Chapter 6: Multilevel
Combinational Circuits

Name: Lwong Van Minh
No.:09070452

Overview

e 6.1 Boolean Networks
o 6.2 Special Classes of Circuits

e 6.3 Binary Decision Diagrams

Overview

e 6.1 Boolean Networks
o 6.2 Special Classes of Circuits

e 6.3 Binary Decision Diagrams

6.1 Boolean Networks

o A combinational logic circuits is represented as
a labeled, directed, acyclic graph (DAG)
G=(V,E).

e Each vertex v labeled with the name of a
primitive gate such as AND, OR, or NOT, or
with name of a primary input or output

o Each gate and edge in the circuit has an
associated delay

6.1 Boolean Networks
(cont.)

o Directed acyclic graph (DAG) G = (V, E)

example:
G,
©. © QD 1

O~ D

6.1 Boolean Networks
(cont.)

o The fan-out of a gate g (or a wire) is defined as
the set of gates that use as an input the value
generated by g.

o A Boolean network 1 is a DAG, each node i in
N there is an associated cover Fi and a Boolean
variable yi representing the output of Fi.

e May implement a Boolean network mn by
replacing each cover Fi in n by a NAND-
NAND network.

6.1 Boolean Networks

(cont.)

o Boolean Networks example:

O ONO26)

00000000000

O O O O ™ ™ || <F <H

1111111111111

11111111111

11111111111

Overview

e 6.1 Boolean Networks
e 6.2 Special Classes of Circuits

e 6.3 Binary Decision Diagrams

6.2 Special Classes of
Circuits

6.2.1 Fan-out-Free Circuits
6.2.2 Leaf-DAG Circuits
6.2.3 Algebraically Factored Circuits

6.2.4 Multiplexor-Based Circuits

6.2.1 Fan-out-Free Circuits

o A fan-out-free circuit is one in which the
output of each gate and each circuit input to at
most one gate.

o A fan-out-free circuit is also called a tree. For
example, the circuit f =ab + ¢ d is a tree.

10

6.2.1 Fan-out-Free Circuits
(cont.)

o Many testability results have been proven.
These are:

1. There exists a set of tests which detect all single and multiple
stuck-at fault and is of minimal cardinality among all test sets for
single faults.

2. The number of tests required to detect all stuck-at faults is
bounded above by n:1 and is bounded below by 2vn where n is
the number of circuit inputs.

3. A set of tests which detect all stuck-at faults on circuit inputs
will detect all single stuck-at faults

11

6.2.2 Leaf-DAG Circuits

o A leaf-DAG circuit is a generalization of a fan-
out-tree circuit where only the primary inputs
are allowed to fan out to multiple gates.

e Any circuit can be converted into a leat-DAG
circuit by gate duplication.

12

6.2.3 Algebraically Factored
Circuits

o An algebraically factored circuit is a circuit
which is derived by a sequence of algebraic
transformations from a two-level sum-of-
products representation.

o For example, the circuit (a + b). (c + d) is an
algebraic factorization of the sum-of-products
expression a.c + a.d + b.c + b.d

13

6.2.4 Multiplexor-Based
Circuits

o Arbitrary Boolean function can be implemented
using circuits whose only constituent gates are
two-input multiplexors.

14

Overview

e 6.1 Boolean Networks
o 6.2 Special Classes of Circuits

e 6.3 Binary Decision Diagrams

15

6.3 Binary Decision
Diagrams

o Binary decision diagrams (BDDs) were first
proposed by Lee, further developed by
Akers

o BDD is a rooted, directed graph with vertex
set V containing two types of vertices:

1. a nonterminal vertex v has as attributes an argument index
index(v) € { 1,..., n } and two children low(v), high(v).

2. a terminal vertex v has as an attribute a value value(v) € {0, 1}

16

6.3 Binary Decision
Diagrams (cont.)

BDDs example:

x1 x2 x3 _f
0 0 Of 1
0 0 1] 0
01 010
0 1 1| 1
1 0 0|l O
1 0 1|0
1 1 0| 1
1 1 1| 1

| 4
1 1
e S S’ S’ S’ S’ e’ e’
Binary decision tree and truth table for the function f(x1, x2, x3) = -x1 *-x2 * -x3 +x1 *x1 *x2 +x2 *x3 & BDD for the function f

17

6.3 Binary Decision
Diagrams (cont.)

o A BDD G having root vertex v defines a
function fv defined recursively as:

1. If v is a terminal vertex:
a) If value(v) =1thenfv=1
b) If value(v) = 0 then fv =0

2. If v is a nonterminal vertex with index(v) = i then fv is the function:
fv(x1, ..., xn) = =xi . f low(v)(x1, ..., xn) + xi . f high(v)(x1, ..., xn)

xi called the decision variable for vertex v

18

6.3 Binary Decision
Diagrams (cont.)

e BDDs can be categorized based on two
additional properties:

1. Freedom: When traversing any path from a terminal vertex to the root
vertex we encounter each decision variable at most one

2. Ordered: place the restriction that for any nonterminal vertex v.
o if low(v) is also nonterminal then must have index(v) < index(low(v))

o if high(v) is also nonterminal then must have index(v) < index(high(v))

19

