
2/25/2013

1

BK
TP.HCM

2011

dce

ADVANCED ADVANCED COMPUTER COMPUTER

ARCHITECTUREARCHITECTURE

Khoa Khoa học và Kỹ thuật Máy tính

BM Kỹ thuật Máy tính

Trần Ngọc Thịnh

http://www.cse.hcmut.edu.vn/~tnthinh

©2013, dce

2011

dce

Review of Instructions Set

Architecture

Review of Instructions Set

Architecture

Computer Architecture, Chapter 2 2

http://www.cse.hcmut.edu.vn/~

2/25/2013

2

2011

dce

Outline

3Computer Architecture, Chapter 2

 Instruction structure

 ISA styles

 Addressing modes

 Analysis on instruction set

 Case study: MIPS

2011

dce

Machine Instruction

4Computer Architecture, Chapter 2

Computer can only understand binary values

The operation of a computer is defined by

predefined binary values called Instruction

2/25/2013

3

2011

dce

5Computer Architecture, Chapter 1

instruction set

software

hardware

The Instruction Set

Instruction set: set of all instructions a processor

can perform

Interface between software and hardware

2011

dce

Instruction execution cycle

6Computer Architecture, Chapter 2

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Write

Back

Obtain the instruction

Determine action to be perform

Obtain the operand data

Compute the result (update status)

Store the result

2/25/2013

4

2011

dce

ISA Styles

ISA Styles?

• Stack

• Accumulator

• Register memory/ Memory memory

• Register register/load store

Operation

Input1 Input2

Output

7

2011

dce

ISA Styles: Stack

8Computer Architecture, Chapter 2

 Stack: The operands is on top of stack. The

result is push back to the stack

 (+): Code density, simple hardware

 (-): Low parallelism, stack bottle-neck

Stack Element

Stack Element

TOS C= A+B?

PUSH A

PUSH B

ADD

POP C

2/25/2013

5

2011

dce

ISA Styles: Accumulator

9Computer Architecture, Chapter 2

 Accumulator: One accumulator register is used in all

operations

 (+): Easy to write compiler, few instruction

 (-): Very high memory traffic, variable CPI

Accumulator

Memory

C= A+B?

LOAD A - Put A in

Accumulator

ADD B - Add B with AC

put result in AC

STORE C- Put AC in C

2011

dce

ISA Styles: Memory-memory

10Computer Architecture, Chapter 2

 Memory-memory: The operands is located in

memory

 (+): Simple hardware, design & understand

 (-): Accumulator bottle-nect, memory access

Memory

2/25/2013

6

2011

dce

ISA Styles: Register-Memory

©2011, Dr. Dinh Duc Anh Vu 11Computer Architecture, Chapter 2

Register

Register

Register

Memory

Input, Output: Register

or Memory

C= A+B?

LOAD R1, A

ADD R3, R1, B

STORE R3, C

2011

dce

ISA Styles: Register-Register

12Computer Architecture, Chapter 2

 Register-Register: All operation is on registers

 Need specific Load and Store instruction to

access memory

Register

Register

Register C= A+B?

LOAD R1, A

LOAD R2, B

ADD R3, R1, R2

STORE R3, C

2/25/2013

7

2011

dce

ISA Styles

13Computer Architecture, Chapter 2

Machine # general-purpose

registers

Architecture style Year

Motorola 6800 2 Accumulator 1974

DEC VAX 16 Register-Memory/ Memory-Memory 1977

Intel 8086 1 Extended Accumulator 1978

Motorola 68000 16 Register-Memory 1980

Intel 80386 32 Register-Memory 1985

Power PC 32 Load-Store 1992

Dec Alpha 32 Load-Store 1992

2011

dce

Other ISA Styles

14Computer Architecture, Chapter 2

 High-level-language architecture:

• In the 1960s (B5000)

• Lack of effective compiler

 Reduced Instruction Set architecture:

• Simplify hardware

• Simplify the instruction set

• Simplify the instruction format

• Rely on compiler to perform complex

operation

2/25/2013

8

2011

dce

Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers

(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model

from Implementation

High-level Language Based Concept of a Family

(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80)
(CDC 6600, Cray 1 1963-76)

(Mips,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)

LIW/”EPIC”? (IA-64. . .1999)
Computer Architecture, Chapter 2 15

2011

dce

Instruction set design

16Computer Architecture, Chapter 2

 The design of an Instruction Set is critical to

the operation of a computer system.

