

Cryptography and Network Security

Chapter 4 – Part B

Message Authetication Codes

Lectured by Nguyễn Đức Thái

Outline

- Message Authentication Requirements
- Message Authentication Functions
- Basic Use of MACs
- MACs based on Hash Functions: HMAC

Message Authentication

- Message authentication is a <u>mechanism</u> or <u>service</u> used to verify the integrity of a message.
- Message authentication assures that data received are <u>exactly</u> as sent by (i.e., contain no modification, insertion, deletion, or replay) and that the purported identity of the sender is valid.
- Symmetric encryption provides authentication among those who share the secret key.

Message Authentication

- A <u>message authentication code</u> (MAC) is an <u>algorithm</u> that requires the use of a <u>secret key</u>.
- A MAC takes a <u>variable-length message</u> and a <u>secret</u> key as <u>input</u> and <u>produces an authentication code</u>.
- A recipient in possession of the secret key can generate an authentication code to verify the integrity of the message
- One way: a MAC is to combine a cryptographic hash function in some fashion with a secret key
- Another way: to use a symmetric block cipher in such a way that it produces a fixed-length output for a variablelength input

Message Authentication Requirements

Disclosure

 Release of message contents to any person or process not possessing the appropriate cryptographic key

Traffic analysis

 Discovery of the pattern of traffic between parties

Masquerade

 Insertion of messages into the network from a fraudulent source

Content modification

 Changes to the contents of a message, including insertion, deletion, transposition, and modification

Sequence modification

 Any modification to a sequence of messages between parties, including insertion, deletion, and reordering

Timing modification

Delay or replay of messages

Source repudiation

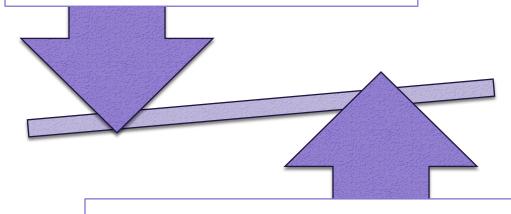
 Denial of transmission of message by source

Destination repudiation

 Denial of receipt of message by destination

Message Authentication

- Message authentication is a procedure to verify that received messages come from the alleged source and have not been altered.
- Message authentication may also verify sequencing and timeliness
- A digital signature is an <u>authentication technique</u> that also includes measures to counter <u>repudiation</u> by the source.

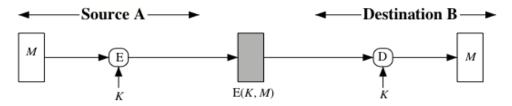


Message Authentication Functions

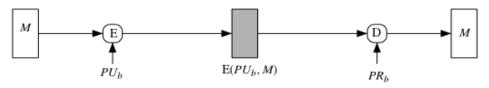
Two levels of

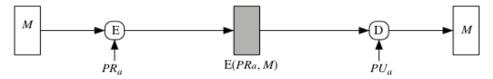
Lower level

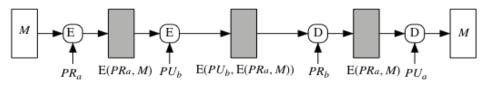
 There must be some sort of function that produces an authenticator


Higher-level

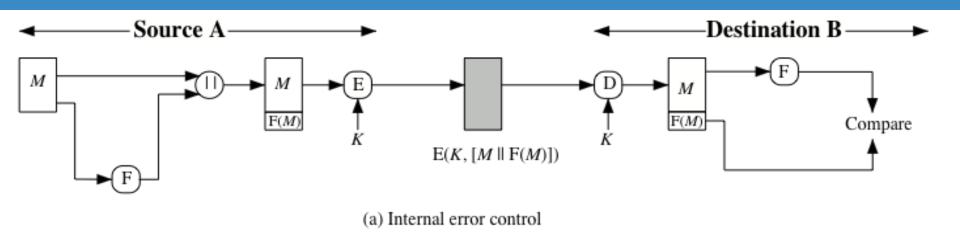
 Uses the lower-level function as a primitive in an authentication protocol that enables a receiver to verify the authenticity of a message

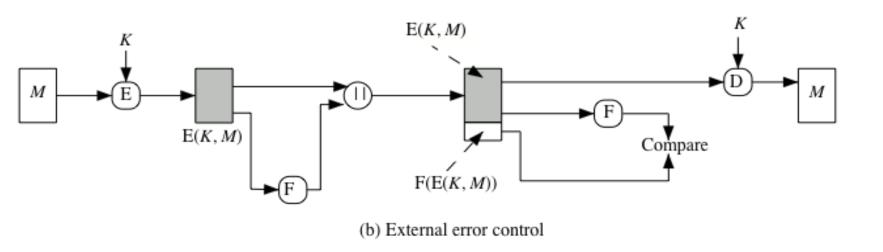

- Hash function
 - A function that maps a message of any length into a fixed-length hash value which serves as the authenticator
- Message encryption
 - The ciphertext of the entire message serves as its authenticator
 - Message authentication code (MAC)
 - A function of the message and a secret key that produces a fixed-length value that serves as the authenticator


