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Unified vs.  Separate Level Unified vs.  Separate Level 1 1 CacheCache

• Unified Level 1 Cache  (Princeton Memory Architecture).

A single level 1 (L1 ) cache is used for both instructions and data.

• Separate  instruction/data Level 1 caches (Harvard  Memory Architecture):

The level 1 (L1) cache is split into two caches, one for instructions 

(instruction cache,  L1 I-cache) and the other for data (data cache,  L1  D-

cache).  
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Memory HierarchyHierarchy Performance (1/2)

• The Average Memory Access Time (AMAT): The number of 

cycles required to complete an average memory access 

request by the CPU.

• Memory stall cycles per memory access: The number of stall 

cycles added to CPU execution cycles for one memory 

access.

Memory stall cycles per average memory access =  (AMAT -1)

• For ideal memory:   AMAT  =  1  cycle,  this results in zero 

memory stall cycles.
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Memory HierarchyHierarchy Performance (2/2)

• Memory stall cycles per average instruction =

Number of memory accesses per instruction

x Memory stall cycles per average memory access

=  (  1  +   fraction of loads/stores)  x  (AMAT -1 )

Base CPI = CPIexecution =   CPI with ideal memory

CPI =    CPIexecution +   Mem Stall cycles per instruction

Instruction 

Fetch
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(Unified) Memory Architecture ((Unified) Memory Architecture (11//22) ) 

CPUtime =   Instruction count x  CPI  x  Clock cycle time

CPIexecution =   CPI with ideal memory

CPI =    CPIexecution +   Mem Stall cycles per instruction 

Mem Stall cycles per instruction =  

Memory  accesses per instruction  x Memory stall cycles per access

Assuming no stall cycles on a cache hit (cache access time = 1 cycle, stall = 0)

Cache Hit Rate = H1         Miss Rate = 1- H1
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(Unified) Memory Architecture ((Unified) Memory Architecture (22//22))

Memory stall cycles per memory access  =  Miss rate x  Miss penalty

Memory  accesses per instruction =  (  1  +   fraction of loads/stores)

Miss Penalty = M

= the number of stall cycles resulting from missing in cache

= Main memory access time - 1

Thus for a unified L1 cache with no stalls on a cache hit:

CPI =    CPIexecution +  (1  + fraction of loads/stores) x (1 - H1) x M

AMAT =  1 + Miss rate x  Miss penalty

AMAT = 1 + (1 - H1) x M
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Cache Performance Example (Cache Performance Example (11//22))
• Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle) with a 

single level of cache.

• CPIexecution =  1.1

• Instruction mix:   50% arith/logic,  30% load/store, 20% control

• Assume a cache miss rate of 1.5% and a miss penalty of M= 50 cycles.

CPI =   CPIexecution +   mem stalls per instruction

Mem Stalls per instruction 

= Mem accesses per instruction  x Memory stall cycles per access

= Mem accesses per instruction  x   Miss rate x Miss penalty

Mem accesses per instruction =  1  +  0.3   =  1.3

Mem Stalls per memory access  = (1- H1) x M = 0.015 x 50  = 0.75 cycles

AMAT = 1 +.75 = 1.75 cycles

Mem Stalls per instruction  =  1.3 x  .015 x 50  =   0.975

CPI =  1.1  +  .975 =   2.075

The ideal memory CPU with no misses is  2.075/1.1 =  1.88 times faster

Instruction fetch Load/store
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Cache Performance Example Cache Performance Example (2/2(2/2))
• Suppose for the previous example we double the clock rate to 

400 MHz, how much faster is this machine, assuming similar 

miss rate, instruction mix?

• Since memory speed is not changed, the miss penalty takes 

more CPU cycles:

Miss penalty = M =  50  x  2  =  100 cycles.

CPI =  1.1 +  1.3 x .015 x 100 =  1.1 + 1.95 =  3.05 

Speedup  =    (CPIold x Cold)/ (CPInew x Cnew)

=   2.075  x 2 /  3.05  =  1.36

• The new machine is only 1.36 times faster rather than 2 times 

faster due to the increased effect of cache misses.

 CPUs with higher clock rate, have more cycles per cache miss and more 

memory impact on CPI.
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Harvard Memory Architecture Harvard Memory Architecture 

For a CPU with separate or split level  one (L1) caches for  

instructions and data  (Harvard memory architecture)  and

no stalls for cache hits:

CPUtime  =   Instruction count x  CPI  x  Clock cycle time

CPI =    CPIexecution +   Mem Stall cycles per instruction 

Mem Stall  cycles per instruction =  

Instruction Fetch Miss rate x M  +

Data Memory Accesses Per Instruction x Data Miss Rate x M
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Cache Performance Example (Cache Performance Example (11//22))

• Suppose a CPU uses separate level  one (L1)  caches for  

instructions and data  (Harvard memory architecture)  with 

different miss rates for instruction and data access:

– A cache hit incurs no stall cycles while a cache miss incurs 200 stall 

cycles for both memory reads and writes.

– CPIexecution =  1.1

– Instruction mix:   50% arith/logic,  30% load/store, 20% control

– Assume a cache miss rate of  0.5% for instruction fetch and a cache 

data miss rate of  6%. 

