-

High-Level Synthesis
for Reconfigurable Systems

HV: Pham Viét Nguyén 12073127
TrAn Thanh Binh 12073117

GV: Ts.Tréan Ngoc Thinh

/ Agenda
* Modeling
* Dataflow Graphs
* Sequencing Graph

Finite State Machine with Data path

Fundamental differences in HLS for reconfigurable
computing

Temporal Partitioning

* Temporal Partitioning Algorithms

N

Unconstrained Scheduling
The List Scheduling Approach
Integer Linear Programming
Network Flow

Spectral Methods

/ Agenda \

* Modeling
1. Dataflow graphs
2. Sequencing graphs
3. Finite State Machine
with data-path

— >
* High-level synthesis and ;
temporal partitioning '

- N/

/ Modeling \

* High-level descriptions:

» Modeling is a key aspect in the design of a system
» Models used must be powerful enough

— Capture all user’s need

- Easy to understand and manipulate

» Several powerful models exists:
»FSM,
» State Charts,
» DFG,
» Petri Nets,
> ...
* Focus in this course:
» Dataflow graphs,
» Sequencing graphs,
» Finite State Machine with Datapath (FSMD) j

-

-

Dataflow Graph \

DFG: P AR

» Means to describe a computing task in a Y
streaming mode. !

» Operators: nodes

» Operands: Inputs of the nodes ':, ‘

» Node’s output can be used as input to
other nodes

- Data dependency in the graph.

Given a set of tasks {T,,...,T,}, a DFG is a DAG "/
G(V,E), where .","_':
» V (= T): the set of nodes representing \

operators and
» E: the set of edges representing data
dependency between tasks.

DEFG for the quadratic
root computation using:

1
2 7
x=(b 4ac) ly
2a

5

-

> The latency t; of v;:

L

Definitions I

@ hi| =L xh

node v;e V A

implementation H,;

- The time it takes to compute the function of v; using H,;

» Weight w; of g; € E:

— width of bus connecting two
components H,;and H,;

> Latency t; of e;:

- the time needed to transmit
data from H,; to H,;

e=e,=(v,v,)eE

-

-

* Therefore:

DFG I

»Any high-level program can be compiled
into a DFG, provided that:
—No loops
- No branching instructions.

» DFG is used for parts of a program.

» Extend to other models:
- Sequencing graph
- FSMD

-

Sequencing Graph \

+ Sequencing Graph:

» Hierarchical DFG with two different types of nodes:

1. Operation nodes: normal "task nodes” in a DFG

2. Link nodes or branching nodes: point to another sequencing
graph in a lower level of the hierarchy.

/ Sequencing Graph \

+ Example:

» According to the conditions that node BR evaluates, one of the
two sub-sequencing graphs (1 or 2) can be activated.

» Loop description:

- Body of the loop is described in only one sub-sequencing
graph: BR evaluates the loop exit condition

-

/~ Finite State Machine with Datapath ™\
(FSMD)
FSMD:

» Extension of DFG with an FSM

» isa6-tuple <S, I, O, F, H, sp>:

= S={s, ..., S} states,

= I={iy ..., iy} inputs,

= O={o, ..., 0} outputs,

= F.Sx/x0O 2 S:a transition function that maps a tuple (s;, j;
a state,

= H:S -2 0O:an action function that maps the current state to output,

* S, an initial state.

FSMD vs. FSM

» FSMD operates on arbitrary complex data types
- Not just Boolean vars

» Transition may include arithmetic operations

N /

10

0,) to

-

SMD

Modeling with FSMD:

1.

» The transformation of a program into a
FSMD is done by

- Transforming the statements of the
program into FSMD states.

a =b;

- The statements are first classified in ne*t statement

three categories:
1. assignment statements,
2. branch statements and

3. loop statements a=b

Assignment statement
» asingle state is created that executes the

» An arc connecting the state with the state O
the next statement is created.

assignment action. [next
. statement

~

-

N

2. Loop statement:

>

>

FSMD: Loop

while (cond) {

A condition state C and a join state ! ¢ stat .
J, both with no action are created. next statemen

an arc is added:

- label: the loop condition !cond
— connects C to the state of the first

statement in the loop body.

another arc is added: |
- label: complement of the loop " loop-body-
condition . statements |

- connects C to the first statement after -
the loop body.

an edge is added: N
- connects: the state of the last statement

in the loop to the join state

another edge is added: L \
— connects: join state back to the / next b
conditional state. . statement |

Loop-body-statements

~

12

-

-

3. Branch statement:

FSMD: Branch

» acondition state C and a join state J,
both with no action are created.

