graph G = (V,E) is its division into some

disjoint subsets P1, ..., Pm such that

Uk=1,…,mPk = V

• Feasible Partition:
 A partition is feasible in accordance to a reconfigurable

device H with area a(H) and pin count p(H) if:

Pk  P: a(Pk) = (∑viPkai) ≤ a(H)

1/2∑eijEwij ≤ p(H)
− for eij = crossing edges

• Crossing edge:
 an edge that connects one component in a partition with

another component out of the partition.

12/19/2013

15

29

Run Time

• Run time of a partition r(Pi):

 the maximum time from the input of the data to the output of the

result.

30

Ordering Relation

• Ordering relation for partitions:

 Pi ≤ Pj  vi  Pi, vj  Pj

− either vi ≤ vj

− or vi and vj are not in relation.

• Ordered partitions:

 A partitioning P is ordered  an ordering relation ≤ exists on

P.

 If P is ordered, then for a pair of partitions, one can always

be implemented after the other with respect to any

scheduling relation.

12/19/2013

16

31

Temporal Partitioning

• Temporal partitioning:

 Given a DFG G = (V,E) and a reconfigurable device H, a

temporal partitioning of G on H is an ordered partitioning P of

G with respect to H.

32

 Cycles are not allowed in DFG.

− Otherwise, the resulting partition may

not be schedulable on the device.

Cycle

Temporal Partitioning

12/19/2013

17

33

• Goal:

 Computation and scheduling of a Configuration graph

• A configuration graph is a graph in which:

 Nodes are partitions

 Edges reflect the precedence constraints in a given

DFG
Configuration Graph

P1
P2 P3

P4
P5

Temporal partitioning

• Formal Definition:

 Given a DFG G = (V,E)

 and a temporal partitioning P = {P1, ..., Pn} of G, we define a Configuration

graph of G relative to the P, with notation Γ(G/P) = (P,EP) in which the nodes

are partitions in P. An edge eP = (Pi, Pj) EP  e = (vi, vj)  E with vi  Pi

and vj  Pj .

• Configuration:

 For a given partition P, each node Pi  P has an associated configuration ζi

that is the implementation of Pi for the given device H.

34

• Whenever a new partition is

downloaded, the partition that was

running is destroyed.

 Communication through inter-

configuration registers (or communication

memory)

− May sit in main memory

− May sit at the boundary of the device to

hold the input and output values

 Configuration sequence is controlled by

the host processor

P1
P2 P3

P4
P5

Inter-configuration

registers

Temporal partitioning

IO Register

IO Register

IO Register

IO Register

Processor

Bus

Block

IO Register

IO Register

IO
 R

e
g

is
te

r

IO
 R

e
g

is
te

r

FPGA

Device’s register mapping into
the processor address spaces

12/19/2013

18

35

• Steps (for Pi and Pj, (Pi ≤ Pj):

1. Configuration for Pi is first downloaded into

the device.

2. Executes.

3. Pi copies all the data it needs to send to

other partitions into the communication

memory.

4. The device is reconfigured to implement the

partition Pj

5. Accesses the communication memory and

collect the data.

P1
P2 P3

P4
P5

Inter-configuration

registers

Temporal partitioning

36

• Objectives for optimization:

1. # interconnections: very important, since it minimizes:

 The mount of exchanged data

 The amount of memory for temporally storing the data

2. # produced blocks (partitions)

 Reduces the number of reconfigurations (total time?)

3. Overall computation delay depends on

 the partition run time

 the processor used for reconfiguration

 speed of data exchange

4. Similarity between consecutive partitions (for partial)

5. Overall amount of wasted resources on the chip.

 When components with shorter run-times are placed in the same partition with

other components with longer run-time, those with the shorter components

remain idle for a longer period of time.

Temporal partitioning

12/19/2013

19

37

Wasted Resources

• Wasted resource wr(vi) of a node vi:

 Unused area occupied by the node vi during the computation

of a partition

wr(vi) = (t(Pi)−T(ti)) x ai

t(Pi): run-time of partition Pi.

(ti)): run-time of the component vi

ai: area of vi

• Wasted resource wr(Pi) of a partition (Pi = {vi1 , .., vin}:

wr(Pi) = j =1,…,n wr(vi)

• Wasted resource of a partitioning P:

wr(P) = j =1,…,k wr(Pj)

Run time

Area

38

• Communication Cost: modelled as graph connectivity:

• Connectivity of a graph G=(V,E):

con(G) = 2*|E|/(|V|2 - |V|)

 |V|2 - |V|: the number of all edges that can be built with V.

