
4/25/2013

1

BK
TP.HCM

2011

dce

ADVANCED ADVANCED COMPUTER COMPUTER

ARCHITECTUREARCHITECTURE

Khoa Khoa học và Kỹ thuật Máy tính

BM Kỹ thuật Máy tính

Trần Ngọc Thịnh

http://www.cse.hcmut.edu.vn/~tnthinh

©2013, dce

2011

dce

Memory Hierarchy Design

(part2)

Memory Hierarchy Design

(part2)

2

http://www.cse.hcmut.edu.vn/~

4/25/2013

2

2011

dce

Unified vs. Separate Level Unified vs. Separate Level 1 1 CacheCache

• Unified Level 1 Cache (Princeton Memory Architecture).

A single level 1 (L1) cache is used for both instructions and data.

• Separate instruction/data Level 1 caches (Harvard Memory Architecture):

The level 1 (L1) cache is split into two caches, one for instructions

(instruction cache, L1 I-cache) and the other for data (data cache, L1 D-

cache).

Control

Datapath

Processor

R
e
g

is
te

rs

Unified

Level

One

Cache

L1

Control

Datapath

Processor
R

e
g

is
te

rs

L1

I-cache

L1

D-cache

Unified Level 1 Cache

(Princeton Memory Architecture)
Separate (Split) Level 1 Caches

(Harvard Memory Architecture)

Instruction

Level 1

Cache

Data

Level 1

Cache

Most

Common

2011

dce

Memory HierarchyHierarchy Performance (1/2)

• The Average Memory Access Time (AMAT): The number of

cycles required to complete an average memory access

request by the CPU.

• Memory stall cycles per memory access: The number of stall

cycles added to CPU execution cycles for one memory

access.

Memory stall cycles per average memory access = (AMAT -1)

• For ideal memory: AMAT = 1 cycle, this results in zero

memory stall cycles.

4/25/2013

3

2011

dce

Memory HierarchyHierarchy Performance (2/2)

• Memory stall cycles per average instruction =

Number of memory accesses per instruction

x Memory stall cycles per average memory access

= (1 + fraction of loads/stores) x (AMAT -1)

Base CPI = CPIexecution = CPI with ideal memory

CPI = CPIexecution + Mem Stall cycles per instruction

Instruction

Fetch

2011

dce Cache Performance:Single Level LCache Performance:Single Level L1 1 Princeton Princeton

(Unified) Memory Architecture ((Unified) Memory Architecture (11//22))

CPUtime = Instruction count x CPI x Clock cycle time

CPIexecution = CPI with ideal memory

CPI = CPIexecution + Mem Stall cycles per instruction

Mem Stall cycles per instruction =

Memory accesses per instruction x Memory stall cycles per access

Assuming no stall cycles on a cache hit (cache access time = 1 cycle, stall = 0)

Cache Hit Rate = H1 Miss Rate = 1- H1

4/25/2013

4

2011

dce Cache PerformanceCache Performance: Single : Single Level LLevel L1 1 Princeton Princeton

(Unified) Memory Architecture ((Unified) Memory Architecture (22//22))

Memory stall cycles per memory access = Miss rate x Miss penalty

Memory accesses per instruction = (1 + fraction of loads/stores)

Miss Penalty = M

= the number of stall cycles resulting from missing in cache

= Main memory access time - 1

Thus for a unified L1 cache with no stalls on a cache hit:

CPI = CPIexecution + (1 + fraction of loads/stores) x (1 - H1) x M

AMAT = 1 + Miss rate x Miss penalty

AMAT = 1 + (1 - H1) x M

2011

dce

Cache Performance Example (Cache Performance Example (11//22))
• Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle) with a

single level of cache.

• CPIexecution = 1.1

• Instruction mix: 50% arith/logic, 30% load/store, 20% control

• Assume a cache miss rate of 1.5% and a miss penalty of M= 50 cycles.

