
Advanced Networking ’2012

Jürgen Schönwälder

November 15, 2012

http://cnds.eecs.jacobs-university.de/courses/an-2012/

1 / 531

http://cnds.eecs.jacobs-university.de/courses/an-2012/

Part: Preface

1 Course Overview

2 Reading Material

3 Grading Scheme

2 / 531

Course Overview

1 Course Overview

2 Reading Material

3 Grading Scheme

3 / 531

Course Content

Internet Multicasting (IGMP, DVMRP, MOSPF, PIM)

New Internet Transport Protocols (SCTP, DCCP)

Internet Quality of Service (IntServ, RSVP, DiffServ)

Multimedia Transport and Signaling (RTP, RTCP, SIP)

Voice over IP (codecs, metrics)

Mobility (MIPv4, MIPv6, Link-Layer Handovers)

Highspeed TCP Extensions (ECN, TCP improvements)

Domain Name System Extensions (SRV, ENUM, DDDS)

Label Switching (MPLS, LDP, RSVP-TE, GMPLS)

Measurement, Modeling, Simulation (NETFLOW, NS-2)

4 / 531

Course Objective

Introduce advanced networking concepts

Combine theory with practical experiences

⇒ Advanced Networking Lab

Prepare students for research in the networking field

⇒ Learn to read and review papers
⇒ Learn to present and evaluate ideas

5 / 531

Prerequisites

Protocol Layering (ISO/OSI, Internet)

Names, Addresses, Services, Protocols

Transmission Media and their Properties

Data Encoding (NRZ, RZ, Manchester)

Media Access (TDM, FDM, CSMA-CD, MACA)

Error Detection (Checksums, CRC)

Sequence Numbers, Acknowledgements, Timer

Flow Control and Congestion

Local Area Networks (IEEE 802.3, 802.11, 802.1D)

6 / 531

Prerequisites (cont.)

Internet Network Protocols (IPv4, IPv6)

Internet Forwarding and Routing (RIP, OSPF, BGP)

Internet Transports (UDP, TCP)

Internet Application Protocols

Notations (ASN.1, ABNF)
Domain Name System (DNS)
Email (SMTP, IMAP)
Document Transfer (HTTP, FTP)
Network Management/Monitoring (SNMP)

Remote Procedure Calls (Stubs, Semantics)

Socket Programming in C

7 / 531

Reasons for not taking this course

You do not have the time required for this course

You do not have the required background

You expected an introductionary course

You find the topics covered by this course boring

You are unable to do some programming in C/Unix

You are not ready to take initiative

Reading research papers and specifications
Programming tasks
Software setup and installation

8 / 531

Reading Material

1 Course Overview

2 Reading Material

3 Grading Scheme

9 / 531

Background Reading Material

A.S. Tanenbaum, ”Computer Networks”, 4th Edition,
Prentice Hall, 2002

W. Stallings, ”Data and Computer Communications”, 6th
Edition, Prentice Hall, 2000

C. Huitema, ”Routing in the Internet”, 2nd Edition,
Prentice Hall, 1999

D. Comer, ”Internetworking with TCP/IP Volume 1:
Principles Protocols, and Architecture”, 4th Edition,
Prentice Hall, 2000

J.F. Kurose, K.W. Ross, ”Computer Networking: A
Top-Down Approach Featuring the Internet”, 3rd Edition,
Addison-Wesley 2004.

10 / 531

Important Journals

ACM/IEEE Transactions on Networking

ACM Computer Communications Review (SIGCOMM)

ACM Mobile Communications Review (MOBICOM)

IEEE Journal on Selected Areas of Communications

IEEE Transactions on Communications

IEEE Transactions on Wireless Communications

IEEE Transactions on Mobile Computing

IEEE Transactions on Network and Service Management

IEEE Communications Magazine

IEEE Surveys and Tutorials

Elsevier Computer Networks

Elsevier Computer Communications

Elsevier Ad Hoc Networks

. . .
11 / 531

Important Conferences and Workshops

ACM SIGCOMM

IEEE INFOCOM

IEEE GLOBECOM

IEEE/IFIP IM / NOMS / DSOM . . .

IEEE ICC

. . .

It is essential to know where to submit a paper; not all
events have the same quality.

Kevin C. Almeroth maintains a nice web page with
conference statistics:
http://www.cs.ucsb.edu/~almeroth/conf/stats/

12 / 531

http://www.cs.ucsb.edu/~almeroth/conf/stats/

Network Research Challenges

Some network research areas:

Routing and convergence
Security, trust and key management
Network management and network operations
Ad-hoc networks and self-organizing networks
Scalable inter-domain quality of service (QoS)
Measurement and modeling
Killer applications
Disappearing (invisible) networks
Interplanetary Internet

=⇒ See RFC 3869 for further information on Internet
Research.

13 / 531

Grading Scheme

1 Course Overview

2 Reading Material

3 Grading Scheme

14 / 531

Grading Scheme

Homeworks (30%)

Individual submission of solutions
Learning by solving assignments

Quizzes (30%)

Control your continued learning success

Final examination (40%)

Oral exam (maybe written if too many students)
Covers the whole lecture

15 / 531

References I

A. S. Tanenbaum.

Computer Networks.
Prentice Hall, 4 edition, 2002.

W. Stallings.

Data and Computer Communications.
Prentice Hall, 7 edition, 2004.

C. Huitema.

Routing in the Internet.
Prentice Hall, 2 edition, 1999.

D. E. Comer.

Internetworking with TCP/IP: Principles, Protocols, and Architectures.
Prentice Hall, 4 edition, 2000.

J. F. Kurose and K. W. Ross.

Computer Networking: A Top-Down Approach Featuring the Internet.
Addison-Wesley, 3 edition, 2004.

R. Atkinson and S. Floyd.

IAB Concerns and Recommendations Regarding Internet Research and Evolution.
RFC 3869, Internet Architecture Board, August 2004.

16 / 531

Part: Internet Multicasting

4 Multicast Terminology

5 Multicast Addresses

6 Multicast Socket API Extensions

7 Internet Group Management Protocol (IPV4)

8 Multicast Listener Discovery Protocol (IPV6)

9 Multicast Routing Algorithms

10 Internet Multicast Routing Protocols

17 / 531

Multicast Terminology

4 Multicast Terminology

5 Multicast Addresses

6 Multicast Socket API Extensions

7 Internet Group Management Protocol (IPV4)

8 Multicast Listener Discovery Protocol (IPV6)

9 Multicast Routing Algorithms

10 Internet Multicast Routing Protocols

18 / 531

Terminology

Unicast: Communication between a single sender and a
single receiver (1:1).

Multicast: Communication between a single sender and
multiple receivers (1:n).

Concast: Communication between multiple senders and a
single receiver (m:1).

Multipeer : Communication between multiple senders and
multiple receivers (m:n).

Anycast: Communication between a single sender and
one selected receiver out of a group of receivers.

Broadcast: Communication between a single sender and
all receivers attached to a network segment.

19 / 531

Multicast Groups

Open vs. closed multicast groups:
Member of open groups accept messages from arbitrary
senders while member of closed groups only accept
messages from the group.

Dynamic vs. static :
Membership of static groups does not change during
communication while membership of dynamic groups may
change over time.

Transient vs. permanent:
Permanent groups exist permanently, even if the group
has no members while transient groups only exist for a
limited period of time.

20 / 531

Reliable Multicasts

Unreliable:
No guarantee that data is delivered to multicast group
members.

Reliable:
Guarantee that data is delivered to all multicast group
members.

k-Reliable:
Data is reliably delivered to at least k group members.

p-Reliable:
Data is reliably delivered to a certain percentage p of the
group members.

21 / 531

MBONE: Multicast Backbone

International project to establish a global multicast
backbone

Multicast is natively supported in the German research
network (but currently not at Jacobs)

Early experiements with audio and video conferencing
(vat, rat, vic), shared whiteboards (wbd), shared editors,
session directory (sdr), . . .

Selected IETF meetings were broadcasted over the
MBONE for several years

Not widely used outside of (multicast) research
environments

22 / 531

Multicast Challenges

Multicast flow and congestion control

Positive (ACK) vs. negative (NACK) acknowledgements
Maintenance of the sender’s buffer
Rate-based instead of window-based flow control
Feedback implosion problems

Multicast routing

Multicast reliability

Multicast security

. . .

23 / 531

Multicast Addresses

4 Multicast Terminology

5 Multicast Addresses

6 Multicast Socket API Extensions

7 Internet Group Management Protocol (IPV4)

8 Multicast Listener Discovery Protocol (IPV6)

9 Multicast Routing Algorithms

10 Internet Multicast Routing Protocols

24 / 531

Group Addresses

Group members can be identified by explicit member lists
or group addresses.

Group addresses may be assigned from a central authority
or dynamically in a decentralized fashion.

Group address assignments may be permanent or
transient.

Decentralized approaches usually require the introduction
of multicast group address management server for
coordination.

Transient group addresses may be announced in a shared
directory.

25 / 531

Internet Multicast Addresses

IPv4 (RFC 1112):

| 4 | 28 bits |

+---------------------------------+

|1110| group ID |

+----+----------------------------+

224.0.0.1 (ip4-allnodes), 224.0.0.2 (ip4-allrouters)

IPv6 (RFC 2375, RFC 3307):

| 8 | 4 | 4 | 112 bits |

+------ -+----+----+---+

|11111111|flgs|scop| group ID |

+--------+----+----+---+

Permanent link-local multicast addresses:
ff02::1 (ip6-allnodes), ff02::2 (ip6-allrouters)

26 / 531

Ethernet Mapping (IPv4)

IEEE 802 MAC addresses support multicasts (lower two
bits in the first octet indicate multicast)

IANA owns a block of Ethernet MAC addresses that start
with the 23-bit prefix 01:00:5E.

Half of this address block are multicast addresses (which
means there is a fixed 25-bit prefix).

The remaining 23 bits are filled by mapping the lower 23
bits of the IP multicast address into the MAC multicast
address.

As a consequence, 25 = 32 IPv4 group addresses map to
the same MAC address.

27 / 531

Ethernet Mapping (IPv6)

IANA owns a block of Ethernet MAC addresses that start
with the 16-bit prefix 33:33.

The lower 32 bits of the MAC address are filled by
copying the lower 4 bytes of the IPv6 address into the
MAC address.

As a consequence, 280 IPv6 group addresses map to the
same MAC address.

The question, of course, is how frequent collisions are in
practice under normal conditions.

To quote RFC 2464:

“There is no protection from duplication
through accident or forgery.”

28 / 531

Internet Multicast Services (RFC 3569)

Any-Source Multicast (ASM):

IP datagrams are transmitted to a group G of nodes
identified by a single IP multicast address.
Nodes may join and leave the group G any time, and
there is no restriction on their location or number.

Source-Specific Multicast (SSM):

IP datagrams are transmitted by a source S to an SSM
destination address G , and receivers can receive this
datagram by subscribing to channel (S ,G).

Source-Filtered Multicast (SFM):

ASM variant with filtered source addresses.
Supports whitelists (only a specific set of sources) and
blacklists (all except a specific set of sources).

29 / 531

Multicast Socket API Extensions

4 Multicast Terminology

5 Multicast Addresses

6 Multicast Socket API Extensions

7 Internet Group Management Protocol (IPV4)

8 Multicast Listener Discovery Protocol (IPV6)

9 Multicast Routing Algorithms

10 Internet Multicast Routing Protocols

30 / 531

IPv4 Multicast Socket Extensions

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define IP_MULTICAST_IF ...

#define IP_MULTICAST_TTL ...

#define IP_MULTICAST_LOOP ...

#define IP_ADD_MEMBERSHIP ...

#define IP_DROP_MEMBERSHIP ...

struct ip_mreq {

struct in_addr imr_multiaddr; /* IP address of group */

struct in_addr imr_interface; /* IP address of interface */

};

31 / 531

IPv6 Multicast Socket Extensions

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define IPV6_MULTICAST_IF ...

#define IPV6_MULTICAST_HOPS ...

#define IPV6_MULTICAST_LOOP ...

#define IPV6_JOIN_GROUP ...

#define IPV6_LEAVE_GROUP ...

struct ipv6_mreq {

struct in6_addr ipv6mr_multiaddr; /* IP address of group */

unsigned int ipv6mr_interface; /* interface number */

};

32 / 531

IP Any-Source Multicast API (RFC3678)

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define IP_BLOCK_SOURCE ...

#define IP_UNBLOCK_SOURCE ...

struct ip_mreq_source {

struct in_addr imr_multiaddr; /* IP address of group */

struct in_addr imr_sourceaddr; /* IP address of source */

struct in_addr imr_interface; /* IP address of interface */

};

33 / 531

IP Source-Specific Multicast API (RFC3678)

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define IP_ADD_SOURCE_MEMBERSHIP ...

#define IP_DROP_SOURCE_MEMBERSHIP ...

struct ip_mreq_source {

struct in_addr imr_multiaddr; /* IP address of group */

struct in_addr imr_sourceaddr; /* IP address of source */

struct in_addr imr_interface; /* IP address of interface */

};

34 / 531

Internet Group Management Protocol (IPV4)

4 Multicast Terminology

5 Multicast Addresses

6 Multicast Socket API Extensions

7 Internet Group Management Protocol (IPV4)

8 Multicast Listener Discovery Protocol (IPV6)

9 Multicast Routing Algorithms

10 Internet Multicast Routing Protocols

35 / 531

IP Multicast Scenario (LAN)

Internet

Snooping

IGMP

Snooping

addresses
IP group

addresses
802 multicast

addresses
802 multicast

addresses
IP group

Interface

UDP

Socket

Application

Host

IP (IGMP)

Interface

UDP

Socket

Application

Host

IP (IGMP)

Bridge

Bridge

IP (IGMP)

UDP / TCP

Socket

Interface Interface

Router

Routing

IGMP

36 / 531

Internet Group Management Protocol

IGMP version 3 (IGMPv3) is published in RFC 3376 and
RFC4604.

IPv4 nodes use IGMP to report their group membership
to the neighboring multicast router.

A multicast router periodically sends a query message to
224.0.0.1 to check the group membership state.

Group members respond with a membership report
message.

Multicast router maintain a per interface multicast group
list.

Group members can send unsolicited membership reports
when they join/leave a group.

37 / 531

IGMPv3 Query Message

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 0x11 | Max Resp Code | Checksum |

+-+

| Group Address |

+-+

| Resv |S| QRV | QQIC | Number of Sources (N) |

+-+

| Source Address [1] |

+- -+

| Source Address [2] |

+- . -+

: . :

+- -+

| Source Address [N] |

+-+

38 / 531

IGMPv3 Report Message

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 0x22 | Reserved | Checksum |

+-+

| Reserved | Number of Group Records (M) |

+-+

| |

: Group Record [1] :

| |

+-+

| . |

: . :

| . |

+-+

| |

: Group Record [M] :

| |

+-+

39 / 531

IGMPv3 Group Record

+-+

| Record Type | Aux Data Len | Number of Sources (N) |

+-+

| Multicast Address |

+-+

| Source Address [1] |

+- -+

| Source Address [2] |

+- -+

: . :

+- -+

| Source Address [N] |

+-+

| |

: Auxiliary Data :

| |

+-+

40 / 531

IGMPv3 Query Variants

A “General Query” is sent by a multicast router to learn
the complete multicast reception state of the neighboring
interfaces.

A “Group-Specific Query” is sent by a multicast router to
learn the reception state, with respect to a *single*
multicast address, of the neighboring interfaces.

A “Group-and-Source-Specific Query” is sent by a
multicast router to learn if any neighboring interface
desires reception of packets sent to a specified multicast
address, from any of a specified list of sources.

41 / 531

IGMP Snooping

IEEE 802 bridges snoop IGMP packets to learn which
port belongs to which IPv4 multicast group.

