
4/25/2013

1

BK
TP.HCM

2011

dce

ADVANCED ADVANCED COMPUTER COMPUTER

ARCHITECTUREARCHITECTURE

Khoa Khoa học và Kỹ thuật Máy tính

BM Kỹ thuật Máy tính

Trần Ngọc Thịnh

http://www.cse.hcmut.edu.vn/~tnthinh

©2013, dce

2011

dce

Memory Hierarchy Design

(part2)

Memory Hierarchy Design

(part2)

2

http://www.cse.hcmut.edu.vn/~

4/25/2013

2

2011

dce

Unified vs. Separate Level Unified vs. Separate Level 1 1 CacheCache

• Unified Level 1 Cache (Princeton Memory Architecture).

A single level 1 (L1) cache is used for both instructions and data.

• Separate instruction/data Level 1 caches (Harvard Memory Architecture):

The level 1 (L1) cache is split into two caches, one for instructions

(instruction cache, L1 I-cache) and the other for data (data cache, L1 D-

cache).

Control

Datapath

Processor

R
e
g

is
te

rs

Unified

Level

One

Cache

L1

Control

Datapath

Processor
R

e
g

is
te

rs

L1

I-cache

L1

D-cache

Unified Level 1 Cache

(Princeton Memory Architecture)
Separate (Split) Level 1 Caches

(Harvard Memory Architecture)

Instruction

Level 1

Cache

Data

Level 1

Cache

Most

Common

2011

dce

Memory HierarchyHierarchy Performance (1/2)

• The Average Memory Access Time (AMAT): The number of

cycles required to complete an average memory access

request by the CPU.

• Memory stall cycles per memory access: The number of stall

cycles added to CPU execution cycles for one memory

access.

Memory stall cycles per average memory access = (AMAT -1)

• For ideal memory: AMAT = 1 cycle, this results in zero

memory stall cycles.

4/25/2013

3

2011

dce

Memory HierarchyHierarchy Performance (2/2)

• Memory stall cycles per average instruction =

Number of memory accesses per instruction

x Memory stall cycles per average memory access

= (1 + fraction of loads/stores) x (AMAT -1)

Base CPI = CPIexecution = CPI with ideal memory

CPI = CPIexecution + Mem Stall cycles per instruction

Instruction

Fetch

2011

dce Cache Performance:Single Level LCache Performance:Single Level L1 1 Princeton Princeton

(Unified) Memory Architecture ((Unified) Memory Architecture (11//22))

CPUtime = Instruction count x CPI x Clock cycle time

CPIexecution = CPI with ideal memory

CPI = CPIexecution + Mem Stall cycles per instruction

Mem Stall cycles per instruction =

Memory accesses per instruction x Memory stall cycles per access

Assuming no stall cycles on a cache hit (cache access time = 1 cycle, stall = 0)

Cache Hit Rate = H1 Miss Rate = 1- H1

4/25/2013

4

2011

dce Cache PerformanceCache Performance: Single : Single Level LLevel L1 1 Princeton Princeton

(Unified) Memory Architecture ((Unified) Memory Architecture (22//22))

Memory stall cycles per memory access = Miss rate x Miss penalty

Memory accesses per instruction = (1 + fraction of loads/stores)

Miss Penalty = M

= the number of stall cycles resulting from missing in cache

= Main memory access time - 1

Thus for a unified L1 cache with no stalls on a cache hit:

CPI = CPIexecution + (1 + fraction of loads/stores) x (1 - H1) x M

AMAT = 1 + Miss rate x Miss penalty

AMAT = 1 + (1 - H1) x M

2011

dce

Cache Performance Example (Cache Performance Example (11//22))
• Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle) with a

single level of cache.

• CPIexecution = 1.1

• Instruction mix: 50% arith/logic, 30% load/store, 20% control

• Assume a cache miss rate of 1.5% and a miss penalty of M= 50 cycles.

