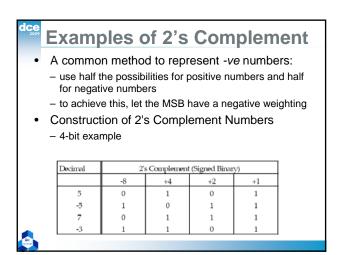
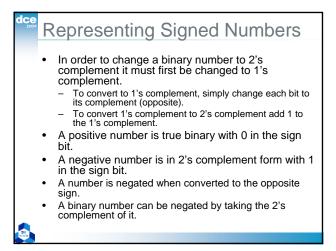


Binary Addition Binary numbers are added like decimal numbers. In decimal, when numbers sum more than 9 a carry results.

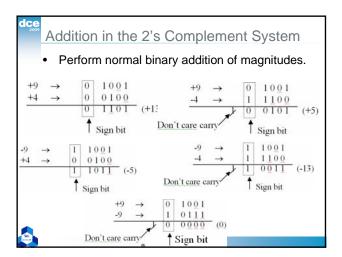

- In binary when numbers sum more than 1 a carry takes place.
- Addition is the basic arithmetic operation used by digital devices to perform subtraction, multiplication, and division.

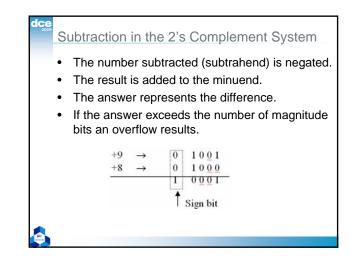
Representing Signed Numbers Since it is only possible to show magnitude with a binary number, the sign (+ or –) is shown by adding an extra "sign" bit. A sign bit of 0 indicates a positive number. A sign bit of 1 indicates a negative number. The 2's complement system is the most commonly used way to represent signed numbers.



dce 2009	F	Re	prese	enting	Si	gn	ed I	Numk	bers	
	•	nı		Two's co y taking its			•		•	dd
		-	Positive	number	+27	7 = 00	01 101 1	lb		
		-	Invert all	bits		11	10 010	0b		
		-	Add 1		-27	= 111	0 0101	b		
						27	2 ⁶		2°	
	•	U	nsigned ı	number						
						-27	2 ⁶		2°	
	•	Si	igned 2's	compleme	ent	s	_			
		x	$=-b_{N-1}$	$2^{N-1} + b_N$	$-2^{2^{N}}$	-2+	•••+	$b_1 2^1 + b_0 2$	20	
~										

dce 2009	Why 2's complement representation? If we represent signed numbers in 2's complement form, subtraction is the same as addition to negative (2's
	complemented) number.
	27 0001 1011 b - 17 0001 0001 b
	+ 10 0000 1010 b
	+ 27 0001 1011 b
	<u>+ - 17 1110 1111 b</u>
	+ 10 0000 1010 b
•	Note that the range for 8-bit unsigned and signed numbers are different.
	8-bit unsigned: 0 +255
e	8-bit 2's complement signed number: -128 +127


Note the "wrap-	Unsigned	Binary	2' comp
•	7	0111	7
around" effect	6	0110	6
of the binary	5	0101	5
	4	0100	4
representation	3	0011	3
- i.e. The top of the	2	0010	2
	1	0001	1
table wraps	0	0000	0
around to the	15 14	1111 1110	-1 -2
bottom of the	14	1101	-2
table	12	1100	-4
labic	11	1011	-5
	10	1010	-6
	9	1001	-7
	8	1000	-8

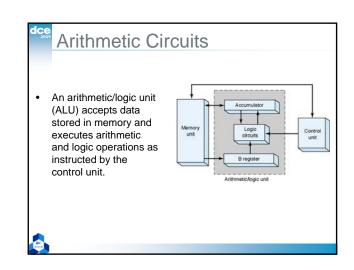


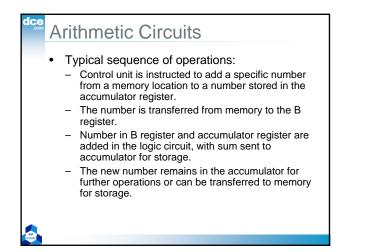
Addition in the 2's Complement System

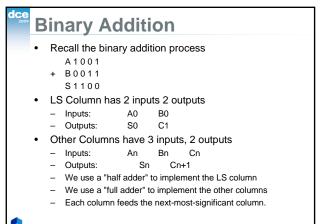
- Perform normal binary addition of magnitudes.
- The sign bits are added with the magnitude bits.
- If addition results in a carry of the sign bit, the carry bit is ignored.
- If the result is positive it is in pure binary form.
- If the result is negative it is in 2's complement form.

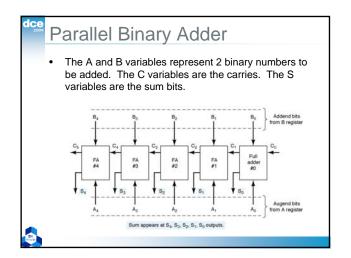
dce

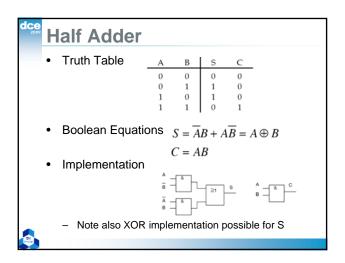
	Multiplication							
•	In decimal, multiplying by 10 can be achieved by							
	 shifting the number left by one digit adding a zero at the LS digit 							
•	 In binary, this operation multiplies by 2 							
•	 In general, left shifting by N bits multiplies by 2^N zeros are always brought in from the right-hand end E.g. 							
		Binary	Decimal					
	1101 13							
		11010	26					
		110100	52					