Allows to suppress multicast traffic on segments / ports
without group members.

Widely supported by IEEE 802 bridges today.

42 / 531

Multicast Listener Discovery Protocol (IPV6)

4 Multicast Terminology

5 Multicast Addresses

6 Multicast Socket API Extensions

7 Internet Group Management Protocol (IPV4)

8 Multicast Listener Discovery Protocol (IPV6)

9 Multicast Routing Algorithms

10 Internet Multicast Routing Protocols

43 / 531

Multicast Listener Discovery (IPv6)

MLD version 2 (MLDv2) is published in RFC 3810 and
RFC 4604.

Translation of the IGMPv3 protocol for IPv6 semantics.

Not further discussed here.

44 / 531

Multicast Routing Algorithms

4 Multicast Terminology

5 Multicast Addresses

6 Multicast Socket API Extensions

7 Internet Group Management Protocol (IPV4)

8 Multicast Listener Discovery Protocol (IPV6)

9 Multicast Routing Algorithms

10 Internet Multicast Routing Protocols

45 / 531

Multicast Routing

Challenges:

Route data only to group members
Optimize routes from the source to the receivers
Maintain loop-free routes
Distribute multicast traffic over multiple links
Signalling (group membership) must scale well

Several solutions have been tried...

46 / 531

Flooding and Spanning Trees

Flooding

+ Conceptually very simple
+ Robust (all possible paths are explored)
- Requires to maintain history of last seen packets which

can be memory intensive on high speed networks

Spanning Trees:

+ Robust and well understood technique
+ Does not require much memory
- Group membership is not taken into account
- Concentrates multicast traffic on a subset of the links

47 / 531

Reverse Path Forwarding (RPF)

Principle:
1 When a multicast packet is received, note the source S

and the interface I
2 If I belongs to the shortest path to S , forward to all

interfaces except I
3 Otherwise, discard the packet

+ Uses unicast routing tables to derive distribution trees

+ Shortest path from source to destination

+ Packets from different sources may use different links

- Group membership is not taken into account

48 / 531

RPF Optimization

Problem:

With plain RPF as described above, routers may receive
packets via multiple paths

Optimization:

Router determine whether they are on the shortest path
between a neighbor and the multicast source before
forwarding packets to a neighbor
The necessary information can be obtained from the link
state database in OSPF

49 / 531

Flooding and Pruning

Principle:
1 Periodically, multicast packets are flooded
2 Leaf routers who have no customers react by sending

prune messages back towards the source
3 Intermediate routers which do not have members on any

interface will also send prune messages towards the
source

+ Computes minimal distribution trees

- Requires periodic (global) flooding

- Routers must keep state on a per-group and per-source
basis

50 / 531

RPF Example

A

B

C

D

E

1

1

1

1 2

2

Compute the reverse path forwarding (RPF) multicast
trees for the sources A, B and D.

51 / 531

RPF Example: Unicast Routes

A Dest. Next

B B
C B
D B
E E

B Dest. Next

A A
C C
D D
E A

C Dest. Next

A B
B B
D B
E E

D Dest. Next

A B
B B
C B
E E

E Dest. Next

A A
B A
C C
D D

Calculate unicast routes using Dijkstra or Bellman-Ford.

52 / 531

RPF Example: RPF Tree for A

RPF tree for source A (dotted links may be pruned):

A

B

C D C

E

D

E E

A

B

C

D

E

1

1

1

1 2

2

53 / 531

RPF Example: RPF Tree for B

RPF tree for source B (dotted links may be pruned):

B

A

E

D

E

C

E

C

D

A

B

C

D

E

1

1

1

1 2

2

54 / 531

RPF Example: RPF Tree for D

RPF tree for source D (dotted links may be pruned):

D

B

C A C

E

A

E E

A

B

C

D

E

1

1

1

1 2

2

55 / 531

Steiner Trees

Steiner Trees:
1 Given is a graph G = (V ,E) with a set of vertices V , a

set of edges E and a cost function c : E 7→ N
2 Let S be a subset of V . A steiner tree is a tree of G

that spans S with a minimal total distance on its edges

+ Steiner trees minimize the number of links needed to
connect the group members

- Steiner tree problem is known to be NP-hard

- Computation requires knowledge of the full topology

- Concentrates multicast traffic on a subset of the links

- Group membership changes lead to a recomputation and
potentially massive changes of the distribution tree

56 / 531

Center-Based Trees

Principle:
1 Establish a well-known center for a multicast group
2 Multicast receivers send join messages towards the center
3 Intermediate routers keep state about the interfaces

registered for a multicast group

Center-based trees build a spanning tree for each group

+ Limits the expansion of multicast traffic to the set of all
group members

o Routers must keep state on a per-group basis

- Choosing a center is difficult (optimal centers lead again
to NP complete problems and instability)

57 / 531

Rendevous Points

Instead of establishing a fixed center or core, it is possible
to use rendevous points.

The traffic originating from a new sender is encapsulated
and unicast routed to a rendezvous point.

Receivers send join messages towards the rendevous
point, thereby establishing a path in the distribution tree.

Distribution trees can be dynamically optimized by
sending a source-specific join message towards the source
(and subsequent pruning of the shared tree after
establishing a shorter path).

58 / 531

Internet Multicast Routing Protocols

4 Multicast Terminology

5 Multicast Addresses

6 Multicast Socket API Extensions

7 Internet Group Management Protocol (IPV4)

8 Multicast Listener Discovery Protocol (IPV6)

9 Multicast Routing Algorithms

10 Internet Multicast Routing Protocols

59 / 531

Internet Multicast Routing

Available Multicast Routing Protocols:

Distance Vector Multicast Routing Protocol (DVMRP)
Multicast Extensions to OSPF (MOSPF)
Protocol-Independent Multicast, Dense Mode (dense
PIM)
Protocol-Independent Multicast, Sparse Mode (sparse
PIM)
Border Gateway Multicast Protocol (BGMP)

Today’s protocol of choice is usually PIM in sparse mode.

60 / 531

DVMRP (RFC 1075)

Oldest deployed multicast routing protocol based on RPF

DVMRP routers exchange distance vectors that contain
lists of potential sources and distances

Popular mrouted implementation supports tunnels and
was used to establish the multicast backbone (mbone).

DVMRP has scaling problems because of the necessity to
flood frequently.

Early implementations did not implement pruning which
made periodic flooding even more expensive

61 / 531

MOSPF (RFC 1584)

Multicast OSPF (MOSPF) is a multicast extension of the
OSPF routing protocol.

MOSPF essentially computes multicast distribution trees
from an augmented link state database.

Augmented link state advertisements propagate
information about the multicast groups active on each
network.

MOSPF computes distribution trees for each
(source,group) pair.

Distribution trees are cached, but they must be
recomputed whenever a link state changes.

62 / 531

PIM Dense Mode (RFC 3973)

Dense mode PIM uses RPF and is similar to DVMRP
(but can use any unicast routing protocol).

Dense mode works well in the following situations:

Senders and receivers are in close proximity to one
another.
There are few senders and many receivers.
The volume of multicast traffic is high.
The stream of multicast traffic is constant.

Dense mode PIM maintains distribution trees for
(sender,group) pairs.

Graft messages can be used to turn a pruned branch back
into a forwarding branch quickly.

63 / 531

PIM Sparse Mode (RFC 4601)

Sparse mode PIM uses rendezvous points:

Senders initially send traffic to a rendevous point.
Receivers initially register with a rendevous point.
The initial forwarding path via a rendevous point can be
optimized by the routers in the path.

Sparse mode works well in the following situations:

There are few receivers in a group.
Senders and receivers are separated by WAN links.
The type of traffic is intermittent.

64 / 531

The bigger picture. . .

Is the IP layer the right layer to provide multicast service?

Application Layer Multicast (ALM)
Group membership, multicast delivery structure
construction, and data forwarding are solely controlled by
participating end hosts (no support of intermediate nodes
such as routers or proxies).

Overlay Multicast (OM)
Multicast service is supported by specially deployed
intermediate proxies which cooperatively construct a
“backbone overlay” infrastructure and establish multicast
trees among themselves for data delivery.

See the references for further discussion and comparison.

65 / 531

References I

L. Lao, J.-H. Cui, M. Gerla, and D. Maggiorini.

A Comparative Study of Multicast Protocols: Top, Bottom, or In the Middle?
In Proc. 8th IEEE Global Internet Symposium (GI 2005), Miami, March 2005.

M. Ramalho.

Intra- and Inter-Domain Multicast Routing Protocols: A Survey and Taxonomy.
IEEE Communications Surveys and Tutorials, 3(1), 2000.

C. K. Miller.

Reliable Multicast Protocols and Applications.
The Internet Protocol Journal, 1(2):19–37, September 1998.

S. Bhattacharyya.

An Overview of Source-Specific Multicast (SSM).
RFC 3569, Spring, July 2003.

B. Cain, S. Deering, I Kouvelas, B. Fenner, and A Thyagarajan.

Internet Group Management Protocol, Version 3.
RFC 3376, Cereva Networks, Cisco Systems, AT&T Labs, Ericsson, October 2002.

R. Vida and L. Costa.

Multicast Listener Discovery Version 2 (MLDv2) for IPv6.
RFC 3810, LIP6, June 2004.

H. Holbrook, B. Cain, and B. Haberman.

Using Internet Group Management Protocol Version 3 (IGMPv3) and Multicast Listener Discovery Protocol
Version 2 (MLDv2) for Source-Specific Multicast.
RFC 4604, Arastra, Acopia Networks, JHU APL, August 2006.

66 / 531

References II

D. Waitzman, C. Partridge, and S. Deering.

Distance Vector Multicast Routing Protocol.
RFC 1075, BBN STC, Stanford University, November 1988.

J. Moy.

Multicast Extensions to OSPF.
RFC 1584, Proteon, March 1994.

A. Adams, J. Nicholas, and W. Siadak.

Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised).
RFC 3973, NextHop Technologies, ITT A/CD, January 2005.

B. Fenner, M. Handley, H. Holbrook, and I Kouvelas.

Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised).
RFC 4601, AT&T Labs, UCL, Arastra, Cisco, August 2006.

D. Thaler.

Border Gateway Multicast Protocol (BGMP): Protocol Specification.
RFC 3913, Microsoft, September 2004.

D. Thaler, B. Fenner, and B. Quinn.

Socket Interface Extensions for Multicast Source Filters.
RFC 3678, Microsoft, AT&T, Research, Stardust.com, January 2004.

D. Eastlake.

IANA Considerations and IETF Protocol Usage for IEEE 802 Parameters.
RFC 5342, Eastlake Enterprises, September 2008.

67 / 531

Part: High-Speed TCP

11 Motivation

12 High Speed Congestion Control Algorithms

13 Probing TCP Congestion Control Algorithms

68 / 531

Motivation

11 Motivation

12 High Speed Congestion Control Algorithms

13 Probing TCP Congestion Control Algorithms

69 / 531

TCP on High-Speed Networks

How well does TCP operate in gigabit / terrabit per
second networks?

What is the speed that can be realized today in real high
speed networks spanning large distances?

What changes are needed to work well over networks with
large bandwidth-delay products?

70 / 531

Review of Traditional TCP Congestion Control

Slow start mode:

Send two TCP segments in response to each ACK that
advances the sender’s window.
Exponential increase of the sending rate

Congestion avoidance mode:

Send an additional segment of data for each loss-free
round-trip time interval
Linear increase of the sending rate

Threshold controls transition from slow start mode to
congestion avoidance mode

Timeout causes transition from congestion avoidance
mode to slow start mode

Multiple duplicate ACKs cause TCP to halve the sending
rate and to enter congestion avoidance

71 / 531

TCP Performance over Time

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(s
eg

m
en

ts
)

transmission round

TCP congestion window size as a function of time

congestion window
threshold

72 / 531

Example: TCP at High Speed

10 Gbps path, 1500 byte segments, 70ms delay

In slow start, the speed doubles every 70ms, so after 17
round trip times, the speed exceeds 10 Gbps and this
takes 1.2 seconds (assuming a very large initial threshold)

Duplicate ACKs force congestion avoidance, which halves
the congestion window and afterwards it increases linearly

TCP congestion avoidance mode causes a sawtooth
oscillation of this ideal TCP session between 5 Gbps and
10 Gbps; a single iteration of this cycle takes 34 minutes
and 22 seconds

This model assumes no packet loss due to bit errors and
it implies massive data sets to be transferred

73 / 531

TCP Behavior at High Speed

 0

 2

 4

 6

 8

 10

 0 0.5 1 1.5 2 2.5 3

da
ta

 r
at

e
[G

bp
s]

time [hours]

TCP congestion performance (RTT 70ms, 1500 MSS, 256 MB queue)

congestion window
threshold

74 / 531

TCP Land Speed Records

http://lsr.internet2.edu/

Ingredients:

It is essential to have the network path all to yourself
It is essential to have a fixed latency
It is essential to have an extremly low bit error rate
It is essential to know in advance the round-trip latency
and the available bandwidth

What can we do if we want TCP to work well without
these ingredients?

75 / 531

High Speed Congestion Control Algorithms

11 Motivation

12 High Speed Congestion Control Algorithms

13 Probing TCP Congestion Control Algorithms

76 / 531

Parallel TCP Streams

Idea

Use multiple TCP streams in parallel

Packet loss ideally only affects one or a few streams while
the others continue probing

Properties

Requires that data streams can be partitioned

Packet loss can lead to synchonization of the streams

No change of the kernel’s TCP implementation required

Examples: GridFTP, Bittorrent

77 / 531

Parallel TCP Streams Performance

78 / 531

MulTCP

Idea

Increase by N segments per RTT

Reduce window W by W /(2N) upon packet loss

Emulates multiple parallel TCP streams

Properties

Choosing N too high causes unfairness

Choosing N too low means to not use the full network
bandwidth

79 / 531

MulTCP Performance

80 / 531

HighSpeed TCP

Idea

Increase 1 segment up to 10 Mbps, 6 segments up to 100
Mbps, 26 segments at 1 Gbps, 70 segments at 10 Gbps

Reduce the window W by W /2 at 10 Mbps, W /3 at 100
Mbps, W /5 at 1 Gbps, W /10 at 10 Gbps

Limit slow start to not overload the network

Properties

Recovers faster from the initial rate halving

Short probing cycles compared to traditional TCP

Additional slow start improvement to prevent extreme
traffic bursts during slow start

81 / 531

HighSpeed TCP Performance

82 / 531

Scalable TCP

Idea

Use multiplicative increase instead linear increase

Parameter a controls the multiplicative increase,
parameter b controls the fraction of the multiplicative
decrease

Make probing times proportional only to the round trip
time, ignoring the current sending rate

Properties

Higher frequency f = log(1− b)/log(1 + a) of oscillation

Enable Scalable TCP only for windows above a certain
size to allow smooth coexistance

83 / 531

Scalable TCP Performance

84 / 531

CUBIC

Idea

After packet loss and window reduction, inflate the
window quickly, gradually slowing down the window
increase while getting closer to the window size where
packet loss occurred last time

W = C (T − K)3 + Wmax where C is a constant scaling
factor, T is the elapsed time since the last window
reduction event, Wmax is the size of the window prior to

the most recent reduction, and K = 3

√
Wmaxβ

C

Properties

CUBIC is the default congestion control algorithm of the
Linux kernel since kernel version 2.6.18 (2006)

TCP friendly parameters are β = 0, 2 and C = 0.4
85 / 531

CUBIC Performance

86 / 531

Fairness

A crucial factor for the design of congestion control
algorithms is mutual fairness and overall network
efficiency.

Does the protocol negotiate a fair share of the underlying
network resource in the face of competing resource claims
from concurrent transport flows?

How do you define fairness given very different TCP
connections (short vs. long, small RTT vs. long RTT,
small flows vs. elephant flows, . . .)?

