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What is pipelining?

• Implementation technique in which multiple 

instructions are overlapped in execution

• Real-life pipelining examples?

– Laundry

– Factory production lines

– Traffic??
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Instruction Pipelining (1/2)

• Instruction pipelining is CPU implementation technique where 
multiple operations on a number of instructions are 
overlapped.

• An instruction execution pipeline involves a number of steps, 
where each step completes a part of an instruction.  Each 
step is called a pipeline stage or a pipeline segment.

• The stages or steps are connected in a linear fashion:  one 
stage to the next to form the pipeline -- instructions enter at 
one end and progress through the stages and exit at the other 
end.

• The time to move an instruction one step down the pipeline is 
is equal to the machine cycle and is determined by the stage 
with the longest processing delay.
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Instruction Pipelining (2/2)
• Pipelining increases the CPU instruction throughput:  

The number of instructions completed per cycle.

– Under ideal conditions (no stall cycles),  instruction 

throughput is one instruction per machine cycle, or  ideal  

CPI = 1

• Pipelining does not reduce the execution time of an 

individual instruction:  The time needed to complete 

all processing steps of an instruction (also called 

instruction completion latency).  

– Minimum instruction latency =   n cycles,    where n is the 

number of pipeline stages
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Pipelining Example: Laundry

A B C D

• Laundry Example

• Ann, Brian, Cathy, Dave 

each have one load of 

clothes to wash, dry, and 
fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes
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Sequential Laundry

Sequential laundry takes 6 hours for 4 loads

If they learned pipelining, how long would  laundry take? 

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight
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Pipelined laundry takes 3.5 hours for 4 loads 

Speedup = 6/3.5 = 1.7

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T

a

s

k
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r

d

e

r

Time

30 40 40 40 40 20

Pipelined Laundry Start work ASAP
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Pipelining Lessons

Pipelining doesn’t help 

latency of single task, it helps 

throughput of entire workload

Pipeline rate limited by 

slowest pipeline stage

Multiple tasks operating 

simultaneously

Potential speedup = Number 

pipe stages

Unbalanced lengths of pipe 

stages reduces speedup

Time to “fill” pipeline and time 

to “drain” it reduces speedup
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D
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30 40 40 40 40 20
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Pipelining Example: Laundry

• Pipelined Laundry Observations:

– At some point, all stages of washing will be 
operating concurrently

– Pipelining doesn’t reduce number of stages 

• doesn’t help latency of single task

• helps throughput of entire workload

– As long as we have separate resources, we can 
pipeline the tasks

– Multiple tasks operating simultaneously use 
different resources

10



3/19/2013

6

2011

dce

Pipelining Example: Laundry

• Pipelined Laundry Observations:
– Speedup due to pipelining depends on the number 

of stages in the pipeline

– Pipeline rate limited by slowest pipeline stage 
• If dryer needs 45 min , time for all stages has to be 45 

min to accommodate it

• Unbalanced lengths of pipe stages reduces speedup

– Time to “fill” pipeline and time to “drain” it reduces 
speedup

– If one load depends on another, we will have to 
wait (Delay/Stall  for Dependencies)
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Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

CPU Pipelining

• 5 stages of a MIPS instruction

– Fetch instruction from instruction memory

– Read registers while decoding instruction

– Execute operation or calculate address,  depending on 

the instruction type

– Access an operand from data memory

– Write result into a register

• We can reduce the cycles to fit the stages.

12



3/19/2013

7

2011

dce

CPU Pipelining
• Example: Resources for Load Instruction 

– Fetch instruction from instruction memory (Ifetch)
– Instruction memory (IM)

– Read registers while decoding instruction 
(Reg/Dec)

– Register file & decoder (Reg)

– Execute operation or calculate address,  depending 
on the instruction type (Exec)

– ALU

– Access an operand from data memory (Mem)
– Data memory (DM)

– Write result into a register (Wr)
– Register file (Reg)
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• Note that accessing source & destination registers is performed in two 
different parts of the cycle 

• We need to decide upon which part of the cycle should reading and 
writing to the register file take place.

