2/25/2013

- -]
=

ADVANCED COMPUTER
ARCHITECTURE

Khoa Khoa hoc va Ky thuat May tinh
BM Ky thuat May tinh

BK
‘ Tran Ngoc Thinh

http://www.cse.hcmut.edu.vn/~tnthinh

©2013, dce

Review of Instructions Set
Architecture

http://www.cse.hcmut.edu.vn/~

2/25/2013

Outline

» Instruction structure

> ISA styles

» Addressing modes

» Analysis on instruction set
» Case study: MIPS

Machine Instruction

Computer can only understand binary values

The operation of a computer is defined by
predefined binary values called Instruction

2/25/2013

dee The Instruction Set

D
software ﬁ\}\// %/J\
Ya A

| instruction set

hardware \@

\l

Instruction set: set of all instructions a processor
can perform

Interface between software and hardware

dee| . .
@ Instruction execution cycle

J
Instruction
Fetch

|

Instruction
Decode

|

Operand
Fetch

Compute the result (update status)

Write
Back

Obtain the instruction

Determine action to be perform

Obtain the operand data

Store the result

dos ISA Styles

Input1 Input2

U

ISA Styles? Operation
+ Stack

« Accumulator o
» Register memory/ Memory memory
» Register register/load store

dee ISA Styles: Stack

TOS > Stack Element C= A+B?
> Stack Element
v v PUSH A
_\// PUSH B
ADD
POP C

» Stack: The operands is on top of stack. The
result is push back to the stack

» (+): Code density, simple hardware
> (-): Low parallelism, stack bottle-neck

. Computer Architecture, Chapter 2 _

2/25/2013

2/25/2013

dee ISA Styles: Accumulator

C=A+B?
—>{_Accumulator _|
v ¥ LOAD A - PutAin

N Memory Accumulator
ADD B - Add B with AC
put resultin AC

STORE C- putacinc

» Accumulator: One accumulator register is used in all
operations

» (+): Easy to write compiler, few instruction
» (-): Very high memory traffic, variable CPI

Computer Architecture, Chapter 2 _

dee ISA Styles: Memory-memory

Y J

\—\’/—/ Memory

LN
Cd

» Memory-memory: The operands is located in
memory

» (+): Simple hardware, design & understand
> (-): Accumulator bottle-nect, memory access

. Computer Architecture, Chapter 2 n

dee ISA Styles: Register-Memory

Input, Output: Register
or Memory

C=A+B?

—

Memory

LOAD R1, A

A

ADD R3,R1, B

. Computer Architecture, Chapter 2

STORERS, C

©2011, Dr. Dinh Duc Anh Vu 1

dee ISA Styles: Register-Register

=

N

. Computer Architecture, Chapter 2

» Register-Register: All operation is on registers

» Need specific Load and Store instruction to
access memory

C=A+B?

LOAD R1, A
LOAD R2, B
ADD R3, R1, R2
STORE RS, C

2/25/2013

2/25/2013

ISA Styles
Motorola 6800 2 Accumulator 1974
DEC VAX 16 Register-Memory/ Memory-Memory 1977
Intel 8086 1 Extended Accumulator 1978
Motorola 68000 16 Register-Memory 1980
Intel 80386 32 Register-Memory 1985
Power PC 32 Load-Store 1992
Dec Alpha 32 Load-Store 1992
Computer Architecture, Chapter 2 _

dee Other ISA Styles

» High-level-language architecture:
* In the 1960s (B5000)
» Lack of effective compiler
» Reduced Instruction Set architecture:
« Simplify hardware
« Simplify the instruction set
« Simplify the instruction format

» Rely on compiler to perform complex
operation

Computer Architecture, Chapter 2 _

dee Evolution of Instruction Sets

Single Accumulator (EDSAC 1950)
1

Accumulator + Index Registers
(Manchester Mark |, IBM 700 series 1953)

Separation of Programming Model
from Implementation

High-level Language Based Concept of a Family
(B5000 1963)\ / (IBM 360 1964)
General Purpose Register Machines
/ \
Complex Instruction Sets Load/Store Architecture

(Vax, Intel 432 1977-80) (CDC 6600, Clray 11963-76)

RISC
(Mips,Sparc,HP-PA,IBM RS6000,PowerPC . . .1987)

LIW/EPIC™? IA-64. . .1999
@ Computer Architecture, Chapter 2

dee Instruction set design

» The design of an Instruction Set is critical to
the operation of a computer system.
» Including many aspects
» Operation repertoire
« Addressing modes
« Data types
* Instruction format
* Regqisters

2/25/2013

dee Simple format

Opcode Operand reference Operand reference

Operation Code: the operation to be performed
by the processor

Source Operand Reference: Input of the
operation. One or more source operands can

be involved
Result Operand Reference: Result of the
operation
Computer Architecture, Chapter 2

Instruction Types

Can be classified into 4 types:

- Data processing: Arithmetic, Logic
Ex: ADD, SUB, AND, OR, ...