CPI = CPIexecution + mem stalls per instruction

Mem Stalls per instruction

= Mem accesses per instruction x Memory stall cycles per access

= Mem accesses per instruction x Miss rate x Miss penalty

Mem accesses per instruction = 1 + 0.3 = 1.3

Mem Stalls per memory access = (1- H1) x M = 0.015 x 50 = 0.75 cycles

AMAT = 1 +.75 = 1.75 cycles

Mem Stalls per instruction = 1.3 x .015 x 50 = 0.975

CPI = 1.1 + .975 = 2.075

The ideal memory CPU with no misses is 2.075/1.1 = 1.88 times faster

Instruction fetch Load/store

4/25/2013

5

2011

dce

Cache Performance Example Cache Performance Example (2/2(2/2))
• Suppose for the previous example we double the clock rate to

400 MHz, how much faster is this machine, assuming similar

miss rate, instruction mix?

• Since memory speed is not changed, the miss penalty takes

more CPU cycles:

Miss penalty = M = 50 x 2 = 100 cycles.

CPI = 1.1 + 1.3 x .015 x 100 = 1.1 + 1.95 = 3.05

Speedup = (CPIold x Cold)/ (CPInew x Cnew)

= 2.075 x 2 / 3.05 = 1.36

• The new machine is only 1.36 times faster rather than 2 times

faster due to the increased effect of cache misses.

 CPUs with higher clock rate, have more cycles per cache miss and more

memory impact on CPI.

2011

dce Cache PerformanceCache Performance

Harvard Memory Architecture Harvard Memory Architecture

For a CPU with separate or split level one (L1) caches for

instructions and data (Harvard memory architecture) and

no stalls for cache hits:

CPUtime = Instruction count x CPI x Clock cycle time

CPI = CPIexecution + Mem Stall cycles per instruction

Mem Stall cycles per instruction =

Instruction Fetch Miss rate x M +

Data Memory Accesses Per Instruction x Data Miss Rate x M

4/25/2013

6

2011

dce

Cache Performance Example (Cache Performance Example (11//22))

• Suppose a CPU uses separate level one (L1) caches for

instructions and data (Harvard memory architecture) with

different miss rates for instruction and data access:

– A cache hit incurs no stall cycles while a cache miss incurs 200 stall

cycles for both memory reads and writes.

– CPIexecution = 1.1

– Instruction mix: 50% arith/logic, 30% load/store, 20% control

– Assume a cache miss rate of 0.5% for instruction fetch and a cache

data miss rate of 6%.

– Find the resulting CPI using this cache? How much faster is the CPU

with ideal memory?

2011

dce

Cache Performance Example (Cache Performance Example (22//22))

CPI = CPIexecution + mem stalls per instruction
Mem Stall cycles per instruction = Instruction Fetch Miss rate x M +

Data Memory Accesses Per Instruction x Data Miss Rate x M

Mem Stall cycles per instruction = 0.5/100 x 200 + 6/100 x 0.3 x 200
= 1 + 3.6 = 4.6

Mem Stall cycles per access = 4.6 / 1.3 = 3.5 cycles

AMAT = 1 + 3.5 = 4.5 cycles

CPI = CPIexecution + mem stalls per instruction = 1.1 + 4.6 = 5.7

The CPU with ideal cache (no misses) is 5.7/1.1 = 5.18 times faster

With no cache the CPI would have been = 1.1 + 1.3 X 200 =
261.1 !!

4/25/2013

7

2011

dce

Virtual Memory

• Some facts of computer life…

– Computers run lots of processes simultaneously

– No full address space of memory for each process

– Must share smaller amounts of physical memory

among many processes

• Virtual memory is the answer!

– Divides physical memory into blocks, assigns

them to different processes

2011

dce

Virtual Memory

• Virtual memory (VM) allows main memory

(DRAM) to act like a cache for secondary

storage (magnetic disk).

• VM address translation a provides a mapping

from the virtual address of the processor to the

physical address in main memory or on disk.

Compiler assigns data to a “virtual” address.