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

I

n

s

t

r.
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r

d

e

r

Time (clock cycles)

A
L
UIm Reg Dm Reg

A
L
UIm Reg Dm Reg

A
L
UIm Reg Dm Reg

A
L
UIm Reg Dm Reg

A
L
UIm Reg Dm Reg

Fill time Sink time

Reading Writing

CPU Pipelining
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CPU Pipelining: Example

• Single-Cycle, non-pipelined execution

•Total time for 3 instructions: 24 ns

Instruction
fetch

Reg ALU
Data

access
Reg

8 ns
Instruction

fetch
Reg ALU

Data
access

Reg

8 ns
Instruction

fetch

8 n s

Time

lw $ 1 , 1 0 0 ($0 )

lw $ 2 , 2 0 0 ($0 )

lw $ 3 , 3 0 0 ($0 )

2 4 6 8 10 12 14 16 18

. . .

P r o g r a m
e x e c u t io n
o rd e r

(in in structio ns )
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CPU Pipelining: Example

• Single-cycle, pipelined execution 

– Improve performance by increasing instruction throughput

– Total time for 3 instructions = 14 ns

– Each instruction adds 2 ns to total execution time

– Stage time limited by slowest resource (2 ns)

– Assumptions:

• Write to register occurs in 1st half of clock

• Read from register occurs in 2nd half of clock

Reg

Reg

Reg

2 4 6 8 1 0 1 2 1 4

Instruction

fetch
Reg ALU

Data

access

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 n s
Instruction

fetch
Reg ALU

Data

access

2 ns
Instruction

fetch
Reg ALU

Data

access

2 n s 2 n s 2 n s 2 ns 2 n s

P ro g ra m

e x e c u t io n

o rd e r

( in in s t ru c tio n s)
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CPU Pipelining: Example
• Assumptions:

– Only consider the following instructions: 

lw, sw, add, sub, and, or, slt, beq

– Operation times for instruction classes are:

• Memory access 2 ns

• ALU operation 2 ns

• Register file read or write 1 ns

– Use a single- cycle  (not multi-cycle) model

– Clock cycle must accommodate the slowest instruction (2 ns)

– Both pipelined & non-pipelined approaches use the same HW components

InstrClass IstrFetch RegRead ALUOp DataAccess RegWrite TotTime

lw 2 ns 1 ns 2 ns 2 ns 1 ns 8 ns

sw 2 ns 1 ns 2 ns 2 ns  7 ns

add, sub, and, or, slt 2 ns 1 ns 2 ns 1 ns 6 ns

beq 2 ns 1 ns 2 ns  5 ns
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CPU Pipelining Example: (1/2)

• Theoretically:

– Speedup should be equal to number of stages ( n 

tasks, k stages, p latency)  

– Speedup = n*p                 ≈ k (for large n)

p/k*(n-1) + p

• Practically:

– Stages are imperfectly balanced

– Pipelining needs overhead

– Speedup less than number of stages
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CPU Pipelining Example: (2/2)
• If we have 3 consecutive instructions

– Non-pipelined needs 8 x 3 = 24 ns

– Pipelined needs 14 ns

=> Speedup = 24 / 14 = 1.7

• If we have1003 consecutive instructions

– Add more time for 1000 instruction (i.e. 1003 instruction)on 

the previous example

• Non-pipelined total time= 1000 x 8 + 24 =  8024 ns

• Pipelined total time = 1000 x 2 + 14 =  2014 ns

=> Speedup ~ 3.98~ (8 ns / 2 ns]

~ near perfect speedup

=> Performance increases for larger number of instructions 

(throughput)
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Pipelining MIPS Instruction Set
• MIPS was designed with pipelining in mind

=> Pipelining is easy in MIPS:

