Exercise 1. Find the minimum-cost SOP and POS form for the function:

$$
f\left(x_{2}, x_{\mathrm{g}}, x_{5}\right)=\sum m(1,4,7)+D(2,5)
$$

Exercise 2. Repeat exercise 1 for the function:

$$
f\left(C_{2}, x_{8}, M_{8}, x_{4}\right)=\prod M(0,1,2,4,5,7,8,9,10,12,14,15)
$$

Exercise 3. A four-variable logic function that is equal to 1 if any three or all four of its variables are equal to 1 is called majority function. Design a minimum-cost SOP circuit that implements this majority function.

Exercise 4. Prove or show a counter-example for the statement: "if a function f has a unique minimumcost SOP expression, then it also has a unique minimum-cost POS expression"

Exercise 5. Figure 1 shows a BCD-counter that produces a four-bit output representing the BCD code for the number of pulse that have been applied to the counter input. For example, after four pulses have occurred, the counter outputs are $\mathrm{DCBA}=01002=410$. The counter resets to 0000 for a tenth pulse and start counting over again. Design the logic circuit that produce a HIGH output when ever the count is 2 , 3 , or 9 . Using the K-map and take advantages of the don’t-care conditions

Figure 1. Circuit for exercise 5
Exercise 6. The circuit in figure 2 looks like a counter. What is the sequence that this circuits counts in?

Figure 2. Circuit for exercise 5.
Exercise 7. Determine the functional behavior of the circuit in figure 3. Assume that input w is driven by a square signal.

Figure 3. Circuit for exercise 6.

