
5/29/2013

1

BK
TP.HCM

2011

dce

ADVANCED ADVANCED COMPUTER COMPUTER

ARCHITECTUREARCHITECTURE

Khoa Khoa học và Kỹ thuật Máy tính

BM Kỹ thuật Máy tính

Trần Ngọc Thịnh

http://www.cse.hcmut.edu.vn/~tnthinh

©2013, dce

2011

dce

SUPERSCALAR AND VLIW

PROCESSORS

SUPERSCALAR AND VLIW

PROCESSORS

2

http://www.cse.hcmut.edu.vn/~

5/29/2013

2

2011

dce

3

Outline

• What is a Superscalar Architecture?

• Features of Superscalar Architectures

• Data Dependencies

• Policies for Parallel Instruction Execution

• Register Renaming

• VLIW Processors

2011

dce

What is a Superscalar Architecture?

4

• A superscalar architecture is one in which several instructions

can be initiated simultaneously and executed independently.

• Pipelining allows several instructions to be executed at the

same time, but they have to be in different pipeline stages at a

given moment.

• Superscalar architectures include all features of pipelining

but, in addition, there can be several instructions executing

simultaneously in the same pipeline stage.

5/29/2013

3

2011

dce

What is a Superscalar Architecture?

5

• Pipelined execution

• Superscalar execution

2011

dce

Superscalar Architectures

• Superscalar architectures allow several instructions to be

issued and completed per clock cycle.

• A superscalar architecture consists of a number of pipelines

that are working in parallel.

• Depending on the number and kind of parallel units available,

a certain number of instructions can be executed in parallel.

6

http://upload.wikimedia.org/wikipedia/commons/c/ce/Superscalarpipeline.png
http://upload.wikimedia.org/wikipedia/commons/2/21/Fivestagespipeline.png

5/29/2013

4

2011

dce

Superscalar Architectures

7

• In example a floating point and two integer operations can be issued and

executed simultaneously; each unit is pipelined and can execute several

operations in different pipeline stages.

2011

dce Limitations on Parallel Execution

• The situations which prevent instructions to be executed in

parallel by a superscalar architecture are very similar to those

which prevent an efficient execution on any pipelined

architecture.

• The consequences of these situations on superscalar

architectures are more severe than those on simple pipelines,

because the potential of parallelism in superscalars is greater

and, thus, a greater opportunity is lost.

8

5/29/2013

5

2011

dce Limitations on Parallel Execution

• Three categories of limitations have to be considered:

1. Resource conflicts:

– They occur if two or more instructions compete for the same resource (register, memory,

functional unit) at the same time; they are similar to structural hazards discussed with

pipelines. Introducing several parallel pipelined units, superscalar architectures try to

reduce a part of possible resource conflicts.

2. Control (procedural) dependency:

– The presence of branches creates major problems in assuring an optimal parallelism.

How to reduce branch penalties has been discussed.

– If instructions are of variable length, they cannot be fetched and issued in parallel; an

instruction has to be decoded in order to identify the following one and to fetch it

Þsuperscalar techniques are efficiently applicable to RISCs, with fixed instruction length

and format.

3. Data conflicts:

– Data conflicts are produced by data dependencies between instructions in the program.

Because superscalar architectures provide a great liberty in the order in which

instructions can be issued and completed, data dependencies have to be considered

with much attention.

9

2011

dce

Data Dependencies

• Three types of data dependencies can be identified:

1. True data dependency

2. Output dependency

3. Antidependency

10

5/29/2013

6

2011

dce

True Data Dependency
• True data dependency exists when the output of one instruction is

required as an input to a subsequent instruction:

MUL R4,R3,R1 R4  R3 * R1

- - - - - - - - - - - - - -

ADD R2,R4,R5 R2  R4 + R5

• True data dependencies are intrinsic features of the user’s program.

They cannot be eliminated by compiler or hardware techniques.

• True data dependencies have to be detected and treated: the addition

above cannot be executed before the result of the multiplication is

available.