Message Encryption

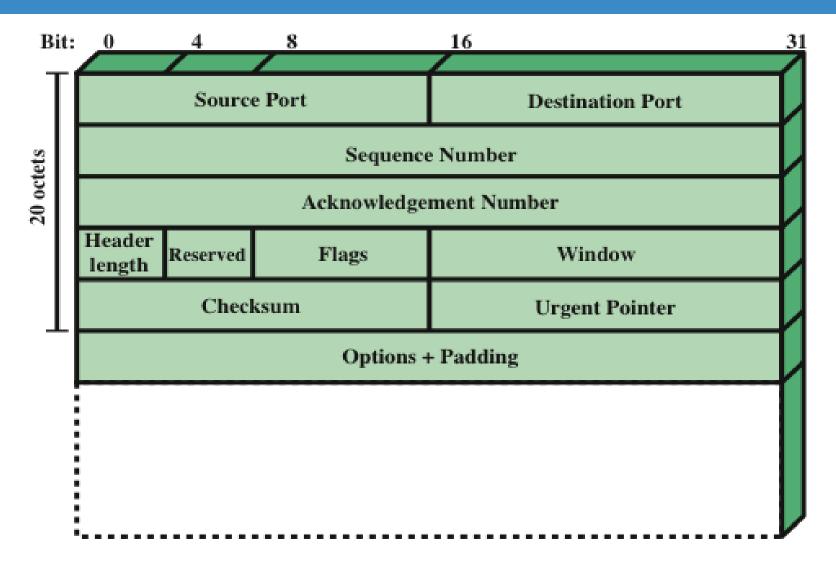

(a) Symmetric encryption: confidentiality and authentication

(b) Public-key encryption: confidentiality

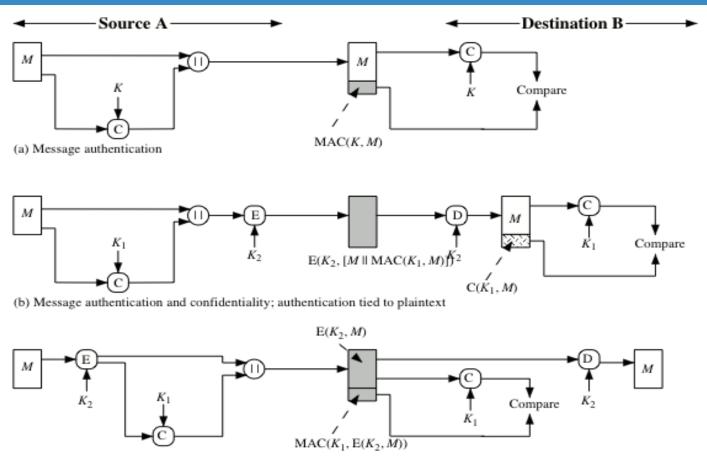

(c) Public-key encryption: authentication and signature



(d) Public-key encryption: confidentiality, authentication, and signature


Internal and External Error Control

TCP Segment



Public Key Encryption

- The straightforward use of public-key encryption provides <u>confidentiality</u> <u>but not authentication</u>
- To provide both confidentiality and authentication, A can encrypt M first using its private key which provides the digital signature, and then using B's public key, which provides confidentiality
- <u>Disadvantage</u> is that the public-key algorithm must be exercised <u>four times</u> rather than two in each communication

Basic Uses of MAC

(c) Message authentication and confidentiality; authentication tied to ciphertext

Requirements for MAC

Taking into account the types of attacks, the MAC needs to satisfy the following: The first requirement deals with message replacement attacks, in which an opponent is able to construct a new message to match a given MAC, even though the opponent does not know and does not learn the key

The second requirement deals with the need to thwart a brute-force attack based on chosen plaintext

The final requirement dictates that the authentication algorithm should not be weaker with respect to certain parts or bits of the message than others

Brute-Force Attacks

- Requires known message-tag pairs
 - A brute-force method of finding a collision is to pick a random bit string y and check if H(y) = H(x)

Two lines of attack:

- Attack the key space
 - If an attacker can determine the MAC key then it is possible to generate a valid MAC value for any input x
- Attack the MAC value
 - Objective is to generate a valid tag for a given message or to find a message that matches a given tag

Cryptanalysis

 Cryptanalytic attacks seek to exploit some property of the algorithm to perform some attack other than an exhaustive search

- An ideal MAC algorithm will require a cryptanalytic effort greater than or equal to the brute-force effort
- There is much more variety in the structure of MACs than in hash functions, so it is difficult to generalize about the cryptanalysis of MACs

MACs based on Hash Functions: HMAC

 There has been increased interest in developing a MAC derived from a cryptographic hash function

Motivations:

- Cryptographic hash functions such as MD5 and SHA generally execute faster in software than symmetric block ciphers such as DES
- Library code for cryptographic hash functions is widely available
- HMAC has been chosen as the mandatory-toimplement MAC for IP security
- Has also been issued as a NIST standard (FIPS 198)

Summary

- Message Authentication Requirements
- Message Authentication Functions
- Basic Use of MACs
- MACs based on Hash Functions: HMAC

References

1. Cryptography and Network Security, Principles and Practice, William Stallings, Prentice Hall, Sixth Edition, 2013