- Data storage: Move data from/to memory
Ex: LD, ST

- Data movement: Register and register/IO
Ex: MOV

- Control: Test and branch

Ex: JMP, CMP

2/25/2013

2/25/2013

dee Operations

There must certainly be instructions for performing

the fundamental arithmetic operations
Burkes, Goldstine and Von Neumann, 1947

How many programs have “IF” statement?

-> Branch instructions

How many programs have “Call” statement?
-> Call, Return instructions

How many programs have to access memory?
....and so on

Computer Architecture, Chapter 2 _

dee Operations

Operator type Example

Arithmetic & Logical Integer arithmetic and logical operations: add, and, subtract ...

Data transfer Loads-stores (move instructions on machines with memory addressing)
Control Branch, jump, procedure call and return, trap

System Operating system call, Virtual memory management instructions
Floating point Floating point instructions: add, multiply

Decimal Decimal add, decimal multiply, decimal to character conversion

String String move, string compare, string search

Graphic Pixel operations, compression/decompression operations

Computer Architecture, Chapter 2 n

10

2/25/2013

i Operations

» Arithmetic, logical, data transfer and control
are almost standard categories for all
machines

» System instructions are required for multi-
programming environment although support
for system functions varies

» Others can be primitives (e.g. decimal and
string on IBM 360 and VAX), provided by a
co-processor, or synthesized by compiler

Computer Architecture, Chapter 2 n

Operation usage
Rank 80x86 Instruction (olﬁ': tti?:lrg(‘;ir;gz)
1 Load 22%
2 Conditional branch 20%
3 | Compare 16%
4 Store 12%
5 |Add 8%
6 |And 6%
7 Sub 5%
8 Move register-register 4%
9 |[Call 1%
10 [Return 1%
Total 96%
» Simple instructions are the most widely
executed
» Make the common case fast
Computer Architecture, Chapter 2 m

11

2/25/2013

Operations

B Floating-point average

8%
2 B Integer average

Call/return

19%

Jump Data is based on SPEC2000 on Alpha
82%
Conditional branch 75%

0% 25% 50% 75% 100%

Frequency of branch instructions

» Jump: unconditional (Goto statement)
» Branch: conditional (if/else statement)
» Call/return: procedure call/return

Operations
=1 Data is based SPEC2000 on Alpha
» PC-Relative addressing: short and position-
indipendent jump
» Register indirect addressing: Long jump,

dynamic library, virtual function, ...
. Computer Architecture, Chapter 2 n

12

Operation

Not equal

Equal

Greater than

Less than or equal

Less than

2%

0%

0%
0%

5%

Greater than or equal _ 11%

E Floating-point average
B Integer average

16%
18%

44%

L
| 0% 10%
Computer Architecture, Chapter 2

20% 30% 40% 50%

Operation

supported?

Computer Architecture, Chapter 2

» Load/Store: There must be mechanism to
access memory

> Is Jump necessary?

» |Is Call/Return necessary?

» |Is Arithmetic/Logical necessary?

» |s Move register-register necessary?
» What types of comparison need to be

2/25/2013

13

2/25/2013

dee Addressing Modes

The way the processor refers to the operands is
called addressing mode

The addressing modes can be classified based

on:
» The source of data: Immediate, registers,
memory
* The address calculation: Direct, indirect,
indexed
Computer Architecture, Chapter 2

Addressing modes
- Immediate addressing: the operand is putin
the instruction
Ex: ADD RO, #10

- Register addressing: the index of the register
which contains the operand is specified in the
instruction

Ex: ADD RO, R1

- Direct addressing: the address of the operand
is put in the instruction

Ex: ADD RO, (100)
. Computer Architecture, Chapter 2 ‘

14

dee Addressing modes

specified in the instruction
Ex: ADD RO, (R1)