VA translated to a real/physical somewhere in memory…

(allows any program to run anywhere;

where is determined by a particular machine, OS)

4/25/2013

8

2011

dce

VM Benefit

• VM provides the following benefits

– Allows multiple programs to share the same

physical memory

– Allows programmers to write code as though they

have a very large amount of main memory

– Automatically handles bringing in data from disk

2011

dce

Virtual Memory Basics

• Programs reference “virtual” addresses in a non-existent

memory

– These are then translated into real “physical” addresses

– Virtual address space may be bigger than physical address space

• Divide physical memory into blocks, called pages

– Anywhere from 512 to 16MB (4k typical)

• Virtual-to-physical translation by indexed table lookup

– Add another cache for recent translations (the TLB)

• Invisible to the programmer

– Looks to your application like you have a lot of memory!

– Anyone remember overlays?

4/25/2013

9

2011

dce

VM: Page Mapping

Process 1’s

Virtual

Address

Space

Process 2’s

Virtual

Address

Space

Physical Memory

Disk

Page Frames

2011

dce

VM: Address Translation

Virtual page number Page offset

Physical page number Page offset

Page

Table

base

Per-process page table

Valid bit

Protection bits

Dirty bt

Reference bit

12 bits20 bits Log2 of

pagesize

To physical memory

4/25/2013

10

2011

dce

Example of virtual memory

• Relieves problem of making a

program that was too large to

fit in physical memory –

well….fit!

• Allows program to run in any

location in physical memory

– (called relocation)

– Really useful as you

might want to run same

program on lots

machines…

Logical program is in contiguous VA space; here, consists of 4 pages:

A, B, C, D;

The physical location of the 3 pages – 3 are in main memory and

1 is located on the disk

0

4

8

12

Virtual

Address

A

B

C

D

0

4K

8K

12K

Physical

Address

C

A

B

D Disk

16K

20K

24K

28K

Virtual Memory

Physical

Main Memory

2011

dce

Cache terms vs. VM terms

So, some definitions/“analogies”

– A “page” or “segment” of memory is analogous to

a “block” in a cache

– A “page fault” or “address fault” is analogous to a

cache miss

“real”/physical

memoryso, if we go to main memory and our data

isn’t there, we need to get it from disk…

4/25/2013

11

2011

dce

More definitions and cache comparisons

• These are more definitions than analogies…

– With VM, CPU produces “virtual addresses” that

are translated by a combination of HW/SW to

“physical addresses”

– The “physical addresses” access main memory

• The process described above is called “memory

mapping” or “address translation”

2011

dce

Cache VS. VM comparisons (1/2)

Parameter First-level cache Virtual memory

Block (page)

size

12-128 bytes 4096-65,536 bytes

Hit time 1-2 clock cycles 40-100 clock cycles

Miss penalty

(Access time)

(Transfer time)

8-100 clock cycles

(6-60 clock cycles)

(2-40 clock cycles)

700,000 – 6,000,000 clock cycles

(500,000 – 4,000,000 clock cycles)

(200,000 – 2,000,000 clock cycles)

Miss rate 0.5 – 10% 0.00001 – 0.001%

Data memory

size

0.016 – 1 MB 4MB – 4GB

It’s a lot like what happens in a cache

– But everything (except miss rate) is a LOT worse

4/25/2013

12

2011

dce

Cache VS. VM comparisons (2/2)

• Replacement policy:

– Replacement on cache misses primarily controlled

by hardware

– Replacement with VM (i.e. which page do I

replace?) usually controlled by OS

• Because of bigger miss penalty, want to make the right

choice

• Sizes:

– Size of processor address determines size of VM

– Cache size independent of processor address size

2011

dce

Virtual Memory

• Timing’s tough with virtual memory:

–AMAT = Tmem + (1-h) * Tdisk

– = 100nS + (1-h) * 25,000,000nS

• h (hit rate) had to be incredibly (almost

unattainably) close to perfect to work

4/25/2013

13

2011

dce

Reading assignment 1

25

 Replacement, Segmentation and protection in

virtual memory