– All instruction are the same length

– Limited instruction format

– Memory operands appear only in lw & sw instructions

– Operands must be aligned in memory

1. All MIPS instruction are the same length

– Fetch instruction in 1st  pipeline stage

– Decode instructions in 2nd stage

– If instruction length varies (e.g. 80x86), pipelining will be 

more challenging
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Pipelining MIPS Instruction Set

2. MIPS has limited instruction format

– Source register in the same place for each 

instruction (symmetric)

– 2nd stage can begin reading at the same time as 

decoding

– If instruction format wasn’t symmetric, stage 2 

should be split into 2 distinct stages

=> Total stages = 6 (instead of 5)
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Pipelining MIPS Instruction Set

3. Memory operands appear only in lw & sw 
instructions

– We can use the execute stage to  calculate 
memory address

– Access memory in the next stage

– If we needed to operate on operands in memory 
(e.g. 80x86), stages 3 & 4 would expand to 

• Address calculation

• Memory access

• Execute
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Pipelining MIPS Instruction Set

4. Operands must be aligned in memory

– Transfer of more than one data operand can be 

done in a single stage with no conflicts

– Need not worry about single data transfer 

instruction requiring  2 data memory accesses

– Requested data can be transferred between the 

CPU & memory in a single pipeline stage
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Instruction Pipelining Review
– MIPS In-Order Single-Issue Integer Pipeline

– Performance of Pipelines with Stalls

– Pipeline Hazards

• Structural hazards

• Data hazards

 Minimizing Data hazard Stalls by Forwarding

 Data Hazard Classification

 Data Hazards Present in Current MIPS Pipeline

• Control hazards

 Reducing Branch Stall Cycles

 Static Compiler Branch Prediction

 Delayed Branch Slot

» Canceling Delayed Branch Slot

24
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Operation

Clock Number                      Time in clock cycles 

Instruction Number        1        2           3              4               5                6                7                 8            9

Instruction I                    IF       ID         EX         MEM       WB

Instruction I+1                           IF         ID             EX          MEM       WB

Instruction I+2                                        IF              ID           EX           MEM      WB

Instruction I+3                                                          IF           ID             EX           MEM         WB

Instruction I +4                                                                         IF             ID           EX             MEM     WB

Time to fill the pipeline

MIPS Pipeline Stages:

IF         =  Instruction Fetch

ID        =  Instruction Decode

EX       =  Execution

MEM  =  Memory Access

WB     =  Write Back

First instruction, I

Completed

Last instruction, 

I+4 completed

n= 5 pipeline stages      Ideal CPI =1 

Fill Cycles =  number of stages -1

4 cycles = n -1

(No stall cycles)

In-order =  instructions executed in original program order

25
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5 Steps of MIPS Datapath

• Data stationary control
– local decode for each instruction phase 
/ pipeline stage

IR <= mem[PC]; 

PC <= PC + 4

A <= Reg[IRrs]; 

B <= Reg[IRrt]

rslt <= A opIRop B

Reg[IRrd] <= WB

WB <= rslt
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Visualizing Pipelining
Figure A.2, Page A-8
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Reg
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DMemIfetch Reg

Reg
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DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

IF                ID             EX             MEM           WB

Read operand registers

in second half of ID cycle

Write 

destination 

register

in first half 

of WB cycle

Operation of ideal integer in-order 5-stage pipeline
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Pipelining Performance Example
• Example:   For an unpipelined CPU: 

– Clock cycle = 1ns, 4 cycles for ALU operations and branches and 5 
cycles for memory operations with instruction frequencies of  40%, 
20% and 40%, respectively.