Ex: LD R1, 100(R2)

Ex: ADD R3, (R1+R2)

Computer Architecture, Chapter 2

- Indexed addressing: The address of the
operand is Base register + Indexed register

- Register Indirect addressing: the address of
the operand is put in the register which is

- Displacement addressing: the address of the
operand is Base register + Displacement

dee Addressing mode use

TeX
Memory indirect spice
gec

TeX 0%
Scaled spice
gec

TeX
Register deferred gpice

gee

TeX

Immediate spice
gee
TeX

Displacement gpjce
gee

Focus on immediate and
displacement modes since
they are used the most

55%

40%

10%

20% 30% 40% 50% 60%

0%
Based on SPEC89 on VAX Frequency of the addressing mode
Computer Architecture, Chapter 2 ‘

2/25/2013

15

dee Addressing mode

Integer average

Floating-point average

0%

0 1 2 3 4 5 6 T 8 9 10 11 12 13 14 15
Number of bits of displacement

dee Addressing mode

Loads 2304

ALU operations 259,

All instructions

Percentage of operations that use immediates

| m Integer average m Floating-point average I

0% 5% 10% 15% 20% 25% 30%

2/25/2013

16

2/25/2013

dee Addressing modes

45%

p— Based on Alpha ,

wol [\ (only 16-bit immediate allowed)
Floating-point average

30%

25% [

165% [E\GE TR

Integer average

10%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1€

» On VAX: 20%-25% longer than 16-bit
Computer Architecture, Chapter 2 n

dee Addressing modes

> Is Memory indirect addressing necessary?
> |Is Scaled addressing necessary?

> |s Register addressing necessary?

» How long should a displacement value be?
» How long should an immediate value be?

. Computer Architecture, Chapter 2 n

17

2/25/2013

dee Operand types

» Character:
- ACSII (8-bit): amost always used
- Unicode (16-bit): sometime
> Integer: 2’'s complement
- Short: 16 bit
- Long: 32 bit
» Floating point:
- Single precision: 32 bit
- Double precision: 64 bit
Computer Architecture, Chapter 2 B -

dee Operand types

> Business

- Binary Coded Decimal (BCD): Accurately
represents decimal fraction

> DSP

- Fixed point

- Block floating point
» Graphic: RGBA or XYZW

- 8-bit, 16-bit or single precision floating
point

. Computer Architecture, Chapter 2 n

18

dee Operand types & size

Double word
(64 bits)

70%

Word 0,
(32 bits) ;9% SPEC 2000 on Alpha
Half word
(16 bits) M Floating-point average
Bl Integer average
Byte
(8 bits) 10%

0% 2CIl% 4(;% GC;% BOI%
» Double word: double-precision floating point /
address on 64-bit machine

» Word: integer / address in 32-bit machine
Computer Architecture, Chapter 2

dee Operand types and size

» Should CPU support all those types of
operand?

» Should CPU support very big-size operand?
» |s DSP’s data types used frequently?

» |s BCD used in most of operations?

» How about RGBA?

2/25/2013

19

dee Instruction format

» Instruction must be encoded to binary values
» Effect the size of compiled program
» Easy to decode -> Simple to implement

» Support as many registers and addressing
modes as possible

MIPS [@sesrkls Rs Rt Rd Shamt Funct

Ex: ADD $t0, $s1, $s2
000000 10001 10010 01000 00000 100000
0x02324020

des Instruction format

Addr Addr Addr Addr

Opcode Specifier Field """ Specifier Field

Variable insrtuction length (e.g. VAX, X86)

Addr Addr Addr

Opcode ko441 Field2 Field 3
Fixed insrtuction length (e.g. ARM, MIPS, PowerPC)

Hybrid: to gain high code density, use 2 type of
fixed length instruction (e.g. MIPS16, Thumb)

2/25/2013

20

dee Registers file
» Register is the fastest memory element
» Register cost much more than main memory
> Register is flexible for compiler to use
» More register need more bits to encode
» Register file with more locations can be

slower
» How many locations in register file is the most
effective?
Computer Architecture, Chapter 2 _

dee Case study: MIPS

» Used as the example throughout the course
+ Stanford MIPS commercialized by MIPS
Technologies (www.mips.com)

» Large share of embedded core market

— Applications in consumer electronics, network/storage
equipment, cameras, printers, ...

