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Agenda

• Modeling

1. Dataflow graphs

2. Sequencing graphs

3. Finite State Machine 

with data-path

• High-level synthesis and

temporal partitioning

4

Modeling

• High-level descriptions:

Modeling is a key aspect in the design of a system

Models used must be powerful enough

− Capture all user’s need

− Easy to understand and manipulate

• Several powerful models exists:

FSM,

State Charts,

DFG,

Petri Nets,

…

• Focus in this course:

Dataflow graphs,

Sequencing graphs,

Finite State Machine with Datapath (FSMD)
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Dataflow Graph

• DFG:

 Means to describe a computing task in a 
streaming mode.

 Operators: nodes 

 Operands: Inputs of the nodes 

 Node’s output can be used as input to 
other nodes

− Data dependency in the graph.

• Given a set of tasks {T1,…,Tk}, a DFG is a DAG 
G(V,E), where

 V (= T): the set of nodes representing 
operators and 

 E: the set of edges representing data 
dependency between tasks.

DFG for the quadratic 

root computation using:
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Definitions

 The latency ti of vi :

− The time it takes to compute the function of vi using Hvi

E)v,(v=e=e jiij 

node vi  V

hi

li

ai = li × hi

implementation Hvi

vi

vi

vj

wij

 Weight wij of eij  E:

− width of bus connecting two 

components Hvi and Hvj

 Latency tij of eij:

− the time needed to transmit 

data from Hvi to Hvj

.
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DFG

Any high-level program can be compiled 

into a DFG, provided that:

− No loops 

− No branching instructions.

• Therefore:

DFG is used for parts of a program.

Extend to other models:

− Sequencing graph

− FSMD

8

Sequencing Graph

• Sequencing Graph:

 Hierarchical DFG with two different types of nodes:

1. Operation nodes: normal ”task nodes” in a DFG

2. Link nodes or branching nodes: point to another sequencing 

graph in a lower level of the hierarchy.
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Sequencing Graph
• Example: 

According to the conditions that node BR evaluates, one of the 

two sub-sequencing graphs (1 or 2) can be activated.

Loop description: 

− Body of the loop is described in only one sub-sequencing 

graph: BR evaluates the loop exit condition

10

Finite State Machine with Datapath 

(FSMD)
• FSMD:

 Extension of DFG with an FSM

 is a 6-tuple <S, I, O, F, H, s0>:

 S = {s0, …, sl}: states,

 I = {i0, …, im}: inputs,

 O = {o0, …, on}: outputs,

 F: S × I × O  S: a transition function that maps a tuple (si , ij,ok) to 
a state,

 H: S  O: an action function that maps the current state to output,

 s0: an initial state.

• FSMD vs. FSM

 FSMD operates on arbitrary complex data types 
− Not just Boolean vars

 Transition may include arithmetic operations
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FSMD

1. Assignment statement

 a single state is created that executes the 

assignment action. 

 An arc connecting the state with the state of 

the next statement is created.

a = b

next

statement

a = b;

next statement

• Modeling with FSMD: 

 The transformation of a program into a 

FSMD is done by 

− Transforming the statements of the 

program into FSMD states.

− The statements are first classified in 

three categories: 
1. assignment statements, 

2. branch statements and 

3. loop statements

12

FSMD: Loop

2.  Loop statement:

 A condition state C and a join state
J, both with no action are created.

 an arc is added:
− label: the loop condition

− connects C to the state of the first 
statement in the loop body.

 another arc is added:
− label: complement of the loop 

condition

− connects C to the first statement after 
the loop body.

 an edge is added:
− connects: the state of the last statement 

in the loop to the join state

 another edge is added:
− connects: join state back to the 

conditional state.
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FSMD: Branch

3. Branch statement:
 a condition state C and a join state J, 

both with no action are created.

 an arc is added:
− label: the first branch condition

− connects C to the state of the first 
statement of the branch.

 another arc is added:
− label: complement of the first condition 

ANDed with the second branch condition 

− connects C to the first statement of the 
branch.

 ….

 Each state corresponding to the last 
statement in a branch is connected to the 
join state. 

