

Methodology

How to optimize

Re-write logic functions using logic operations

- 1. Decomposition
- 2. Extraction (decompose multiple functions)
 - Find optimal intermediate functions (area, delay,..)
- 3. Factoring
 - Find a factored form with min number of literals

5

- 4. Substitution
- 5. Elimination

Methodology

- Decomposition
 A single function => a collection of new functions
 - F = ABC + ABD + A'C'D' + B'C'D' (12 literals)
- $\Rightarrow F = XY + X'Y' \quad (4 \text{ literals})$ X = ABY = C + D

Methodology

 Elimination Inverse operation of substitution F = GA + G'B(4 literals) G = C + D \Rightarrow F = AC + AD + BC'D' (7 literals) G = C + D"division" plays a key role in all of these (except elimination)

		D	ivisio	on 🧃	So many facto	ors, how to be ?
 Logic 	division		f = p	•q + r	q, r not	unique
X1	X2	X3	f	р	q	r
[0	0	0	1			1
0	0	1				
0	1	0	1	1	1	
0	1	1	1	1	1	
1	0	0		1		
1	0	1			1	
1	1	0			1	
1	1	1			1	

		D	ivisi	on		
 Logic 	division		f =	p·q + r		
X1	X2	X3	f	p=X1'X2	q= <mark>X3</mark>	r
0	0	0	1			1)
0	0	1			1	
0	1	0	1	1		1)
0	1	1	1	1	1 }	
1	0	0				
1	0	1			1	
1	1	0				
1	1	1			1	16
1	1	1			1	

		D	ivisio	n		
Logic division			f = p⋅q + r		q, r unique	
X1	X2	X3	f	p=X1'X2	q= <mark>X3</mark>	r
0	0	0	1	7		1)
0	0	1		7	1	
0	1	0	1	1		1)
0	1	1	1	1	1)	
1	0	0				
1	0	1			1	
1	1	0				
1	1	1			1	

Algebraic optimization method

- Division
 - Logic division
 - Algebraic division
 - Kernels and algebraic divisors
 - Computing kernels
- Algebraic method for logic operations
 - The basic of algebraic optimization method
 - Factoring
 - Extraction
 - Extraction and resubstitution
 - Resubstitution with complement

29

Algebraic method - logic operations

The basic of algebraic optimization method

Theorem

f and g have a nontrivial common divisor d (ie. d is not a cube) iff there exist kernels $k_f \in K(f)$ and $k_g \in K(g)$ such that $k_f \cap k_g$ is nontrivial with 2 or more terms (not a cube).

 $\begin{array}{l} f = ae+be+cde+ab, \ g = ad+ae+bd+be+bc \\ \textbf{k}_f = \{a+b+cd\} \qquad , \ \textbf{k}_g = \{a+b\} \\ \textbf{k}_f \cap \textbf{k}_g = \{a+b+cd\} \cap \{a+b\} = \{a+b\} \\ => (a+b) \ \text{is a nontrivial common algebraic divisor for f and g} \end{array}$

30

Algebraic method - logic operations

• The basic of algebraic optimization method Meaning

- The theorem is used to detect if two or more expressions have any common algebraic divisor than just the single cubes.
- If $\mathbf{k}_{f} \cap \mathbf{k}_{g}$ is nontrivial => found a good common algebraic divisor to consider during logic optimization.
- If $k_f \cap k_g$ is \emptyset or trivial => need only look for divisors consisting of single cubes.

Algebraic method - logic operations

- Resubstitution with complement
- Phân tích thừa số và tái thay thế đại số có thể được thực hiện với phần bù của ước số cho trước
- VD: *f* = *a*.*b* + *a*.*c* + *b*'.*c*'.*d*
 - Ta chọn b + c là kernel mức-0 của f và phân rã f thành f = a.X + b'.c'.d

$$X = b + c$$

 Ta kiểm tra phần bù của biến mới tạo là một ước số đại số của hàm. Khi đó

$$f = a.X + X'.a$$
$$X = b + c$$