» Typical of many modern ISAs

. Computer Architecture, Chapter 2 n

2/25/2013

21

http://www.mips.com/

E= The MIPS 1SA

: . Regist
« Instruction Categories g
— Load/Storg RO - R31
— Computational
— Jump and Branch
— Floating Point
« coprocessor : T—I? :
— Memory Management | 5 |
— Special
* 3 Instruction Formats: all 32 bits wide
[o [rs |t [rd [shamt] funct | R-format
| oP | rs | rt | immediate | |-format
| op | jump target | J-format
Computer Architecture, Chapter 2 n

EZ MIPS (RISC) Design Principles

« Simplicity favors regularity
— fixed size instructions
— small number of instruction formats
— opcode always the first 6 bits
* Smaller is faster
— limited instruction set
— limited number of registers in register file
— limited number of addressing modes
* Make the common case fast
— arithmetic operands from the register file (load-store machine)
— allow instructions to contain immediate operands
» Good design demands good compromises
— Same instruction length
— Single instruction format => 3 instruction formats

2/25/2013

22

2/25/2013

dee MIPS Instruction Classes Distribution

* Frequency of MIPS instruction classes for
SPEC2006

Instruction Class Frequency

Integer Ft. Pt.
Arithmetic 16% 48%
Data transfer 35% 36%
Logical 12% 4%
Cond. Branch 34% 8%
Jump 2% 0%

 dce) . .
MIPS Register Convention
Name Register Usage Preserve on
Number call?
$zero 0 constant 0 (hardware) n.a.
$at 1 reserved for assembler n.a.
$v0 - $v1 2-3 returned values no
$a0 - $a3 4-7 arguments yes
$t0 - $t7 8-15 temporaries no
$s0 - $s7 16-23 saved values yes
$t8 - $t9 24-25 temporaries no
$kO - $k1 26-27 reserved for operating system n.a
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return addr (hardware) yes

23

de2 MIPS - Fndianness

Register Repgister

Memory |0AOBOCOD OAOBOCOD

» Big Endian: Most-significant byte at lowest
address of a word

« Little Endian: Least-significant byte at lowest
address of a word

« MIPS is Big-endian

T
des MIPS R-Format instructions
Op Rs Rt Rd Shamt Funct
» Op: opcode

Rs: First source register number
Rt: Second source register number
Rd: Destination register number
Shamt: shift amount

— Number of bit-shift —(left/right)

Funct: Extend opcode

— ALU function to encode the data path operation
Execution: Rd <- Rs func Rt

2/25/2013

24

dee MIPS R-Format instructions

 Arithmetic operations on register
 Logical operations on register
» And more (refer [1])

* For arithmetic and logical instruction: opcode
is always SPECIAL (000000), Funct indicates
the specific operation to be performed

* What addressing mode do these instructions
use?

des Arithmetic instruction

« ADD, SUB, MUL, DIV, ...
« Ex: ADD $t0, $s1, $s2

Special $s1 $s2 $t0 0 add

0 17 18 8 0 KV

000000 10001 10010 01000 00000 100000

Encoded instruction word is:
0x02324020

2/25/2013

25

2011

7 Logical operations

* AND, OR, XOR, XNOR (bit-wise)
Ex: OR $t0, $t1, $t2 #5t0 = $t1 | $t2

Please calculate the encoded instruction word
for the above instruction

Shift left, shift right
Shamt indicates the number of bit to shift
Ex: SLL $t2, $s0, 8

000000 00000 10000 01010 000000

. Computer Architecture, Chapter 2 _

dee Logical operations

« Shift Right Arithmetic (SRA) use MSB as the

shift-in bit
« Ex: SRA $t2, $s0, 8
000000 00000 10000 01010 000011

* Why is there no SLA?
* Why is there no NOT?

2/25/2013

26

dee Jump register
» Register indirect addressing
« JR: Jump register
- Rs: target address
- Rd, Rt = 0; shamt: special purpose (hint) [1]
« JALR: Jump and link register
- Rs: target address
- Rd: return address
- Rt = 0; shamt: special purpose (hint) [1]

. Computer Architecture, Chapter 2 _

des MIPS I-Format instructions

Opcode Rs Rt 16-bit immediate value

» This types of instruction can be:
- Operation with immediate addressing
- Operation with displacement addressing
- Operation with PC-relative addressing

2/25/2013

27

des Immidiate arithmetic and logical

Opcode Rs Rt 16-bit Immediate Value

 Arithmetic and Logical instruction with immediate
value

- Op: opcode

- Rs: source register

- Rt: destination register

- Constant: immediate value (-32768 to 32767)

s

dee Immediate arithmetic and logical
« Ex: ADDI $t0, $t1, 0x0005

001000 01001 01000 0000000000000101

« Ex: ORI $t0, $t1, OxFFOO
001101 01001 01000 1111111100000000

* Why is there no SUBI?

