= =]
e

ADVANCED COMPUTER
ARCHITECTURE

Khoa Khoa hoc va Ky thuat May tinh
BM Ky thuat May tinh
Tran Ngoc Thinh
http://www.cse.hcmut.edu.vn/~tnthinh

©2013, dce

dce
2011

Memory Hierarchy Design

B

Four-issue 2GHz superscalar accessing 100ns DRAM could execute
800 instructions during time for one memory access!

Performance
(1/latency)

4000

100

A0

Since 1980, CPU has outpaced DRAM ...

Gap grew 50% per
year

CPU
v 60% per yr
2Xin1.5yrs

DRAM
. 9% per yr
, 2Xin10yrs

DRA|

J J
T T T T T 1

Year
20
o0

dcg

Processor-DRAM Performance Gap Impact

* Toillustrate the performance impact, assume a single-issue pipelined

CPU with CPI =1 using non-ideal memory.

 Ignoring other factors, the minimum cost of a full memory access in terms
of number of wasted CPU cycles:

Year

1986:
1989:
1992:
1996:
1998:
2000:
2002:
2004:

CPU CPU Memory

speed cycle Access
MHZ ns ns

8 125 190
33 30 165
60 16.6 120
200 5 110
300 3.33 100
1000 1 90
2000 5 80
3000 .333 60

Minimum CPU memory stall cycles

or instructions wasted

190/125-1
165/30 -1
120/16.6 -1
110/5-1
100/3.33 -1
90/1-1
80/5-1
60.333-1

0.5

4.5

6.2

21

29
89
159
179

I

Capacity Uppér Level
Access Time Stagit
ging
Cost To dCly' s Xfer Unit faster
CPU Registers :
100s Bytes Focus Registers
10sns Instr. Operands prog./compiler
) 1-8 bytes
Cache
K Bytes
10-100 ns Cache
1-0.1 cents/bit cache cntl
Blocks 8-128 bytes
Main Memory
M Bytes Memory
200ns- 500ns
$.0001-.00001 cents /bit 0s
Disk Pages 512-4K bytes
G Bytes, 10 ms
(10,000,000 ns) Disk
102 10 %ents/bit) user/operator
Files Mbytes
Tape Larger
infinite
sec-pin Tape Lower Level
10 -

.BM
'

| dce Addressing the Processor-Memory Performance GAP

» Goal: lllusion of large, fast, cheap memory.
Let programs address a memory space that
scales to the disk size, at a speed that is
usually as fast as register access

e Solution: Put smaller, faster “cache”
memories between CPU and DRAM. Create
a “memory hierarchy”.

Common Predictable Patterns

Two predictable properties of memory references:

* Temporal Locality: If a location is referenced, it is
likely to be referenced again in the near future (e.g.,
loops, reuse).

 Spatial Locality: If a location is referenced it is likely
that locations near it will be referenced in the near
future (e.g., straightline code, array access).

.BM

Caches

Caches exploit both types of predictability:

— Exploit temporal locality by remembering the contents of
recently accessed locations.

— Exploit spatial locality by fetching blocks of data around
recently accessed locations.

| dce|
Simple view of cache

Address Address
Processor CACHE Main
Memory

Data Data

» The processor accesses the cache first
« Cache hit: Just use the data

« Cache miss: replace a block in cache by a
block from main memory, use the data

* The data transferred between cache and main
memory is in blocks, and controlled by
independent hardware

o Simple view of cache

» Hit rate: fraction of cache hit
* Miss rate: 1 — Hit rate

- Miss penalty: Time to replace a block + time to
deliver the data to the processor

Simple view of cache

« Example: For(i=0;i<10; i++) S =S + AJi];
* No cache: At least 12 accesses to main
memory (10 A[i] and Read S, write S)

« With Cache: if A[i] and S is in a single block
(ex 32-bytes), 1 access to load block to cache,
and 1 access to write block to main memory

» Access to S: Temporal Locality
» Access to A[i]: Spatial Locality (A[i])

B
|

Replacement

1111111111222222222233
Block Numberg;,34567890123456789012345678901

Memory |] I I m

0123

CPU need this

Cache

e Cache cannot hold all blocks

» Replace a block by another that is currently
needed by CPU

B
|

Basic Cache Design & Operation Issues

* Q1: Where can a block be placed cache?
(Block placement strategy & Cache organization)
— Fully Associative, Set Associative, Direct Mapped.

* Q2: How is a block found if it is in cache?
(Block identification)
— Tag/Block.

* Q3: Which block should be replaced on a miss?
(Block replacement)
— Random, LRU, FIFO.

* Q4: What happens on a write?

(Cache write policy)
— Write through, write back.

'@
dce
Q1: Where can a block be placed?
Block NUMbEr g 1 5 5456 7500125456780 012345678901
Memory
Set Number 0 0 1 2 3 01234567
Fully (2-way) Set Direct
Associative Associative Mapped
Block 12 anywhere anywhere in oglly Etf
can be placed set O oc

(12 mod 4) (12 mod 8)
'@

Direct-Mapped Cache

Index

Block
Qffset

ya |
7

Address

ya
7

Data Block

Tag
7_'
t K
V) Tag

2k

"o
3 |lines

4
i Data Word or Byte

« Address: N bits (2N words)

Direct-mapped Cache

Cache has 2% lines (blocks)
Each line has 2° words

Block M is mapped to the line M % 2%
Need t = N-k-bTag bits to identify mem. block

Advantage: Simple
Disadvantage: High miss rate

What if CPU accesses block NO, N1 and NO %

2= N1 % 2k ?

Direct-mapped Cache

1111111111222222222233
Block Numberg;,34567890123456789012345678901

Memory

01234567

« Access NO, N1 where NO % 2k = N1 % 2k

* Replace a block while there are many rooms
available!