» anarcis added:

- label: the first branch condition

- connects C to the state of the first
statement of the branch.

» another arc is added:
- label: complement of the first condition

ANDed with the second branch condition -

— connects C to the first statement of the
branch.

if(cl)

cl-stmts
else if(c2)

cl-stmts
else

others stmts
next statement

|
{

c1 stmts
AN

» Each state corresponding to the last
statement in a branch is connected to the

join state.

» Join state is connected to the state
corresponding to the first statement after

the branch.

~

-

FSMD: Example

Algorithm 6 The greatest common divisor sequential algorithm

]

1: variable a, b, ged: integer;
;. done ;= FALSE;
. while (ldone) do

if (a > b) then
a:=a-b;
else
if (b > a) then
bi=b-a;
else
done = TRUE;
end if
end if

: end while
: ged = a;

N

/ High-Level Synthesis \

* High-Level Synthesis (Architectural Synthesis):

» Transforming an abstract model of circuit behavior into a data path
and a control unit.

» Steps:
1. Allocation: defines the resource types required by the design,
and for each type the number of instances.

2. Binding: maps each operation to an instance of a given
resource.
3. Scheduling: sets the temporal assignment of resources to
operators.
- Decides which operator owns the resource at a given time

- /

15

4 Allocation I

» Allocation (Formal Definition):

» For a given specification with a set of
operators or tasks

r={t, t, -t}
to be implemented on a set of resource
types
R={r,r, ---,r}
allocation is a function a: R — Z*, where
a(r) = z; is the number of available
k instances of resource type r; j

16

/ Allocation \

- Example:)
> R = {ALU, MUL} = {1,2} A ('\.«, Ig\x@m
— ALU: add, sub, compare Q Q 7) Q ’

a(1) =5 '
g 8

:"L‘: n
K NOP ! j

17

4 Binding I

* Binding (Formal Definition):
» For

T={t1, t2, o ',tn}

R=A{r, -, nr}
binding is a function 8 : T — R x Z*, where

B(t) = (r, b)), (1 <b;<a(r) is the instance of
the resource type r;on which t; is mapped

k to. j

18

and

Binding I

« Example: .
>T={***"***++,<} ;HO{”}

111111111

> R = {ALU, MUL} = {1,2}

- ALU: add, sub, compare
B(t;) = (2,1) Q Q Q Q
B(ty) =(2,2)

Blt) =(2.3) \Q 9 " é
B(t,) = (1,1) Q /

B(ts) = (1,2)
B(ts) = (2,4)
B(t;) = (2,5
B(ts) = (2,6)

P19 ?;25;};"

19

/ Scheduling \

» Scheduling (Formal Definition):
» For

T={t1, t2, - ,tn}

> scheduling is a function ¢ : V — Z*,

where ¢(t,) denotes the starting time of
task t.

20

/ General vs. RCS High-Level Synthesis \

« Fundamental differences in RCS:

> Uniform resources:

> ltis possible to implement any task on a given part of a
device (provided that the available resource are
enough).

- J

21

/ General vs. RCS High-Level Synthesis \

* Assumptions on a reconfigurable N,
device P1 VL WY /'L\
e b G G
‘Iw' '\\ "." '.\
e 2 2 pENY ‘AR /
9 -))i\ \ :/% / .\-.‘ 7 ;f‘
p2 * “f - ‘\/:\
5./ X8 z N . _/
(%) (-) + A jl
1 rat - e————— e f——— e == —————

P3

—(+ij

22

/ General vs. RCS High-Level Synthesis \

* Example:

x=((axb)(exd))+((exd)-(e-f)) st PEFEAN V4
y=((cxd)-(e-f))-((e-f)+(g-h)) o

)

mul s2

sub ————\——(——j—,[\———___:‘___
oo oo RN

N A

| le] o/

; . _53_____(_:.)_____{)_ ______
N T /
4 High-Level Synthesis N

« Fundamental differences in RCS:
»> In general HLS:

- Application is specified using a structure that
encapsulates a data-path and a control part.

- Control part is synthesized.

> In RCS:

- Hardware modules implemented as data-path normally
compete for execution on the chip.

- A processor is used to control selection process of the
hardware modules by means of reconfiguration.

