
2/25/2013

1

BK
TP.HCM

2011

dce

ADVANCED ADVANCED COMPUTER COMPUTER

ARCHITECTUREARCHITECTURE

Khoa Khoa học và Kỹ thuật Máy tính

BM Kỹ thuật Máy tính

Trần Ngọc Thịnh

http://www.cse.hcmut.edu.vn/~tnthinh

©2013, dce

2011

dce

Review of Instructions Set

Architecture

Review of Instructions Set

Architecture

Computer Architecture, Chapter 2 2

http://www.cse.hcmut.edu.vn/~

2/25/2013

2

2011

dce

Outline

3Computer Architecture, Chapter 2

 Instruction structure

 ISA styles

 Addressing modes

 Analysis on instruction set

 Case study: MIPS

2011

dce

Machine Instruction

4Computer Architecture, Chapter 2

Computer can only understand binary values

The operation of a computer is defined by

predefined binary values called Instruction

2/25/2013

3

2011

dce

5Computer Architecture, Chapter 1

instruction set

software

hardware

The Instruction Set

Instruction set: set of all instructions a processor

can perform

Interface between software and hardware

2011

dce

Instruction execution cycle

6Computer Architecture, Chapter 2

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Write

Back

Obtain the instruction

Determine action to be perform

Obtain the operand data

Compute the result (update status)

Store the result

2/25/2013

4

2011

dce

ISA Styles

ISA Styles?

• Stack

• Accumulator

• Register memory/ Memory memory

• Register register/load store

Operation

Input1 Input2

Output

7

2011

dce

ISA Styles: Stack

8Computer Architecture, Chapter 2

 Stack: The operands is on top of stack. The

result is push back to the stack

 (+): Code density, simple hardware

 (-): Low parallelism, stack bottle-neck

Stack Element

Stack Element

TOS C= A+B?

PUSH A

PUSH B

ADD

POP C

2/25/2013

5

2011

dce

ISA Styles: Accumulator

9Computer Architecture, Chapter 2

 Accumulator: One accumulator register is used in all

operations

 (+): Easy to write compiler, few instruction

 (-): Very high memory traffic, variable CPI

Accumulator

Memory

C= A+B?

LOAD A - Put A in

Accumulator

ADD B - Add B with AC

put result in AC

STORE C- Put AC in C

2011

dce

ISA Styles: Memory-memory

10Computer Architecture, Chapter 2

 Memory-memory: The operands is located in

memory

 (+): Simple hardware, design & understand

 (-): Accumulator bottle-nect, memory access

Memory

2/25/2013

6

2011

dce

ISA Styles: Register-Memory

©2011, Dr. Dinh Duc Anh Vu 11Computer Architecture, Chapter 2

Register

Register

Register

Memory

Input, Output: Register

or Memory

C= A+B?

LOAD R1, A

ADD R3, R1, B

STORE R3, C

2011

dce

ISA Styles: Register-Register

12Computer Architecture, Chapter 2

 Register-Register: All operation is on registers

 Need specific Load and Store instruction to

access memory

Register

Register

Register C= A+B?

LOAD R1, A

LOAD R2, B

ADD R3, R1, R2

STORE R3, C

2/25/2013

7

2011

dce

ISA Styles

13Computer Architecture, Chapter 2

Machine # general-purpose

registers

Architecture style Year

Motorola 6800 2 Accumulator 1974

DEC VAX 16 Register-Memory/ Memory-Memory 1977

Intel 8086 1 Extended Accumulator 1978

Motorola 68000 16 Register-Memory 1980

Intel 80386 32 Register-Memory 1985

Power PC 32 Load-Store 1992

Dec Alpha 32 Load-Store 1992

2011

dce

Other ISA Styles

14Computer Architecture, Chapter 2

 High-level-language architecture:

• In the 1960s (B5000)

• Lack of effective compiler

 Reduced Instruction Set architecture:

• Simplify hardware

• Simplify the instruction set

• Simplify the instruction format

• Rely on compiler to perform complex

operation

2/25/2013

8

2011

dce

Evolution of Instruction Sets
Single Accumulator (EDSAC 1950)

Accumulator + Index Registers

(Manchester Mark I, IBM 700 series 1953)

Separation of Programming Model

from Implementation

High-level Language Based Concept of a Family

(B5000 1963) (IBM 360 1964)

General Purpose Register Machines

Complex Instruction Sets Load/Store Architecture

RISC

(Vax, Intel 432 1977-80)
(CDC 6600, Cray 1 1963-76)

(Mips,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)

LIW/”EPIC”? (IA-64. . .1999)
Computer Architecture, Chapter 2 15

2011

dce

Instruction set design

16Computer Architecture, Chapter 2

 The design of an Instruction Set is critical to

the operation of a computer system.