2/25/2013

28

dee Load-Store (Displacement)

Opcode Rs Rt 16-bit immediate value

» Load/Store instructions with offset
— Rs: base register number

— 16-bit immediate value: offset added to base
address in Rs

— The effective address (EA) = Rs + 16-bit
immediate value

— Load: Rt is the destination register number

— Store: Rt is the value to be store to the EA in
memory

dee Load-Store (Displacement)
« Ex: LW $t0, 16($t1)

100011 01001 01000 0000000000010000

« Ex: SW $t0, 16(5t1)

101011 01001 01000 0000000000010000

2/25/2013

29

B pc-Relative

* Near branch instructions

— Rs: source register number

— Rt: source register number

— Target address = PC + offset x 4

— PC already incremented by 4 by this time
« EX: BEQ $s0, $s1, 256

— if($s0 == $s1) goto PC+256;

000100 10000 10001 0000000100000000
Computer Architecture, Chapter 2 _

% MIPS J-format Instructions

* Jump (J and JAL)

* Pseudo-Direct addressing
— Cannot put 32-bit value in instruction
— Target address = PC5, ,4: (26-bit offset x4)

« Ex: J 0x01000000

000010 00000001000000000000000000000000

T

2/25/2013

30

2/25/2013

B Working with byte/halfword

» LB/LH/LBU/LHU: Load byte/haftword from
memory
— LBU $t0, 1($s0): Zero-extended
— LH $t0, 2($s0): Sign-extended
« SB, SH: Store byte/halfword to memory
— SB $t0, 1($s0)
— SH $t0, 2($s0)
 Why don’t we have SBU, SHU?

Computer Architecture, Chapter 2 _

Atomic operation

« An atomic Read-Modify-Write operation can
be done by a pair of instructions: LL (Load
Link Word) and SC (Store Conditional Word)
LL $Rt, offset($Rs)

SC $Rt, offset($Rs)

« If the content at memory address specified by
LL is modified before SC to the same address,
SC fails and return 0 in $Rt. Or else, SC store
$Rt to memory and return 1 in $Rt

. Computer Architecture, Chapter 2 n

31

Atomic operation

« Example atomic swap:
try: ADD $t0, $zero, $s4 //$t0 = $s4
LL $t1, 0($s1) /1$t1 = mem($s1)
SC $t0, 0($s1) [Imem($s1) = $t0
BEQ $t0, $zero, try //if mem($s1) changed,
/ltry again
/lelse mem($s1) = $t0
ADD $s4, $zero, $t1//$s4 = $t1

Computer Architecture, Chapter 2 —

Constant (Immediate) value

« Small constants are used quite frequently
(50% of operands in many common programs)
Ex: $t0 = 0x1234
ADDI $t0, $zero, 0x1234

* How to use 32-bit constant?
Ex: $t0 = 0x12345678
LUI $t0, 0x1234
ORI $t0, $t0, 0x5678

. Computer Architecture, Chapter 2 n

2/25/2013

32

2/25/2013

dce

“ Procedure call

Save return address

Save necessary registers

Callee execute the function
Restore previously saved registers
Restore return address

Jump to the return address

—JAL: Jump to a Label (Procedure), return address
is stored in $ra (register 31)

— JR: Jump to the address which is stored in a

register
LUl puter ArchitectirETETETTEEE B -

dee Procedure call: Factorial

 MIPS code:

fact:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
slti $t0, $a0, 1
beq $t0, $zero, L1

adjust stack for 2 qitems
save return address

save argument

test for n < 1

FH|H H B

addi $v0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return
L1: addi $%$a0, $a0, -1 # else decrement n
jal fact # recursive call

Computer Architecture, Chapter 2

33

2/25/2013

dee Reference

[1]Mips instruction set reference.pdf

. Computer Architecture, Chapter 2

34