24

-

Temporal Partitioning

» Resources on the device are not allocated
to only one operator but to a set of
operators that must be placed at the
same time and removed.

-> An application must be partitioned in sets
of operators.

» The partitions will then be successively
implemented at different time on the
device.

Temporal Partitioning

-

N

Schedule

Schedule:

»is a function ¢ : V — Z*, where ¢(v;) denotes the
starting time of the node v, that implements a task
t.

I

Feasible Schedule:
> ¢ is feasible if: Ve; = (v, v)) € E,
St) 2z ¢(t) + T(t) + t;
- € defines a data dependency between tasks t; and t

- {;is the latency of the edge e,
- T(t) is the time it takes the node v; to complete execution.

~

26

-

-

Ordering Relation

* Ordering relation <

> V;SVv; <V schedule ¢, ¢(v)) < ¢(v).

Note: < is a partial ordering, as it is not defined for all pairs
of nodes in G.

~

27

-

N

Partition

Partition:
» A partition P of the graph G = (V,E) is its division into some

disjoint subsets P, ..., P, such that
Uk—‘l

Feasible Partition:

» A partition is feasible in accordance to a reconfigurable
device H with area a(H) and pin count p(H) if:

» VP e P:a(Py) = (2imk@) < a(H)
> 1/2% ojceW; < p(H)

- for e; = crossing edges

+ Crossing edge:

» an edge that connects one component in a partition with
another component out of the partition.

28

/ Run Time \

* Run time of a partition r(P):

» the maximum time from the input of the data to the output of the
result.

- J

29

/ Ordering Relation \

* Ordering relation for partitions:
> PsP,oVv,e P, Vv e P
- eitherv; <y,
- orv;and v; are not in relation.

* Ordered partitions:

» A partitioning P is ordered < an ordering relation < exists on
P

» If Pis ordered, then for a pair of partitions, one can always
be implemented after the other with respect to any
scheduling relation.

N J

30

-

-

Temporal Partitioning

Temporal partitioning:

» Given a DFG G = (V,E) and a reconfigurable device H, a
temporal partitioning of G on H is an ordered partitioning P of
G with respect to H.

~

31

-

» Cycles are not allowed in DFG.

Temporal Partitioning

- Otherwise, the resulting partition may
not be schedulable on the device.

/ Temporal partitioning \

+ Goal:
> Computation and scheduling of a Configuration grap

- A configuration graph is a graph in which: A !
> Nodes are partitions Q .'
> Edges reflect the precedence constraints in a given \‘\\ !

DFG
- Formal Definition:
» Given a DFG G = (V,E)
» and a temporal partitioning P = {P1, ..., Pn} of G, we define a Configuration
graph of G relative to the P, with notation I'(G/P) = (P,EF) in which the nodes
are partitions in P. An edge e” = (P, P;) cEP < 3e = (v, v)) € E with v, € P,
andv; e P;.
» Configuration:
» For a given partition P, each node P; € P has an associated configuration ¢;
that is the implementation of P; for the given device H.

- /

33

Configuration Graph

/ Temporal partitioning \

* Whenever a new partition is
downloaded, the partition that was
running is destroyed.

> Communication through inter-

configuration registers (or communication

memory) Inter-configuratipn
registers

- May sit in main memory

- May sit at the boundary of the device to

hold the input and output values p— P~

> Configuration sequence is controlled by
the host processor

TO3d Ol

Processor

FPGA
Device’s register mapping into
the processor address spaces,

34

-

1.

Steps (for P;and P, (P; < P)):

. Executes.
. P; copies all the data it needs to send to

. The device is reconfigured to implement the

. Accesses the communication memory and

Temporal partitioning \

Configuration for P; is first downloaded into
the device.

other partitions into the communication

memory. Inter-cor_1figuratio
registers

partition P;

collect the data.

J

35

-

N

Temporal partitioning \

Objectives for optimization:

1. #interconnections: very important, since it minimizes:

» The mount of exchanged data

> The amount of memory for temporally storing the data
2. # produced blocks (partitions)

> Reduces the number of reconfigurations (total time?)
3. Overall computation delay depends on

» the partition run time

» the processor used for reconfiguration

» speed of data exchange
4. Similarity between consecutive partitions (for partial)

Overall amount of wasted resources on the chip.