– Find the resulting CPI using this cache?   How much faster is the CPU 

with ideal memory?
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Cache Performance Example (Cache Performance Example (22//22))

CPI =   CPIexecution +   mem stalls per instruction
Mem Stall  cycles per instruction =  Instruction Fetch Miss rate x M +  

Data Memory Accesses Per Instruction x  Data Miss Rate x  M

Mem Stall  cycles per instruction =    0.5/100 x 200   + 6/100 x 0.3 x 200  
=   1   +  3.6  = 4.6

Mem Stall  cycles per access = 4.6 / 1.3 = 3.5 cycles

AMAT = 1 + 3.5 = 4.5 cycles

CPI =   CPIexecution +   mem stalls per instruction  =  1.1  + 4.6  =   5.7

The CPU with ideal cache (no misses)  is  5.7/1.1 =  5.18  times faster 

With no cache the CPI would have been  =   1.1  +  1.3 X 200  =  
261.1 !!
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Virtual Memory

• Some facts of computer life…

– Computers run lots of processes simultaneously

– No full address space of memory for each process

– Must share smaller amounts of physical memory 

among many processes

• Virtual memory is the answer!

– Divides physical memory into blocks, assigns 

them to different processes
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Virtual Memory

• Virtual memory (VM) allows main memory 

(DRAM) to act like a cache for secondary 

storage (magnetic disk).

• VM address translation a provides a mapping 

from the virtual address of the processor to the 

physical address in main memory or on disk.

Compiler assigns data to a “virtual” address.

VA translated to a real/physical somewhere in memory…

(allows any program to run anywhere;

where is determined by a particular machine, OS)
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VM Benefit

• VM provides the following benefits

– Allows multiple programs to share the same 

physical memory

– Allows programmers to write code as though they 

have a very large amount of main memory

– Automatically handles bringing in data from disk

2011

dce

Virtual Memory Basics

• Programs reference “virtual” addresses in a non-existent 

memory

– These are then translated into real “physical” addresses

– Virtual address space may be bigger than physical address space

• Divide physical memory into blocks, called pages

– Anywhere from 512 to 16MB (4k typical)

• Virtual-to-physical translation by indexed table lookup

– Add another cache for recent translations (the TLB)

• Invisible to the programmer

– Looks to your application like you have a lot of memory! 

– Anyone remember overlays? 
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VM: Page Mapping

Process 1’s

Virtual 

Address

Space

Process 2’s

Virtual 

Address

Space

Physical Memory

Disk

Page Frames
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VM: Address Translation

Virtual page number Page offset

Physical page number Page offset

Page 

Table

base

Per-process page table

Valid bit

Protection bits

Dirty bt

Reference bit

12 bits20 bits Log2 of

pagesize

To physical memory
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Example of virtual memory

• Relieves problem of making a 

program that was too large to 

fit in physical memory –

well….fit!

• Allows program to run in any 

location in physical memory 

– (called relocation)

– Really useful as you 

might want to run same 

program on lots 

machines…

Logical program is in contiguous VA space; here, consists of 4 pages:  

A, B, C, D;

The physical location of the 3 pages – 3 are in main memory and 

1 is located on the disk
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Cache terms vs. VM terms

So, some definitions/“analogies”

– A “page” or “segment” of memory is analogous to 

a “block” in a cache

– A “page fault” or “address fault” is analogous to a 

cache miss

“real”/physical

memoryso, if we go to main memory and our data

isn’t there, we need to get it from disk…
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More definitions and cache comparisons

• These are more definitions than analogies…

– With VM, CPU produces “virtual addresses” that 

are translated by a combination of HW/SW to 

“physical addresses”

– The “physical addresses” access main memory

• The process described above is called “memory 

mapping” or “address translation”
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Cache VS. VM comparisons (1/2)

Parameter First-level cache Virtual memory

Block (page) 

size

12-128 bytes 4096-65,536 bytes

Hit time 1-2 clock cycles 40-100 clock cycles

Miss penalty

(Access time)

(Transfer time)

8-100 clock cycles

(6-60 clock cycles)

(2-40 clock cycles)

700,000 – 6,000,000 clock cycles

(500,000 – 4,000,000 clock cycles)

(200,000 – 2,000,000 clock cycles)

Miss rate 0.5 – 10% 0.00001 – 0.001%

Data memory 

size

0.016 – 1 MB 4MB – 4GB

It’s a lot like what happens in a cache

– But everything (except miss rate) is a LOT worse
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Cache VS. VM comparisons (2/2)

• Replacement policy:

– Replacement on cache misses primarily controlled 

by hardware

– Replacement with VM (i.e. which page do I 

replace?) usually controlled by OS

• Because of bigger miss penalty, want to make the right 

choice

• Sizes:

– Size of processor address determines size of VM

– Cache size independent of processor address size
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Virtual Memory

• Timing’s tough with virtual memory:

–AMAT = Tmem + (1-h) * Tdisk

– =  100nS + (1-h) * 25,000,000nS

• h (hit rate) had to be incredibly (almost 

unattainably) close to perfect to work
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Reading assignment 1

25

 Replacement, Segmentation and protection in 

virtual memory