– If pipelining adds  0.2 ns to the machine clock cycle then the speedup 
in instruction execution from pipelining is:

Non-pipelined Average instruction execution time =  Clock cycle  x 

Average CPI

= 1 ns x ((40% + 20%) x 4 + 40%x 5) = 1 ns x 4.4 = 4.4 ns

In the pipelined implementation five stages are used with an 

average instruction execution time of: 1 ns + 0.2 ns = 1.2 ns

Speedup from pipelining   = Instruction time unpipelined

Instruction time pipelined

=  4.4 ns / 1.2 ns  = 3.7  times faster
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Pipeline Hazards
• Hazards are situations in pipelining which prevent the next 

instruction in the instruction stream from executing during the 

designated clock cycle possibly resulting in one or more stall 

(or wait) cycles.

• Hazards reduce the ideal speedup (increase CPI > 1) gained 

from pipelining and are classified into three classes:

– Structural hazards: Arise from hardware resource conflicts when the 

available hardware cannot support all possible combinations of 

instructions.

– Data hazards: Arise when an instruction depends on the result of a 

previous instruction in a way that is exposed by the overlapping of 

instructions in the pipeline

– Control hazards: Arise from the pipelining of conditional  branches and 

other instructions that change the PC
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How do we deal with hazards?

• Often, pipeline must be stalled

• Stalling pipeline usually lets some instruction(s) in 

pipeline proceed, another/others wait for data, 

resource, etc.

• A note on terminology:

– If we say an instruction was “issued later than instruction x”, 

we mean that it was issued after instruction x and is not as 

far along in the pipeline

– If we say an instruction was “issued earlier than instruction 

x”, we mean that it was issued before instruction x and is 

further along in the pipeline
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Stalls and performance

• Stalls impede progress of a pipeline and result in deviation 

from 1 instruction executing/clock cycle

• Pipelining can be viewed to:

– Decrease CPI or clock cycle time for instruction

– Let’s see what affect stalls have on CPI…

• CPI pipelined = Ideal CPI + Pipeline stall cycles per instruction

= 1 + Pipeline stall cycles per instruction

• Ignoring overhead and assuming stages are balanced:

ninstructiopercyclesstallpipeline

dunpipelineCPI
Speedup



1
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Even more pipeline performance issues!

• This results in:

• Which leads to:

• If no stalls, speedup equal to # of pipeline stages in 

ideal case

depthPipeline

dunpipelinecycleClock
pipelinedcycleClock 

pipelinedcycleClock

dunpipelinecycleClock
depthPipeline 

pipelinedcycleClock

dunpipelinecycleClock

ninstructiopercyclesstallPipeline
pipeliningfromSpeedup 



1

1

depthPipeline
ninstructiopercyclesstallPipeline




1

1
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Structural Hazards

• In pipelined machines  overlapped instruction execution 

requires pipelining of functional units and duplication of 

resources to allow all possible combinations of instructions in 

the pipeline.

• If a resource conflict arises due to a hardware resource being 

required by more than one instruction in a single cycle, and 

one or more such instructions cannot be accommodated,  

then a structural hazard has occurred, for example:

– when a pipelined machine has a shared single-memory pipeline stage 

for data and instructions.

 stall the pipeline for one cycle for memory data access
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An example of a structural hazard

A
L

U

RegMem DM Reg

A
L

U

RegMem DM Reg

A
L

U

RegMem DM Reg

A
L

U

RegMem DM Reg

Time

A
L

U

RegMem DM Reg

Load

Instruction 1

Instruction 2

Instruction 3

Instruction 4

What’s the problem here?
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How is it resolved?

A
L

U

RegMem DM Reg

A
L

U

RegMem DM Reg

A
L

U

RegMem DM Reg

Time

A
L

U

RegMem DM Reg

Load

Instruction 1

Instruction 2

Stall

Instruction 3

Bubble Bubble Bubble Bubble Bubble

Pipeline generally stalled by 

inserting a “bubble” or NOP
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Or alternatively…

Inst. # 1 2 3 4 5 6 7 8 9 10

LOAD IF ID EX MEM WB

Inst. i+1 IF ID EX MEM WB

Inst. i+2 IF ID EX MEM WB

Inst. i+3 stall IF ID EX MEM WB

Inst. i+4 IF ID EX MEM WB

Inst. i+5 IF ID EX MEM

Inst. i+6 IF ID EX

Clock Number

LOAD instruction “steals” an instruction fetch cycle 

which will cause the pipeline to stall.