 Including many aspects

• Operation repertoire

• Addressing modes

• Data types

• Instruction format

• Registers

2/25/2013

9

2011

dce

Simple format

17Computer Architecture, Chapter 2

Operation Code: the operation to be performed

by the processor

Source Operand Reference: Input of the

operation. One or more source operands can

be involved

Result Operand Reference: Result of the

operation

Opcode Operand reference Operand reference

2011

dce

Instruction Types

18Computer Architecture, Chapter 2

Can be classified into 4 types:

- Data processing: Arithmetic, Logic

Ex: ADD, SUB, AND, OR, …

- Data storage: Move data from/to memory

Ex: LD, ST

- Data movement: Register and register/IO

Ex: MOV

- Control: Test and branch

Ex: JMP, CMP

2/25/2013

10

2011

dce

Operations

19Computer Architecture, Chapter 2

There must certainly be instructions for performing

the fundamental arithmetic operations
Burkes, Goldstine and Von Neumann, 1947

How many programs have “IF” statement?

-> Branch instructions

How many programs have “Call” statement?

-> Call, Return instructions

How many programs have to access memory?

… and so on

2011

dce

Operations

20Computer Architecture, Chapter 2

Operator type Example

Arithmetic & Logical Integer arithmetic and logical operations: add, and, subtract …

Data transfer Loads-stores (move instructions on machines with memory addressing)

Control Branch, jump, procedure call and return, trap

System Operating system call, Virtual memory management instructions

Floating point Floating point instructions: add, multiply

Decimal Decimal add, decimal multiply, decimal to character conversion

String String move, string compare, string search

Graphic Pixel operations, compression/decompression operations

2/25/2013

11

2011

dce

Operations

21Computer Architecture, Chapter 2

 Arithmetic, logical, data transfer and control

are almost standard categories for all

machines

 System instructions are required for multi-

programming environment although support

for system functions varies

 Others can be primitives (e.g. decimal and

string on IBM 360 and VAX), provided by a

co-processor, or synthesized by compiler

2011

dce

Operation usage

22Computer Architecture, Chapter 2

 Simple instructions are the most widely

executed

 Make the common case fast

2/25/2013

12

2011

dce

Operations

23Computer Architecture, Chapter 2

 Jump: unconditional (Goto statement)

 Branch: conditional (if/else statement)

 Call/return: procedure call/return

2011

dce

Operations

24Computer Architecture, Chapter 2

 PC-Relative addressing: short and position-

indipendent jump

 Register indirect addressing: Long jump,

dynamic library, virtual function, …

2/25/2013

13

2011

dce

Operation

25Computer Architecture, Chapter 2

2011

dce

Operation

26Computer Architecture, Chapter 2

 Load/Store: There must be mechanism to

access memory

 Is Jump necessary?

 Is Call/Return necessary?

 Is Arithmetic/Logical necessary?

 Is Move register-register necessary?

 What types of comparison need to be

supported?

2/25/2013

14

2011

dce

Addressing Modes

27Computer Architecture, Chapter 2

The way the processor refers to the operands is

called addressing mode

The addressing modes can be classified based

on:

• The source of data: Immediate, registers,

memory

• The address calculation: Direct, indirect,

indexed

2011

dce

Addressing modes

28Computer Architecture, Chapter 2

- Immediate addressing: the operand is put in

the instruction

Ex: ADD R0, #10

- Register addressing: the index of the register

which contains the operand is specified in the

instruction

Ex: ADD R0, R1

- Direct addressing: the address of the operand

is put in the instruction

Ex: ADD R0, (100)

2/25/2013

15

2011

dce

Addressing modes

29Computer Architecture, Chapter 2

- Register Indirect addressing: the address of

the operand is put in the register which is

specified in the instruction

Ex: ADD R0, (R1)