– The simplest solution is to stall the adder unti the multiplier has finished.

– In order to avoid the adder to be stalled, the compiler or hardware can find

other instructions which can be executed by the adder until the result of

the multiplication is available.

11

2011

dce

Output Dependency
• An output dependency exists if two instructions are writing into

the same location; if the second instruction writes before the first

one, an error occurs:

MUL R4,R3,R1 R4  R3 * R1

- - - - - - - - - - - - - -

ADD R4,R2,R5 R4  R2 + R5

12

5/29/2013

7

2011

dce

Antidependency
• An antidependency exists if an instruction uses a location as an

operand while a following one is writing into that location; if the

first one is still using the location when the second one writes

into it, an error occurs:

MUL R4,R3,R1 R4  R3 * R1

- - - - - - - - - - - - - -

ADD R3,R2,R5 R3  R2 + R5

13

2011

dce

The Nature of Output Dependency and Antidependency

• Output dependencies and antidependencies are not intrinsic features of the

executed program; they are not real data dependencies but storage conflicts.

• Output dependencies and antidependencies are only the consequence of the

manner in which the programmer or the compiler are using registers (or

memory locations). They are produced by the competition of several

instructions for the same register.

• In the previous examples the conflicts are produced only because:

– the output dependency: R4 is used by both instructions to store the result;

– the antidependency: R3 is used by the second instruction to store the result;

• The examples could be written without dependencies by using additional

registers:

MUL R4,R3,R1 R4  R3 * R1

- - - - - - - - - - - - - -

ADD R7,R2,R5 R7  R2 + R5

and

MUL R4,R3,R1 R4  R3 * R1

- - - - - - - - - - - - - -

ADD R6,R2,R5 R6  R2 + R5
14

5/29/2013

8

2011

dce

Policies for Parallel Instruction Execution

• The ability of a superscalar processor to execute instructions in

parallel is determined by:

1. the number and nature of parallel pipelines (this determines the number

and nature of instructions that can be fetched and executed at the same

time);

2. the mechanism that the processor uses to find independent instructions

(instructions that can be executed in parallel).

• The policies used for instruction execution are characterized by

the following two factors:

1. the order in which instructions are issued for execution;

2. the order in which instructions are completed (they write results into

registers and memory locations).

15

2011

dce

Policies for Parallel Instruction Execution

• The simplest policy is to execute and complete instructions in

their sequential order. This, however, gives little chances to find

instructions which can be executed in parallel.

• In order to improve parallelism the processor has to look ahead

and try to find independent instructions to execute in parallel.

Instructions will be executed in an order different from the

strictly sequential one, with the restriction that the result

must be correct.

• Execution policies:

1. In-order issue with in-order completion.

2. In-order issue with out-of-order completion.

3. Out-of-order issue with out-of-order completion.

16

5/29/2013

9

2011

dce

Policies for Parallel Instruction Execution

• Example: We consider the superscalar architecture:

– Two instructions can be fetched and decoded at a time;

– Three functional units can work in parallel: floating point unit, integer adder, integer multiplier;

– Two instructions can be written back (completed) at a time;

• We consider the following instruction sequence:

I1: ADDF R12,R13,R14 R12  R13 + R14 (float. pnt.)

I2: ADD R1,R8,R9 R1  R8 + R9

I3: MUL R4,R2,R3 R4  R2 * R3

I4: MUL R5,R6,R7 R5  R6 * R7

I5: ADD R10,R5,R7 R10  R5 + R7

I6: ADD R11,R2,R3 R11  R2 + R3

– I1 requires two cycles to execute;

– I3 and I4 are in conflict for the same functional unit;

– I5 depends on the value produced by I4 (we have a true data dependency between

I4 and I5);

– I2, I5 and I6 are in conflict for the same functional unit;

17

2011

dce

In-Order Issue with In-Order Completion

• Instructions are issued in the exact order that would correspond to sequential

execution; results are written (completion) in the same order.