CPI = CPIexecution + mem stalls per instruction

Mem Stalls per instruction

= Mem accesses per instruction x Memory stall cycles per access

= Mem accesses per instruction x Miss rate x Miss penalty

Mem accesses per instruction = 1 + 0.3 = 1.3

Mem Stalls per memory access = (1- H1) x M = 0.015 x 50 = 0.75 cycles

AMAT = 1 +.75 = 1.75 cycles

Mem Stalls per instruction = 1.3 x .015 x 50 = 0.975

CPI = 1.1 + .975 = 2.075

The ideal memory CPU with no misses is 2.075/1.1 = 1.88 times faster

Instruction fetch Load/store

4/25/2013

5

2011

dce

Cache Performance Example Cache Performance Example (2/2(2/2))
• Suppose for the previous example we double the clock rate to

400 MHz, how much faster is this machine, assuming similar

miss rate, instruction mix?

• Since memory speed is not changed, the miss penalty takes

more CPU cycles:

Miss penalty = M = 50 x 2 = 100 cycles.

CPI = 1.1 + 1.3 x .015 x 100 = 1.1 + 1.95 = 3.05

Speedup = (CPIold x Cold)/ (CPInew x Cnew)

= 2.075 x 2 / 3.05 = 1.36

• The new machine is only 1.36 times faster rather than 2 times

faster due to the increased effect of cache misses.

 CPUs with higher clock rate, have more cycles per cache miss and more

memory impact on CPI.

2011

dce Cache PerformanceCache Performance

Harvard Memory Architecture Harvard Memory Architecture

For a CPU with separate or split level one (L1) caches for

instructions and data (Harvard memory architecture) and

no stalls for cache hits:

CPUtime = Instruction count x CPI x Clock cycle time

CPI = CPIexecution + Mem Stall cycles per instruction

Mem Stall cycles per instruction =

Instruction Fetch Miss rate x M +

Data Memory Accesses Per Instruction x Data Miss Rate x M

4/25/2013

6

2011

dce

Cache Performance Example (Cache Performance Example (11//22))

• Suppose a CPU uses separate level one (L1) caches for

instructions and data (Harvard memory architecture) with

different miss rates for instruction and data access:

– A cache hit incurs no stall cycles while a cache miss incurs 200 stall

cycles for both memory reads and writes.

– CPIexecution = 1.1

– Instruction mix: 50% arith/logic, 30% load/store, 20% control

– Assume a cache miss rate of 0.5% for instruction fetch and a cache

data miss rate of 6%.

– Find the resulting CPI using this cache? How much faster is the CPU

with ideal memory?

2011

dce

Cache Performance Example (Cache Performance Example (22//22))

CPI = CPIexecution + mem stalls per instruction
Mem Stall cycles per instruction = Instruction Fetch Miss rate x M +

Data Memory Accesses Per Instruction x Data Miss Rate x M

Mem Stall cycles per instruction = 0.5/100 x 200 + 6/100 x 0.3 x 200
= 1 + 3.6 = 4.6

Mem Stall cycles per access = 4.6 / 1.3 = 3.5 cycles

AMAT = 1 + 3.5 = 4.5 cycles

CPI = CPIexecution + mem stalls per instruction = 1.1 + 4.6 = 5.7

The CPU with ideal cache (no misses) is 5.7/1.1 = 5.18 times faster

With no cache the CPI would have been = 1.1 + 1.3 X 200 =
261.1 !!

4/25/2013

7

2011

dce

Virtual Memory

• Some facts of computer life…

– Computers run lots of processes simultaneously

– No full address space of memory for each process

– Must share smaller amounts of physical memory

among many processes

• Virtual memory is the answer!

– Divides physical memory into blocks, assigns

them to different processes

2011

dce

Virtual Memory

• Virtual memory (VM) allows main memory

(DRAM) to act like a cache for secondary

storage (magnetic disk).

• VM address translation a provides a mapping

from the virtual address of the processor to the

physical address in main memory or on disk.

Compiler assigns data to a “virtual” address.