 Join state is connected to the state 
corresponding to the first statement after 
the branch.

if(c1)

c1-stmts

else if(c2)

c1-stmts

else 

others stmts

next statement

C:

J:

next

statement

c1 stmts c1 stmts c1 stmts

c1 !c1&c2 !c1&!c2&c3

14

FSMD: Example
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High-Level Synthesis

• High-Level Synthesis (Architectural Synthesis):

 Transforming an abstract model of circuit behavior into a data path 

and a control unit.

• Steps:

1. Allocation: defines the resource types required by the design, 

and for each type the number of instances. 

2. Binding: maps each operation to an instance of a given 

resource.

3. Scheduling: sets the temporal assignment of resources to 

operators.

− Decides which operator owns the resource at a given time

16

Allocation

• Allocation (Formal Definition):

 For a given specification with a set of 

operators or tasks

T = {t1, t2, · · · , tn} 

to be implemented on a set of resource 

types

R = {r1, r2, · · · , rt},

allocation is a function α : R → Z+, where

α(r) = zi is the number of available 

instances of resource type ri



12/19/2013

9

17

Allocation

• Example:

 T = {*, *, *, -, -, *, *, *, +, +, <} 

 R = {ALU, MUL} = {1,2}

− ALU: add, sub, compare

α(1) = 5

α(2) = 6

18

Binding

• Binding (Formal Definition):

 For

T = {t1, t2, · · · , tn} 

and

R = {r1, r2, · · · , rt},

binding is a function β : T → R × Z+, where

β(ti) = (ri, bi), (1 ≤ bi ≤ α(ri)) is the instance of 

the resource type ri on which ti is mapped 

to.
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Binding
• Example:

 T = {*, *, *, -, -, *, *, *, +, +, <} 

 R = {ALU, MUL} = {1,2}

− ALU: add, sub, compare

β(t1) = (2,1)

β(t2) = (2,2)

β(t3) = (2,3)

β(t4) = (1,1)

β(t5) = (1,2)

β(t6) = (2,4)

β(t7) = (2,5)

β(t8) = (2,6)

…

β(t11) = (1,5)

20

Scheduling

• Scheduling (Formal Definition):

 For

T = {t1, t2, · · · , tn} 

 scheduling is a function ς : V → Z+, 

where ς(ti) denotes the starting time of 

task ti.
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• Fundamental differences in RCS:

 Uniform resources: 

 It is possible to implement any task on a given part of a 

device (provided that the available resource are 

enough).

General vs. RCS High-Level Synthesis

22

General vs. RCS High-Level Synthesis

• Assumptions on a reconfigurable 

device

*

*
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General vs. RCS High-Level Synthesis
• Example:

))(d)((c+d))b)(c((a=x f-e

))(+)(())()((= h - gf - e - f - e - d  cy 

add

sub

mul

*

*

24

High-Level Synthesis

• Fundamental differences in RCS:
 In general HLS: 

- Application is specified using a structure that 
encapsulates a data-path and a control part.

- Control part is synthesized.
 In RCS: 

- Hardware modules implemented as data-path normally 
compete for execution on the chip.

- A processor is used to control selection process of the 
hardware modules by means of reconfiguration.
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Temporal Partitioning

 Resources on the device are not allocated 

to only one operator but to a set of 

operators that must be placed at the 

same time and removed.

 An application must be partitioned in sets 

of operators. 

 The partitions will then be successively 

implemented at different time on the 

device.

Temporal Partitioning

26

Schedule

• Schedule:

 is a function ς : V → Z+, where ς(vi) denotes the 

starting time of the node vi that implements a task

ti.

• Feasible Schedule:

ς is feasible if: eij = (vi, vj)  E, 

ς(tj) ≥ ς(ti) + T(ti) + tij
− eij defines a data dependency between tasks ti and tj,

− tij is the latency of the edge eij,

− T(ti) is the time it takes the node vi to complete execution.
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Ordering Relation

• Ordering relation ≤ 

vi ≤ vj   schedule ς, ς(vi) ≤ ς(vj).

Note: ≤ is a partial ordering, as it is not defined for all pairs 

of nodes in G.