1 2

3

4

5

6

8

7 9

1
0

Connectivity = 0.24

Communication Overhead

12/19/2013

20

39

• Quality of Partitioning P = {P1,…,Pn}:

 Average connectivity over P:

Q(P) = 1/n i=1,…,ncon(Pi)

4

5

1

2

8

7

9

10

3

6

Quality = 0.25

1

3

4

5

6

2

8

7 9

10

Quality = 0.45

1 2

3

4

5
6

8

7 9

1
0

Connectivity = 0.24

Communication Overhead

40

Communication Overhead

•Minimizing communication overhead by

minimizing the weighted sum of crossing edges

among the partitions.
 minimize the size of the communication memory and

 minimize the communication time.

• Heuristic:

Highly connected components are placed in the

same partition (High quality partitioning)

12/19/2013

21

41

• Unconstrained Scheduling

ASAP methods

ALAP methods

• Constrained Scheduling

List scheduling

Integer linear programming (exact method)

Network flow

Spectral method

Temporal partitioning & Scheduling

42

• Unconstrained scheduling:

o Assumption: unlimited amount of resources

• Device with unlimited size

o Usually as pre-processing step for other algorithms

• E.g. computation of the upper and lower bounds on the

starting time of operations.

o Lower bound: the earliest time at which a module can be

scheduled,

o Upper bound: the latest time at which a module can be

started.

Unconstrained Scheduling

12/19/2013

22

43

• ASAP (as soon as possible)

o Defines the earliest starting time for each node in the DFG

o Computes a minimal latency

• ALAP (as late as possible)

o Defines the latest starting time for each node in the DFG

according to a given latency

• The mobility of a node:

o (ALAP starting time) – (ASAP starting time)

o Mobility = 0  node is on a critical path

Unconstrained Scheduling

44

Dataflow graph for example

x = (a x b) x (c x d) + {(c x d) – (e - f)}

y = (c x d) – (e –f) – {(e –f) + (g-h)}

12/19/2013

23

45

• Assumptions:

o Multiplication: latency of

100 clocks,

o Addition/subtraction: 50

clocks,

o data transmission delay is

neglected.

ASAP Example

Computation delay

of the prev. node

Node’s starting time as

computed by the algorithm.

a b c d e f g h

x = (a x b) x (c x d) + {(c x d) – (e - f)}

y = (c x d) – (e –f) – {(e –f) + (g-h)}

46

1: for each node v ∈V do

2: if v has no predecessors then

3: ς(v) := 0

4: V := V − v

5: end if

6: end for

7: while V # ∅ do

8: select a vertex vi ∈ V whose predecessors are all

scheduled

9: schedule vi by setting ς(vi) := max(vj,vi) ∈ E(ς(vj)+tj)

10: V:= V−vi

11: end while

ASAP Algorithm

12/19/2013

24

47

• Assumptions:

o Multiplication: latency of

100 clocks,

o Addition/subtraction: 50

clocks,

o Overall computation time:

250

ALAP Example

Computation delay of

the prev. node

Node’s starting time as

computed by the algorithm.

a b c d

e f g h

x = (a x b) x (c x d) + {(c x d) – (e - f)}

y = (c x d) – (e –f) – {(e –f) + (g-h)}

48

1: for each node v ∈ V do

2: if v has no successors then

3: ς(v) := λ

4: V := V−v

5: end if

6: end for

7: while V # ∅ do

8: select a vertex vi ∈ V whose successors are all

scheduled

9: schedule vi by setting ς(vi) := min(vi,vj) ∈ E(ς(vj) − ti)

10: V := V− v

11: end while

ALAP-Algorithm

12/19/2013

25

49

• Constrained scheduling:

o A set of fixed resources available (ASIC).

o Many tasks competing for a given resource,

 One of them must be chosen according to a given

criteria and the rest will be scheduled later.

1. Extended ASAP, ALAP:

o Compute ASAP or ALAP

o Assign the tasks earlier (ASAP) or later (ALAP), until

the resource constraints (e.g. area) are fulfilled.