> When components with shorter run-times are placed in the same partition with
other components with longer run-time, those with the shorter components

remain idle for a longer period of time. j

36

/ Wasted Resources

* Wasted resource wr(v;) of a node v;:

» Unused area occupied by the node v; during the computation
of a partition

wr(v)) = (t(P)-T(t)) x a;
{(P;): run-time of partition P,
(t)): run-time of the component v;

~

a;; area of v;

- Wasted resource wr(P)) of a partitiRynfime * Wasted resburces

wr(P) =2, .nwr(vy) /
* Wasted resource of a partitioning |

wr(P) =2, _xwr(P) V1

V3
k V2 /
3A7réa

/ Communication Overhead \

« Communication Cost: modelled as graph connectivity:
- Connectivity of a graph G=(V,E):

con(G) = 2*|EV(VI? - [VI)
> |V|2-|V|: the number of all edges that can be built with V.

o, AN A
o5
&

k Connectivity = 0.24

38

/ Communication Overhead W

* Quality of Partitioning P = {P1,...,Pn}: R
> Average connectivity over P: @\@ @\?

Q(P) = 1/n 2y, ,con(P)

Connectivity = 0.24

-
K Quality = 0.25 Quality = 0.45 j

/ Communication Overhead \

* Minimizing communication overhead by
»minimizing the weighted sum of crossing edges
among the partitions.

- minimize the size of the communication memory and
- minimize the communication time.

* Heuristic:

»Highly connected components are placed in the
same partition (High quality partitioning)

N J

40

» Unconstrained Scheduling
»ASAP methods
»ALAP methods
 Constrained Scheduling
»List scheduling
»Integer linear programming (exact method)
»Network flow
» Spectral method

.

/ Temporal partitioning & Scheduling \

/ Unconstrained Scheduling

« Unconstrained scheduling:

o Assumption: unlimited amount of resources
« Device with unlimited size
o Usually as pre-processing step for other algorithms
* E.g. computation of the upper and lower bounds on the
starting time of operations.

o Lower bound: the earliest time at which a module can be
scheduled,

o Upper bound: the latest time at which a module can be
started.

J

42

/ Unconstrained Scheduling \
« ASAP (as soon as possible)

o Defines the earliest starting time for each node in the DFG
o Computes a minimal latency
ALAP (as late as possible)

o Defines the latest starting time for each node in the DFG
according to a given latency

The mobility of a node:
o (ALAP starting time) — (ASAP starting time)

o Mobility = 0 = node is on a critical path

- J

/ Dataflow graph for example \

x=(axb)x(cxd)+{(cxd)— (-
__y=(cxd)(e—f) — {(e—f) + (g-h)} %

-

-

ASAP Exgz ple h
Assumptions: 9 E{I Ig
o Multiplication: latency of " 50 5p 50
100 clocks, 1°° 100 50
o Addition/subtraction: 50 oy \Q

clocks,
50 150

o data transmission delay is

neglected. 200

Computation delay -~

of the prev. node

Node’s starting time as

computed by the algorlih{g x b) x (c x d) + {(c xd)—(e-1)
=(cxd)—(e—f)—{(e—f)+ (g-h)

45

-

N

ASAP Algorithm \

1: for each node v €V do

2: if v has no predecessors then

3: G(v):=0

4: Vi=V-v

5: endif

6: end for

7: while V# ¢ do

8: select a vertex v; € V whose predecessors are all
scheduled

9: schedule v, by setting g(v;) := max(v,,v;) € E(g(v))+t)
10: V:i=V-vy,

11: end while j

46

-

ALAP Example \

Assumptions:

o Multiplication: latency of
100 clocks,

o Addition/subtraction: 50
clocks, 5 \

o Overall computation time: % 150 50
250 e v100

Computation delay of/,/”//
the prev. node . Va V9
Node’s starting time as 250 250
computed by the algorithm. (axb)x(cxd)+{(cxd)—(e-f)
=(cxd)—(eAf)—{(e—f)+(g-h

47

N

ALAP-Algorithm \

1: for each node v € V do

2: if v has no successors then

3: G(v) :=A

4: V:i=V-v

5: endif

6: end for

7: while V# ¢ do

8: select a vertex v; € V whose successors are all
scheduled

9: schedule v; by setting g(vi) := min(v;,v)) € E(g(v)) =)
10: V:=V-v

11: end while j

48

/ Constrained Scheduling \

« Constrained scheduling:
o A set of fixed resources available (ASIC).
o Many tasks competing for a given resource,

—> One of them must be chosen according to a given
criteria and the rest will be scheduled later.
1. Extended ASAP, ALAP:

o Compute ASAP or ALAP

o Assign the tasks earlier (ASAP) or later (ALAP), until
the resource constraints (e.g. area) are fulfilled.