- Displacement addressing: the address of the

operand is Base register + Displacement

Ex: LD R1, 100(R2)

- Indexed addressing: The address of the

operand is Base register + Indexed register

Ex: ADD R3, (R1+R2)

2011

dce

Addressing mode use

30Computer Architecture, Chapter 2

2/25/2013

16

2011

dce

Addressing mode

31Computer Architecture, Chapter 2

2011

dce

Addressing mode

32Computer Architecture, Chapter 2

2/25/2013

17

2011

dce

Addressing modes

33Computer Architecture, Chapter 2

Based on Alpha

(only 16-bit immediate allowed)

 On VAX: 20%-25% longer than 16-bit

2011

dce

Addressing modes

34Computer Architecture, Chapter 2

 Is Memory indirect addressing necessary?

 Is Scaled addressing necessary?

 Is Register addressing necessary?

 How long should a displacement value be?

 How long should an immediate value be?

2/25/2013

18

2011

dce

Operand types

35Computer Architecture, Chapter 2

 Character:

- ACSII (8-bit): amost always used

- Unicode (16-bit): sometime

 Integer: 2’s complement

- Short: 16 bit

- Long: 32 bit

 Floating point:

- Single precision: 32 bit

- Double precision: 64 bit

2011

dce

Operand types

36Computer Architecture, Chapter 2

 Business

- Binary Coded Decimal (BCD): Accurately

represents decimal fraction

 DSP

- Fixed point

- Block floating point

 Graphic: RGBA or XYZW

- 8-bit, 16-bit or single precision floating

point

2/25/2013

19

2011

dce

Operand types & size

37Computer Architecture, Chapter 2

SPEC 2000 on Alpha

 Double word: double-precision floating point /

address on 64-bit machine

 Word: integer / address in 32-bit machine

2011

dce

Operand types and size

38Computer Architecture, Chapter 2

 Should CPU support all those types of

operand?

 Should CPU support very big-size operand?

 Is DSP’s data types used frequently?

 Is BCD used in most of operations?

 How about RGBA?

2/25/2013

20

2011

dce

Instruction format

39Computer Architecture, Chapter 2

 Instruction must be encoded to binary values

 Effect the size of compiled program

 Easy to decode -> Simple to implement

 Support as many registers and addressing

modes as possible

MIPS

Ex: ADD $t0, $s1, $s2

000000 10001 10010 01000 00000 100000

0x02324020

Opcode Rs Rt Rd Shamt Funct

2011

dce

Instruction format

40Computer Architecture, Chapter 2

Opcode
Addr

Specifier

Addr

Field
… Addr

Specifier

Addr

Field

Opcode
Addr

Field 1

Addr

Field 2

Addr

Field 3

Variable insrtuction length (e.g. VAX, X86)

Fixed insrtuction length (e.g. ARM, MIPS, PowerPC)

Hybrid: to gain high code density, use 2 type of

fixed length instruction (e.g. MIPS16, Thumb)

2/25/2013

21

2011

dce

Registers file

41Computer Architecture, Chapter 2

 Register is the fastest memory element

 Register cost much more than main memory

 Register is flexible for compiler to use

 More register need more bits to encode

 Register file with more locations can be

slower

 How many locations in register file is the most

effective?

2011

dce

Case study: MIPS

42Computer Architecture, Chapter 2

• Used as the example throughout the course

• Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)

• Large share of embedded core market

– Applications in consumer electronics, network/storage

equipment, cameras, printers, …

• Typical of many modern ISAs

http://www.mips.com/

2/25/2013

22

2011

dce

The MIPS ISA

• Instruction Categories
– Load/Store

– Computational

– Jump and Branch

– Floating Point
• coprocessor

– Memory Management

– Special

• 3 Instruction Formats: all 32 bits wide

43Computer Architecture, Chapter 2

R0 - R31

PC

HI

LO

OP

OP

OP

rs rt rd shamt funct

rs rt immediate

jump target

Registers

R-format

I-format

J-format

2011

dce

MIPS (RISC) Design Principles

• Simplicity favors regularity
– fixed size instructions

– small number of instruction formats

– opcode always the first 6 bits

• Smaller is faster
– limited instruction set

– limited number of registers in register file

– limited number of addressing modes

• Make the common case fast
– arithmetic operands from the register file (load-store machine)

– allow instructions to contain immediate operands

• Good design demands good compromises
– Same instruction length

– Single instruction format => 3 instruction formats

44Computer Architecture, Chapter 2

2/25/2013

23

2011

dce

MIPS Instruction Classes Distribution

• Frequency of MIPS instruction classes for

SPEC2006

45Computer Architecture, Chapter 2

Instruction Class Frequency

Integer Ft. Pt.