87 / 531

Probing TCP Congestion Control Algorithms

11 Motivation

12 High Speed Congestion Control Algorithms

13 Probing TCP Congestion Control Algorithms

88 / 531

Probing TCP from User Space

u
s
e
r

s
p

a
c
e

TBIT

socket

network

BPF

interface k
e
rn

e
l
s
p

a
c
e

raw

TCP/IP

89 / 531

Congestion Control Probing Algorithm I

1 Our software sets up the local firewall and BPF as TBIT
does

2 C sends a TCP SYN packet with the destination address
of S and the destination port number 80; the maximum
segment size (MSS) is set to 100 bytes

3 S sends a TCP SYN/ACK segment

4 C requests the base web page from S by sending an
HTTP GET request

5 S starts sending the base page with 100-byte packets

6 C stores all received packets but does not immediately
send ACKs

90 / 531

Congestion Control Probing Algorithm II

7 After capturing packets for a specific time, C sends ACKs
for all captured packets; C counts the number of packets
in its buffer and sets RCWND as the difference between
the last buffer size and the newer buffer size

8 After sending the ACK for packet 62, C does not send
any more ACKs and ignores all the packets in its buffer;
at this point RCWND is 32 and CWND is 64 on the
client and the server respectively

9 C sends two more ACKs for packet 62 to make the
remote TCP go to the Fast Retransmission phase

10 C continues sending ACKs for received packets without
any additional packet drops, measures the RCWND size
and stores this measured values in a file

11 After receiving a FIN segment from S , C closes the
connection

91 / 531

Validation of the Approach

Testing of the algorithms in a controlled lab environment

Using MATLAB functions for fitting a higher degree
polynomial against the dataset

92 / 531

Probing the Wild Internet

Probed a collection of ≈ 2100 web servers

There is a significant number of web servers not using a
linear inflation of the congestion window

The study should be repeated to reduce the number of
probing failures

The location of the probe has no significant impact on
the results

93 / 531

References

G. Huston.

Gigabit TCP.
The Internet Protocol Journal, 9(2), June 2006.

A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock.

Host-to-Host Congestion Control for TCP.
IEEE Communications Surveys and Tutorials, 12(3):304–342, 2010.

Y.-T. Li, D. Leith, and R. N. Shorten.

Experimental Evaluation of TCP Protocols for High-Speed Networks.
IEEE/ACM Transactions on Networking, 15(5):1109–1122, October 2007.

J. Padhye and S. Floyd.

On Inferring TCP Behavior.
In Proc. SIGCOMM 2001, pages 287–298, San Diego, March 2001. ACM.

S. Feyzabadi and J. Schönwälder.

Identifying TCP Congestion Control Algorithms Using Active Probing.
In (under review), 2010.

F. Qian, A. Gerber, Z. M. Mao, S. Sen, O. Spatscheck, and W. Willinger.

TCP Revisited: A Fresh Look at TCP in the Wild.
In Proceeding of the Internet Measurement Conference (IMC 2009), New York, NY, USA, November 2009.
ACM.

94 / 531

Part: New Internet Transport Protocols

14 Motivation for new Transport Protocols

15 Stream Control Transmission Protocol (SCTP)

16 Datagram Congestion Control Protocol (DCCP)

95 / 531

Motivation for new Transport Protocols

14 Motivation for new Transport Protocols

15 Stream Control Transmission Protocol (SCTP)

16 Datagram Congestion Control Protocol (DCCP)

96 / 531

Classic Internet Transports

Transmission Control Protocol (TCP):

stream oriented
reliable ordered delivery of data
connection oriented (establishment, delivery, teardown)
congestion aware (AIMD congestion control)
head of line blocking

User Datagram Protocol (UDP):

packet oriented
unreliable, unordered delivery of data
connectionless (delivery)
congestion unaware
no blocking

97 / 531

Why Additional Transports?

Would it not be nice to have . . .

a congestion aware datagram transport?
a reliable connection oriented transport which preserves
message boundaries?
a reliable protocol which does not suffer from head of
line blocking?
a transport protocol which can recover from failures in
the underlying layers?
a transport which can bundle multiple independent
streams?
a transport which starts quickly and recovers fast from
packet loss?

98 / 531

Example #1: Loading a Web Page

A web page usually consists of an HTML page which
includes several embedded elements (e.g., graphics).

Various ways to load a web page:

Load elements sequentially using separate TCP
connections
⇒ slow, high overhead for small elements (e.g., icons)
Load elements sequentially using a single TCP
connection
⇒ better, head-of-line blocking, network / server friendly
Load elements in parallel using multiple TCP connections
⇒ faster, high overhead for small elements, no shared
congestion state

Ideally, one would like to use a single connection and
multiple independent streams within this connection...

99 / 531

Example #2: Realtime Streams

TCP’s reliable ordered delivery is unsuited for real-time
applications such as voice and video streaming.

UDP is typically used, but . . .

UDP is not congestion aware
TCP streams may suffer from bad behaving UDP
streams
voice and video may be treated differently as separate
streams

Ideally, one would like to use an unreliable congestion
aware datagram transport.

100 / 531

Stream Control Transmission Protocol (SCTP)

14 Motivation for new Transport Protocols

15 Stream Control Transmission Protocol (SCTP)

16 Datagram Congestion Control Protocol (DCCP)

101 / 531

Stream Control Transmission Protocol (SCTP)

The Stream Control Transmission Protocol (SCTP)
provides the following services [?]:

Reliable, ordered and unordered delivery of data
Message oriented (preserves application layer framing)
Multiple independent streams bundled in an association
Multi-homing of association endpoints for fast failover
Initiation protection and graceful shutdown

Initial version developed 1998-2000 in the IETF mainly as
a transport for signaling protocols.

SCTP has much wider applicability and is continuously
extended.

102 / 531

SCTP Streams and Associations

stream N

association

stream 0
stream 1
stream 2

Data transfer between two SCTP hosts takes place in the
context of an association.

An association may contain multiple data streams and
each stream has the property of independently sequenced
delivery.

A message lost in one stream thus does not affect the
delivery in other streams.

SCTP accomplishes multi-streaming by creating
independence between data transmission and data
delivery.

103 / 531

SCTP Multi-homing

Network #2 (e.g. a fibre link)

Network #1 (e.g. a satelite link)

SCTP allows SCTP endpoints to have multiple IP
addresses.

This multi-homing feature provides the benefit of
potentially greater survivability of an SCTP association in
the presence of network failures.

Multi-homing is not designed as a load balancing
mechanism.

104 / 531

SCTP Sequencing

ap
p

lic
at

io
n

11

101112

56

21

12

23

13

4

Every stream has its own independent sequence number
space

Streams progress independently (no head-of-line blocking)

105 / 531

SCTP Association Establishment

[ESTABLISHED]

Active Open Passive Open

INIT

INIT ACK

COOKIE ECHO

COOKIE ACK

[COOKIE−ECHOED]

[COCKIE−WAIT]

[CLOSED]

[ESTABLISHED]

[CLOSED]

A TCB is not allocated on the server side before the
COOKIE-ECHO has been received to avoid TCP’s
SYN-flooding problem

106 / 531

SCTP Association Teardown

SHUTDOWN ACK

Active Open Passive Open

[SHUTDOWN−PENDING]

[SHUTDOWN−SEND]

[ESTABLISHED]

[ESTABLISHED]
SHUTDOWN

[SHUTDOWN−RECEIVED]

[SHUTDOWN−ACK−SENT]

[CLOSED]

[CLOSED]
SHUTDOWN COMPLETE

SCTP supports only a full teardown procedure (TCP’s
half closed connections do not exist in SCTP)

107 / 531

SCTP State Machine

State Description

CLOSED Initial and final state
COOKIE-WAIT Waiting for a cookie
COOKIE-ECHOED Cookied echoed to the server
ESTABLISHED Association established
SHUTDOWN-PENDING Shutdown requested by application
SHUTDOWN-SENT Shutdown initiated
SHUTDOWN-RECEIVED Shutdown request received
SHUTDOWN-ACK-SENT Shutdown request acknowledged

The SCTP state machine has the states shown above and
is slightly simpler than TCP’s state machine.

For a description of the transitions, see RFC 4960.

108 / 531

SCTP Fragmentation / Reassembly / Bundling

In order to preserve application layer message boundaries,
SCTP has to perform fragmentation and reassembly,
since SCTP messages should not exceed the path MTU.

Fragmentation / reassembly happens on the data chunk
level and not on a message level.

If a receiver runs out of buffer space while waiting for
more fragments to arrive, it may pass the incomplete
message to the application via a special API.

Applications can also request the bundling of chunks so
that they are shipped in a single SCTP message.

109 / 531

SCTP Congestion Control

SCTP uses selective acknowledgements (SACKs) which
speeds up the detection of loss and increases bandwidth
utilization.

During congestion avoidance, cwnd is increased by the
number of acknowledged bytes and not the number of
segments.

During congestion avoidance, cwnd can only be increased
when the full cwnd is utilized.

SCTP begins fast retransmission after receipt of four
duplicate acknowledgedments (TCP after three).

110 / 531

SCTP Packet Format

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Common Header |

+-+

| Chunk #1 |

+-+

| ... |

+-+

| Chunk #n |

+-+

An SCTP packet is composed of a common header and
chunks.

A chunk contains either control information or user data.

Multiple chunks can be bundled into one SCTP packet up
to the MTU size.

111 / 531

SCTP Common Header Format

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source Port | Destination Port |

+-+

| Verification Tag |

+-+

| Checksum |

+-+

The Source Port and Destination Port fields
contains the port number used by the sending / receiving
application layer process.

The Verification Tag field is used by the receiver to
verify that the SCTP packet belongs to the current
association and is not an old or stale packet from a
previous association.

The Checksum field contains a 32-bit CRC checksum as
specified in RFC 4960.

112 / 531

SCTP Data Chunk Format I

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Type = 0 | Flags | Length |

+-+

| Transmission Sequence Number (TSN) |

+-+

| Stream Identifier (S) | Stream Sequence Number (n) |

+-+

| Payload Protocol Identifier |

+-+

\ \

/ User Data (seq n of Stream S) /

\ \

+-+

The Type field indicates the chunk type. Data chunks use
the type number 0.

The Flags field contains a set of binary flags:

U: The data chunk is unordered and there is no Stream

Sequence Number assigned to the data chunk.

113 / 531

SCTP Data Chunk Format II

B: Beginning of a fragment of a user message.
E: Ending of a fragment (last fragment) of a user
message.

The Length field indicates the size of the chunk in bytes
including the chunk header fields.

The Transmission Sequence Number field contains the
transmission sequence number which is also used by the
receiver to reassemble messages.

The Stream Identifier identifies the stream to which
the following data belongs.

The Stream Sequence Number identifies the stream
sequence number of the following user data within the
stream identified by the Stream Identifier.

114 / 531

SCTP Data Chunk Format III

The Payload Protocol Identifier identifies the
upper layer application protocol and is opaque from the
viewpoint of an SCTP protocol engine.

The User Data is of variable length and contains the
actual payload.

115 / 531

Datagram Congestion Control Protocol (DCCP)

14 Motivation for new Transport Protocols

15 Stream Control Transmission Protocol (SCTP)

16 Datagram Congestion Control Protocol (DCCP)

116 / 531

DCCP Motivation

Multimedia streaming applications and online games
often prefer timeliness over reliability.

There is a risk that growing non-congestion-controlled
UDP traffic may lead to congestion collapse.

Implementation of effective congestion control in
application protocols is difficult.

UDP flows are hard for firewalls to handle due to a lack
of a setup and teardown exchange.

See RFC 3714 for a discussion why DCCP is not just
TCP with relaxed reliability.

117 / 531

DCCP Features I

Unreliable flows of datagrams.

Reliable handshakes for connection setup and teardown.

Reliable negotiation of options, including negotiation of a
suitable congestion control mechanism.

Mechanisms allowing servers to avoid holding state for
unacknowledged connection attempts and already-finished
connections.

Support for Early Congestion Notification (ECN)

Acknowledgement mechanisms communicating packet
loss and ECN information. Acks are transmitted as
reliably as the relevant congestion control mechanism
requires, possibly completely reliable.

118 / 531

DCCP Features II

Optional mechanisms that tell the sending application,
with high reliability, which data packets reached the
receiver, and whether those packets were ECN marked,
corrupted, or dropped in the receive buffer.

Suport for Path Maximum Transmission Unit (PMTU)
discovery.

119 / 531

DCCP Congestion Control

DCCP supports multiple congestion control mechanisms
that are identified by so called congestion control
identifiers (CCIDs).

The following congestion control mechanism have been
defined so far:

TCP-like Congestion Control (CCID-2) [RFC 4341]
TCP-Friendly Rate Control (TFRC) (CCID-3) [RFC
4342, RFC 5348]
TCP-Friendly Rate Control for Small Packets
(TFRC-SP) [RFC 5622]

The congestion control mechanism can be negotiated.

Additional congestion control mechanism can be added in
the future.

120 / 531

DCCP Messages

DCCP-Request

DCCP-Response

DCCP-Data

DCCP-Ack

DCCP-DataAck

DCCP-CloseReq

DCCP-Close

DCCP-Reset

DCCP-Sync

DCCP-SyncAck

121 / 531

DCCP Connection Establishment

Client State Server State

CLOSED LISTEN

1. REQUEST --> Request -->

2. <-- Response <-- RESPOND

3. PARTOPEN --> Ack, DataAck -->

4. <-- Data, Ack, DataAck <-- OPEN

5. OPEN <-> Data, Ack, DataAck <-> OPEN

Handshake allows middleboxes to track DCCP
connections

122 / 531

DCCP Connection Teardown (#1)

Client State Server State

OPEN OPEN

1. <-- CloseReq <-- CLOSEREQ

2. CLOSING --> Close -->

3. <-- Reset <-- CLOSED (LISTEN)

4. TIMEWAIT

5. CLOSED

Server initiates teardown procedure.

Client takes the TIMEWAIT burden.

123 / 531

DCCP Connection Teardown (#2)

Client State Server State

OPEN OPEN

1. CLOSING --> Close -->

2. <-- Reset <-- CLOSED (LISTEN)

3. TIMEWAIT

4. CLOSED

Client initiates teardown procedure.

Client takes the TIMEWAIT burden.

124 / 531

DCCP Connection Teardown (#3)

Client State Server State

OPEN OPEN

1. <-- Close <-- CLOSING

2. CLOSED --> Reset -->

3. TIMEWAIT

4. CLOSED (LISTEN)

Server initiates teardown procedure.

Server takes the TIMEWAIT burden.

125 / 531

DCCP State Machine

See RFC 4340 section 8.4. . .

126 / 531

DCCP Packet Formats

+---------------------------------------+ -.

| Generic Header | |

+---------------------------------------+ |

| Additional Fields (depending on type) | +- DCCP Header

+---------------------------------------+ |

| Options (optional) | |

+=======================================+ -’

| Application Data Area |

+---------------------------------------+

127 / 531

DCCP Generic Header

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source Port | Dest Port |

+-+

| Data Offset | CCVal | CsCov | Checksum |

+-+

| Res | Type |1| Reserved | Sequence Number (high bits) .

+-+

. Sequence Number (low bits) |

+-+

The generic header with the “Extended Sequence
Number” bit set to 1.

128 / 531

DCCP Generic Header

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source Port | Dest Port |

+-+

| Data Offset | CCVal | CsCov | Checksum |

+-+

| Res | Type |0| Reserved | Sequence Number (low bits) |

+-+

The generic header with the “Extended Sequence
Number” bit set to 0.

129 / 531

References I

R. Stewart.

Stream Control Transmission Protocol.
RFC 4960, September 2007.

L. Ong and J. Yoakum.

An Introduction to the Stream Control Transmission Protocol (SCTP).
RFC 3286, Ciena Corporation, Nortel Networks, May 2002.