 Including many aspects

• Operation repertoire

• Addressing modes

• Data types

• Instruction format

• Registers

2/25/2013

9

2011

dce

Simple format

17Computer Architecture, Chapter 2

Operation Code: the operation to be performed

by the processor

Source Operand Reference: Input of the

operation. One or more source operands can

be involved

Result Operand Reference: Result of the

operation

Opcode Operand reference Operand reference

2011

dce

Instruction Types

18Computer Architecture, Chapter 2

Can be classified into 4 types:

- Data processing: Arithmetic, Logic

Ex: ADD, SUB, AND, OR, …

- Data storage: Move data from/to memory

Ex: LD, ST

- Data movement: Register and register/IO

Ex: MOV

- Control: Test and branch

Ex: JMP, CMP

2/25/2013

10

2011

dce

Operations

19Computer Architecture, Chapter 2

There must certainly be instructions for performing

the fundamental arithmetic operations
Burkes, Goldstine and Von Neumann, 1947

How many programs have “IF” statement?

-> Branch instructions

How many programs have “Call” statement?

-> Call, Return instructions

How many programs have to access memory?

… and so on

2011

dce

Operations

20Computer Architecture, Chapter 2

Operator type Example

Arithmetic & Logical Integer arithmetic and logical operations: add, and, subtract …

Data transfer Loads-stores (move instructions on machines with memory addressing)

Control Branch, jump, procedure call and return, trap

System Operating system call, Virtual memory management instructions

Floating point Floating point instructions: add, multiply

Decimal Decimal add, decimal multiply, decimal to character conversion

String String move, string compare, string search

Graphic Pixel operations, compression/decompression operations

2/25/2013

11

2011

dce

Operations

21Computer Architecture, Chapter 2

 Arithmetic, logical, data transfer and control

are almost standard categories for all

machines

 System instructions are required for multi-

programming environment although support

for system functions varies

 Others can be primitives (e.g. decimal and

string on IBM 360 and VAX), provided by a

co-processor, or synthesized by compiler

2011

dce

Operation usage

22Computer Architecture, Chapter 2

 Simple instructions are the most widely

executed

 Make the common case fast

2/25/2013

12

2011

dce

Operations

23Computer Architecture, Chapter 2

 Jump: unconditional (Goto statement)

 Branch: conditional (if/else statement)

 Call/return: procedure call/return

2011

dce

Operations

24Computer Architecture, Chapter 2

 PC-Relative addressing: short and position-

indipendent jump

 Register indirect addressing: Long jump,

dynamic library, virtual function, …

2/25/2013

13

2011

dce

Operation

25Computer Architecture, Chapter 2

2011

dce

Operation

26Computer Architecture, Chapter 2

 Load/Store: There must be mechanism to

access memory

 Is Jump necessary?

 Is Call/Return necessary?

 Is Arithmetic/Logical necessary?

 Is Move register-register necessary?

 What types of comparison need to be

supported?

2/25/2013

14

2011

dce

Addressing Modes

27Computer Architecture, Chapter 2

The way the processor refers to the operands is

called addressing mode

The addressing modes can be classified based

on:

• The source of data: Immediate, registers,

memory

• The address calculation: Direct, indirect,

indexed

2011

dce

Addressing modes

28Computer Architecture, Chapter 2

- Immediate addressing: the operand is put in

the instruction

Ex: ADD R0, #10

- Register addressing: the index of the register

which contains the operand is specified in the

instruction

Ex: ADD R0, R1

- Direct addressing: the address of the operand

is put in the instruction

Ex: ADD R0, (100)

2/25/2013

15

2011

dce

Addressing modes

29Computer Architecture, Chapter 2

- Register Indirect addressing: the address of

the operand is put in the register which is

specified in the instruction

Ex: ADD R0, (R1)