- J

/ Extended ASAP \

e Constraint:
o 2 Multipliers, 1 ALUs (+, —, <)
Time O

2P ®
@ o

g
T e e e
®

k Time 4 ‘ /

-

Constrained Scheduling \

« List scheduling:
o Sort nodes in topological order
o Assign priority to nodes

o Criteria (priority) can be:

number of successors.
depth (length of longest path from inputs).
latency-weighted depth.

- w: latency of the operation to be executed by the nodes on the
path.

« Mobility.
k Connectivity. j
51
4 Mobility)

Time 0 -6

........... 0.. S LI L L I T PP T .

/ Connectivity and quality \

* Graph Connectivity: Given a dataflow graph G=(V,E),
we define the connectivity.
G) 2lE]
con(G)= i~
1=l
edges in E over the number of all edges that can be built

as the rapport between the number of

with the nodes of G
* Quality: Given a dataflow graph G=(V,E) and a
partitioning P = {P, ..., P} of G, we define the quality.

Q(P)= 1 of P as the average connectivity over all
(con(P))
the partitions P, ,I<i<n.

- /

53

/ Constrained Scheduling \

At any time step 7:

O A ready ser L 1s constructed (operations ready to be
scheduled)

» L: operations whose predecessors have already
been scheduled early enough to complete their
execution at time .

o Tasks are placed in L in decreasing priority order

o Ata given step, the free resource is assigned the task with
highest priority.

N /

/ List Scheduling: Example

* Resources:
o 1 multiplier
o1 ALU

* Latency:
o MUL: 100 clk ™
o ALU :50 clk

* The depth of a node
kas priority

4 Temporal Partitioning vs. I

Constrained Scheduling
In RCS,

o Resource #ypes are not important.

« Amount of basic resources are important.
o Operators do not compete for resources.

« They compete for area.

o Only the starting time and the end time of the
complete partition 1s usually considered.

N /

/ Temporal Partitioning in RCS \

sort the nodes of v according to their priorities
Py:=0
while V £ 0 do

select a vertex v €V with highest priority and whose
predecessors are all placed

if (a partition Pi exists with s(Pi) + s(v) < s(H)) then
Pi=Piu {v}
else
create a new partition Pi+1 and set Pi+1 = {v}
end if

end while
N /

/ Temporal Partitioning vs. Constrained
Scheduling

=

e Criterion: number of e Connectivity:
SUCCessors e c(P1)=1/6,

e size(FPGA) = 250, e ¢(P2)=1/3,

e size (mult) = 100, e c(P3)=2/6.

e size(add) = size(sub) =20, e Quality: 0.28

e size(comp)=10. /

61

/ Improvement \

* Best criteria:
o Total computation time of DFG:
torg =n % Cyt 2y (tp)
o n: Number of partitions
o Cy: Reconfiguration time of device H
o tp;: Computation time of partition P,.
* Optimization:
o If Cj,too large, then the optimization will tend
to minimize the number of partitions
o If C;« 1, then algorithm will tend to avoid

k long paths in partitions. j

62

/ Improvement \

* Advantage of LS-based temporal partitioning:
o Fast (linear time algorithm)

—Local optimization possible

* Disadvantage:
o Levelization: Level 3

* Modules are assigned to partitions based more on their
level number rather than their interconnectivity with
other component.

o Interconnectivity (data exchange) must be optimized.

N

/ LS-Based Temporal Partitioning

=
0

e Criterion: number of
successors

e size(FPGA) = 250,
e size (mult) =100,
e size(add) = size(sub) = 20,

™

e Connectivity:
e ¢(P1)=1/6,
o ¢(P2)=1/3,
e ¢(P3)=2/6.

e Quality: 0.28

e size(comp) = 10. /

64

/ Improved Temporal Partitioning

'3

e Connectivity:
e c(P1)=2/10,
e c(P2)=2/3,
o c(P3)=2/3.
e Quality: 0.51

e Quality is better /

/ Improved List Scheduling \

Pair wise interchange

/ 2.2 Temporal partitioning — ILP \
» Integer linear programming (ILP) problem.

min ¢'x

Ax=b

x>0

With A, b and ¢ and x being matrices of integers. It
consists of finding a variable x, which minimizes ¢Tx
under the side constraints Ax=b and x>0.