R. Stewart, K. Poon, M. Tuexen, V. Yasevich, and P. Lei.

Sockets API Extensions for Stream Control Transmission Protocol (SCTP).
Internet Draft (work in progress) <draft-ietf-tsvwg-sctpsocket-17.txt>, The Resource Group, Sun
Microsystems, Univ. of Applied Sciences Muenster, HP, Cisco Systems, July 2008.

R. Stewart and C. Metz.

SCTP: New Transport Protocol for TCP/IP.
IEEE Internet Computing, November 2001.

A. L. Caro, J. R. Iyengar, P. D. Amer, S. Ladha, G. J. Heinz, and K. C. Shah.

SCTP: A Proposed Standard for Robust Internet Data Transport.
IEEE Computer, 36(11), November 2003.

S. Fu and M. Atiquzzaman.

SCTP: State of the Art in Research, Products, and Technical Challenges.
IEEE Communications Magazine, 42(4), April 2004.

E. Kohler, M. Handley, and S. Floyd.

Designing DCCP: Congestion Control Without Reliability.
In Proc. SIGCOMM 2006, pages 27–38, Pisa, September 2006. ACM.

130 / 531

References II

E. Kohler, M. Handley, and S. Floyd.

Datagram Congestion Control Protocol (DCCP).
RFC 4340, UCLA, UCL, ICIR, March 2006.

131 / 531

Part: Internet Quality of Service

17 Basic Quality of Service Concepts

18 Integrated Services

19 Differentiated Services

20 Policy Management

132 / 531

Basic Quality of Service Concepts

17 Basic Quality of Service Concepts

18 Integrated Services

19 Differentiated Services

20 Policy Management

133 / 531

Elastic vs. Inelastic Traffic

Elastic Traffic:

Can adjust to changes in delay and throughput
Traditional type of traffic in the Internet
Examples: E-mail, file transfers

Inelastic Traffic:

Does not easily, if at all, adapt to changes in delay and
throughput
Examples: Video and audio streams, real-time stock
trading

134 / 531

Quality of Service (QoS) Parameters

Throughput:

Some applications require a minimum throughput.

Delay:

Some applications require a minimum delay.

Jitter:

Some applications do not tolerate arbitrary delay
variations (jitter).

Packet loss:

Real-time applications vary in the amount of packet loss,
if any, they can sustain.

135 / 531

Flows

Quality of Service (QoS) support requires to treat
aggregations of packets that belong together.

RFC 1633 introduces the concept of a flow as follows:

A flow is a distinguishable stream of related datagrams
that results from a single user activity and requires the
same QoS.
A flow has a single source but may have N destinations.
An N-way teleconference will generally require N flows,
one originating at each site.

A transport connection carrying a video stream is an
example for a single flow.

136 / 531

Controlling Quality of Service (QoS)

Admission control:

New traffic flows are only admitted if there are enough
resources to handle the flows.
Requires signaling phase before the data transfer.

Routing algorithm:

Routing decisions may be based on a variety of QoS
parameters, not just minimum delay.

Queueing discipline:

Queue packets to meet QoS constraints (where
necessary).

Discard policy:

Discard packets (manage congestion) to meet QoS
constraints.

137 / 531

Traffic Shaping: Leaky Bucket

Leaky buckets shape bursty traffic into a smooth traffic
stream.

The leaky bucket uses a conceptual bucket that can be
filled with packets and which has a leak through which
packets leave the bucket with a fixed rate.

Arriving packets will be discarded if the bucket is full.

Leaky bucket parameters:

bucket capacity C
departure rate R

A leaky bucket is a single server queue with constant
service time R and limited queue size C .

The bucket capacity can be counted in packets or bytes.

138 / 531

Leaky Bucket #1: C = 20kB , R = 4mbps

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140

tra
ffi

c
[m

bp
s]

time [ms]

leaky bucket traffic shaping

original
shaped

At t = 40, the bucket has received over the last 20ms the
volume of (10mbps − R) · 20ms = 15kB of data

Sending the buffered data at data rate R takes 30ms

139 / 531

Leaky Bucket #2: C = 5kB , R = 2mbps

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140

tra
ffi

c
[m

bp
s]

time [ms]

leaky bucket traffic shaping

original
shaped

At t = 40, the bucket has received over the last 20ms the
volume of (10mbps − R) · 20ms = 20kB of data

Since C = 5kB , 15kB of data will be lost

Sending the buffered data at data rate R takes 20ms
140 / 531

Traffic Shaping: Token Bucket

Token buckets allow some burstiness if some capacity has
not been used recently.

The token bucket uses a conceptual bucket that is filled
with tokens with a constant arrival time. Packets are
allowed to leave the token bucket system once there are
tokens available.

Token bucket parameters:

token bucket capacity C
token arrival rate R
maximum output rate M

Each token may represent a packet or a fixed number of
bytes.

141 / 531

Token Bucket Burst Length

Calculation of the token bucket burst length S must take
into acount that token continue to arrive while the burst
is being transmitted:

The output burst contains a maximum of C + RS bytes.
The maximum number of bytes transmitted can also be
written as MS .
Thus, we have C + RS = MS . Solving this equation to
get S leads to:

S =
C

(M − R)

To fully understand how a token bucket behaves, it is also
necessary to know how many tokens are initially in the
token bucket.

142 / 531

Token Bucket Example

Consider a token bucket with a token capacity of C = 3
tokens and a token arrival rate of R = 1 token per ms.

The buffer used to hold packets can accommodate up to
B = 4 packets.

Assume that the system has been idle for some time
before the following sequence of packets arrives.

Compute for the packet arrival times
{1, 1.1, 1.5, 2, 2.7, 2.9, 3, 3.1, 3.2, 6}

the departure times;
the number of tokens in the bucket;
the list of queued packets.

143 / 531

Token Bucket Example (cont.)

Packet Arrival Time Departure Time Token Count Queued Packets

1 1 1 2 {}
2 1.1 1.1 1 {}
3 1.5 1.5 0 {}
4 2 2 0 {}
5 2.7 3 0 {5}
6 2.9 4 0 {5, 6}
7 3 5 0 {6, 7}
8 3.1 6 0 {6, 7, 8}
9 3.2 7 0 {6, 7, 8, 9}

10 6 8 0 {9, 10}

144 / 531

Token and Leaky Bucket Combination

Token buckets still allow some bursts, even though the
maximum burst interval can be regulated by careful
selection of the parameters.

It is often desirable to further control the traffic peaks.

Token buckets can be combined with leaky buckets to
address this problem:

The token bucket does the primary traffic shaping.
The leaky bucket takes care of any remaining peaks.

Policing such combined mechanisms can be tricky.

Requires a good understanding of the actual traffic mix to
be effective (requires ongoing measurements).

Often considered to be part of traffic engineering.

145 / 531

Fair Queueing (FQ)

Fair Queuing Idea:

Introduce a separate queue for each flow and each
output interface.
Process queues in a round-robin fashion.

Problem:

Packets have different sizes which can lead to unfairness.

Solution:

Compute the time when a packet will be finished using
byte-by-byte round robin.
Transmit packets in the order of their finishing times.

146 / 531

Fair Queuing Example (A. Tanenbaum)

Assume the packets A (6 bytes), B (4 bytes), C (2 bytes),
D (4 bytes), E (4 bytes) arrive simultaneously at a fair
queuing interface.

Compute the finish times for these five packets.

Solution:
A -> 01 06 11 15 19 20

B -> 02 07 12 16

C -> 03 08

D -> 04 09 13 17

E -> 05 10 14 18

Finish times: C (8), B (16), D(17), E(18), A (20)

147 / 531

Weighted Fair Queueing (WFQ)

Weighted Fair Queueing Idea:

Introduce priorities so that some queues are processed
more often.
Give some queues more than one byte per tick.

Imlementation:

Compute the finish times and insert packets into a
priority queue sorted by finish times.
Take the relative weight of the queues into account
when computing the finish times.

148 / 531

WFQ Example (H. Schulzrinne)

A router with N = 3 queues uses weighted fair queueing
(WFQ). The weights of the queues are w1 = 0.5,
w2 = 0.25, w3 = 0.25.

Packets in the first queue are 100 byte long while packets
in the second and third queue are 300 byte long.

Assume that the buffer for each queue is full and the first
packet in the second queue arrived shortly after the first
packet of the first queue and the first packet of the third
queue arrived shortly after the first packet of the second
queue.

In which order will the WFQ scheduler serve the packets?

149 / 531

WFQ Example (cont.)

The smallest common time slot is the time needed to
transmit 100 bytes.

The first stream needs to get half of the slots while the
other two streams need to get 3 out of 12 slots each (note
that packets in these two classes have a length of 3 slots).

1 2 3 4 5 6 7 8 9 10 11 12

Q1 50 100 150 200 250 300 350 400 450 500 550 600
Q2 25 50 75 100 125 150 175 200 225 250 275 300
Q3 25 50 75 100 125 150 175 200 225 250 275 300

The resulting class sequence is {1, 1, 1, 1, 1, 1, 2, 3, . . .}.

150 / 531

Integrated Services

17 Basic Quality of Service Concepts

18 Integrated Services

19 Differentiated Services

20 Policy Management

151 / 531

Integrated Services (RFC 1633)

Admission
Control

Packet
Scheduler

Packet
Classifier

RSVP
ProcessApplication

Admission
Control

Packet
Scheduler

Packet
Classifier

RSVP
Process

Policy
Control

Policy
Control

Routing
Process

Motivation: Provide a framework for service guarantees
to support applications which do not function with the
Internet’s best effort service model.

Requires to introduce signalling and state in the core
routing infrastructure.

Policies are required to control the reservation and
admission decisions.

152 / 531

Ressource Reservation Protocol (RSVP)

R1 R2 R3

R4

Resv
ResvTear
PathErr

Path
PathTear
ResvErr
ResvConf

S1 RCV2

RCV3

RCV1

QoS signalling protocol defined in RFC 2205.

Flow-based Quality of Service (QoS).

Routers may implement QoS by mapping to lower-layer
QoS mechanisms.

153 / 531

RSVP Characteristics

Unicast and multicast:
RSVP is simplex, i.e., it makes reservations for
unidirectional unicast or multicast data flows.

Soft state:
Reservation state is created and must be periodically
refreshed. If routing changes, the RSVP state will timeout
and new RSVP state will be installed on the new path.

Receiver initiated reservations:
The receiver of a data flow initiates and maintains the
resource reservation used for that flow.

Policy control :
RSVP transports and maintains traffic control and policy
control parameters that are opaque to RSVP.

154 / 531

Guaranteed Service (RFC 2212)

The end-to-end delay bound is given by:

Qe2ed =

{
b−M
R

p−R
p−r + M+Ctot

R+Dtot
for p > R ≥ r

M+Ctot

R+Dtot
for r ≤ p ≤ R

p peak rate of flow (bytes/s)
b bucket depth (bytes)
r token bucket rate (bytes/s)
m minimum policed unit (bytes)
M maximum datagram size (bytes)
R bandwidth (bytes/s)
S slack term (s)

Ctot cumulative sum of per hop error terms C
Dtot cumulative sum of per hop error terms D

155 / 531

Controlled Load Service (RFC 2211)

Controlled-load service provides the client data flow with
a quality of service closely approximating the QoS that
same flow would receive from an unloaded network
element.

Uses admission control to assure that this service is
received even when the network element is overloaded.

The important difference relative to best effort service is
that controlled load service does not noticeable
deteriorate as the network load increases.

156 / 531

Sender Traffic Specification (RFC 2210)

31 24 23 16 15 8 7 0

+-+

| 0 (a) | reserved | 7 (b) |

+-+

| 1 (c) |0| reserved | 6 (d) |

+-+

| 127 (e) | 0 (f) | 5 (g) |

+-+

| Token Bucket Rate [r] (32-bit IEEE floating point number) |

+-+

| Token Bucket Size [b] (32-bit IEEE floating point number) |

+-+

| Peak Data Rate [p] (32-bit IEEE floating point number) |

+-+

| Minimum Policed Unit [m] (32-bit integer) |

+-+

| Maximum Packet Size [M] (32-bit integer) |

+-+

(a) - Message format version number (0)

(b) - Overall length (7 words not including header)

(c) - Service header, service number 1 (default/global information)

(d) - Length of service 1 data, 6 words not including header

(e) - Parameter ID, parameter 127 (Token_Bucket_TSpec)

(f) - Parameter 127 flags (none set)

(g) - Parameter 127 length, 5 words not including header

157 / 531

RSVP Message Formats

An RSVP message consists of a common header.

The body following the header consists of a variable
number of variable-length, typed ”objects”.

The permissible choice of object types is defined using an
augmented Backus-Naur Form (BNF).

158 / 531

RSVP Common Header

0 1 2 3

+-------------+-------------+-------------+-------------+

| Vers | Flags| Msg Type | RSVP Checksum |

+-------------+-------------+-------------+-------------+

| Send_TTL | (Reserved) | RSVP Length |

+-------------+-------------+-------------+-------------+

The Vers field contains the RSVP version (currently 1),
the Flags field is currently unused, and the Checksum

field contains the Internet checksum.

The Type field identifies the RSVP message type and the
Length field the overall length of the RSVP message.

The TTL field contains the original TTL value.

159 / 531

RSVP Object Format

0 1 2 3

+-------------+-------------+-------------+-------------+

| Length (bytes) | Class-Num | C-Type |

+-------------+-------------+-------------+-------------+

| |

// (Object contents) //

| |

+-------------+-------------+-------------+-------------+

Every object is encoded using one or more 32-bit words.

The Length field contains the total length of an object.

The Class field identifies the object’s class while the
Type field identifies the object’s type within its class.

160 / 531

RSVP Messages

Path message (periodically sent by sender):
<Path> ::= <Common Header> [<INTEGRITY>]

<SESSION> <RSVP_HOP> <TIME_VALUES>

[<POLICY_DATA> ...] [<sender descriptor>]

<sender descriptor> ::= <SENDER_TEMPLATE>

<SENDER_TSPEC> [<ADSPEC>]

PathTear message (sent by sender or router):
<PathTear> ::= <Common Header> [<INTEGRITY>]

<SESSION> <RSVP_HOP> [<sender descriptor>]

<sender descriptor> ::= (see earlier definition)

161 / 531

RSVP Messages

Resv message (sent by receivers)
<Resv> ::= <Common Header> [<INTEGRITY>]

<SESSION> <RSVP_HOP> <TIME_VALUES>

[<RESV_CONFIRM>] [<SCOPE>]

[<POLICY_DATA> ...] <STYLE>

<flow descriptor list>

<flow descriptor list> ::= <empty> |

<flow descriptor list> <flow descriptor>

The content of the flow descriptor depends on the
reservation style.

162 / 531

RSVP Messages

ResvTear message (sent by receiver or router):
<ResvTear> ::= <Common Header> [<INTEGRITY>]

<SESSION> <RSVP_HOP> [<SCOPE>] <STYLE>

<flow descriptor list>

<flow descriptor list> ::= (see earlier definition)

ResvConf message (sent by sender)
<ResvConf> ::= <Common Header> [<INTEGRITY>]

<SESSION> <ERROR_SPEC> <RESV_CONFIRM>

<STYLE> <flow descriptor list>

<flow descriptor list> ::= (see earlier definition)

163 / 531

RSVP Messages

PathErr (sent by router):
<PathErr> ::= <Common Header> [<INTEGRITY>]

<SESSION> <ERROR_SPEC>

[<POLICY_DATA> ...] [<sender descriptor>]

<sender descriptor> ::= (see earlier definition)

ResvErr (sent by router):
<ResvErr> ::= <Common Header> [<INTEGRITY>]

<SESSION> <RSVP_HOP> <ERROR_SPEC> [<SCOPE>]

[<POLICY_DATA> ...] <STYLE> [<error flow descriptor>]

The content of the error flow descriptor depends
on the reservation style.