Thus, no instruction completes on clock cycle 8
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A Structural Hazard Example
• Given that data references are 40% for a specific instruction

mix or program, and that the ideal pipelined CPI ignoring

hazards is equal to 1.

• A machine with a data memory access structural hazards

requires a single stall cycle for data references and has a

clock rate 1.05 times higher than the ideal machine. Ignoring

other performance losses for this machine:

Average instruction time = CPI X Clock cycle time

Average instruction time = (1 + 0.4 x 1) x Clock cycle ideal

1.05

= 1.3 X Clock cycle time ideal

Therefore the machine without the hazard is better.
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Remember the common case!
• All things being equal, a machine without structural 

hazards will always have a lower CPI.

• But, in some cases it may be better to allow them 

than to eliminate them.

• These are situations a computer architect might have 

to consider:

– Is pipelining functional units or duplicating them costly in 

terms of HW?

– Does structural hazard occur often?

– What’s the common case???
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Data Hazards

• Data hazards occur when the pipeline changes the order of
read/write accesses to instruction operands in such a way
that the resulting access order differs from the original
sequential instruction operand access order of the
unpipelined machine resulting in incorrect execution.

• Data hazards may require one or more instructions to be
stalled to ensure correct execution.

• Example:
ADD R1, R2, R3

SUB R4, R1, R5

AND R6, R1, R7

OR R8,R1,R9

XOR R10, R1, R11

– All the instructions after ADD use the result of the ADD instruction

– SUB, AND instructions need to be stalled for correct execution.
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Data Hazard on R1
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sub r4,r1,r3

and r6,r1,r7
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Minimizing Data hazard Stalls by Forwarding

• Forwarding is a hardware-based technique (also called register 
bypassing or short-circuiting) used to eliminate or  minimize data 
hazard stalls.

• Using forwarding hardware, the result of an instruction is copied 
directly from where it is produced  (ALU, memory read port etc.),  to 
where  subsequent instructions need it (ALU input register, memory 
write port etc.)

• For example, in the MIPS integer pipeline with forwarding:
– The ALU result from the EX/MEM register may be forwarded or fed back to the 

ALU  input latches as needed instead of the register operand value read in the  ID 
stage.

– Similarly, the Data Memory Unit result from the MEM/WB  register may be fed back 
to the ALU input latches as needed .

– If the forwarding hardware detects that a previous ALU operation is to write the 
register corresponding to a source for the current ALU operation, control logic 
selects  the  forwarded result as the ALU input rather than the value read from the 
register file.
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What circuit detects and resolves this hazard?
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Forwarding to Avoid Data Hazard

Time (clock cycles)
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r
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add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or   r8,r1,r9

xor r10,r1,r11
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Forwarding to Avoid LW-SW Data Hazard

Time (clock cycles)
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O
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add r1,r2,r3

lw r4, 0(r1)

sw r4,12(r1)
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xor r10,r9,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg



3/19/2013

23

2011

dce

Data Hazard Classification

Given two instructions  I,  J,  with  I occurring before  J in an 

instruction stream:

• RAW  (read after write):    A true data dependence

J tried to read a source before I writes to it, so  J

incorrectly gets the old value.

• WAW (write after write):    A name dependence

J tries to write an operand before it is written by  I

The writes end up being performed in the wrong order.

• WAR (write after read):    A name dependence

J tries to write to a destination before it is read by I,

so I incorrectly gets the new value.

• RAR (read after read):   Not a hazard.

I

..

..

J

Program

Order

45
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I (Write)

Shared

Operand

J (Read)

Read after Write  (RAW)

I (Read)

Shared

Operand

J (Write)

Write after Read (WAR)

I (Write)

Shared

Operand

J (Write)

Write after Write  (WAW)

I (Read)

Shared

Operand

J (Read)

Read after Read  (RAR) not a hazard

I

..