28

Partition

• Partition:
 A partition P of the graph G = (V,E) is its division into some 

disjoint subsets P1, ..., Pm such that 

Uk=1,…,mPk = V

• Feasible Partition:
 A partition is feasible in accordance to a reconfigurable 

device H with area a(H) and pin count p(H) if:

Pk  P: a(Pk) = (∑viPkai) ≤ a(H)

1/2∑eijEwij ≤ p(H)
− for eij = crossing edges

• Crossing edge:
 an edge that connects one component in a partition with 

another component out of the partition.
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Run Time

• Run time of a partition r(Pi):

 the maximum time from the input of the data to the output of the 

result.

30

Ordering Relation

• Ordering relation for partitions:

 Pi ≤ Pj  vi  Pi, vj  Pj

− either vi ≤ vj

− or vi and vj are not in relation.

• Ordered partitions:

 A partitioning P is ordered  an ordering relation ≤ exists on

P.

 If P is ordered, then for a pair of partitions, one can always 

be implemented after the other with respect to any 

scheduling relation.
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Temporal Partitioning

• Temporal partitioning:

 Given a DFG G = (V,E) and a reconfigurable device H, a

temporal partitioning of G on H is an ordered partitioning P of

G with respect to H.

32

 Cycles are not allowed in DFG.

− Otherwise, the resulting partition may 

not be schedulable on the device.

Cycle

Temporal Partitioning
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• Goal:

 Computation and scheduling of a Configuration graph

• A configuration graph is  a graph in which:

 Nodes are partitions

 Edges reflect the precedence constraints in a given 

DFG
Configuration Graph

P1
P2 P3

P4
P5

Temporal partitioning

• Formal Definition:

 Given a DFG G = (V,E)

 and a temporal partitioning P = {P1, ..., Pn} of G, we define a Configuration 

graph of G relative to the P, with notation Γ(G/P) = (P,EP) in which the nodes 

are partitions in P. An edge eP = (Pi, Pj ) EP  e = (vi, vj)  E with vi  Pi

and vj  Pj .

• Configuration:

 For a given partition P, each node Pi  P has an associated configuration ζi

that is the implementation of Pi for the given device H.

34

• Whenever a new partition is 

downloaded, the partition that was 

running is destroyed.

 Communication through inter-

configuration registers (or communication 

memory)

− May sit in main memory

− May sit at the boundary of the device to 

hold the input and output values

 Configuration sequence is controlled by 

the host processor

P1
P2 P3

P4
P5

Inter-configuration

registers

Temporal partitioning

IO Register

IO Register

IO Register

IO Register

Processor

Bus

Block

IO Register

IO Register

IO
 R

e
g

is
te

r

IO
 R

e
g

is
te

r

FPGA

Device’s register mapping into 
the processor address spaces 
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• Steps (for Pi and Pj, (Pi ≤ Pj):

1. Configuration for Pi is first downloaded into 

the device.

2. Executes.

3. Pi copies all the data it needs to send to 

other partitions into the communication 

memory.

4. The device is reconfigured to implement the 

partition Pj

5. Accesses the communication memory and 

collect the data.

P1
P2 P3

P4
P5

Inter-configuration

registers

Temporal partitioning

36

• Objectives for optimization:

1. # interconnections: very important, since it minimizes:

 The mount of exchanged data

 The amount of memory for temporally storing the data

2. # produced blocks (partitions)

 Reduces the number of reconfigurations (total time?)

3. Overall computation delay depends on 

 the partition run time

 the processor used for reconfiguration

 speed of data exchange

4. Similarity between consecutive partitions (for partial)

5. Overall amount of wasted resources on the chip.

 When components with shorter run-times are placed in the same partition with 

other components with longer run-time, those with the shorter components 

remain idle for a longer period of time.

Temporal partitioning
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Wasted Resources

• Wasted resource wr(vi) of a node vi:

 Unused area occupied by the node vi during the computation 

of a partition

wr(vi) = (t(Pi)−T(ti)) x ai

t(Pi): run-time of partition Pi.