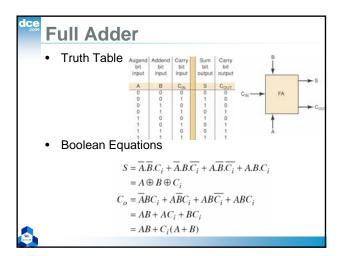

Unsigned	Signed		
MSB has a positive value (e.g. +8 for	MSB has a negative value (e.g		
a 4-bit system)	a 4-bit system)		
The carry-out from the MSB of an adder can be used as an extra bit of the answer to avoid overflow	To avoid overflow in an adder, need to sign extend and use a adder with one more bit than th numbers to be added		
To increase the number of bits, add zeros to the left-hand side	To increase the number of bits sign extend by duplicating the MSB		
Complementing and adding 1 converts X to (2N - X)	Complementing and adding 1 converts X to -X		

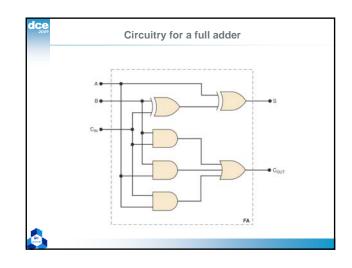

• The subtraction part of the operation is done using 2's complement subtraction.	•	This is similar to decimal long division. It is simpler because only 1 or 0 are possible
If the signs of the dividend and divisor are	•	The subtraction part of the operation is done
0	•	5
	•	5

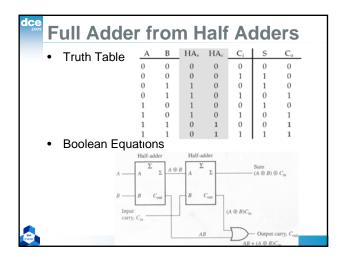

-								
1 Ce	BCD Addition							
	 When the sum of each decimal digit is less than 9, the operation is the same as normal binary addition. When the sum of each decimal digit is greater than 9, a binary 6 is added. This will always cause a carry. 							
	$47 \\ +35 \\ \overline{82}$	+ 0100 + 0011 + 1 + 1 + 1 + 1000	$ \begin{array}{r} 0111\\ 0101\\ 1100\\ 0110\\ 0010 \end{array} $	$\begin{array}{c} \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \\ \uparrow \end{array}$	47 BCD 35 BCD invalid + 6 valid			

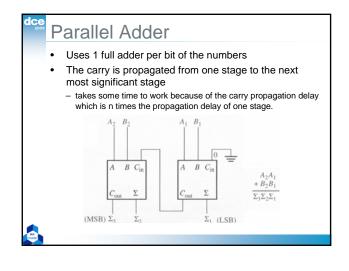

Hexadecimal Arithmetic

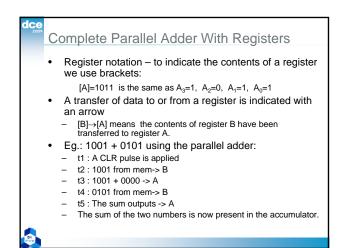

- Hex addition:
 - Add the hex digits in decimal.
 - If the sum is 15 or less express it directly in hex digits.
 - If the sum is greater than 15, subtract 16 and carry 1 to the next position.
- Hex subtraction use the same method as for binary numbers.
- When the MSD in a hex number is 8 or greater, the number is negative. When the MSD is 7 or less, the number is positive.

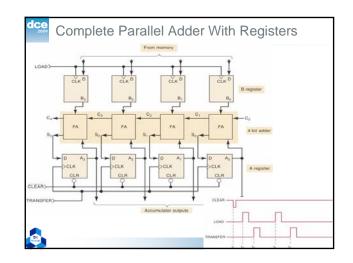


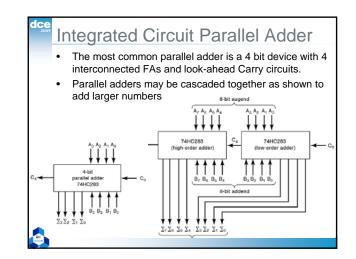


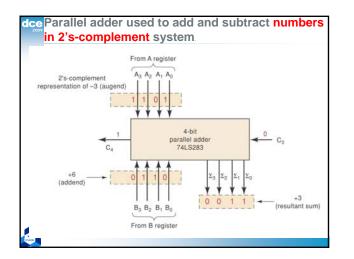


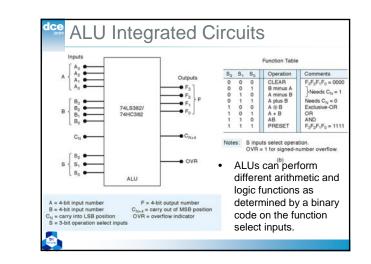


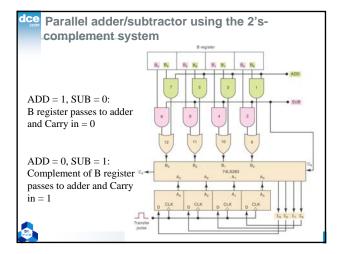









Carry Propagation


- Parallel adder speed is limited by carry propagation (also called carry ripple).
- Carry propagation results from having to wait for the carry bits to "ripple" through the device.
- Additional bits will introduce more delay.
- Various techniques have been developed to reduce the delay. The look-ahead carry scheme is commonly used in high speed devices.