VA translated to a real/physical somewhere in memory…

(allows any program to run anywhere;

where is determined by a particular machine, OS)

4/25/2013

8

2011

dce

VM Benefit

• VM provides the following benefits

– Allows multiple programs to share the same

physical memory

– Allows programmers to write code as though they

have a very large amount of main memory

– Automatically handles bringing in data from disk

2011

dce

Virtual Memory Basics

• Programs reference “virtual” addresses in a non-existent

memory

– These are then translated into real “physical” addresses

– Virtual address space may be bigger than physical address space

• Divide physical memory into blocks, called pages

– Anywhere from 512 to 16MB (4k typical)

• Virtual-to-physical translation by indexed table lookup

– Add another cache for recent translations (the TLB)

• Invisible to the programmer

– Looks to your application like you have a lot of memory!

– Anyone remember overlays?

4/25/2013

9

2011

dce

VM: Page Mapping

Process 1’s

Virtual

Address

Space

Process 2’s

Virtual

Address

Space

Physical Memory

Disk

Page Frames

2011

dce

VM: Address Translation

Virtual page number Page offset

Physical page number Page offset

Page

Table

base

Per-process page table

Valid bit

Protection bits

Dirty bt

Reference bit

12 bits20 bits Log2 of

pagesize

To physical memory

4/25/2013

10

2011

dce

Example of virtual memory

• Relieves problem of making a

program that was too large to

fit in physical memory –

well….fit!

• Allows program to run in any

location in physical memory

– (called relocation)

– Really useful as you

might want to run same

program on lots

machines…

Logical program is in contiguous VA space; here, consists of 4 pages:

A, B, C, D;

The physical location of the 3 pages – 3 are in main memory and

1 is located on the disk

0

4

8

12

Virtual

Address

A

B

C

D

0

4K

8K

12K

Physical

Address

C

A

B

D Disk

16K

20K

24K

28K

Virtual Memory

Physical

Main Memory

2011

dce

Cache terms vs. VM terms

So, some definitions/“analogies”

– A “page” or “segment” of memory is analogous to

a “block” in a cache

– A “page fault” or “address fault” is analogous to a

cache miss

“real”/physical

memoryso, if we go to main memory and our data

isn’t there, we need to get it from disk…

4/25/2013

11

2011

dce

More definitions and cache comparisons

• These are more definitions than analogies…

– With VM, CPU produces “virtual addresses” that

are translated by a combination of HW/SW to

“physical addresses”

– The “physical addresses” access main memory

• The process described above is called “memory

mapping” or “address translation”

2011

dce

Cache VS. VM comparisons (1/2)

Parameter First-level cache Virtual memory

Block (page)

size

12-128 bytes 4096-65,536 bytes

Hit time 1-2 clock cycles 40-100 clock cycles

Miss penalty

(Access time)

(Transfer time)

8-100 clock cycles

(6-60 clock cycles)

(2-40 clock cycles)

700,000 – 6,000,000 clock cycles

(500,000 – 4,000,000 clock cycles)

(200,000 – 2,000,000 clock cycles)

Miss rate 0.5 – 10% 0.00001 – 0.001%

Data memory

size

0.016 – 1 MB 4MB – 4GB

It’s a lot like what happens in a cache

– But everything (except miss rate) is a LOT worse

4/25/2013

12

2011

dce

Cache VS. VM comparisons (2/2)

• Replacement policy:

– Replacement on cache misses primarily controlled

by hardware

– Replacement with VM (i.e. which page do I

replace?) usually controlled by OS

• Because of bigger miss penalty, want to make the right

choice

• Sizes:

– Size of processor address determines size of VM

– Cache size independent of processor address size

2011

dce

Virtual Memory

• Timing’s tough with virtual memory:

–AMAT = Tmem + (1-h) * Tdisk

– = 100nS + (1-h) * 25,000,000nS

• h (hit rate) had to be incredibly (almost

unattainably) close to perfect to work

4/25/2013

13

2011

dce

Reading assignment 1

25

 Replacement, Segmentation and protection in

virtual memory