(ti)): run-time of the component vi

ai: area of vi

• Wasted resource wr(Pi) of a partition (Pi = {vi1 , .., vin}:

wr(Pi) = j =1,…,n wr(vi)

• Wasted resource of a partitioning P:

wr(P) = j =1,…,k wr(Pj)

Run time

Area

38

• Communication Cost: modelled as graph connectivity:

• Connectivity of a graph G=(V,E):

con(G) = 2*|E|/(|V|2 - |V|)

 |V|2 - |V|: the number of all edges that can be built with V.

1 2

3

4

5

6

8

7 9

1
0

Connectivity = 0.24

Communication Overhead
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• Quality of Partitioning P = {P1,…,Pn}: 

 Average connectivity over P:

Q(P) = 1/n i=1,…,ncon(Pi)

4

5

1

2

8

7

9

10

3

6

Quality = 0.25

1

3

4

5

6

2

8

7 9

10

Quality = 0.45

1 2

3

4

5
6

8

7 9

1
0

Connectivity = 0.24

Communication Overhead
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Communication Overhead

•Minimizing communication overhead by

minimizing the weighted sum of crossing edges 

among the partitions.
 minimize the size of the communication memory and 

 minimize the communication time.

• Heuristic:

Highly connected components are placed in the 

same partition (High quality partitioning)
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• Unconstrained Scheduling

ASAP methods

ALAP methods

• Constrained Scheduling

List scheduling

Integer linear programming (exact method)

Network flow

Spectral method

Temporal partitioning & Scheduling

42

• Unconstrained scheduling:

o Assumption: unlimited amount of resources

• Device with unlimited size

o Usually as pre-processing step for other algorithms

• E.g. computation of the upper and lower bounds on the 

starting time of operations.

o Lower bound: the earliest time at which a module can be 

scheduled, 

o Upper bound: the latest time at which a module can be 

started.

Unconstrained Scheduling
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• ASAP (as soon as possible)

o Defines the earliest starting time for each node in the DFG

o Computes a minimal latency

• ALAP (as late as possible)

o Defines the latest starting time for each node in the DFG 

according to a given latency

• The mobility of a node: 

o (ALAP starting time) – (ASAP starting time)

o Mobility = 0  node is on a critical path

Unconstrained Scheduling

44

Dataflow graph for example

x = (a x b) x (c x d) + {(c x d) – (e - f)}

y = (c x d) – (e –f) – {(e –f ) + (g-h)}
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• Assumptions:

o Multiplication: latency of 

100 clocks,

o Addition/subtraction: 50 

clocks,

o data transmission delay is 

neglected.

ASAP Example

Computation delay 

of the prev.  node

Node’s starting time as 

computed by the algorithm.

a       b      c      d     e         f      g        h

x = (a x b) x (c x d) + {(c x d) – (e - f)}

y = (c x d) – (e –f) – {(e –f ) + (g-h)}

46

1: for each node v ∈V do

2:     if v has no predecessors then

3:        ς(v) := 0

4:        V := V − v

5:     end if

6: end for

7: while V # ∅ do

8:     select a vertex vi ∈ V whose predecessors are all 

scheduled

9:     schedule vi by setting ς(vi) := max(vj,vi) ∈ E(ς(vj)+tj)

10:   V:= V−vi

11: end while

ASAP Algorithm
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• Assumptions:

o Multiplication: latency of 

100 clocks,

o Addition/subtraction: 50 

clocks,

o Overall computation time: 

250

ALAP Example

Computation delay of 

the prev.  node

Node’s starting time as 

computed by the algorithm.

a       b      c      d

e        f      g        h

x = (a x b) x (c x d) + {(c x d) – (e - f)}

y = (c x d) – (e –f) – {(e –f ) + (g-h)}

48

1: for each node v ∈ V do

2:     if v has no successors then

3:         ς(v) := λ

4: V := V−v

5:     end if

6: end for

7: while V # ∅ do

8:     select a vertex vi ∈ V whose successors are all 

scheduled

9:     schedule vi by setting ς(vi) := min(vi,vj) ∈ E(ς(vj) − ti)

10:   V := V− v

11: end while

ALAP-Algorithm
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• Constrained scheduling:

o A set of fixed resources available (ASIC).

o Many tasks competing for a given resource,

 One of them must be chosen according to a given 

criteria and the rest will be scheduled later.

