
Chapter 6: Multilevel
Combinational Circuits

Name: Lương Văn Minh
No. : 09070452

Overview

6.1 Boolean Networks

6.2 Special Classes of Circuits

6.3 Binary Decision Diagrams

2

Overview

6.1 Boolean Networks

6.2 Special Classes of Circuits

6.3 Binary Decision Diagrams

3

6.1 Boolean Networks

A combinational logic circuits is represented as
a labeled, directed, acyclic graph (DAG)
G = (V, E).

Each vertex v labeled with the name of a
primitive gate such as AND, OR, or NOT, or
with name of a primary input or output

Each gate and edge in the circuit has an
associated delay

4

6.1 Boolean Networks
(cont.)

Directed acyclic graph (DAG) G = (V, E)
example:

5

6.1 Boolean Networks
(cont.)

The fan-out of a gate g (or a wire) is defined as
the set of gates that use as an input the value
generated by g.

A Boolean network η is a DAG, each node i in
η there is an associated cover Fi and a Boolean
variable yi representing the output of Fi.

May implement a Boolean network η by
replacing each cover Fi in η by a NAND-
NAND network.

6

6.1 Boolean Networks
(cont.)

Boolean Networks example:

7

➜

Overview

6.1 Boolean Networks

6.2 Special Classes of Circuits

6.3 Binary Decision Diagrams

8

6.2 Special Classes of
Circuits

6.2.1 Fan-out-Free Circuits

6.2.2 Leaf-DAG Circuits

6.2.3 Algebraically Factored Circuits

6.2.4 Multiplexor-Based Circuits

9

6.2.1 Fan-out-Free Circuits

A fan-out-free circuit is one in which the
output of each gate and each circuit input to at
most one gate.

A fan-out-free circuit is also called a tree. For
example, the circuit f = a b + c d is a tree.

10

6.2.1 Fan-out-Free Circuits
(cont.)

Many testability results have been proven.
These are:

11

1. There exists a set of tests which detect all single and multiple
stuck-at fault and is of minimal cardinality among all test sets for
single faults.

2. The number of tests required to detect all stuck-at faults is
bounded above by n:1 and is bounded below by 2√n where n is
the number of circuit inputs.

3. A set of tests which detect all stuck-at faults on circuit inputs
will detect all single stuck-at faults

6.2.2 Leaf-DAG Circuits

A leaf-DAG circuit is a generalization of a fan-
out-tree circuit where only the primary inputs
are allowed to fan out to multiple gates.

Any circuit can be converted into a leaf-DAG
circuit by gate duplication.

12

6.2.3 Algebraically Factored
Circuits

An algebraically factored circuit is a circuit
which is derived by a sequence of algebraic
transformations from a two-level sum-of-
products representation.

For example, the circuit (a + b) . (c + d) is an
algebraic factorization of the sum-of-products
expression a.c + a.d + b.c + b.d

13

6.2.4 Multiplexor-Based
Circuits

Arbitrary Boolean function can be implemented
using circuits whose only constituent gates are
two-input multiplexors.

14

Overview

6.1 Boolean Networks

6.2 Special Classes of Circuits

6.3 Binary Decision Diagrams

15

6.3 Binary Decision
Diagrams

Binary decision diagrams (BDDs) were first
proposed by Lee, further developed by
Akers

BDD is a rooted, directed graph with vertex
set V containing two types of vertices:

16

1. a nonterminal vertex v has as attributes an argument index
index(v) ∈ { 1,..., n } and two children low(v), high(v).

2. a terminal vertex v has as an attribute a value value(v) ∈ { 0 , 1}

6.3 Binary Decision
Diagrams (cont.)

17

BDDs example:

6.3 Binary Decision
Diagrams (cont.)

A BDD G having root vertex v defines a
function fv defined recursively as:

18

1. If v is a terminal vertex:

a) If value(v) = 1 then fv = 1

b) If value(v) = 0 then fv = 0

2. If v is a nonterminal vertex with index(v) = i then fv is the function:

fv(x1, ..., xn) = ¬xi . f low(v)(x1, ..., xn) + xi . f high(v)(x1, ..., xn)

xi called the decision variable for vertex v

6.3 Binary Decision
Diagrams (cont.)

BDDs can be categorized based on two
additional properties:

19

1. Freedom: When traversing any path from a terminal vertex to the root
vertex we encounter each decision variable at most one

2. Ordered: place the restriction that for any nonterminal vertex v.

if low(v) is also nonterminal then must have index(v) < index(low(v))

if high(v) is also nonterminal then must have index(v) < index(high(v))