164 / 531

Integrated Services over IEEE 802

Explains how RSVP reservations can be mapped to 802
link layer technologies.

Defined in RFC 2815 and RFC 2816.

165 / 531

RSVP Critique

RSVP requires that routers maintain state for every flow.

Hence, RSVP does not scale with the number of flows.

Are per-flow reservations practical in the Internet?

RSVP only supports QoS signalling.

Additional signalling needed (drilling holes into firewalls).

IETF later defined the “General Internet Signaling
Transport” (GIST) in RFC 5971, which is the core
protocol of the “Next Steps in Signalling” (NSIS)
framework defined in RFC 4080.

For an introduction to NSIS and a comparison to RSVP,
see [?].

166 / 531

Differentiated Services

17 Basic Quality of Service Concepts

18 Integrated Services

19 Differentiated Services

20 Policy Management

167 / 531

Differentiated Services (RFC 2475)

Goal: Scalability by aggregating traffic classification state
which is conveyed by means of IP-layer packet marking.

Packets are classified and marked to receive a particular
per-hop forwarding behavior on nodes along their path.

Sophisticated classification, marking, policing, and
shaping operations need only be implemented at network
boundaries or hosts.

Network resources are allocated to traffic streams by
service provisioning policies which govern

how traffic is marked and conditioned upon entry to a
differentiated services-capable network, and
how that traffic is forwarded within that network.

168 / 531

DS Code Point (RFC 2474)

Two mechanisms are used to achieve scalability:
1 Aggregation of related flows into service classes
2 Reservations are provisioned for a longer period

Packets are tagged when they enter a DiffServ domain
using a 6-bit Differentiated Services Code Point (DSCP).

The DSCP is a value carried in a DS field, which is either
in

the Type of Service field of an IPv4 packet, or
the Traffic Class field of an IPv6 packet.

Some of the 26 possible DSCP values have special usages
(see RFC 2474).

169 / 531

Terminology

DS Domain: a contiguous set of nodes which operate
with a common set of service provisioning policies and
PHB definitions

DS Ingress Node: a node handling traffic as it enters a
DS domain

DS Egress Node: a node handling traffic as it leaves a DS
domain

DS Behavior Aggregate: a collection of packets with the
same DS codepoint crossing a link in a particular
direction.

Per-Hop-Behavior (PHB): the externally observable
forwarding behavior applied at a DS-compliant node to a
DS behavior aggregate.

170 / 531

Differentiated Services Domains

ingress
node

boundary
node

boundary
node

egress
node

sender

receiver

DS Domain A

DS Domain B

1. Classification
2. Conditioning
3. Marking
4. Forwarding

interiror
nodes

1. Classification
2. Forwarding

1. Classification
2. Unmarking
3. Forwarding

Most of the complexity is moved to ingress nodes.

Cooperating DS domains can form a DS region by
establishing Traffic Conditioning Agreements (TCAs).

171 / 531

Traffic Classifier and Conditioner

packets
Classifier Shaper /

Dropper
Marker

Meter

Classifier : selects packets based on the content of packet
headers according to defined rules.

Marker : a device that sets DS codepoints in packets

Meter : a device that performs metering

Shaper/Dropper : a device that shapes a packet stream
and/or drops packets

172 / 531

Policy Management

17 Basic Quality of Service Concepts

18 Integrated Services

19 Differentiated Services

20 Policy Management

173 / 531

Policy Management Framework

(Directory Server, Database, ...)

Policy Management Tool

Policy Repository

Repository Access Protocol (e.g. LDAP)

Repository Access Protocol (e.g. LDAP)

Points (e.g. COPS, SNMP, CLI)

C
o

m
m

u
n

ic
at

io
n

 P
at

h
 (

?
)

A
lt

er
n

at
e

P
o

lic
y

Policy Decision Point

Policy Enforcement Point

Protocol for affecting Policy Enforcement

Policy terminology is defined in RFC 3198.

174 / 531

Policy Core Information Model (PCIM)

Policy Core Information Model (RFC 3460) is intended to
serve as an extensible class hierarchy for defining policy
objects representing policies of different types.

Design of the Policy Core Information Model is influenced
by a declarative, not procedural approach.

Each policy rule consists of a set of conditions and a set
of actions.

The set of conditions associated with a policy rule can be
in Disjunctive Normal Form (DNF) or Conjunctive
Normal Form (CNF).

For the set of actions associated with a policy rule, it is
possible to specify an order of execution.

Policy rules can be prioritized and aggregated into policy
groups. Policy groups may be nested to represent a
hierarchy of policies.

175 / 531

UML Diagram of the PCIM

Policy
+CommonName: string
+PolicyKeyword: string[]

PolicyRule
+Enabled: uint16
+ConditionListType: uint16
+RuleUsage: string
+Priority: uint16
+Mandatory: boolean
+SequencedActions: uint16
+PolicyRoles: string[]

PolicyComponent

*

*

ManagedElement

PolicyGroupPolicyGroupInPolicyGroup

*
*

PolicyRuleInPolicyGroup *

*

PolicyCondition

PolicyConditionInPolicyRule

*

*

PolicyTimePeriodCondition
+TimePeriod: string
+MonthOfYearMask: uint8[][Octetstring]
+DayOfMonthMask: uint8[][Octetstring]
+DayOfWeekMask: uint8[][Octetstring]
+TimeOfDayMask: string
+LocalOrUtcTime: uint16

VendorPolicyCondition
+Constraint: Octetstring[]
+ConstraintEncoding: string[OID]

PolicyRuleValidityPeriod

*

*

PolicyAction

PolicyActionInRule

*

*

VendorPolicyAction
+ActionData: Octetstring[]
+ActionEncoding: string[OID]

PolicyRepository

PolicyRepositoryInPolicyRepository

*
*

AdminDomain

System

PolicyActionInPolicyRepository
*

0..1

PolicyConditionInPolicyRepository

*

0..1

PolicyRuleInSystem

*

1

PolicyGroupInSystem

*

1

176 / 531

PCIM Mapping to LDAP

Structural classes:

Represent policy information and control of policies.

Association classes:

Indicate how instances of the structural classes are
related to each other.

Mapping of structural classes:

PCIM classes are mapped to LDAP classes.
PCIM properties map to LDAP attributes.

Mapping of association classes:
Partly mapped to LDAP

auxiliary classes,
attributes representing DN pointers,
containment in the DIT.

177 / 531

QoS PCIM Extensions

Work continues on generic QoS extensions of the PCIM.

Work continues on network device specific extensions of
the QoS extension of PCIM.

All the PCIM extensions are mapped (similar to PCIM
itself) to LDAP schemas.

⇒ Strict top-down approach to define a policy class
hierarchy.

⇒ Sometimes conflicts with the usual IETF way of working
bottom-up.

178 / 531

Common Open Policy Service (COPS)

COPS (RFC 2748) is a client/server protocol between a
policy decision point (PDP) and policy enforcement
points (PEPs).

Persistent TCP connections (well known port 3288).

COPS messages contain sequences of COPS objects.

Extensibility through self-identifying COPS objects.

PDPs and PEPs can share state as long as the underlying
TCP connection exists.

PEP is responsible to establish a connection to its PDP.

Optional message level security for authentication, replay
protection, and message integrity through integrity
objects.

IPsec or TLS may be used for encryption.

179 / 531

Outsourcing versus Provisioning

Outsourcing Model:

Decisions are made event-driven during the signaling
phase.
Additional asynchronous decisions from the policy-based
management system.
Applicable where scalability is not a big issue.

Provisioning Model:

Provisioning of all necessary configuration information to
enforce policies locally.
Provisioning information is defined in a Policy
Information Base (PIB).
PIBs are defined using the Structure of Policy
Provisioning Information (SPPI).
No real-time policy interactions, highly scalable.

180 / 531

Outsourcing Model (RSVP)

RSVP

RSVP

RSVP

RSVP

RSVP

Resv

Path

change previous decision

check RSVP Resv message

check RSVP Path message information

control

A B

Policy Decision Point

181 / 531

Provisioning Model (DiffServ)

Serv
Diff-

Serv
Diff-

Serv
Diff-

Serv
Diff-

Serv
Diff-

Policy Decision Point

BA

install/delete configuration data control

information

182 / 531

COPS Operation Types (RFC 2748)

Operation Description Direction

REQ Request PEP → PDP
DEC Decision PDP → PEP
RPT Report State PEP → PDP
DRQ Delete Request State PEP → PDP
SSQ Synchronize State Request PDP → PEP
SSC Synchronize State Complete PEP → PDP
OPN Client-Open PEP → PDP
CAT Client-Accept PDP → PEP
CC Client-Close PEP → PDP, PDP → PEP
KA Keep-Alive PEP → PDP, PDP → PEP

183 / 531

COPS for RSVP (RFC 2749)

All objects received in an RSVP message are encapsulated
inside the COPS Client Specific Information Object
(ClientSI) send from the PEP to the PDP.

The PEP and PDP share RSVP state.

Install decision command:

Accept/Allow/Admit an RSVP message or local resource
allocation.

Remove decision command:

Deny/Reject/Remove an RSVP message or local
resource allocation.

PEP may cache decisions in order to use them for a given
time interval while the connection between the PEP and
its PDP is lost.

184 / 531

COPS-RSVP Protocol Example

Interface if1 Interface if2

RSVP Router

B (Receiver) A (Sender)

The PEP router has two network interfaces (if1, if2).

Sender A sends to receiver B.

COPS RSVP is used to control the unicast RSVP flow
between A and B.

185 / 531

COPS-RSVP Protocol Example

<ClientSI: all objects in Path message>

<Handle A> <Context: in & out, Path>
<In-Interface if2> <Out-Interface if1>

<Handle A>
<Context: in & out, Path> <Decision: Command, Install>

<ClientSI: all objects in Resv message>
<In-Interface if2> <Out-Interface if1>
<Handle B> <Context: in & allocation & out, Resv>

<Handle B>
<Context: in, Resv> <Decision: command, Install>
<Context: allocation, Resv> <Decision: command, Install> <Decision: Stateless, Priority=7>
<Context: out, Resv> <Decision: command, Install> <Decision: replacement, POLICY-DATA1>

<Handle B>
<Report type: commit>

PDPPEP

DEC

REQ

REQ

RPT

RSVP PATH

RSVP RESV

DEC

186 / 531

COPS-RSVP Protocol Example

<Handle B>
<Context: allocation, Resv> <Decision: Command, Install> <Decision: Stateless, Priority=3>

<Handle B>
<Reason: Preempted>

<Handle A>
<Reason: Timeout>

PDPPEP

Change Decision

DEC

DRQ

RSVP Timeout

DRQ

187 / 531

COPS for Provisioning

Provisioning of policy configurations (a set of policy class
instances) at PEPs.

COPS-PR specific terminology:

Policy Rule Class (PRC):
An ordered set of attributes. PRCs are defined in PIB
modules and registered in the Object Identifier tree.
Policy Rule Instance (PRI):
An instantiation of a PRC.
Policy Rule Instance Identifier (PRID):
A positive integer which identifies a PRI of a given PRC.
Encoded Policy Instance Data (EPD):
BER encoded representation of a PRI.

188 / 531

Policy Information Base (PIB)

A Policy Information Base (PIB) defines a set PRCs for
use with COPS-PR.

PIB modules are written using the Structure of Policy
Provisioning Information (SPPI).

The SPPI is an adapted superset of the SNMP’s SMIv2.

Hooks in the SPPI can be used to generate MIBs from
PIBs for usage with SNMP.

189 / 531

COPS-PR Protocol Example

[<Integrity>]
<PEPID>

<KA Timer>
[<Integrity>]

[<Integrity>]

<Handle A> <Context: config request>
<BC: 2> <PRID> <EPD> <PRID> <EPD>

<Handle A>
<Context: config request>
<Decision: Install> <BC 2> <PRID> <EPD> <PRID> <EPD>
<Decision: Remove> <BC 1> <PRID> <EPD>
[<Integrity>]

PDPPEP

[<Integrity>]

[<Integrity>]

CAT

REQ

KA

KA

DEC

COPS Timeout

OPN

190 / 531

References I

X. Fu, H. Schulzrinne, A. Bader, D. Hogrefe, C. Kappler, G. Karagiannis, H. Tschofenig, and S. van den

Bosch.
NSIS: A New Extensible IP Signaling Protocol Suite.
IEEE Communications Magazine, 43(10):133–141, October 2005.

R. Braden, D. Clark, and S. Shenker.

Integrated Services in the Internet Architecture: an Overview.
RFC 1633, ISI, MIT, Xerox PARC, June 1994.

R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin.

Resource ReSerVation Protocol (RSVP) Version 1 Functional Specification.
RFC 2205, ISI, UCLA, IBM Research, Univ. of Michigan, September 1997.

J. Wroclawski.

The Use of RSVP with IETF Integrated Services.
RFC 2210, MIT LCS, September 1997.

J. Wroclawski.

Specification of the Controlled-Load Network Element Service.
RFC 2211, MIT LCS, September 1997.

S. Shenker, C. Partridge, and R. Guerin.

Specification of Guaranteed Quality of Service.
RFC 2212, Xerox, BBN, IBM, September 1997.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss.

An Architecture for Differentiated Services.
RFC 2475, Torrent Networking Technologies, EMC Corporation, Sun Microsystems, Nortel UK, Bell Labs
Lucent Technologies, Lucent Technologies, December 1998.

191 / 531

References II

K. Nichols, S. Blake, F. Baker, and D. Black.

Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers.
RFC 2474, Cisco Systems, Torrent Networking Technologies, EMC Corporation, December 1998.

Y. Bernet, S. Blake, D. Grossman, and A. Smith.

An Informal Management Model for Diffserv Routers.
RFC 3290, Microsoft, Ericsson, Motorola, Harbour Networks, May 2002.

B. Moore.

Policy Core Information Model (PCIM) Extensions.
RFC 3460, IBM, January 2003.

Y. Snir, Y. Ramberg, J. Strassner, R. Cohen, and B. Moore.

Policy Quality of Service (QoS) Information Model.
RFC 3644, Cisco Systems, Intelliden, Ntear LLC, IBM, November 2003.

192 / 531

Part: Multimedia Transport and Signaling

21 Real-time Transport Protocol (RTP)

22 Session Description Protocol (SDP)

23 Session Initiation Protocol (SIP)

193 / 531

Real-time Transport Protocol (RTP)

21 Real-time Transport Protocol (RTP)

22 Session Description Protocol (SDP)

23 Session Initiation Protocol (SIP)

194 / 531

Real-time Transport Protocol (RTP)

RTP provides end-to-end network transport functions
suitable for applications transmitting real-time data, such
as audio, video or simulation data, over multicast or
unicast network services.

RTP and RTCP are designed to be independent of the
underlying transport and network layers (but commonly
used over UDP).

The protocol supports the use of RTP-level translators
and mixers.

195 / 531

RTP Elements

Synchronisation Source: A source identified by a 32-bit
number which is originating data streams.

Mixer : A component capable of resynchronizing streams,
mixing reconstructed streams into a single stream, or
translating the encoding of a stream (e.g., from a
high-quality encoding to a low-bandwidth encoding).

Translator : A component capable to translate streams in
order to cross firewalls or different transports.

Receiver : A component resynchronizing received streams,
usually using playout buffers.

196 / 531

RTP Message Format

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|V=2|P|X| CC |M| PT | sequence number |

+-+

| timestamp |

+-+

| synchronization source (SSRC) identifier |

+=+

| contributing source (CSRC) identifiers |

| |

+-+

RTP is defined in RFC 3550.

RTP supports multicasting of multimedia streams since it
is running over UDP

197 / 531

RTP Message Header

The V fied contains the RTP version number (current
version is 2).