Arithmetic 16% 48%

Data transfer 35% 36%

Logical 12% 4%

Cond. Branch 34% 8%

Jump 2% 0%

2011

dce

MIPS Register Convention

Name Register
Number

Usage Preserve on
call?

$zero 0 constant 0 (hardware) n.a.

$at 1 reserved for assembler n.a.

$v0 - $v1 2-3 returned values no

$a0 - $a3 4-7 arguments yes

$t0 - $t7 8-15 temporaries no

$s0 - $s7 16-23 saved values yes

$t8 - $t9 24-25 temporaries no

$k0 - $k1 26-27 reserved for operating system n.a

$gp 28 global pointer yes

$sp 29 stack pointer yes

$fp 30 frame pointer yes

$ra 31 return addr (hardware) yes

Computer Architecture, Chapter 2 46

2/25/2013

24

2011

dce

MIPS - Endianness

• Big Endian: Most-significant byte at lowest

address of a word

• Little Endian: Least-significant byte at lowest

address of a word

• MIPS is Big-endian

2011

dce

MIPS R-Format instructions

• Op: opcode

• Rs: First source register number

• Rt: Second source register number

• Rd: Destination register number

• Shamt: shift amount

– Number of bit-shift –(left/right)

• Funct: Extend opcode

– ALU function to encode the data path operation

Execution: Rd <- Rs func Rt

48Computer Architecture, Chapter 2

Op Rs Rt Rd Shamt Funct

2/25/2013

25

2011

dce

MIPS R-Format instructions

• Arithmetic operations on register

• Logical operations on register

• And more (refer [1])

• For arithmetic and logical instruction: opcode

is always SPECIAL (000000), Funct indicates

the specific operation to be performed

• What addressing mode do these instructions

use?

49Computer Architecture, Chapter 2

2011

dce

Arithmetic instruction

• ADD, SUB, MUL, DIV, …

• Ex: ADD $t0, $s1, $s2

Encoded instruction word is:

0x02324020

50Computer Architecture, Chapter 2

Special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

2/25/2013

26

2011

dce

Logical operations

• AND, OR, XOR, XNOR (bit-wise)

• Ex: OR $t0, $t1, $t2 #$t0 = $t1 | $t2

• Please calculate the encoded instruction word

for the above instruction

• Shift left, shift right

• Shamt indicates the number of bit to shift

• Ex: SLL $t2, $s0, 8

51Computer Architecture, Chapter 2

000000 00000 10000 01010 01000 000000

2011

dce

Logical operations

• Shift Right Arithmetic (SRA) use MSB as the

shift-in bit

• Ex: SRA $t2, $s0, 8

• Why is there no SLA?

• Why is there no NOT?

52Computer Architecture, Chapter 2

000000 00000 10000 01010 01000 000011

2/25/2013

27

2011

dce

Jump register

• Register indirect addressing

• JR: Jump register

- Rs: target address

- Rd, Rt = 0; shamt: special purpose (hint) [1]

• JALR: Jump and link register

- Rs: target address

- Rd: return address

- Rt = 0; shamt: special purpose (hint) [1]

53Computer Architecture, Chapter 2

2011

dce

MIPS I-Format instructions

• This types of instruction can be:

- Operation with immediate addressing

- Operation with displacement addressing

- Operation with PC-relative addressing

54Computer Architecture, Chapter 2

Opcode Rs Rt 16-bit immediate value

2/25/2013

28

2011

dce

Immidiate arithmetic and logical

• Arithmetic and Logical instruction with immediate

value

- Op: opcode

- Rs: source register

- Rt: destination register

- Constant: immediate value (-32768 to 32767)

Opcode Rs Rt 16-bit Immediate Value

2011

dce

Immediate arithmetic and logical

• Ex: ADDI $t0, $t1, 0x0005

• Ex: ORI $t0, $t1, 0xFF00

• Why is there no SUBI?