- Displacement addressing: the address of the

operand is Base register + Displacement

Ex: LD R1, 100(R2)

- Indexed addressing: The address of the

operand is Base register + Indexed register

Ex: ADD R3, (R1+R2)

2011

dce

Addressing mode use

30Computer Architecture, Chapter 2

2/25/2013

16

2011

dce

Addressing mode

31Computer Architecture, Chapter 2

2011

dce

Addressing mode

32Computer Architecture, Chapter 2

2/25/2013

17

2011

dce

Addressing modes

33Computer Architecture, Chapter 2

Based on Alpha

(only 16-bit immediate allowed)

 On VAX: 20%-25% longer than 16-bit

2011

dce

Addressing modes

34Computer Architecture, Chapter 2

 Is Memory indirect addressing necessary?

 Is Scaled addressing necessary?

 Is Register addressing necessary?

 How long should a displacement value be?

 How long should an immediate value be?

2/25/2013

18

2011

dce

Operand types

35Computer Architecture, Chapter 2

 Character:

- ACSII (8-bit): amost always used

- Unicode (16-bit): sometime

 Integer: 2’s complement

- Short: 16 bit

- Long: 32 bit

 Floating point:

- Single precision: 32 bit

- Double precision: 64 bit

2011

dce

Operand types

36Computer Architecture, Chapter 2

 Business

- Binary Coded Decimal (BCD): Accurately

represents decimal fraction

 DSP

- Fixed point

- Block floating point

 Graphic: RGBA or XYZW

- 8-bit, 16-bit or single precision floating

point

2/25/2013

19

2011

dce

Operand types & size

37Computer Architecture, Chapter 2

SPEC 2000 on Alpha

 Double word: double-precision floating point /

address on 64-bit machine

 Word: integer / address in 32-bit machine

2011

dce

Operand types and size

38Computer Architecture, Chapter 2

 Should CPU support all those types of

operand?

 Should CPU support very big-size operand?

 Is DSP’s data types used frequently?

 Is BCD used in most of operations?

 How about RGBA?

2/25/2013

20

2011

dce

Instruction format

39Computer Architecture, Chapter 2

 Instruction must be encoded to binary values

 Effect the size of compiled program

 Easy to decode -> Simple to implement

 Support as many registers and addressing

modes as possible

MIPS

Ex: ADD $t0, $s1, $s2

000000 10001 10010 01000 00000 100000

0x02324020

Opcode Rs Rt Rd Shamt Funct

2011

dce

Instruction format

40Computer Architecture, Chapter 2

Opcode
Addr

Specifier

Addr

Field
… Addr

Specifier

Addr

Field

Opcode
Addr

Field 1

Addr

Field 2

Addr

Field 3

Variable insrtuction length (e.g. VAX, X86)

Fixed insrtuction length (e.g. ARM, MIPS, PowerPC)

Hybrid: to gain high code density, use 2 type of

fixed length instruction (e.g. MIPS16, Thumb)

2/25/2013

21

2011

dce

Registers file

41Computer Architecture, Chapter 2

 Register is the fastest memory element

 Register cost much more than main memory

 Register is flexible for compiler to use

 More register need more bits to encode

 Register file with more locations can be

slower

 How many locations in register file is the most

effective?

2011

dce

Case study: MIPS

42Computer Architecture, Chapter 2

• Used as the example throughout the course

• Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)

• Large share of embedded core market

– Applications in consumer electronics, network/storage

equipment, cameras, printers, …

• Typical of many modern ISAs

http://www.mips.com/

2/25/2013

22

2011

dce

The MIPS ISA

• Instruction Categories
– Load/Store

– Computational

– Jump and Branch

– Floating Point
• coprocessor

– Memory Management

– Special

• 3 Instruction Formats: all 32 bits wide

43Computer Architecture, Chapter 2

R0 - R31

PC

HI

LO

OP

OP

OP

rs rt rd shamt funct

rs rt immediate

jump target

Registers

R-format

I-format

J-format

2011

dce

MIPS (RISC) Design Principles

• Simplicity favors regularity
– fixed size instructions

– small number of instruction formats

– opcode always the first 6 bits

• Smaller is faster
– limited instruction set

– limited number of registers in register file

– limited number of addressing modes

• Make the common case fast
– arithmetic operands from the register file (load-store machine)