The X bit indicates whether there are any extension
headers

The P bit indicates that there are padding bytes at the
end of the packet. (The last padding byte contains the
number of padding bytes.)

The CC field contains the number of CSRC identifiers.

The M bit may be used by profiles that mark certain bytes
in the packets.

The PT identifies the format of the RTP payload.

198 / 531

RTP Message Header

The sequence number field contains a sequence number
for each packet.

The timestamp field indicates the relative time of the
packet in the overall media stream (media timestamp).

The SSRC field identifies the synchronization source.

The CSRC identifiers (if present) identify the additional
synchronization sources in cases where multiple media
streams have been mixed into a single stream.

RTP profiles define how RTP is used to transport specific
codecs.

199 / 531

RTP Control Protocol (RTCP)

RTCP allows senders and receivers to transmit a series of
reports to one another that contain additional information
about

the data being transmitted and
the performance of the network.

RTCP packet types:

SR: Sender report, for transmission and reception
statistics from participants that are active senders
RR: Receiver report, for reception statistics from
participants that are not active senders
SDES: Source description items, including CNAME
BYE: Indicates end of participation
APP: Application-specific functions

200 / 531

RTCP Extended Reports (XR)

XR packets convey information beyond that already
contained in the reception report blocks of RTCP’s
sender report (SR) or Receiver Report (RR) packets.

Packet-by-packet report blocks:

Loss RLE Report Block: Run length encoding of reports
concerning the losses and receipts of RTP packets.
Duplicate RLE Report Block: Run length encoding of
reports concerning duplicates of received RTP packets.
Packet Receipt Times Report Block: A list of reception
timestamps of RTP packets.

201 / 531

RTCP Extended Reports (XR)

Reference time report blocks:

Receiver Reference Time Report Block: Receiver-end
wallclock timestamps. Together with the DLRR Report
Block mentioned next, these allow non-senders to
calculate round-trip times.
DLRR Report Block: The delay since the last Receiver
Reference Time Report Block was received.

Metric report blocks:

Statistics Summary Report Block : Statistics on RTP
packet sequence numbers, losses, duplicates, jitter, and
TTL or Hop Limit values.
VoIP Metrics Report Block : Metrics for monitoring
Voice over IP (VoIP) calls.

202 / 531

Real-Time Streaming Protocol (RTSP)

The Real-Time Streaming Protocol (RTSP) defined in
RFC 2326 establishes and controls either a single or
multiple time-synchronized streams of continuous media.

RTSP acts as a “network remote control” for multimedia
servers.

The RTSP protocol is similar in syntax and operation to
HTTP version 1.1.

RTSP, however, differs fundamentally from HTTP in that
data delivery takes place out-of-band in a different
protocol.

While RTSP was written to support RTP, it is not tied to
RTP as the real-time media transport protocol.

203 / 531

RTP + RTCP + RTSP + HTTP

multimedia-client web-server streaming-server

HTTP GET

RTSP SETUP

RTSP PLAY

RTP AUDIO
RTP VIDEO

RTCP REPORT

RTSP PAUSE

RTSP TEARDOWN

204 / 531

RSTP Options

OPTIONS get available methods

SETUP establish transport

ANNOUNCE change description of media object

DESCRIBE get (low-level) description of media object

PLAY start playback, reposition

RECORD start recording

REDIRECT redirect client to new server

PAUSE halt delivery, but keep state

SET PARAMETER device or encoding control

GET PARAMETER device or encoding control

TEARDOWN remove state

205 / 531

Session Description Protocol (SDP)

21 Real-time Transport Protocol (RTP)

22 Session Description Protocol (SDP)

23 Session Initiation Protocol (SIP)

206 / 531

Session Description Protocol (SDP)

SDP as defined in RFC 4566 is intended for describing
multimedia sessions for the purposes of session
announcement, session invitation, and other forms of
multimedia session initiation.

The SDP description format is used by other protocols
(such as RSTP).

A session description includes:

Session name and purpose
Time(s) the session is active
The media comprising the session
Information needed to receive the media streams
(addresses, ports, formats and so on)

207 / 531

Sample Session Description

v=0

o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4

s=SDP Seminar

i=A Seminar on the session description protocol

u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps

e=mjh@isi.edu (Mark Handley)

c=IN IP4 224.2.17.12/127

t=2873397496 2873404696

a=recvonly

m=audio 49170 RTP/AVP 0

m=video 51372 RTP/AVP 31

m=application 32416 udp wb

a=orient:portrait

Description of a session called ”SDP Seminar” which is
sent to the multicast group 224.2.17.12 and contains
three channels (audio, video, whiteboard).

Start and stop times are indicated in the t= field.

208 / 531

Session Initiation Protocol (SIP)

21 Real-time Transport Protocol (RTP)

22 Session Description Protocol (SDP)

23 Session Initiation Protocol (SIP)

209 / 531

Session Initiation Protocol (SIP)

An application layer control (signaling) protocol for
creating, modifying, and terminating sessions with one or
more participants.

Sessions include Internet telephone calls, multimedia
distribution, and multimedia conferences.

SIP makes use of elements called proxy servers to help
route requests to the user’s current location, authenticate
and authorize users for services, implement provider
call-routing policies, and provide features to users.

SIP runs on top of several different transport protocols.

SIP is defined in RFC 3261.

210 / 531

SIP Facets

User location: determination of the end system to be
used for communication

User availability : determination of the willingness of the
called party to engage in communications

User capabilities: determination of the media and media
parameters to be used

Session setup: ”ringing”, establishment of session
parameters at both called and calling party

Session management: including transfer and termination
of sessions, modifying session parameters, and invoking
services

211 / 531

SIP Properties

HTTP-like textual message format

HTTP-like method calls and status responses

Utilizes the Session Description Protocol (SDP) for the
description of multimedia sessions

User agents can initiate and receive calls (session
endpoints)

Proxy server provide an infrastructure to help user agents
to establish sessions

. . .

212 / 531

SIP Interworking

Location Server Redirect Server Registrar Server

Proxy Server Proxy Server Gateway
User Agent

PSTN

213 / 531

SIP Session Setup Example

Alice’s | INVITE F1 | | | Bob’s

softphone |--------------->| INVITE F2 | | softphone

| 100 Trying F3 |--------------->| INVITE F4 |

|<---------------| 100 Trying F5 |--------------->|

| |<-------------- | 180 Ringing F6 |

| | 180 Ringing F7 |<---------------|

| 180 Ringing F8 |<---------------| 200 OK F9 |

|<---------------| 200 OK F10 |<---------------|

| 200 OK F11 |<---------------| |

|<---------------| | |

| ACK F12 |

|--->|

| Media Session |

|<==>|

| BYE F13 |

|<---|

| 200 OK F14 |

|--->|

| |

214 / 531

Alice’s INVITE Message

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds

Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/sdp

Content-Length: 142

(Alice’s SDP not shown)

215 / 531

Bob’s 200 Response

SIP/2.0 200 OK

Via: SIP/2.0/UDP server10.biloxi.com

;branch=z9hG4bKnashds8;received=192.0.2.3

Via: SIP/2.0/UDP bigbox3.site3.atlanta.com

;branch=z9hG4bK77ef4c2312983.1;received=192.0.2.2

Via: SIP/2.0/UDP pc33.atlanta.com

;branch=z9hG4bK776asdhds ;received=192.0.2.1

To: Bob <sip:bob@biloxi.com>;tag=a6c85cf

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE

Contact: <sip:bob@192.0.2.4>

Content-Type: application/sdp

Content-Length: 131

(Bob’s SDP not shown)

216 / 531

SIP URIs

sip:user:password@host:port;uri-parameters?headers

The user token identifies a particular resource at the
host being addressed.

The password token is a password associated with user

(usage not recommended).

The host token identifies the host providing SIP
resources.

The port number is the port to which a request is to be
sent.

The uri-parameters affect the request constructed
from the URI.

The headers token specifies the header fields to be
included in a request constructed from a URI.

217 / 531

SIP URI Examples

Typical SIP URI for user alice:
sip:alice@atlanta.com

The same with an explicit IP address:
sip:alice@192.0.2.4

The same with a password and an explicti transport:
sip:alice:secretword@atlanta.com;transport=tcp

SIP URI with an embedded PSTN phone number:
sip:+1-212-555-1212:1234@gateway.com;user=phone

SIP URI with an explicit method call:
sip:atlanta.com;method=REGISTER?to=alice%40atlanta.com

218 / 531

Locating SIP Servers (RFC 3263)

Given a SIP URI, how do you find the responsible SIP
server?

Need to determine

the transport protocol and
the IP address and port number

of the SIP server or proxy.

In the general case, it is preferrable to have SIP URIs that
belong to a domain rather than a specific host:

sip:j.schoenwaelder@jacobs-university.de

A mechanism similar to MX records for email is needed.

Could there be a generalized solution?

219 / 531

Transport Selection

if <SIP URI specifies transport> {

<use specified transport>

} else {

if <host part of the URI is numeric> {

<use udp for sip: and tcp for sips:>

} else {

<lookup a NAPTR DNS record using transport

selection fields SIP+D2U, SIP+D2T, SIP+D2S>

if <no NAPTR records available> {

<construct and perform SRV queries>

}

if <still not successfull> {

<use udp for sip: and tcp for sips:>

}

}

}

220 / 531

Port and IP Address Selection

if <host part of the URI is numeric> {

<use IP address>

if <port part of the URI is not empty> {

<use the port number contained in the URI>

} else {

<use the default port number>

}

} else {

if <port part of the URI is not empty> {

<lookup IP addresses using A or AAAA queries>

<try the addresses with the port number until success>

} else {

<lookup a SRV record for the determined transport>

if <no SRV record available> {

<lookup IP addresses using A or AAAA queries>

<try the addresses with the port number until success>

} else {

<try the locations specified by the SRV record until success>

}

}

}

221 / 531

DNS NAPTR and SRV Resource Records

; order pref flags service regexp replacement

IN NAPTR 50 50 "s" "SIPS+D2T" "" _sips._tcp.example.com.

IN NAPTR 90 50 "s" "SIP+D2T" "" _sip._tcp.example.com.

IN NAPTR 100 50 "s" "SIP+D2U" "" _sip._udp.example.com.

; Priority Weight Port Target

IN SRV 0 1 5060 server1.example.com

IN SRV 0 2 5060 server2.example.com

NAPTR records provide a mapping from a domain to the
SRV record for contacting a server with the specific
transport protocol in the NAPTR services field (RFC
2915).

SRV records specify the location of server(s) for a specific
protocol and domain (RFC 2782).

222 / 531

SIP Methods

INVITE

Invites a user to participate in a session (call).

ACK

Confirms final response to an INVITE request.

OPTIONS

Used to query the capabilities of a server.

BYE

Indicates termination of a call.

CANCEL

Cancels a pending request.

REGISTER

Registers a user agent at a proxy.

223 / 531

SIP Status Codes

1xx Provisional – request received, continuing to process the
request

2xx Success – the action was successfully received,
understood, and accepted

3xx Redirection – further action needs to be taken in order to
complete the request

4xx Client Error – the request contains bad syntax or cannot
be fulfilled at this server

5xx Server Error – the server failed to fulfill an apparently
valid request

6xx Global Failure – the request cannot be fulfilled at any
server

224 / 531

SIP Communication Establishment

Communication establishment is done in six steps:
1 Registering, initiating and locating the user.
2 Determine the media to use – involves delivering a

description of the session that the user is invited to.
3 Determine the willingness of the called party to

communicate.
4 Call setup.
5 Call modification of handling – example, call transfer

(opional)
6 Call termination

225 / 531

SIP Registration

During startup, a SIP user agent registers with its
proxy/registration server.

Registration can also occur when the SIP user agent
moves and the new location needs to be communicated.

The registration information is periodically refreshed
(each SIP user agent has to re-register).

Typically, the proxy/registration server will forward the
location information to the location/redirect server.

In many cases, the different servers might be co-located.

226 / 531

ENUM and DDDS (RFC 3761)

ENUM defined in RFC 3761 provides a mechanism to
lookup information associated with telephone numbers in
the DNS.

Number conversion:
1 Remove all characters with the exception of the digits.

Example: ”+442079460148” −→ ”442079460148”
2 Put dots (”.”) between each digit. Example:

4.4.2.0.7.9.4.6.0.1.4.8
3 Reverse the order of the digits. Example:

8.4.1.0.6.4.9.7.0.2.4.4
4 Append the string ”.e164.arpa” to the end. Example:

8.4.1.0.6.4.9.7.0.2.4.4.e164.arpa

Lookup a NAPTR record for the resulting DNS name.

227 / 531

DDDS

The Dynamic Delegation Discovery System (DDDS)
defined in RFC 3403 is used to implement lazy binding of
strings to data, in order to support dynamically
configured delegation systems.

The DDDS functions by mapping some unique string to
data stored within a DDDS Database by iteratively
applying string transformation rules until a terminal
condition is reached.

The core of DDDS are NAPTR records.

228 / 531

References

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.

RTP: A Transport Protocol for Real-Time Applications.
RFC 3550, Columbia University, Packet Design, Blue Coat Systems Inc., Packet Design, July 2003.

A. Clark T. Friedman, R. Caceres.

RTP Control Protocol Extended Reports (RTCP XR).
RFC 3611, Paris 6, IBM Research, A. Clark, November 2003.

M. Handley, V. Jacobson, and C. Perkins.

SDP: Session Description Protocol.
RFC 4566, UCL, Packet Design, University of Glasgow, July 2006.

J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and

E. Schooler.
SIP: Session Initiation Protocol.
RFC 3261, dynamicsoft, Columbia University, Ericsson, WorldCom, Neustar, ICIR, ATT, June 2002.

J. Rosenberg and H. Schulzrinne.

Session Initiation Protocol (SIP): Locating SIP Servers.
RFC 3263, dynamicsoft, Columbia University, June 2002.

H. Schulzrinne and J. Rosenberg.

The Session Initiation Protocol: Internet-Centric Signaling.
IEEE Communications Magazine, 38(10), October 2000.

229 / 531

Part: Voice over IP

24 Background and Codecs

25 VoIP and PSTN

26 Voice Quality Metrics

230 / 531

Background and Codecs

24 Background and Codecs

25 VoIP and PSTN

26 Voice Quality Metrics

231 / 531

Voice over IP

Idea: Send voice over the packet switched Internet

Digitizing and encoding voice signals
Transmission over the Internet
Decoding and generating the analog voice signal

RTP/RTCP (UDP/IP) can be used for the transmission

Need a common signalling protocol (ringing the phone)

Need an infrastructure to locate users and phones

232 / 531

Voice over IP

Internet
Encoder

Playout Buffer

Decoder

Congestion Control

Voice quality is impacted by

encoding of the digitized analog signal
transmission impairments (delay, jitter, loss)

Playout buffers can mitigate some of the effects

Playout buffers should be adaptive
For bidirectional voice conversations, there is an upper
limit of delay

233 / 531

Pulse Code Modulation (PCM)

Voice bandwidth is 4 kHz, so sampling bandwidth has to
be 8 kHz (for Nyquist).

Represent each sample with 8 bit (having 256 possible
values).

Throughput is 8000 Hz * 8 bit = 64 kbit/s, as a typical
digital phone line.

In real applications mu-law (North America) and a-law
(Europe) variants are used, which code the analog signal
on a logarithmic scale using 12 or 13 bits instead of 8 bits
(see Standard ITU-T G.711).

234 / 531

Other Codecs

Adaptive differential PCM (ADPCM), ITU-T G.726

Encode the difference between the actual and the
previous voice packet, requiring 32 kbps.