..

J

Program

Order

Data Hazard ClassificationData Hazard Classification
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Read after write (RAW) hazards

• With RAW hazard, instruction j tries to read a source operand 

before instruction i writes it.

• Thus, j would incorrectly receive an old or incorrect value

• Graphically/Example:

• Can use stalling or forwarding to resolve this hazard

… j i …

Instruction j is a

read instruction

issued after i

Instruction i is a

write instruction

issued before j

i:  ADD R1, R2, R3

j:  SUB R4, R1, R6
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Write after write (WAW) hazards

• With WAW hazard, instruction j tries to write an operand 

before instruction i writes it.

• The writes are performed in wrong order leaving the value 

written by earlier instruction

• Graphically/Example:

… j i …

Instruction j is a

write instruction

issued after i

Instruction i is a

write instruction

issued before j

i:  SUB R4, R1, R3

j:  ADD R1, R2, R3
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Write after read (WAR) hazards

• With WAR hazard, instruction j tries to write an operand 

before instruction i reads it.

• Instruction i would incorrectly receive newer value of its 

operand; 

– Instead of getting old value, it could receive some newer, undesired 

value:

• Graphically/Example:

… j i …

Instruction j is a

write instruction

issued after i

Instruction i is a

read instruction

issued before j

49
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Data Hazards Requiring Stall Cycles

• In some code sequence cases,  potential data hazards cannot be handled 

by bypassing.   For example:

Lw       R1, 0 (R2)

SUB   R4, R1, R5

AND     R6, R1, R7

OR       R8, R1, R9

• The LD (load double word) instruction has the data in clock cycle 4 (MEM 

cycle).

• The DSUB instruction needs the data of R1 in the beginning of that cycle.

• Hazard prevented by hardware pipeline interlock causing a stall cycle.
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Data Hazard Even with Forwarding
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Data Hazard Even with Forwarding
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Hardware Pipeline Interlocks

• A hardware pipeline interlock detects a data hazard and stalls 

the pipeline until the hazard is cleared.

• The CPI for the stalled instruction increases by the length of 

the stall.

• For the Previous example,  (no stall cycle):

LW R1, 0(R1)          IF     ID       EX         MEM          WB

SUB R4,R1,R5               IF        ID         EX              MEM     WB

AND R6,R1,R7                             IF          ID                EX        MEM       WB

OR R8, R1, R9                                           IF                 ID         EX           MEM      WB

With Stall Cycle:

LW R1, 0(R1)           IF     ID       EX         MEM         WB

SUB R4,R1,R5               IF        ID         STALL EX           MEM    WB

AND R6,R1,R7                              IF        STALL ID            EX        MEM      WB

OR R8, R1, R9                                          STALL IF            ID          EX           MEM     WB

Stall + Forward
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Data hazards and the compiler

• Compiler should be able to help eliminate 

some stalls caused by data hazards

• i.e. compiler could not generate a LOAD 

instruction that is immediately followed by 

instruction that uses result of LOAD’s 

destination register.

• Technique is called “pipeline/instruction 

scheduling”
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Some example situations

Situation Example Action

No Dependence LW R1, 45(R2)

ADD R5, R6, R7

SUB R8, R6, R7

OR R9, R6, R7

No hazard possible because no 

dependence exists on R1 in the 

immediately following three instructions.