1. Extended ASAP, ALAP:

o Compute ASAP or ALAP

o Assign the tasks earlier (ASAP) or later (ALAP), until 

the resource constraints (e.g. area) are fulfilled.

Constrained Scheduling

50

* +

-

<

*

*

*

*

*

+-

● Constraint:

o 2 Multipliers, 1 ALUs (+, , <)

Time 0

Time 1

Time 2

Time 3

Time 4

Extended ASAP
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• List scheduling:

o Sort nodes in topological order

o Assign priority to nodes

o Criteria (priority) can be:

• number of successors.

• depth (length of longest path from inputs).

• latency-weighted depth.

– w: latency of the operation to be executed by the nodes on the 
path.

• Mobility.

• Connectivity.

• ... 

Constrained Scheduling

52

*

*1

1

Zeit 0

Zeit 1

Zeit 2

Zeit 3

Zeit 4

*
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<
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2
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*

+

+

<

0

0

0

0

0

Time 1

Time 2

Time 3

Time 4

Time 0

Mobility
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Connectivity and quality 

• Graph Connectivity: Given a dataflow graph G=(V,E), 

we define the connectivity.

con(G)=               as the rapport between the number of 

edges in E over the number of all edges that can be built 

with the nodes of G

• Quality: Given a dataflow graph G=(V,E) and a 

partitioning P = {P1, ..., Pn} of G, we define the quality.

Q(P)=                   of P as the average connectivity over all 

the partitions Pi ,1≤i≤n.

53

VV

E


2

2




n

i

iPcon
n 1

))((
1
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• At any time step t:

o A ready set L is constructed (operations ready to be 

scheduled)

• L: operations whose predecessors have already 

been scheduled early enough to complete their 

execution at time t.

o Tasks are placed in L in decreasing priority order

o At a given step, the free resource is assigned the task with 

highest priority.

Constrained Scheduling
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List Scheduling: Example

*

• Resources: 

o 1 multiplier 

o 1 ALU

• Latency:

o MUL : 100 clk 

o ALU  : 50 clk

• The depth of a node 
as priority

59

• In RCS, 

o Resource types are not important.

• Amount of basic resources are important.

o Operators do not compete for resources.

• They compete for area.

o Only the starting time and the end time of the 
complete partition is usually considered.

Temporal Partitioning vs. 

Constrained Scheduling
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Temporal Partitioning in RCS

sort the nodes of v according to their priorities

P0 := Ø 

while V ≠ Ø do

select a vertex v V with highest priority and whose 

predecessors are all placed

if (a partition Pi  exists with s(Pi) + s(v) ≤ s(H)) then

Pi = Pi  {v} 

else 

create a new partition Pi+1 and set Pi+1 = {v} 

end if

end while

60
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P2

P1

+

<

* *

* *

P3

-

*

-

*

+

● Connectivity: 

● c(P1) = 1/6,

● c(P2) = 1/3,

● c(P3) = 2/6.

● Quality: 0.28

Temporal Partitioning vs. Constrained 

Scheduling

● Criterion: number of 
successors

● size(FPGA) = 250, 

● size (mult) = 100, 

● size(add) = size(sub) = 20,

● size(comp) = 10.

* +

-

<

* * *

* * +

-

3 3

2

2 1 1

1

1

0 0

0

3 3 1

2 2

1

1 1

0
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Improvement

• Best criteria:

o Total computation time of DFG:

tDFG = n × CH + 1,…,n(tPi)
o n: Number of partitions

o CH: Reconfiguration time of device H

o tPi : Computation time of partition Pi.

• Optimization:

o If CH too large, then the optimization will tend 
to minimize the number of partitions

o If CH « tp, then algorithm will tend to avoid 
long paths in partitions.

63

Improvement

• Advantage of LS-based temporal partitioning:

o Fast (linear time algorithm)

Local optimization possible

• Disadvantage:

o Levelization:

• Modules are assigned to partitions based more on their 
level number rather than their interconnectivity with 
other component.

o Interconnectivity (data exchange) must be optimized.

+ /

*

*

+ - *

- /

Level 0

Level 1

Level 2

Level 3
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P2

P1

+

<

* *

* *

P3

-

*

-

*

+

● Connectivity: 

● c(P1) = 1/6,

● c(P2) = 1/3,

● c(P3) = 2/6.