LD-CELP, Standard ITU-T G.728

CS-ACELP, Standard ITU-T G.729 and G.729a

MP-MLQ, Standard ITU-T G.723.1, 6.3kbps, Truespeech

ACELP, Standard ITU-T G.723.1, 5.3kbps, Truespeech

LPC-10, able to reach 2.5 kbps

iLBC, low bit-rate, able to deal with packet loss

speex, free codec, 8/16/32 kHZ sampling

235 / 531

VoIP and PSTN

24 Background and Codecs

25 VoIP and PSTN

26 Voice Quality Metrics

236 / 531

Interworking with the PSTN

PSTN: Public Switched Telephone Network

Users like to call from a VoIP phone a PSTN phone

Users like to call from a PSTN phone a VoIP phone

Users like to be reachable via the same ”call number”
regardless where I attach to the network

Users like to be mobile while placing voice calls

Two big standardization bodies involved:

ITU-T (International Telecommunication Union)
IETF (Internet Engineering Task Force)

237 / 531

H.323 (ITU-T)

The H.323 standard provides a foundation for audio,
video, and data communications across IP-based
networks, including the Internet.

H.323 is an umbrella recommendation setting standards
for multimedia communications over packet switched
networks.

H.323 includes parts of H.225.0 - RAS, Q.931, H.245
RTP/RTCP and audio/video codecs, such as the audio
codecs (G.711, G.723.1, G.728, etc.) and video codecs
(H.261, H.263) that compress and decompress media
streams.

Media streams are transported on RTP/RTCP.

The signaling is transported reliably over TCP.

238 / 531

H.323 Protocols

Video
Codec

RTP

Codec
Audio

RTCP T.120 T.36
H.225

Q.931

G.711
G.723
G.729

H.261
H.263

H.225

RAS
H.245

UDP TCP TCP UDP TCP

IP

Media Data/Fax Call Control and Signaling

239 / 531

H.323 Terminology

Terminal

End system (a phone or multimedia PC) supporting
H.225 call control signaling
H.245 control channel signaling
RTP/RTCP media transport
Audio (video) codecs

Gateway
Interface to non-H.323 terminals

Translation between entities in packet switched networks
and circuit switched networks
Tramission format and communication procedure
translation

240 / 531

H.323 Terminology (cont.)

Gatekeeper

Maintains information about terminals (optional).
Can perform address translation, admission control,
bandwidth control, zone management, call control
signaling, call authorization, bandwidth management,
call management.

Multipoint Control Units

Support for multi-party communication (conferences).
The Multipoint Controller (MC) provides control
functions.
The Multipoint Processor (MP) receives and processes
audio, video and/or data streams.

241 / 531

H.323 Interworking

Internet

PSTN

ISDN

ATM

Gateway

GatekeeperTerminal

H.320

H.321

H.324

242 / 531

H.323 Communication Establishment

Communication establishment is done in five steps:
1 Call setup
2 Initial communication and capabilities exchange
3 Audio/video communication establishment
4 Call services
5 Call termination

243 / 531

Why SIP and MEGACO

H.323

Too heavy for devices with limited processing power
Does not specifically address mobility / roaming

Session Initiation Protocol (SIP)

Designed for lightweight signalling
Addresses any media, not voice only
Suitable for Internet telephony

Media Gateway Control Protocols (MGCPs)

Protocols for Media Gateways
Focuses on PSTN-PSTN via IP

244 / 531

Voice Quality Metrics

24 Background and Codecs

25 VoIP and PSTN

26 Voice Quality Metrics

245 / 531

Mean Opinion Scores (MOS) [ITU P.800]

MOS Quality Impairment

1 Bad Very annoying
2 Poor Annoying
3 Fair Slightly annoying
4 Good Perceptible but not annoying
5 Excellent Imperceptible

Subjective tests are done by a group of testers. The MOS
scores of the testers are averaged to obtain the overall
MOS.

Objective tests are done by using a model to compute
MOS scores.

246 / 531

MOS Scores for Several Codecs

Codec Data Rate Mean Opinion Score (MOS)

G.711 64 kbit/s 4.1
G.729 8 kbit/s 3.92

G.723.1 6.3 kbit/s 3.9
G.729a 8 kbit/s 3.7
G.723.1 5.3 kbit/s 3.65

Different codecs achieve different MOS values.

Trade-off between saving bandwith and quality loss due
to the codec itself.

247 / 531

E Model [ITU G.107]

Idea: Calculate a factor R representing a transmission
quality rating

Definition:
R = R0 − Is − Ie − Id + A

Parameters:

R0 - noise (S/N at 0 dB)
Is - impairments simultaneous to voice signal
Id - impairments delayed after voice signal
Ie - effects of special equipment (e.g., codecs)
A - advantage factor

Assumption: “Psychological factors on the psychological
scale are additiv”

248 / 531

Interpretation of the R factor

R-factor Quality MOS

90 < R < 100 Best 4.34 - 4.50
80 < R < 90 High 4.03 - 4.34
70 < R < 80 Medium 3.60 - 4.03
60 < R < 70 Low 3.10 - 3.60
50 < R < 60 Poor 2.58 - 3.10

The R factor is in the range [0 . . . 100].

The R factor can be used directly as a quality metric.

A translation to MOS scores is possible as well.

249 / 531

R factor versus MOS

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 20 40 60 80 100

M
O

S
 s

co
re

R factor

Relationship between the R factor and MOS scores

1 + 0.035 * x + 7 * 0.000001 * x * (x-60) * (100-x)

MOS = 1 + 0.035 · R + 7 · 10−6 · R · (R − 60) · (100− R)

250 / 531

Simplified E Model

Cole and Rosenbluth [?] have further simplified the model
for a VoIP system:

R = 94.2− Ie − Id

Parameters:

Ie = λ1 + λ2 · ln(1 + λ3e)
Id = 0.024 · d + 0.11 · (d − 177.3) · I (d − 177.3)
e - represents the overall packet loss
d - represents the total end-to-end delay
I (x) - unity step function
λi - codec parameters (reaction to loss)

All parameters are easy to measure once the λi are known.

Note that jitter does not at all impact this model.

251 / 531

Large Scale VoIP Measurements

Brix Networks is running www.TestYourVoIP.com, a test
site collecting (simulated) call statistics [?].

The metric ACQ3.6 is the number of calls with
MOS ≥ 3.6 recorded on the test systems.

252 / 531

www.TestYourVoIP.com

References

ITU.

Recommendation P.800: Methods for subjective determination of transmission quality.
Recommendation ITU-T P.800, International Telecommunication Union, August 1996.

ITU.

Recommendation G.107: A computational model for use in transmission quality.
Recommendation ITU-T G.107, International Telecommunication Union, December 1998.

R. G. Cole and J. H. Rosenbluth.

Voice over IP performance monitoring.
SIGCOMM Comput. Commun. Rev., 31(2):9–24, 2001.

M. Sylor, N. Venna, and H. Ripps.

Voice Quality on the Internet in 2005 as Measured by www.TestYourVoIP.com.
In Proc. DSOM 2006, pages 112–123, Dublin, October 2006. Springer LNCS 3775.

253 / 531

Part: Internet Mobility

27 Mobile IP Terminology

28 Mobile IPv4 (MIPv4)

29 Mobile IPv4 (MIPv6)

30 Host Identity Protocol (HIP) (RFC 4423)

254 / 531

Mobile IP Terminology

27 Mobile IP Terminology

28 Mobile IPv4 (MIPv4)

29 Mobile IPv4 (MIPv6)

30 Host Identity Protocol (HIP) (RFC 4423)

255 / 531

Motivation

With the advent of portable devices (PDAs, cell phones,
music players, . . .), there is an increasing need to
communicate while moving between networks.

Mobility should ideally not impact any applications
running on portable devices.

Mobility might lead to periods of intermitted network
access.

The Internet was not designed with mobility in mind . . .

256 / 531

Terminology (RFC 3753)

Fixed Node (FN):

A node, either a host or a router, unable to change its
point of attachment to the network and its IP address
without breaking open sessions.

Mobile Node (MN):

An IP node capable of changing its point of attachment
to the network.
A Mobile Node may either be a Mobile Host or a Mobile
Router.

257 / 531

Terminology (RFC 3753)

Mobile Host (MH):

A Mobile Node that is an end host and not a router.
A Mobile Host is capable of sending and receiving
packets, that is, being a source or destination of traffic,
but not a forwarder of it.

Mobile Router (MR):

A router capable of changing its point of attachment to
the network, moving from one link to another link.
The MR is capable of forwarding packets between two or
more interfaces, and possibly running a dynamic routing
protocol modifying the state by which it does packet
forwarding.

258 / 531

Terminology (RFC 3753)

Mobile Network (MN):

An entire network, moving as a unit, which dynamically
changes its point of attachment to the Internet and thus
its reachability in the topology.
The mobile network is composed of one or more IP-
subnets and is connected to the global Internet via one
or more Mobile Routers (MR).
The internal configuration of the mobile network is
assumed to be relatively stable with respect to the MR.

259 / 531

Handover Terminology (RFC 3753)

Roaming

An operator-based term involving formal agreements
between operators that allows a mobile to get
connectivity from a foreign network.

Handover

The process by which an active MN changes its point of
attachment to the network, or when such a change is
attempted.
The access network may provide features to minimize
the interruption to sessions in progress.

Seamless Handover

A handover in which there is no change in service
capability, security, or quality.

260 / 531

Mobility and Layering

Link layer

xxx

Network layer

xxx

Transport layer

xxx

Session layer

xxx

261 / 531

Mobile IP (MIP) Requirements

Transparency

Mobile nodes keep their IP address
Transport and application protocols do not change

Compatibility

Support for the existing layer two protocols
No changes needed on existing deployed nodes

Security

Security should not be sacrificed
Privacy must be maintained where necessary

Efficiency and Scalability

Minimize overhead for mobility support
Must scale to a huge number of mobile nodes (mobile
phones)

262 / 531

Mobile IP Scenario

Internet
Base StationBase Station

Correspondent Node

Foreign AgentHome Agent

Home Address Care-of Address

263 / 531

Mobile IPv4 (MIPv4)

27 Mobile IP Terminology

28 Mobile IPv4 (MIPv4)

29 Mobile IPv4 (MIPv6)

30 Host Identity Protocol (HIP) (RFC 4423)

264 / 531

Mobile IPv4 Terminology

Home Agent

A router on a mobile node’s home network which
tunnels datagrams for delivery to the mobile node when
it is away from home, and maintains current location
information for the mobile node.

Foreign Agent

A router on a mobile node’s visited network which
provides routing services to the mobile node while
registered.
The foreign agent detunnels and delivers datagrams to
the mobile node that were tunneled by the mobile node’s
home agent.
For datagrams sent by a mobile node, the foreign agent
may serve as a default router for registered mobile nodes.

265 / 531

Mobile IPv4 Terminology

Home Address

An IP address that is assigned for an extended period of
time to a mobile node. It remains unchanged regardless
of where the node is attached to the Internet

Care-of Address

The termination point of a tunnel toward a mobile node,
for datagrams forwarded to the mobile node while it is
away from home.

Correspondent Node

A peer with which a mobile node is communicating. A
correspondent node may be either mobile or stationary.

266 / 531

MIPv4 (RFC 3344)

Internet
Base StationBase Station

Correspondent Node

Foreign AgentHome Agent

Home Address Care-of Address

267 / 531

MIPv4 (RFC 3344)

Correspondent node → mobile node:

Correspondent node sends IP packets to the home
address of the mobile node.
Home agent intercepts packets and tunnels them to the
current care-of address via the foreign agent.
Foreign agent forwards packet to the mobile node.

Mobile node → correspondent node:

Direct forwarding (RFC 3344)
Reverse tunneling (RFC 3024)

268 / 531

MIPv4 (RFC 3344)

Internet
Base StationBase Station

Correspondent Node

Foreign AgentHome Agent

Home Address Care-of Address

269 / 531

MIPv4 (RFC 3344, RFC 3024)

Internet
Base StationBase Station

Correspondent Node

Foreign AgentHome Agent

Home Address Care-of Address

270 / 531

Direct Forwarding vs. Reverse Tunneling

Problems with direct forwarding:

Asymmetric routing may cause routing problems
Firewall problems (topological incorrect source
addresses)
Potential problems with multicast support
Loss of transparency

Problems with reverse tunneling:

Double triangular routing costs
Reverse tunnel may be misused to bypass firewalls

271 / 531

Other MIPv4 Issues

Congestion Control

Transport protocols may get confused if the properties of
the communication path change (PMTU, congestion
state, . . .).

Convergence

Convergence time may be significant.
Link layer notifications may be used to trigger the
handover early.
It might be necessary to forward packets via multiple
paths during handover.

Security and Privacy

Mobile IP should not introduce any new security and
privacy issues (but it does in reality).

272 / 531

MIPv4 Agent Discovery

Mobile hosts discover agents (home or foreign) by
listening to agent advertisements which are multicasted
to the ”all systems on this link” multicast address
(224.0.0.1).

The Agent Advertisement is send together with a router
advertisement and contains parameters (encapsulation
mechanisms) and care-of addresses.

A mobile host can ask for agent advertisements by
sending a router solicitation message.

273 / 531

MIPv4 Registration

Registration messages are exchanged between a mobile
node, (optionally) a foreign agent, and the home agent.

Registration creates or modifies a mobility binding at the
home agent, associating the mobile node’s home address
with its care-of address for the specified lifetime.

Registration messages must be authenticated using keyed
message digests and nonces or timestamps for replay
protection.

The home agent uses proxy ARP and gratuitous ARP
while the mobile host is registered on a foreign network to
intercept and redirect traffic.

274 / 531

Mobile IPv4 (MIPv6)

27 Mobile IP Terminology

28 Mobile IPv4 (MIPv4)

29 Mobile IPv4 (MIPv6)

30 Host Identity Protocol (HIP) (RFC 4423)

275 / 531

MIPv6 vs. MIPv4 (RFC 3775)

There is no need to deploy foreign agents in MIPv6.

Support for route optimization is a fundamental part of
MIPv6.

Mobile IPv6 route optimization can operate securely even
without pre-arranged security associations.

Most packets sent to a mobile node while away from
home in Mobile IPv6 are sent using an IPv6 routing
header rather than IP encapsulation, reducing the amount
of resulting overhead compared to Mobile IPv4.

Mobile IPv6 is decoupled from any particular link layer, as
it uses IPv6 Neighbor Discovery.

. . .

276 / 531

MIPv6 Principles (RFC 3775)

Mobile nodes acquire care-of addresses via
auto-configuration. (Mobile nodes may have multiple
care-of addresses.)

Mobile nodes register their primary care-of address with a
router on their home links (binding).

Mobile nodes can register with correspondent nodes to
establish a direct binding.

Mobile nodes can dynamically discover their home agent,
even when the mobile node is away from home.

277 / 531

MIPv6 Tunnel Mode (RFC 3775)

Internet
Base StationBase Station

Correspondent Node

Home Agent

Home Address Care-of Address

278 / 531

MIPv6 Route Optimization (RFC 3775)

Internet
Base StationBase Station

Correspondent Node

Home Agent

Home Address Care-of Address

279 / 531

MIPv6 Principles

Bidrectional tunneling mode:

The home agent intercepts traffic addressed to the
mobile node by neighbor discovery intercept and tunnels
the traffic to the mobile node’s primary care-of address
using IPv6 encapsulation.

Route optimization mode:

After registration at the correspondent node, the
correspondent node sends traffic directly to the mobile
node using a new type of IPv6 routing header.
The mobile node directly sends packets to the
correspondent node, storing its home address in a new
home address destination option.

280 / 531

MIPv6 Security

Binding updates between the mobile node and the home
agent are protected by IPsec, which requires pre-installed
security associations.

Binding updates between the mobile node and the
correspondent nodes use a procedure called “return
routability procedure”, which does not require an
authentication infrastructure.

The “return routability procedure” enables the
correspondent node to obtain some reasonable assurance
that the mobile node is in fact addressable at its claimed
care-of address as well as at its home address.