- /

/ 2.2 Temporal partitioning — ILP
e With the ILP (Integer Linear Programming),

~

o Temporal partitioning constraints are formulated as

equations.

o The equations are then solved using an ILP-solver.

¢ The constraints usually considered are:
o Uniqueness constraint
o Temporal order constraint
o Memory constraint

o Resource constraint
=)< @welP)

W,
o Latency 89@“6?}%%@ eR)A(veP)A(E #P))
Notations:

J

68

/ 2.2 Temporal partitioning — ILP

Unique assignment constraint: Each task must be placed in
exactly one partition. (m = # of partitions)

‘v’veV,iyw.zl

i=1

Precedence constraint: For each edge e = (u, v) in the graph,
must be placed either in the same partition as v or in an earlier
partition than that in which v is placed.

V(u,v)eE, iiyui Siiyw
i=1 i=1

.

~

u

/ Temporal partitioning — ILP \
+ Resource constraint: The sum of the resources needed
implement the modules in one partition should not exceeq
the total amount of available resources.

o Device area constraint: a(H) is the area of device H

o Device terminal constraints: p(H) is the number of
terminals (pins) of the device H.

VP, € P, Z a(v) < a(H)

vePR;

VPiEPa Z wuv+ Z wuvsp(H)
k (uePON(vEP) (ug POA(vEP)

/ Temporal partitioning — ILP \
1 Communication memory constraint: The total amount

of data to be temporally saved must not exceed the
size of the communication memory used.

o This constraint is captured by the following equation:

Z wU’U S MS

(u,0)€E and (uEP;)A(VEP)(j%4))

_ Y

o

/ Temporal partitioning by ILP: Example \

* assignment constraint:
o yll+yI2+yl3=1
y21+y22 +y23 =1

o O O

Y71 +y72 +y73 =1

Partition P1:

122=y23=0,)21=1
v32=y33=0,y31=1
42 =y43=0,y41=1

O O O O

Partition P2:
yll1=y13=0,y12=1
y51=y53=0,y52=1

K 161 =163 =0, y62 = 1

o Partition P3: 72

071 — 2270 0 2,72 — 1

O O O O

/ Temporal partitioning by ILP: Example \

/ Temporal partitioning by ILP: Example
* Precedence constraint:

1=>"0 yai <D i ysi =2
2= E?:l Yei =D 1 ym =3

.

74

/ Temporal partitioning by ILP: Example

¢ Resource constraint:

o device with a size of 200 LUTs, and 100 LUTs
for the multiplication, 50 LUTs each for the
addition, the comparison

Fartition P3: Y~ _ yu3 = (100) < a(H) = 200

Partition Py: 57yt = (100 4 50 + 50) < a(H) = 200
Partition Py: 3" _, yu2 = (100 + 50 + 50) < a(H) = 200

~

/

/ Temporal partitioning by ILP: Example \

* Communication memory constraint:

o Assume that a memory with 50 bytes is available
for communication and each datum has a 32-bit
width.

For Pl to P2
Wys = 2x 32 = 64bit <Ms = 8 x 50 = 400bit

For P2 to P3
We; tw,, =2x32+2x32=128bit <Ms =8 x 5()
= 400bit

N /

76

/ Network-flow Transformation step \

—

/ Network-flow partitioning steps \

Sz
ﬂ@‘}k

—int=—"

- Y

/ Spectral Methods \

Minimization of communication between partitions

The connectivity of a graph can be minimized by placing

components in an n-dimensional space in such a way that

the sum of the distance between component pairs is

minimized

» Placement of the components in an n-dimensional
vector space such as to minimize the sum of the
distances between the components.

» Derivation of a partition from an optimal placement that
minimizes the sum of the distance between the
components.

- /

82

/Spectral Methods - 1-D and 2-D spectral\

placement

n 0.8 -0.6-04 -02 0.0 0.2 04 06 0.8

q 3\ 27 4P }:‘

Nods
4] b
a)

. |3 1 7
g
= Node
“ Bounding box 3 1
».-Ii
i V[
T 2 4

-1 =08 -0.6-04 -02 0.0 02 04 06 08 1

c)

/Spectral Methods 3-D spectral placement\

Z-Position(time)

07
0.6
0.5
0.4
03
0z
01
0
-01
02

rr1rrrrrrrr 11

/Spectral Methods - Derived partitioning\

Z-Position(time)

1.2

08
0.6
0.4
0.2

-0.2

- /

85

4 N
Thanks you

86