– allow instructions to contain immediate operands

• Good design demands good compromises
– Same instruction length

– Single instruction format => 3 instruction formats

44Computer Architecture, Chapter 2

2/25/2013

23

2011

dce

MIPS Instruction Classes Distribution

• Frequency of MIPS instruction classes for

SPEC2006

45Computer Architecture, Chapter 2

Instruction Class Frequency

Integer Ft. Pt.

Arithmetic 16% 48%

Data transfer 35% 36%

Logical 12% 4%

Cond. Branch 34% 8%

Jump 2% 0%

2011

dce

MIPS Register Convention

Name Register
Number

Usage Preserve on
call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$k0 - $k1 26-27 reserved for operating system n.a

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

Computer Architecture, Chapter 2 46

2/25/2013

24

2011

dce

MIPS - Endianness

• Big Endian: Most-significant byte at lowest

address of a word

• Little Endian: Least-significant byte at lowest

address of a word

• MIPS is Big-endian

2011

dce

MIPS R-Format instructions

• Op: opcode

• Rs: First source register number

• Rt: Second source register number

• Rd: Destination register number

• Shamt: shift amount

– Number of bit-shift –(left/right)

• Funct: Extend opcode

– ALU function to encode the data path operation

Execution: Rd <- Rs func Rt

48Computer Architecture, Chapter 2

Op Rs Rt Rd Shamt Funct

2/25/2013

25

2011

dce

MIPS R-Format instructions

• Arithmetic operations on register

• Logical operations on register

• And more (refer [1])

• For arithmetic and logical instruction: opcode

is always SPECIAL (000000), Funct indicates

the specific operation to be performed

• What addressing mode do these instructions

use?

49Computer Architecture, Chapter 2

2011

dce

Arithmetic instruction

• ADD, SUB, MUL, DIV, …

• Ex: ADD $t0, $s1, $s2

Encoded instruction word is:

0x02324020

50Computer Architecture, Chapter 2

Special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

2/25/2013

26

2011

dce

Logical operations

• AND, OR, XOR, XNOR (bit-wise)

• Ex: OR $t0, $t1, $t2 #$t0 = $t1 | $t2

• Please calculate the encoded instruction word

for the above instruction

• Shift left, shift right

• Shamt indicates the number of bit to shift

• Ex: SLL $t2, $s0, 8

51Computer Architecture, Chapter 2

000000 00000 10000 01010 01000 000000

2011

dce

Logical operations

• Shift Right Arithmetic (SRA) use MSB as the

shift-in bit

• Ex: SRA $t2, $s0, 8

• Why is there no SLA?

• Why is there no NOT?

52Computer Architecture, Chapter 2

000000 00000 10000 01010 01000 000011

2/25/2013

27

2011

dce

Jump register

• Register indirect addressing

• JR: Jump register

- Rs: target address

- Rd, Rt = 0; shamt: special purpose (hint) [1]

• JALR: Jump and link register

- Rs: target address

- Rd: return address

- Rt = 0; shamt: special purpose (hint) [1]

53Computer Architecture, Chapter 2

2011

dce

MIPS I-Format instructions

• This types of instruction can be:

- Operation with immediate addressing

- Operation with displacement addressing

- Operation with PC-relative addressing

54Computer Architecture, Chapter 2

Opcode Rs Rt 16-bit immediate value

2/25/2013

28

2011

dce

Immidiate arithmetic and logical

• Arithmetic and Logical instruction with immediate

value

- Op: opcode

- Rs: source register

- Rt: destination register

- Constant: immediate value (-32768 to 32767)

Opcode Rs Rt 16-bit Immediate Value

2011

dce

Immediate arithmetic and logical

• Ex: ADDI $t0, $t1, 0x0005

• Ex: ORI $t0, $t1, 0xFF00

• Why is there no SUBI?

