
Chapter 6: Multilevel 
Combinational Circuits

Name: Lương Văn Minh
No. : 09070452



Overview

6.1 Boolean Networks

6.2 Special Classes of Circuits

6.3 Binary Decision Diagrams

2



Overview

6.1 Boolean Networks

6.2 Special Classes of Circuits

6.3 Binary Decision Diagrams

3



6.1 Boolean Networks

A combinational logic circuits is represented as 
a labeled, directed, acyclic graph (DAG)            
G = (V, E).

Each vertex v labeled with the name of a 
primitive gate such as AND, OR, or NOT, or 
with name of a primary input or output

Each gate and edge in the circuit has an 
associated delay
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6.1 Boolean Networks 
(cont.)

Directed acyclic graph (DAG) G = (V, E) 
example:
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6.1 Boolean Networks 
(cont.)

The fan-out of a gate g (or a wire) is defined as 
the set of gates that use as an input the value 
generated by g.

A Boolean network η is a DAG, each node i in 
η there is an associated cover Fi and a Boolean 
variable yi representing the output of Fi.

May implement a Boolean network η by 
replacing each cover Fi in η by a NAND-
NAND network.
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6.1 Boolean Networks 
(cont.)

Boolean Networks example:
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6.2.1 Fan-out-Free Circuits

A fan-out-free circuit is one in which the 
output of each gate and each circuit input to at 
most one gate.

A fan-out-free circuit is also called a tree. For 
example, the circuit f = a b + c d is a tree.
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6.2.1 Fan-out-Free Circuits 
(cont.)

Many testability results have been proven. 
These are:
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1. There exists a set of tests which detect all single and multiple 
stuck-at fault and is of minimal cardinality among all test sets for 
single faults.

2. The number of tests required to detect all stuck-at faults is 
bounded above by n:1 and is bounded below by 2√n where n is 
the number of circuit inputs.

3. A set of tests which detect all stuck-at faults on circuit inputs 
will detect all single stuck-at faults



6.2.2 Leaf-DAG Circuits

A leaf-DAG circuit is a generalization of a fan-
out-tree circuit where only the primary inputs 
are allowed to fan out to multiple gates.

Any circuit can be converted into a leaf-DAG 
circuit by gate duplication.
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6.2.3 Algebraically Factored 
Circuits

An algebraically factored circuit is a circuit 
which is derived by a sequence of algebraic 
transformations from a two-level sum-of-
products representation.

For example, the circuit (a + b) . ( c + d) is an 
algebraic factorization of the sum-of-products 
expression a.c + a.d + b.c + b.d
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6.2.4 Multiplexor-Based 
Circuits

Arbitrary Boolean function can be implemented 
using circuits whose only constituent gates are 
two-input multiplexors.
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6.3 Binary Decision 
Diagrams

Binary decision diagrams (BDDs) were first 
proposed by Lee, further developed by 
Akers

BDD is a rooted, directed graph with vertex 
set V containing two types of vertices:
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1. a nonterminal vertex v has as attributes an argument index 
index(v) ∈ { 1,..., n } and two children low(v), high(v).

2. a terminal vertex v has as an attribute a value value(v) ∈ { 0 , 1}



6.3 Binary Decision 
Diagrams (cont.)
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BDDs example:



6.3 Binary Decision 
Diagrams (cont.)

A BDD G having root vertex v defines a 
function fv defined recursively as:
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1. If v is a terminal vertex:

a) If value(v) = 1 then fv = 1

b) If value(v) = 0 then fv = 0

2. If v is a nonterminal vertex with index(v) = i then fv is the function:

fv(x1, ..., xn) = ¬xi . f low(v)(x1, ..., xn) + xi . f high(v)(x1, ..., xn)

xi called the decision variable for vertex v



6.3 Binary Decision 
Diagrams (cont.)

BDDs can be categorized based on two 
additional properties:
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1. Freedom: When traversing any path from a terminal vertex to the root 
vertex we encounter each decision variable at most one

2. Ordered: place the restriction that for any nonterminal vertex v.

if low(v) is also nonterminal then must have index(v) < index(low(v))

if high(v) is also nonterminal then must have index(v) < index(high(v))