Dependence 

requiring stall

LW R1, 45(R2)

ADD R5, R1, R7

SUB R8, R6, R7

OR R9, R6, R7

Comparators detect the use of R1 in the 

ADD and stall the ADD (and SUB and OR) 

before the ADD begins EX

Dependence 

overcome by 

forwarding

LW R1, 45(R2)

ADD R5, R6, R7

SUB R8, R1, R7

OR R9, R6, R7

Comparators detect the use of R1 in SUB 

and forward the result of LOAD to the ALU 

in time for SUB to begin with EX

Dependence with 

accesses in order

LW R1, 45(R2)

ADD R5, R6, R7

SUB R8, R6, R7

OR R9, R1, R7

No action is required because the read of 

R1 by OR occurs in the second half of the 

ID phase, while the write of the loaded 

data occurred in the first half.
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for Data Hazard Stall Reduction

• Many types of stalls resulting from data hazards are very frequent.  For 

example:  

A  =  B +  C

produces a stall when loading the second data value (B).

• Rather than allow the pipeline to stall, the compiler could sometimes 

schedule the pipeline to avoid stalls.

• Compiler pipeline or instruction scheduling involves rearranging the code 

sequence (instruction reordering) to eliminate or reduce the number of 

stall cycles.

Static =  At  compilation time by the compiler

Dynamic = At run time by hardware in the CPU
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Static Compiler Instruction Scheduling Example

• For the code sequence:

a = b + c

d = e - f

• Assuming loads have a latency of one clock cycle,  the following 

code or pipeline compiler schedule eliminates stalls:

a, b, c, d ,e, and f

are in memory

Scheduled code with no stalls:

LW Rb,b

LW Rc,c

LW Re,e 

ADD Ra,Rb,Rc

LW Rf,f

SW  Ra,a 

SUB Rd,Re,Rf

SW Rd,d

Original code with stalls:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW  Ra,a 

LW Re,e 

LW Rf,f

SUB Rd,Re,Rf

SW Rd,d
Stall

Stall

2 stalls for original code
No stalls for scheduled code
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Performance of Pipelines with Stalls

• Hazard conditions in pipelines may make it necessary to stall the pipeline 

by a number of  cycles  degrading  performance from the ideal pipelined 

CPU  CPI of 1.

CPI pipelined  =  Ideal CPI  +  Pipeline stall clock cycles per instruction

=          1          + Pipeline stall clock cycles per instruction

• If pipelining overhead is ignored and we assume that the stages are 

perfectly balanced  then speedup from pipelining is given by:

Speedup  =   CPI unpipelined / CPI pipelined 

=  CPI unpipelined / (1 + Pipeline stall cycles per instruction)

• When all instructions in the multicycle CPU take the same number of 

cycles equal to the number of pipeline stages then:

Speedup  =  Pipeline depth / (1 +  Pipeline stall cycles per instruction) 
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Control Hazards
• When a conditional branch is executed it may change the PC and, without 

any special measures, leads to stalling the pipeline for a number of cycles 

until the branch condition is known (branch is resolved).

– Otherwise the PC may not be correct when needed in IF

• In current MIPS pipeline, the conditional branch  is resolved in stage 4 (MEM 

stage) resulting in three stall cycles as shown below:   

Branch instruction        IF    ID    EX    MEM   WB

Branch successor                 stall stall stall      IF    ID    EX     MEM   WB

Branch successor + 1                                                     IF     ID     EX        MEM   WB  

Branch successor + 2                                                              IF     ID          EX        MEM

Branch successor + 3                                                                       IF          ID          EX

Branch successor + 4                                                                                     IF          ID

Branch successor + 5                                                                                                   IF

Assuming we stall or flush the pipeline on a branch instruction: 

Three clock cycles are wasted for every branch for current MIPS pipeline

Branch Penalty = stage number where branch is resolved - 1      

here   Branch Penalty =   4 - 1  =  3 Cycles

3 stall cycles
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Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11
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Reducing Branch Stall Cycles

Pipeline hardware measures to reduce branch stall cycles:

1- Find out whether a branch is taken earlier in the pipeline. 

2- Compute the taken PC earlier in the pipeline.

In MIPS:

– In MIPS branch instructions BEQZ, BNE, test a register for equality to 

zero.

– This can be completed in the ID cycle by moving the zero test into that 

cycle.

– Both PCs (taken and not taken) must be computed early.

