

Memory Hierarchy Performance (2/2)	
 Memory stall cycles per average instruction = Number of memory accesses per instruction x Memory stall cycles per average memory access Instruction = (1 + fraction of loads/stores) x (AMAT -1) 	
Base CPI = CPI _{execution} = CPI with ideal memory CPI = CPI _{execution} + Mem Stall cycles per instruction	

Parameter	First-level cache	Virtual memory	
Block (page) size	12-128 bytes	4096-65,536 bytes	
Hit time	1-2 clock cycles	40-100 clock cycles	
Miss penalty	8-100 clock cycles	700,000 – 6,000,000 clock cycles	
(Access time)	(6-60 clock cycles)	(500,000 - 4,000,000 clock cycles)	
(Transfer time)	(2-40 clock cycles)	(200,000 – 2,000,000 clock cycles)	
Miss rate	0.5 – 10%	0.00001 – 0.001%	
Data memory size	0.016 – 1 MB	4MB – 4GB	

It's a lot like what happens in a cache

- But everything (except miss rate) is a LOT worse