● Quality: 0.28

LS-Based Temporal Partitioning 

● Criterion: number of 
successors

● size(FPGA) = 250, 

● size (mult) = 100, 

● size(add) = size(sub) = 20,

● size(comp) = 10.
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* +

-

<

* * *

* * +

-

3 3

2

2 1 1

1

1

0 0

0

● Connectivity: 

● c(P1) = 2/10,

● c(P2) = 2/3, 

● c(P3) = 2/3.

● Quality: 0.51

● Quality is better
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• Pair wise interchange

Improved List Scheduling

67

• Integer linear programming (ILP) problem.

min cTx 

Ax = b

x ≥ 0 

With A, b and c and x being matrices of integers. It 
consists of finding a variable x, which minimizes cTx 
under the side constraints Ax=b and x≥0.

2.2 Temporal partitioning – ILP
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• With the ILP (Integer Linear Programming),

o Temporal partitioning constraints are formulated as 

equations.

o The equations are then solved using an ILP-solver.

• The constraints usually considered are:

o Uniqueness constraint

o Temporal order constraint

o Memory constraint

o Resource constraint

o Latency constraint

• Notations:                 

2.2 Temporal partitioning – ILP

)()1( ivi Pvy 

))()()(()0( jijiuv PPPvPuw 

69

• Unique assignment constraint: Each task must be placed in 
exactly one partition. (m = # of partitions)

• Precedence constraint: For each edge e = (u, v) in the graph, u

must be placed either in the same partition as v or in an earlier 

partition than that in which v is placed.
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2.2 Temporal partitioning – ILP
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• Resource constraint: The sum of the resources needed to 

implement the modules in one partition should not exceed 

the total amount of available resources.

oDevice area constraint: a(H) is the area of device H

oDevice terminal constraints: p(H) is the number of 

terminals (pins) of the device H.

Temporal partitioning – ILP

71

• Communication memory constraint: The total amount 

of data to be temporally saved must not exceed the 

size of the communication memory used.

o This constraint is captured by the following equation:

Temporal partitioning – ILP
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Temporal partitioning by ILP: Example

• assignment constraint:

o y11+ y12 + y13 = 1

o y21+ y22 + y23 = 1

o …

o y71 +y72 + y73 = 1

o Partition P1: 

o y22 = y23 = 0, y21 = 1 

o y32 = y33 = 0, y31 = 1

o y42 = y43 = 0, y41 = 1

o Partition P2: 

o y11 = y13 = 0, y12 = 1 

o y51 = y53 = 0, y52 = 1

o y61 = y63 = 0, y62 = 1

o Partition P3: 

o y71 = y72 = 0, y73 = 1

73

Temporal partitioning by ILP: Example
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Temporal partitioning by ILP: Example

• Precedence constraint: 

i i

i i

75

Temporal partitioning by ILP: Example

• Resource constraint:

o device with a size of 200 LUTs, and 100 LUTs 

for the multiplication, 50 LUTs each for the 

addition, the comparison
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Temporal partitioning by ILP: Example

• Communication memory constraint: 

o Assume that a memory with 50 bytes is available 

for communication and each datum has a 32-bit 

width.

For P1 to P2

w45 = 2 x 32 = 64bit ≤ Ms = 8 × 50 = 400bit

For P2 to P3

w67 + w17 = 2 x 32 + 2 x 32 = 128bit ≤ Ms = 8 × 50 

= 400bit

80

Network-flow Transformation step
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Network-flow partitioning steps

82

Spectral Methods

• Minimization of communication between partitions

• The connectivity of a graph can be minimized by placing 

components in an n-dimensional space in such a way that 

the sum of the distance between component pairs is 

minimized

 Placement of the components in an n-dimensional 

vector space such as to minimize the sum of the 

distances between the components.

 Derivation of a partition from an optimal placement that 

minimizes the sum of the distance between the 

components.
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Spectral Methods - 1-D and 2-D spectral 

placement

84

Spectral Methods 3-D spectral placement
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Spectral Methods - Derived partitioning

86

Thanks you