.Bé(
|

4KB Direct Mapped Cache Example
o Index field
Address (showing bit positions)
T f Id 3130 .,..43 1211 210
ag trie \L l /[sml
Hit ‘l\zo ro Data
1K = 1024 Blocks ree
Each block = one word e
Can cache up to e vt I oot
232 phytes = 4 GB :
of memory 2
Mapping function:
Cache Block frame number = 021
(Block address) MOD (1024) :Zzz
i.e. index field or J?° 32
10 low bit of block address
(=
Hit or miss?
Block Address = 30 bits | Block offs:
Index = 10 bits = 2 bits

Tag f|e|d Address (showing bit positions)
4K = 4096 blocks —~—— 31...6 15..4 3210 _ Index field
Each block = four words = 16 bytes T Tow
yte
Ht Tag ‘|~ offset Word select Data
Can cache up to Index Block offset
2%2 pytes = 4 GB -
16 bits 128 bits
of memory
V Tag Data
4K
entries
16 32 32 32 32
Mux
Hit or miss? 32
Larger cache blocks take better advantage of spatial locality Block Address = 28 bits Block offset
and thus may result in a lower miss rate Tag = 16 bits | Index = 12 bits = 4 bits

QMapping Function: Cache Block frame number = (Block address) MOD (4096)

i.e. index field or 12 low bit of block address _
19

 dce
Fully Associative Cache

Tag | Data Block

e TR
e oL e e e e e R e e

e
o
<
|_
t
2. —
' =
HIT
oy B W 5
O U
o Data
m g
—(= Word
/b or Byte

.BM
-

B
TRCE

Fully associative cache

« CAM: Content Addressable Memory

Each block can be mapped to any lines in
cache

Tag bit: t = N-b. Compared to Tag of all lines

Advantage: replacement occurs only when no
rooms available

Disadvantage: resource consumption, delay
by comparing many elements

Set-Associative Cache
Tag Index |Block—#

—— - | Qffse b

t "k

V| Tag (Data Block V| Tag ;Data Block

W-way Set-associative Cache

« Balancing: Direct mapped cache vs Fully
associative cache

e Cache has 2k sets
 Each set has 2% lines

» Block M is mapped to one of 2% lines in set M
% 2k

» Tag bit: t = N-k-b

» Currently: widely used (Intel, AMD, ...)

.BM
|

B 4K Four-Way Set Associative Cache:
MIPS Implementation Example

ras Block
Tag 3130...12111098...3210 Offset
Field \ [
\I\zz s Index
Field
1024 block frames
Each block = one word Index V Tag Data V Tag Data V Tag Data V Tag Data
4-way set associative ‘1)
1024 / 4= 256 sets 2
Can cache up to i:i
232 pytes = 4 GB 255
22 32

of memory
o | LLs | Ll [L
Set associative cache requires parallel tag
matching and more complex hit logic which L
)

may increase hit time

Block Address = 30 bits L ||
- Block offset 4-to-1 multiplexor
Tag = 22bits | Index =8bits = 2 bits
ata

Cache Set Number = index= (Block address) MOD (256)

\ Hit Dat
B Mapping Function:

= Q2: How is a block found?

* Index selects which set to look in
« Compare Tag to find block

* Increasing associativity shrinks index,
expands tag. Fully Associative caches have
no index field.

» Direct-mapped: 1-way set associative?

 Fully associative: 1 set?
Memory Address

Block Address Block
Offset

Tag Index

B
|

ez What causes a MISS?

» Three Major Categories of Cache Misses:
— Compulsory Misses: first access to a block
— Capacity Misses: cache cannot contain all blocks needed
to execute the program

— Conflict Misses: block replaced by another block and then
later retrieved - (affects set assoc. or direct mapped
caches)

Nightmare Scenario: ping pong effect!

Block Size and Spatial Locality

Block is unit of transfer between the cache and memory

[Tag] [Wordo | Wordl | Word2 | Word3] 4wokr)d_glock,
Split CPU block address offset,
address — VRN y,

—~— ~
32-b bits b bits

2° = block size a.k.a line size (in bytes)

Larger block size has distinct hardware advantages
= less tag overhead
= exploit fast burst transfers from DRAM
= exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?
é Fewer blocks => more conflicts. Can waste bandwidth.

Q3: Which block should be replaced on a miss?

 Easy for Direct Mapped

« Set Associative or Fully Associative:

— Random

— Least Recently Used (LRU)
* LRU cache state must be updated on every access
* true implementation only feasible for small sets (2-

way, 4-way)

* pseudo-LRU binary tree often used for 4-8 way

— First In, First Out (FIFO) a.k.a. Round-Robin

 used in highly associative caches

» Replacement policy has a second order effect
Q since replacement only happens on misses

l5!35(14: What happens on a write?

* Cache hit:

— write through: write both cache & memory
+ generally higher traffic but simplifies cache coherence

— write back: write cache only
(memory is written only when the entry is evicted)
+ adirty bit per block can further reduce the traffic
» Cache miss:
— no write allocate: only write to main memory
— write allocate (aka fetch on write): fetch into cache

« Common combinations:
— write through and no write allocate (below example)
g — write back with write allocate (above Example)

Reading assignment 1

» Cache coherent problem in multicore systems
— Identify the problem
— Algorithms for multicore architectures

» Reference
— eecs.wsu.edu/~cs460/cs550/cachecoherence.pdf
— ...More on internet

Reading assignment 2

» Cache performance
— Replacement policy (algorithms)

» Reference

Quantitative

— ... More on internet

— Optimization (Miss rate, penalty, ..

)

— Hennessy - Patterson - Computer Architecture. A

—www?2.Ins.mit.edu/~avinatan/research/cache.pdf