56Computer Architecture, Chapter 2

001000 01001 01000 0000000000000101

001101 01001 01000 1111111100000000

2/25/2013

29

2011

dce

Load-Store (Displacement)

• Load/Store instructions with offset

– Rs: base register number

– 16-bit immediate value: offset added to base

address in Rs

– The effective address (EA) = Rs + 16-bit

immediate value

– Load: Rt is the destination register number

– Store: Rt is the value to be store to the EA in

memory

57Computer Architecture, Chapter 2

Opcode Rs Rt 16-bit immediate value

2011

dce

Load-Store (Displacement)

• Ex: LW $t0, 16($t1)

• Ex: SW $t0, 16($t1)

58Computer Architecture, Chapter 2

100011 01001 01000 0000000000010000

101011 01001 01000 0000000000010000

2/25/2013

30

2011

dce

PC-Relative

• Near branch instructions

– Rs: source register number

– Rt: source register number

– Target address = PC + offset x 4

– PC already incremented by 4 by this time

• EX: BEQ $s0, $s1, 256

– if($s0 == $s1) goto PC+256;

59Computer Architecture, Chapter 2

Opcode Rs Rt 16-bit Immediate Value

000100 10000 10001 0000000100000000

2011

dce

MIPS J-format Instructions

• Jump (J and JAL)

• Pseudo-Direct addressing

– Cannot put 32-bit value in instruction

– Target address = PC31…28: (26-bit offset ×4)

• Ex: J 0x01000000

Opcode 26-bit Offset

000010 00000001000000000000000000000000

2/25/2013

31

2011

dce

Working with byte/halfword

• LB/LH/LBU/LHU: Load byte/haftword from

memory

– LBU $t0, 1($s0): Zero-extended

– LH $t0, 2($s0): Sign-extended

• SB, SH: Store byte/halfword to memory

– SB $t0, 1($s0)

– SH $t0, 2($s0)

• Why don’t we have SBU, SHU?

61Computer Architecture, Chapter 2

2011

dce

Atomic operation

• An atomic Read-Modify-Write operation can

be done by a pair of instructions: LL (Load

Link Word) and SC (Store Conditional Word)

LL $Rt, offset($Rs)

SC $Rt, offset($Rs)

• If the content at memory address specified by

LL is modified before SC to the same address,

SC fails and return 0 in $Rt. Or else, SC store

$Rt to memory and return 1 in $Rt

62Computer Architecture, Chapter 2

2/25/2013

32

2011

dce

Atomic operation

• Example atomic swap:

try: ADD $t0, $zero, $s4 //$t0 = $s4

LL $t1, 0($s1) //$t1 = mem($s1)

SC $t0, 0($s1) //mem($s1) = $t0

BEQ $t0, $zero, try //if mem($s1) changed,

//try again

//else mem($s1) = $t0

ADD $s4, $zero, $t1//$s4 = $t1

63Computer Architecture, Chapter 2

2011

dce

Constant (Immediate) value

• Small constants are used quite frequently

(50% of operands in many common programs)

Ex: $t0 = 0x1234

ADDI $t0, $zero, 0x1234

• How to use 32-bit constant?

Ex: $t0 = 0x12345678

LUI $t0, 0x1234

ORI $t0, $t0, 0x5678

64Computer Architecture, Chapter 2

2/25/2013

33

2011

dce

Procedure call

• Save return address

• Save necessary registers

• Callee execute the function

• Restore previously saved registers

• Restore return address

• Jump to the return address

– JAL: Jump to a Label (Procedure), return address

is stored in $ra (register 31)

– JR: Jump to the address which is stored in a

register
65Computer Architecture, Chapter 2

2011

dce

Procedure call: Factorial

• MIPS code:
fact:

addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
sw $a0, 0($sp) # save argument
slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
lw $a0, 0($sp) # restore original n
lw $ra, 4($sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0, $a0, $v0 # multiply to get result
jr $ra # and return

Computer Architecture, Chapter 2 66

2/25/2013

34

2011

dce

Reference

[1]Mips instruction set reference.pdf

67Computer Architecture, Chapter 2