– Requires an additional adder because the current ALU is not useable until 

EX cycle.

– This results in just a single cycle stall on branches. 
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• If CPI = 1, 30% branch, 

Stall 3 cycles => new CPI = 1.9!

• Two part solution:

– Determine branch taken or not sooner, AND

– Compute taken branch address earlier

• MIPS branch tests if register = 0 or  0

• MIPS Solution:

– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

– 1 clock cycle penalty for branch versus 3
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Pipelined MIPS Datapath
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Four Branch Hazard Alternatives
#1: Stall until branch direction is clear

#2: Predict Branch Not Taken

– Execute successor instructions in sequence

– “Squash” instructions in pipeline if branch actually taken

– Advantage of late pipeline state update

– 47% MIPS branches not taken on average

– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken

– 53% MIPS branches taken on average

– But haven’t calculated branch target address in MIPS

• MIPS still incurs 1 cycle branch penalty

• Other machines: branch target known before outcome

– What happens when hit not-taken branch?
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Four Branch Hazard Alternatives

#4: Delayed Branch

– Define branch to take place AFTER a following 

instruction

branch instruction

sequential successor1
sequential successor2
........

sequential successorn

branch target if taken

– 1 slot delay allows proper decision and branch target 

address in 5 stage pipeline

– MIPS uses this

Branch delay of length n
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Scheduling Branch Delay Slots

• A is the best choice, fills delay slot & reduces instruction count (IC)

• In B, the sub instruction may need to be copied, increasing IC

• In B and C, must be okay to execute sub when branch fails

add  $1,$2,$3

if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add  $1,$2,$3

if $1=0 then

delay slot

add  $1,$2,$3

if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add  $1,$2,$3
add  $1,$2,$3

if $1=0 then

sub $4,$5,$6

add  $1,$2,$3

if $1=0 then

sub $4,$5,$6
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Delayed Branch

• Compiler effectiveness for single branch delay slot:

– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots 

useful in computation

– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: As processor go to 

deeper pipelines and multiple issue, the branch 

delay grows and need more than one delay slot

– Delayed branching has lost popularity compared to more 

expensive but more flexible dynamic approaches

– Growth in available transistors has made dynamic 

approaches relatively cheaper

2011

dce Evaluating Branch Alternatives

Assume: 4% unconditional branch, 

6% conditional branch- untaken, 

10% conditional branch-taken

Scheduling Branch        CPI speedup v.speedup v. scheme penalty

unpipelinedstall

Stall pipeline 3 1.60 3.1 1.0

Predict not taken1x0.04+3x0.10 1.34 3.7 1.19

Predict taken 1x0.14+2x0.061.26 4.0 1.29

Delayed branch 0.5 1.10 4.5 1.45

Pipeline speedup = Pipeline depth
1 +Branch frequencyBranch penalty
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Pipelining Summary

• Pipelining  overlaps the execution of multiple instructions. 

• With an idea pipeline, the CPI is one, and the speedup is 

equal to the number of stages in the pipeline.

• However, several factors prevent us from achieving the ideal 

speedup, including

– Not being able to divide the pipeline evenly

– The time needed to empty and flush the pipeline

– Overhead needed for pipelining 

– Structural, data, and control hazards 

• Just overlap tasks, and easy if tasks are independent
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Pipelining Summary

• Speed Up VS. Pipeline Depth; if ideal CPI is 1, then:

• Hazards limit performance

– Structural: need more HW resources

– Data: need forwarding, compiler scheduling

– Control: early evaluation & PC, delayed branch, prediction

• Increasing length of pipe increases impact of hazards; 

pipelining helps instruction bandwidth, not latency

• Compilers reduce cost of data and control hazards

– Load delay slots

– Branch delay slots

– Branch prediction

Speedup =
Pipeline Depth

1 + Pipeline stall CPI
X

Clock Cycle Unpipelined

Clock Cycle Pipelined
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