Constrained Scheduling

50

* +

-

<

*

*

*

*

*

+-

● Constraint:

o 2 Multipliers, 1 ALUs (+, , <)

Time 0

Time 1

Time 2

Time 3

Time 4

Extended ASAP

12/19/2013

26

51

• List scheduling:

o Sort nodes in topological order

o Assign priority to nodes

o Criteria (priority) can be:

• number of successors.

• depth (length of longest path from inputs).

• latency-weighted depth.

– w: latency of the operation to be executed by the nodes on the
path.

• Mobility.

• Connectivity.

• ...

Constrained Scheduling

52

*

*1

1

Zeit 0

Zeit 1

Zeit 2

Zeit 3

Zeit 4

*

* +

<

*

+

*

-

*

*

-

2

2

2

2

*

+

+

<

0

0

0

0

0

Time 1

Time 2

Time 3

Time 4

Time 0

Mobility

12/19/2013

27

Connectivity and quality

• Graph Connectivity: Given a dataflow graph G=(V,E),

we define the connectivity.

con(G)= as the rapport between the number of

edges in E over the number of all edges that can be built

with the nodes of G

• Quality: Given a dataflow graph G=(V,E) and a

partitioning P = {P1, ..., Pn} of G, we define the quality.

Q(P)= of P as the average connectivity over all

the partitions Pi ,1≤i≤n.

53

VV

E


2

2




n

i

iPcon
n 1

))((
1

54

• At any time step t:

o A ready set L is constructed (operations ready to be

scheduled)

• L: operations whose predecessors have already

been scheduled early enough to complete their

execution at time t.

o Tasks are placed in L in decreasing priority order

o At a given step, the free resource is assigned the task with

highest priority.

Constrained Scheduling

12/19/2013

28

57

List Scheduling: Example

*

• Resources:

o 1 multiplier

o 1 ALU

• Latency:

o MUL : 100 clk

o ALU : 50 clk

• The depth of a node
as priority

59

• In RCS,

o Resource types are not important.

• Amount of basic resources are important.

o Operators do not compete for resources.

• They compete for area.

o Only the starting time and the end time of the
complete partition is usually considered.

Temporal Partitioning vs.

Constrained Scheduling

12/19/2013

29

Temporal Partitioning in RCS

sort the nodes of v according to their priorities

P0 := Ø

while V ≠ Ø do

select a vertex v V with highest priority and whose

predecessors are all placed

if (a partition Pi exists with s(Pi) + s(v) ≤ s(H)) then

Pi = Pi  {v}

else

create a new partition Pi+1 and set Pi+1 = {v}

end if

end while

60

61

P2

P1

+

<

* *

* *

P3

-

*

-

*

+

● Connectivity:

● c(P1) = 1/6,

● c(P2) = 1/3,

● c(P3) = 2/6.

● Quality: 0.28

Temporal Partitioning vs. Constrained

Scheduling

● Criterion: number of
successors

● size(FPGA) = 250,

● size (mult) = 100,

● size(add) = size(sub) = 20,

● size(comp) = 10.

* +

-

<

* * *

* * +

-

3 3

2

2 1 1

1

1

0 0

0

3 3 1

2 2

1

1 1

0

00

12/19/2013

30

62

Improvement

• Best criteria:

o Total computation time of DFG:

tDFG = n × CH + 1,…,n(tPi)
o n: Number of partitions

o CH: Reconfiguration time of device H

o tPi : Computation time of partition Pi.

• Optimization:

o If CH too large, then the optimization will tend
to minimize the number of partitions

o If CH « tp, then algorithm will tend to avoid
long paths in partitions.

63

Improvement

• Advantage of LS-based temporal partitioning:

o Fast (linear time algorithm)

Local optimization possible

• Disadvantage:

o Levelization:

• Modules are assigned to partitions based more on their
level number rather than their interconnectivity with
other component.

o Interconnectivity (data exchange) must be optimized.

+ /

*

*

+ - *

- /

Level 0

Level 1

Level 2

Level 3

12/19/2013

31

64

P2

P1

+

<

* *

* *

P3

-

*

-

*

+

● Connectivity:

● c(P1) = 1/6,

● c(P2) = 1/3,

● c(P3) = 2/6.

● Quality: 0.28

LS-Based Temporal Partitioning

● Criterion: number of
successors

● size(FPGA) = 250,

● size (mult) = 100,

● size(add) = size(sub) = 20,

● size(comp) = 10.