56Computer Architecture, Chapter 2

001000 01001 01000 0000000000000101

001101 01001 01000 1111111100000000

2/25/2013

29

2011

dce

Load-Store (Displacement)

• Load/Store instructions with offset

– Rs: base register number

– 16-bit immediate value: offset added to base

address in Rs

– The effective address (EA) = Rs + 16-bit

immediate value

– Load: Rt is the destination register number

– Store: Rt is the value to be store to the EA in

memory

57Computer Architecture, Chapter 2

Opcode Rs Rt 16-bit immediate value

2011

dce

Load-Store (Displacement)

• Ex: LW $t0, 16($t1)

• Ex: SW $t0, 16($t1)

58Computer Architecture, Chapter 2

100011 01001 01000 0000000000010000

101011 01001 01000 0000000000010000

2/25/2013

30

2011

dce

PC-Relative

• Near branch instructions

– Rs: source register number

– Rt: source register number

– Target address = PC + offset x 4

– PC already incremented by 4 by this time

• EX: BEQ $s0, $s1, 256

– if($s0 == $s1) goto PC+256;

59Computer Architecture, Chapter 2

Opcode Rs Rt 16-bit Immediate Value

000100 10000 10001 0000000100000000

2011

dce

MIPS J-format Instructions

• Jump (J and JAL)

• Pseudo-Direct addressing

– Cannot put 32-bit value in instruction

– Target address = PC31…28: (26-bit offset ×4)

• Ex: J 0x01000000

Opcode 26-bit Offset

000010 00000001000000000000000000000000

2/25/2013

31

2011

dce

Working with byte/halfword

• LB/LH/LBU/LHU: Load byte/haftword from

memory

– LBU $t0, 1($s0): Zero-extended

– LH $t0, 2($s0): Sign-extended

• SB, SH: Store byte/halfword to memory

– SB $t0, 1($s0)

– SH $t0, 2($s0)

• Why don’t we have SBU, SHU?

61Computer Architecture, Chapter 2

2011

dce

Atomic operation

• An atomic Read-Modify-Write operation can

be done by a pair of instructions: LL (Load

Link Word) and SC (Store Conditional Word)

LL $Rt, offset($Rs)

SC $Rt, offset($Rs)

• If the content at memory address specified by

LL is modified before SC to the same address,

SC fails and return 0 in $Rt. Or else, SC store

$Rt to memory and return 1 in $Rt

62Computer Architecture, Chapter 2

2/25/2013

32

2011

dce

Atomic operation

• Example atomic swap:

try: ADD $t0, $zero, $s4 //$t0 = $s4

LL $t1, 0($s1) //$t1 = mem($s1)

SC $t0, 0($s1) //mem($s1) = $t0

BEQ $t0, $zero, try //if mem($s1) changed,

//try again

//else mem($s1) = $t0

ADD $s4, $zero, $t1//$s4 = $t1

63Computer Architecture, Chapter 2

2011

dce

Constant (Immediate) value

• Small constants are used quite frequently

(50% of operands in many common programs)

Ex: $t0 = 0x1234

ADDI $t0, $zero, 0x1234

• How to use 32-bit constant?

Ex: $t0 = 0x12345678

LUI $t0, 0x1234

ORI $t0, $t0, 0x5678

64Computer Architecture, Chapter 2

2/25/2013

33

2011

dce

Procedure call

• Save return address

• Save necessary registers

• Callee execute the function

• Restore previously saved registers

• Restore return address

• Jump to the return address

– JAL: Jump to a Label (Procedure), return address

is stored in $ra (register 31)

– JR: Jump to the address which is stored in a

register
65Computer Architecture, Chapter 2

2011

dce

Procedure call: Factorial

• MIPS code:
fact:

addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
sw $a0, 0($sp) # save argument
slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
lw $a0, 0($sp) # restore original n
lw $ra, 4($sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0, $a0, $v0 # multiply to get result
jr $ra # and return

Computer Architecture, Chapter 2 66

2/25/2013

34

2011

dce

Reference

[1]Mips instruction set reference.pdf

67Computer Architecture, Chapter 2

