

Introduction to Chapter 1

- · Digital technology is widely used. Examples:
 - Computers
 - Manufacturing systems
 - Medical Science
 - Transportation
 - Entertainment
 - Telecommunications
- Basic digital concepts and terminology are introduced

Digital and Analog Systems

- Digital system

 A combination of devices that manipulate values represented in digital form.
- Analog system

 A combination of devices that manipulate values represented in analog form

Digital Circuits/Logic Circuits Digital circuits - produce and respond to predefined voltage ranges. Logic circuits – used interchangeably with the term, digital circuits. Digital integrated circuits (ICs) – provide logic operations in a small reliable package.

^e Parallel and Serial Transmission

- Parallel transmission is faster but requires more paths.
- Serial is slower but requires a single path.
- Both methods have useful applications which will be seen in later chapters.

Memory

- A circuit which retains a response to a momentary input is displaying memory.
- Memory is important because it provides a way to store binary numbers temporarily or permanently.
- · Memory elements include:
 - Magnetic
 - Optical
 - Electronic latching circuits

Electronic Design Automation

Digital Computers

- Computer a system of hardware that performs arithmetic operations, manipulates data (usually in binary form), and makes decisions.
- Computers perform operations based on instructions in the form of a program at high speed and with a high degree of accuracy.

Digital Computers Types of computers Microcomputer Most common (desktop PCs) Has become very powerful Minicomputer (workstation) Mainframe Microcontroller Designed for a specific application Dedicated or embedded controllers Used in appliances, manufacturing processes, auto ignition systems, ABS systems, and many other applications.

Conversion

- The hexadecimal number system is introduced.
- Since different number systems may be used in a system, it is important for a technician to understand how to convert between them.
- Binary codes that are used to represent different information are also described.

Binary to Decimal Conversion • Convert binary to decimal by summing the positions that contain a 1. $1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1_2$ $2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 =$ $32 + 0 + 0 + 4 + 0 + 1 = 37_{10}$

Electronic Design Automation

Decimal to Binary Conversion

- Repeated division steps:
 - Divide the decimal number by 2
 - Write the remainder after each division until a quotient of zero is obtained.
 - The first remainder is the LSB and the last is the MSB

• Repeated division – describes the process and can be used to convert from decimal to any other number system. $\int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}^{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}$

Hexadecimal Number System

each hex digit by its positional weight.

Example: 163₁₆

Convert from hex to decimal by multiplying

Hexadecimal Number System Most digital systems deal with groups of bits in even powers of 2 such as 8, 16, 32, and 64 bits. Hexadecimal uses groups of 4 bits. Base 16 16 possible symbols 0-9 and A-F Allows for convenient handling of long binary strings.

Hexadecimal Number System Convert from decimal to hex by using the

- repeated division method used for decimal to binary and decimal to octal conversion.
- Divide the decimal number by 16
- The first remainder is the LSB and the last is the MSB.
 - Note, when done on a calculator a decimal remainder can be multiplied by 16 to get the result.
 If the remainder is greater than 9, the letters A through F are used.

Hexadecimal Number System

- Hexadecimal is useful for representing long strings of bits.
- Understanding the conversion process and memorizing the 4 bit patterns for each hexadecimal digit will prove valuable later.

BCD

- Binary Coded Decimal (BCD) is another way to present decimal numbers in binary form.
- BCD is widely used and combines features of both decimal and binary systems.
- Each digit is converted to a binary equivalent.

BCD

• To convert the number 874₁₀ to BCD:

8 7 4 0100 0111 0100 = 010001110100_{BCD}

- Each decimal digit is represented using 4 bits.
- Each 4-bit group can never be greater than 9.
- Reverse the process to convert BCD to decimal.

BCD

- BCD is not a number system.
- BCD is a decimal number with each digit encoded to its binary equivalent.
- A BCD number is not the same as a straight binary number.
- The primary advantage of BCD is the relative ease of converting to and from decimal.

Gray Code

- The gray code is used in applications where numbers change rapidly.
- In the gray code, only one bit changes from each value to the next.

E	Binary	Gray Code
(000	000
	001	001
	010	011
	011	010
	100	110
	101	111
	110	101
*	111	100
a sine bar		

Putting It All Together								
	Decimal	Binary	Hexadecimal	BCD	Gray			
	0	0	0	0	0			
	1	1	1	0001	0001			
	2	10	2	0010	0011			
	3	11	3	0011	0010			
	4	100	4	0100	0110			
	5	101	5	0101	0111			
	6	110	6	0110	0101			
	7	111	7	0111	0100			
	8	1000	8	1000	1100			
	9	1001	9	1001	1101			
	10	1010	A	0001 0000	1111			
	11	1011	В	0001 0001 🍢	1110			
	12	1100	С	0001 0010 7	1010			
	13	1101	D	0001 0011 🍢	1011			
	14	1110	E	0001 0100	1001			
	15	1111	F	0001 0101 🍢	1000			
SK.								

Alphanumeric Codes Appresents characters and functions found on a computer keyboard. ASCII – American Standard Code for Information Interchange. Seven bit code: 2⁷ = 128 possible code groups Examples of use are: to transfer information between computers, between computers and printers, and for internal storage.

Parity Method for Error Detection

- The parity method of error detection requires the addition of an extra bit to a code group.
- This extra bit is called the parity bit.
- The bit can be either a 0 or 1, depending on the number of 1s in the code group.
- There are two methods, even and odd.

Parity Method for Error Detection Even parity method – the total number of

bits in a group including the parity bit must add up to an even number.

The binary group 1 0 1 1 would require the addition of a parity bit 1 1 0 1 1

Parity Method for Error Detection

- Odd parity method the total number of bits in a group including the parity bit must add up to an odd number.
 - The binary group 1 1 1 1 would require the addition of a parity bit 1 1 1 1 1

Parity Method for Error Detection

- The transmitter and receiver must "agree" on the type of parity checking used.
- Two bit errors would not indicate a parity error.
- Both odd and even parity methods are used, but even seems to be used more often.

.