– An instruction cannot be issued before the previous one has been issued;

– An instruction completes only after the previous one has completed.

– To guarantee in-order completion, instruction issuing stalls when there is a conflict

and when the unit requires more than one cycle to execute;

18

5/29/2013

10

2011

dce

In-Order Issue with In-Order Completion

• The processor detects and handles (by stalling) true data

dependencies and resource conflicts.

• As instructions are issued and completed in their strict order, the

resulting parallelism is very much dependent on the way the

program is written/ compiled.

– If I3 and I6 switch position, the pairs I6-I4 and I5-I3 can be executed in

parallel (see following slide).

• We are interested in techniques which are not compiler based

but allow the hardware alone to detect instructions which can be

executed in parallel and to issue them.

19

2011

dce

In-Order Issue with In-Order Completion

• If the compiler generates this sequence:

I1: ADDF R12,R13,R14 R12  R13 + R14 (float. pnt.)

I2: ADD R1,R8,R9 R1  R8 + R9

I6: ADD R11,R2,R3 R11  R2 + R3

I4: MUL R5,R6,R7 R5  R6 * R7

I5: ADD R10,R5,R7 R10  R5 + R7

I3: MUL R4,R2,R3 R4  R2 * R3

• I6-I4 and I5-I3 could be executed in parallel

• The sequence needs only 6 cycles instead of 8.
20

5/29/2013

11

2011

dce

In-Order Issue with In-Order Completion

• With in-order issue&in-order completion the processor has not to

bother about output dependency and antidependency! It has only

to detect true data dependencies.

• No one of the two dependencies will be violated if instructions

are issued/completed in-order:

• Output dependency
MUL R4,R3,R1 R4  R3 * R1

- - - - - - - - - - - - - -

ADD R4,R2,R5 R4  R2 + R5

• Anti-dependency
MUL R4,R3,R1 R4  R3 * R1

- - - - - - - - - - - - - -

ADD R3,R2,R5 R3  R2 + R5

21

2011

dce

Out-of-Order Issue with Out-of-Order Completion

• With in-order issue, no new instruction can be issued when the

processor has detected a conflict and is stalled, until after the

conflict has been resolved.

The processor is not allowed to look ahead for further instructions,

which could be executed in parallel with the current ones.

• Out-of-order issue tries to resolve the above problem. Taking the

set of decoded instructions the processor looks ahead and

issues any instruction, in any order, as long as the program

execution is correct.

22

5/29/2013

12

2011

dce

Out-of-Order Issue with Out-of-Order Completion

• We consider the instruction sequence in above.

• I6 can be now issued before I5 and in parallel with I4; the

sequence takes only 6 cycles (compared to 8 if we have in-order

issue & in-order completion).

23

2011

dce

Out-of-Order Issue with Out-of-Order Completion

• With out-of-order issue &out-of-order completion the processor

has to bother about true data dependency and both about

output-dependency and antidependency!

• Output dependency can be violated (the addition completes

before the multiplication):

MUL R4,R3,R1 R4  R3 * R1

- - - - - - - - - - - - - -

ADD R4,R2,R5 R4  R2 + R5

• Antidependency can be violated (the operand in R3 is used after

it has been over-written):

MUL R4,R3,R1 R4  R3 * R1

- - - - - - - - - - - - - -

ADD R3,R2,R5 R3  R2 + R5

24

5/29/2013

13

2011

dce

Register Renaming

• Output dependencies and antidependencies can be treated similarly to true

data dependencies as normal conflicts. Such conflicts are solved by delaying

the execution of a certain instruction until it can be executed.

• Parallelism could be improved by eliminating output dependencies and

antidependencies, which are not real data dependencies.

• Output dependencies and antidependencies can be eliminated by

automatically allocating new registers to values, when such a dependency has

been detected. This technique is called register renaming.