* +

-

<

* * *

* * +

-

3 3

2

2 1 1

1

1

0 0

0

3 3 1

2 2

1

1 1

0

00

65

* +

-

<

* * *

* * +

-

3 3

2

2 1 1

1

1

0 0

0

● Connectivity:

● c(P1) = 2/10,

● c(P2) = 2/3,

● c(P3) = 2/3.

● Quality: 0.51

● Quality is better

P2

P1

+

<

*

*

*

P3

*

-

*

-

*

+

Improved Temporal Partitioning
3

3

1

2

2

1

1

1

0
0

0

12/19/2013

32

66

• Pair wise interchange

Improved List Scheduling

67

• Integer linear programming (ILP) problem.

min cTx

Ax = b

x ≥ 0

With A, b and c and x being matrices of integers. It
consists of finding a variable x, which minimizes cTx
under the side constraints Ax=b and x≥0.

2.2 Temporal partitioning – ILP

12/19/2013

33

68

• With the ILP (Integer Linear Programming),

o Temporal partitioning constraints are formulated as

equations.

o The equations are then solved using an ILP-solver.

• The constraints usually considered are:

o Uniqueness constraint

o Temporal order constraint

o Memory constraint

o Resource constraint

o Latency constraint

• Notations:

2.2 Temporal partitioning – ILP

)()1(ivi Pvy 

))()()(()0(jijiuv PPPvPuw 

69

• Unique assignment constraint: Each task must be placed in
exactly one partition. (m = # of partitions)

• Precedence constraint: For each edge e = (u, v) in the graph, u

must be placed either in the same partition as v or in an earlier

partition than that in which v is placed.





m

i

viyVv
1

1,





m

i

vi

m

i

ui iyiyEvu
11

,),(

2.2 Temporal partitioning – ILP

12/19/2013

34

70

• Resource constraint: The sum of the resources needed to

implement the modules in one partition should not exceed

the total amount of available resources.

oDevice area constraint: a(H) is the area of device H

oDevice terminal constraints: p(H) is the number of

terminals (pins) of the device H.

Temporal partitioning – ILP

71

• Communication memory constraint: The total amount

of data to be temporally saved must not exceed the

size of the communication memory used.

o This constraint is captured by the following equation:

Temporal partitioning – ILP

12/19/2013

35

72

Temporal partitioning by ILP: Example

• assignment constraint:

o y11+ y12 + y13 = 1

o y21+ y22 + y23 = 1

o …

o y71 +y72 + y73 = 1

o Partition P1:

o y22 = y23 = 0, y21 = 1

o y32 = y33 = 0, y31 = 1

o y42 = y43 = 0, y41 = 1

o Partition P2:

o y11 = y13 = 0, y12 = 1

o y51 = y53 = 0, y52 = 1

o y61 = y63 = 0, y62 = 1

o Partition P3:

o y71 = y72 = 0, y73 = 1

73

Temporal partitioning by ILP: Example

12/19/2013

36

74

Temporal partitioning by ILP: Example

• Precedence constraint:

i i

i i

75

Temporal partitioning by ILP: Example

• Resource constraint:

o device with a size of 200 LUTs, and 100 LUTs

for the multiplication, 50 LUTs each for the

addition, the comparison

12/19/2013

37

76

Temporal partitioning by ILP: Example

• Communication memory constraint:

o Assume that a memory with 50 bytes is available

for communication and each datum has a 32-bit

width.

For P1 to P2

w45 = 2 x 32 = 64bit ≤ Ms = 8 × 50 = 400bit

For P2 to P3

w67 + w17 = 2 x 32 + 2 x 32 = 128bit ≤ Ms = 8 × 50

= 400bit

80

Network-flow Transformation step

12/19/2013

38

81

Network-flow partitioning steps

82

Spectral Methods

• Minimization of communication between partitions

• The connectivity of a graph can be minimized by placing

components in an n-dimensional space in such a way that

the sum of the distance between component pairs is

minimized

 Placement of the components in an n-dimensional

vector space such as to minimize the sum of the

distances between the components.

 Derivation of a partition from an optimal placement that

minimizes the sum of the distance between the

components.

12/19/2013

39

83

Spectral Methods - 1-D and 2-D spectral

placement

84

Spectral Methods 3-D spectral placement

12/19/2013

40

85

Spectral Methods - Derived partitioning

86

Thanks you

