

dce Calculating Die Yield	
Die yield is the fraction or percentage of good dies on a wafer number	
 Wafer yield accounts for completely bad wafers so need r be tested 	າot
 Wafer yield corresponds to on defect density by α which depends on number of masking levels good estimate for CMOS is 4.0 	
DieYield = Wafer Yield × $\left\{1 + \frac{(\text{Defect/Unit Area}) \times \text{Die Area}}{\alpha}\right\}^{-\alpha}$	
<i>Example:</i> The yield of a die, 0.7cm on a side, with defect density of 0.6/cm2	
= (1+[0.6x0.49]/4.0) ⁻⁴ = 0.75	
Advanced Computer Architecture	50

dce 2010	Two	notions	s of "p	erforma	ance"			
	Plane DC to Paris Speed Passengers Throughput							
Boeing 747 6.5 hours 610 mph 470 286,70								
	BAD/Sud Concorde3 hours1350 mph132178,200							
	Which has higher performance?							
	• Time to do	the task (Exe	ecution Time	e)				
	 execution time, response time, latency Tasks per day, hour, week, sec, ns throughput, bandwidth 							
	Response tir	ne and throug	hput often ar	e in opposition				
БК	Advanced Computer	Architecture			58			

dce 2010	Fact	ors Affe	cting CF	PU Pe	rformance	
	CPU time= Seconds= InstructionsxCyclesxSecondsProgramProgramProgramInstructionCycle					
	Instruction CPI Clock Cycle C Count I V V					
	_	Program	X	Χ		
	Compiler X X					
	Instr Archited	uction Set cture (ISA)	= <u>Seconds</u> = <u>Instructions</u> × <u>Cycles</u> × <u>Seconds</u> <u>Program</u> Program <u>Instruction</u> <u>Cycle</u>			
	0	rganization (CPU Design)		X	X	
	-	Technology (VLSI)			X	
ВК	Advanced Com	puter Architecture				66

dce 2010	Instruc	tion Types a	& CI	PI: An	Exa	ample	
	An instruc	tion set has <mark>n= three</mark>	instruc	tion classe	es:		
		Instruction class	CPI ,				
		Α	1	For	a specif	ic	
		В	2	CP	U desig	n	
		С	3				
	• Two code	sequences nave the Instruct	ion co	ng instruct unts for ir	ion col Istruct B	ion class C	
		1	2		1	2	
		2	4	•	1	1	
	 CPU cycle CPI for se CPU cycle CPI for se 	es for sequence $1 = 2$ quence $1 = clock cyes for sequence 2 = 4quence 2 = 9 / 6 = 1.$	2 x 1 + ⁻ /cles / i x 1 + ⁻ 5	1 x 2 + 2 x nstruction 1 x 2 + 1 x	3 = 10 count 3 = 9 6	cycles = 10 /5 = 2 cycles	
ТР.ИСМ	Advanced Computer	Architecture					69

dce 2010	Speed	up		
	Speedup du	e to enhancen	nent E:	
	Speedup(E) =	ExTime W/O E ExTime w/ E	Performance w/ E = Performance w/o E	-
		—	→	
	Suppose that of the task to remainder of	enhancement E a by a factor Speed of the task is una	accelerates a f <mark>raction_{enhance} dup_{enhanced} , and the ffected, then what is</mark>	ed
	ExTime(E)	= ?		
	Speedup(E)	= ?		
ВК	Advanced Computer Arch	litecture		73

dce 2010	Performance Enhancement Calculations: Amdahl's								
	Law								
•	 The performance enhancement possible due to a given design improvement is limited by the amount that the improved feature is used Amdahl's Law: 								
	Performan	ce improvement or speedup due to enhancem	ent E:						
	Speedup(E):	Execution Time without E Perform	ance with E						
	opeccup(L)	Execution Time with E Performan	nce without E						
	 Suppos time by 	e that enhancement E accelerates a fraction F a factor S and the remainder of the time is un	of the execution affected then:						
	Execution Tim	e with E = $((1-F) + F/S) X$ Execution Time w	ithout E						
1	Hence speedup is given by:								
	Speedup(E) =	Execution Time without E	1						
((1 - F) + F/S) X Execution Time without E $(1 - F) + F$									
ВК	Advanced Computer	Architecture	76						

dce 2010	Perform	nanco	e Enl	nanc	emen	t Example
	 For the RIS Op ALU Load Store Branch If a CPU de from 5 to 2 enhancement 	C machi Freq 50% 20% 10% 20% esign enh , what is ent:	ne with t Cycles 1 5 3 2 anceme the resu	he follow CPI(i) .5 1.0 .3 .4 nt impro- Iting per	wing instru % Time 23% 45% 14% 18% oves the Cl fformance	ction mix given earlier: PI of load instructions improvement from this
BK	Fractic Unaffe Factor Using Speedup(E) =	on enhanc cted fracti of enhand Amdahl's 1 (1 - F) +	ed = F = on = 100° cement = Law: = - F/S	45% or % - 45% 5/2 = 2 .55 +	45 = 55% or .5 .45/2.5	.55 1.37
ТР.НСМ	Advanced Computer A	Architecture				78

dce 2010	A MIPS	Exam	ple (1))	
•	Consider the fo	ollowing comp	uter:		
		Instruction	counts (in mill instruction cla	lions) for each	
	Code from:	Α	В	С	
	Compiler 1	5	1	1	
	Compiler 2	10	1	1	
	The machine r Instruction A requir clock cycles,	runs at 100MHz res 1 clock cycle Instruction C rec	e, Instruction B r quires 3 clock cy	equires 2 /cles.	
A ir	Note	CPU Clock C	ycles	$\sum_{i=1}^{n} CPI_i \times C_i$	
<u>Li7</u> "	ormula!	Instruction Co	ount In	struction Count	
BK	dvanced Computer Archite	ecture			