• The output dependency is eliminated by allocating, for example, R6 to the

value R2+R5:

MUL R4,R3,R1 R4  R3 * R1

- - - - - - - - - - - - - -

ADD R4,R2,R5 R4  R2 + R5 (ADD R6,R2,R5 R6  R2 + R5)

• The same is true for the antidependency below:

MUL R4,R3,R1 R4  R3 * R1

- - - - - - - - - - - - - -

ADD R3,R2,R5 R3  R2 + R5 (ADD R6,R2,R5 R6  R2 + R5)

25

2011

dce

Final Comments on Superscalars

• The following main techniques are characteristic for superscalar

processors:

1.additional pipelined units which are working in parallel;

2.out-of-order issue&out-of-order completion;

3.register renaming.

• All of the above techniques are aimed to enhance performance.

• Experiments have shown:

– without the other techniques, only adding additional units is not efficient;

– out-of-order issue is extremely important; it allows to look ahead for

independent instructions;

– register renaming can improve performance with more than 30%; in this

case performance is limited only by true dependencies.

– it is important to provide a fetching/decoding capacity so that ~16

instructions are buffered for lookahead.

26

5/29/2013

14

2011

dce

Some Architectures

PowerPC 604

• six independent execution units:

– Branch execution unit, Load/Store unit

– 3 Integer units, Floating-point unit

• in-order issue

Power PC 620

• provides in addition to the 604 out-of-order issue

Pentium

• three independent execution units: 2 Integer units, Floating point unit

• in-order issue

Pentium II

• provides in addition to the Pentium out-of-order issue

• five instructions can be issued in one cycle

27

2011

dce

What is Good and what is Bad with Superscalars ?

Good

• The hardware solves everything:

– Hardware detects potential parallelism between instructions;

– Hardware tries to issue as many instructions as possible in parallel.

– Hardware solves register renaming.

• Binary compatibility

– If functional units are added in a new version of the architecture or some

other improvements have been made to the architecture (without changing

the instruction sets), old programs can benefit from the additional potential

of parallelism.

– Why? Because the new hardware will issue the old instruction sequence in

a more efficient way.

28

5/29/2013

15

2011

dce

What is Good and what is Bad with Superscalars ?

Bad

• Very complex

– Much hardware is needed for run-time detection. There is a

limit in how far we can go with this technique.

– Power consumption can be very large!

• The window of execution is limited  this limits the

capacity to detect potentially parallel instructions

29

2011

dce

The Alternative: VLIW Processors

• VLIW architectures rely on compile-time detection of parallelism

Þ the compiler analysis the program and detects operations to

be executed in parallel; such operations are packed into one

“large” instruction.

• After one instruction has been fetched all the corresponding

operations are issued in parallel.

• No hardware is needed for run-time detection of parallelism.

• The window of execution problem is solved: the compiler can

potentially analyse the whole program in order to detect parallel

operations.

30

5/29/2013

16

2011

dce

VLIW Processors

• Detection of parallelism and

packaging of operations into

instructions is done, by the

compiler, off-line.

31

2011

dce

Advantages and Problems with VLIW Processors

Advantages

• Simpler hardware:

– the number of FUs can be increased without needing additional

sophisticated hardware to detect parallelism, like in superscalars.

– Power consumption can be reduced.

• Good compilers can detect parallelism based on global analysis

of the whole program (no window of execution problem).

32

Successive

Instructions

Time in Base Cycles
1 2 3 4 5 6 7 8 9 10 11 12 13 14

5/29/2013

17

2011

dce

Advantages and Problems with VLIW Processors

Problems

• Large number of registers needed in order to keep all FUs active

(to store operands and results).

• Large data transport capacity is needed between FUs and the

register file and between register files and memory.

• High bandwidth between instruction cache and fetch unit.
– Example: one instruction with 7 operations, each 24 bits  168 bits/instruction.

• Large code size, partially because unused operations  wasted

bits in instruction word.

• Incomputability of binary code
– For example:

– If for a new version of the processor additional Fus are introduced  the number

of operations possible to execute in parallel is increased  the instruction word

changes  old binary code cannot be run on this processor.

33