⇒ Does not protect against attackers who are on the path
between the home network and the correspondent node.

281 / 531

Return Routability Procedure

CoT

Mobile Node Correspondent NodeHome Agent

HoTI

HoTICoTI

HoT

HoT

Home Test Init (HoTI), Home Test (HoT)

Care-of Test Init (CoTI), Care-of Test (CoT)

282 / 531

Return Routability Procedure

Testing whether packets addressed to the two claimed
addresses are routed to the mobile node.

A mobile node can pass the test only if it is able to supply
proof that it received certain data (the ”keygen tokens”)
which the correspondent node sends to those addresses.

These data are combined by the mobile node into a
binding management key, denoted Kbm.

Kbm = SHA1(home keygen token|care of keygen token)

The binding management key Kbm is checked by the
correspondent node during the binding update.

Nonces are used to guarantee the freshness of the
messages.

283 / 531

Micro Mobility vs. Macro Mobility

Internet

Domain A Domain B

Macro Mobility Micro Mobility

Mobile IP works reasonably well for macro mobility

Micro mobility requires additional work for seamless
handover

284 / 531

Fast Handover for MIPv6 (RFC 4260)

Goals:

Reduce the time needed to restore IP connectivity.
Support real-time services in a mobile network.

Mechanisms:

Leverage information from the link-layer to predict and
rapidly respond to handover events.
Tunnel data between the old and new access routers.
Provide IP connectivity in advance of actual mobile IP
registration.

Generic fast handover extension plus link-layer specific
adaptations.

285 / 531

802.11 Handover Procedure

0 A station (S) realizes that a handoff is necessary due to
degrading radio transmission environment for the current
access point (AP).

1 S performs a scan to see what APs are available. The
result of the scan is a list of APs together with physical
layer information, such as signal strength.

2 S chooses one of the APs and performs a join to
synchronize its physical and MAC layer timing parameters
with the selected AP.

3 S requests authentication with the new AP. For an ”Open
System”, such authentication is a single round-trip
message exchange with null authentication.

286 / 531

802.11 Handover Procedure (cont.)

4 S requests association or re-association with the new AP.
A re-association request contains the MAC-layer address
of the old AP, while a plain association request does not.

5 If operating in accordance with 802.11i, S and AP would
execute 802.1X EAP-on-LAN procedures to authenticate
the association.

6 If operating in accordance with the IAPP, AP may
contact the old AP to transfer some information about
the session and clean up the state at the old AP.

7 The new AP sends a Layer 2 Update frame on the local
LAN segment to update the learning tables of any
connected bridges.

287 / 531

802.11 Implementation Issues

Some NICs scan the network periodically in the
background while others do it only when needed.

Scanning may take several hundred milliseconds to
complete.

Some implementations do the first steps in firmware,
making it impossible for the host to get involved.

Some implementations decide in firmware which AP is
being selected, leaving the host without control over this
decision.

The coverage area of an AP is called as its Basic Service
Set (BSS). Several APs with a common ESSID can form
an Extended Service Set (ESS). Handover between ESSs
may require a fast MIP handover.

288 / 531

Fast Handover for MIPv6 and 802.11

a The MN sends a Router Solicitation for Proxy (RtSolPr)
to find out about neighboring Access Routers (ARs).

b The MN receives a Proxy Router Advertisement
(PrRtAdv) containing [AP-ID, AR-Info] tuples.

c The MN sends a Fast Binding Update (FBU) to the
Previous Access Router (PAR).

d The PAR sends a Handover Initiate (HI) message to the
New Access Router (NAR).

e The NAR sends a Handover Acknowledge (HAck)
message to the PAR.

f The PAR sends a Fast Binding Acknowledgement
(FBack) message to the MS the new link.

g The MN sends Fast Neighbor Advertisement (FNA) to
the NAR after attaching to it.

289 / 531

FMIPv6 802.11 Scenarios

1abcdef234567g (predictive mode)

Requires that the scan and join operations (steps 1 and
2) can be performed separately and under host control.
The scan data must be recent once the FMIP handover
procedure is triggered (otherwise it might choose the
wrong AP).

ab1234567cdefg (reactive mode)

Does not require host intervention of the link-layer
handover.
Requires that the mobile node obtains the link-layer
address of the NAR prior to handover.

290 / 531

FMIPv6 802.11 Scenarios (cont.)

1234567abcdefg (reactive mode)

Completely reactive, consists of soliciting a router
advertisement after handover.
Does not require support from the firmware.

291 / 531

Host Identity Protocol (HIP) (RFC 4423)

27 Mobile IP Terminology

28 Mobile IPv4 (MIPv4)

29 Mobile IPv4 (MIPv6)

30 Host Identity Protocol (HIP) (RFC 4423)

292 / 531

Host Identity Protocol (HIP)

Basic Concepts

Introduction of a new name space, separating the host
identifier from the locator

The locator may change while the host identifier used by
transport endpoints remains stable.

Every host has a public/private key pair; the public key is
the Host Identifier (HI).

A Host Identity Tag (HIP) is a 128-bit representation of a
Host Identity consisting of an IPv6 /28 prefix followed by
a cryptographic hash of the HI (100 bits).

Host keys can be used to establish security associations
for the IPsec protocol.

293 / 531

HIP Base Exchange (RFC 5201)

Initiator Responder

I1: trigger exchange

-------------------------->

select precomputed R1

R1: puzzle, D-H, key, sig

<-------------------------

check sig remain stateless

solve puzzle

I2: solution, D-H, {key}, sig

-------------------------->

compute D-H check puzzle

check sig

R2: sig

<--------------------------

check sig compute D-H

294 / 531

HIP Puzzle (RFC 5201)

The Responder starts the puzzle exchange when it
receives an I1.

The Responder supplies a random number I, and requires
the Initiator to find a number J.

To select a proper J, the Initiator must create the
concatenation of I, the HITs of the parties, and J, and
take a hash over this concatenation using the HIP hash
algorithm.

The lowest order K bits of the result MUST be zeros.
The value K sets the difficulty of the puzzle.

295 / 531

HIP DNS Records and Rendezvous Server

HIP DNS Records (RFC 5205)

A DNS resource record allowing a HIP node to store its
Host Identity (HI), Host Identity Tag (HIT), and the
domain names of its rendezvous servers (RVSs).

Simplifies discovery (if the DNS can be trusted).

HIP Rendezvous Server (RFC 5204)

Mobile nodes can register their HIT → IP address
mappings with a rendezvous server (RVS).

Peers can initiate a HIP base exchange with the IP
address of the RVS, which will relay this initial
communication such that the base exchange may
successfully complete.

296 / 531

References I

J. Manner and M. Kojo.

Mobility Related Terminology.
RFC 3753, June 2004.

C. Perkins.

IP Mobility Support for IPv4.
RFC 3344, Nokia Research Center, August 2002.

G. Montenegro.

Reverse Tunneling for Mobile IP, revised.
RFC 3024, Sun Microsystems, Inc., January 2001.

D. Johnson, C. Perkins, and J. Arkko.

Mobility Support in IPv6.
RFC 3775, Rice University, Nokia Research Center, Ericsson, June 2004.

P. McCann.

Mobile IPv6 Fast Handovers for 802.11 Networks.
RFC 4260, Lucent Technologies, November 2005.

W. M. Eddy.

At what layer does mobility belong?
IEEE Communications Magazine, 42(10):155–159, October 2004.

T. Koponen, P. Eronen, and Mikko Saärelä.

Resilient connections for SSH and TLS.
In Proc. of USENIX Annual Technical Conference 2006, Boston, May 2006.

297 / 531

References II

P. Nikander, A. Gurtov, and T. R. Henderson.

Host Identity Protocol (HIP): Connectivity, Mobility, Multi-Homing, Security, and Privacy over IPv4 and
IPv6.
IEEE Communications Surveys and Tutorials, 12(2):186–204, 2010.

298 / 531

Part: Asynchronous Transfer Mode (ATM)

31 Packet vs. Circuit Switching, Virtual Circuits

32 Asynchronous Transfer Mode

33 Cells and Cell Switching

34 Adaptation Layers

35 Practical Usage

299 / 531

Packet vs. Circuit Switching, Virtual Circuits

31 Packet vs. Circuit Switching, Virtual Circuits

32 Asynchronous Transfer Mode

33 Cells and Cell Switching

34 Adaptation Layers

35 Practical Usage

300 / 531

Packet Switching

Characteristics

Source splits messages or a data stream into (variable
length) packets

Every packet is self-contained and includes the
destination address

Every packet travels independently to the destination

Destination recreates the messages or data stream

Routers need to maintain information about how to
forward packets to arbitrary destinations

301 / 531

Circuit Switching

Characteristics

Source first establishes a connection (circuit) to the
destination

Each switch on the path might reserve some resources

Source sends data without addressing information since
the switches know the path

Finally, the connection (circuit) is torn down

Switches need to maintain information about all circuits
running through them

302 / 531

Traditional Circuit Switching

Circuit of Dedicated Wires

The circuit is built out of dedicated wires, like the traditional
phone network.

+ Every wire has predictable performance
(bandwidth, delay, . . .)

+ Simple switch design: no need for complex destination
address lookups

- Costly and inefficient if there is no traffic: no statistical
multiplexing

- Efforts involved in establishing circuits and tearing them
down

303 / 531

Virtual Circuits

Virtualization of Wires

Each wire carries many “virtual” circuits

A virtual circuit identifier is used to distinguish virtual
circuits running over a physical wire

Data carries the virtual circuit identifier in a small header

Switching based on the virtual circuit identifier

Statistical multiplexing enables more efficient use of wires

A path is determined when a virtual circuit is established

Can support a wide range of quality of service

304 / 531

Packet Switching vs. Virtual Circuits

Similarities

Store and forward communication based on an address

Data is send in “units” with a small header

Multiplexing without reservation: statistical multiplexing

Multiplexing with reservation: some “flows” are
guaranteed to get a certain number of “slots”

Differences

Switches know the connections and can easily implement
quality of service features

Fast forwarding based on simple virtual circuit identifiers

Packet switching does not require to setup a connection

Routers are stateless: easier to recover from failures

305 / 531

Virtual Circuit Identifier

How to allocate virtual circuit identifier (VCIs)?

Globally unique? Per-link unique? . . . ?

306 / 531

VCI Swapping

Switch In Port In VCI Out Port Out VCI
S1 1 5 3 8
S2 2 8 4 7
S4 1 7 3 6

307 / 531

Signalling Protocol

Requirements

Must find a path in a given network topology

Must allocate per-link unused VCI

May allocate resources for QoS guarantees

May exercise admission control

May provide support for traffic engineering

Realizations

Dedicated signalling protocols (ATM)

Piggybacked on routing protocols (MPLS)

308 / 531

Virtual Circuits in Practice

ATM

Kitchen sink

Support for voice and data communication

Intended as IP replacement . . .

Widely deployed in Telco networks (e.g., DSL)

MPLS

Good ideas stolen from ATM

Integrates well with IP (designed by “IP heads”)

Widely deployed in backbone networks

Supports traffic engineering, virtual private networks, . . .

309 / 531

Asynchronous Transfer Mode

31 Packet vs. Circuit Switching, Virtual Circuits

32 Asynchronous Transfer Mode

33 Cells and Cell Switching

34 Adaptation Layers

35 Practical Usage

310 / 531

Asynchronous Transfer Mode (ATM)

Characteristics

Designed to carry voice and data traffic

Data carried in cells (48 byte payload, 5 byte header)

Pre-configured Permanent Virtual Circuits (PVCs)

Dynamically created Switched Virtual Circuits (SVCs)

ATM service qualities

Constant Bit Rate (CBR) - maximum peak cell rate

Variable Bit Rate (VBR) - token bucket controlled

Available Bit Rate (ABR) - minimum guaranteed cell rate

Unspecified Bit Rate (UBR) - left over capacity

311 / 531

ATM and UNI vs. NNI

End systems are connected to an ATM switch via the
User Network Interface (UNI)

ATM switches within an ATM network are connected via
the Network Node Interface (NNI)

312 / 531

ATM Layering Model

313 / 531

Virtual Paths and Virtual Channels

A virtual channel connects two end systems.

Several channels can be aggregated to virtual paths.

A physical link carries several virtual path links and each
virtual path link carries several virtual channel links.

314 / 531

Cells and Cell Switching

31 Packet vs. Circuit Switching, Virtual Circuits

32 Asynchronous Transfer Mode

33 Cells and Cell Switching

34 Adaptation Layers

35 Practical Usage

315 / 531

ATM Cell Format

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| GFC | VPI | VCI | PT |C|

+-+

| HEC | |

+-+-+-+-+-+-+-+-+ +

| |

~ 48 Bytes Payload ~

| |

+-+

GFC = Generic Flow Control (or VPI in NNI)

VPI = Virtual Path Identifier

VCI = Virtual Channel Identifier

PT = Payload Type

C = Cell Loss Priority

HEC = Header Error Control (8-bit CRC x8 + x2 + x + 1)

316 / 531

ATM Cell Switching

Cells Switching Properties

Fixed-size cells simplify fast hardware implementations

Small size reduces blocking delays

Hierarchical virtual circuits (VPI/VCI)

Fast table lookups through VPI/VCI switching

Why 53?

France wanted 32 byte cells: 32 bytes = 4 ms
packetization delay, France is 3 ms wide ⇒ no echo
cancellation needed

USA wanted 64 byte cells: USA is 16 ms wide, echo
cancellation needed anyways, 64 byte is more efficient

Outcome: 48 byte payload — pain for everybody

317 / 531

Adaptation Layers

31 Packet vs. Circuit Switching, Virtual Circuits

32 Asynchronous Transfer Mode

33 Cells and Cell Switching

34 Adaptation Layers

35 Practical Usage

318 / 531

ATM Adaptation Layers

AAL1: audio and video with constant bitrate

AAL2: audio and video with variable bitrate

AAL3: connectionless data traffic

AAL4: data traffic

AAL5: data traffic

319 / 531

AAL5 Adaptation Layer

Principle

A data frame is split into many cells

The last cell includes an End of Frame (EOF) flag

A frame is reassembled when it leaves the ATM network

Example

A 1500 Ethernet frame is split into 32 ATM cells. The 32 cells
introduce 32 · 5 = 160 bytes cell header overhead. Loss of a
single cell causes in the worst case (when the cell carrying the
EOF flag is lost) two packets to get lost.

320 / 531

AAL5 Adaptation Layer

Problem

Low cell loss rate can still result in a high frame loss rate

Retransmissions of large frames is expensive

Solution: Partial Packet Discard

If a cell must be dropped, drop all cells that belong to the
same frame as well, i.e., drop all cells up to and including
the next EOF marked cell.

Solution: Early Packet Discard

If buffers fill up, prefer to drop complete frames instead of
waiting until partial frames are discarded

321 / 531

Practical Usage

31 Packet vs. Circuit Switching, Virtual Circuits

32 Asynchronous Transfer Mode

33 Cells and Cell Switching

34 Adaptation Layers

35 Practical Usage

322 / 531

LAN Emulation

LAN Emulation

Emulation of IEEE 802 local area networks

Problem: ATM has no broadcast/multicast capability

Solution: Special server emulate broadcasts/multicasts by
sending (potentially many) unicast frames

Complex technology, error prone, expensive

323 / 531

IP over ATM

Option #1: Static Virtual Circuits

Static virtual circuits are treated as links

IP is not aware of the underlying ATM circuit

Option #2: Dynamic Virtual Circuits

First packet in a flow dynamically creates a virtual circuit
to be used by the flow

Virtual circuit times out when it is not used

IP flows can take advantage of ATM QoS capabilities

Problem: First packet is slow due to ATM signalling

Problem: Costs not justified for all IP flows

324 / 531

IP over ATM (cont.)

Option #3: IP Switching

Monitor flows passing through the network

Create specific virtual circuits for high-volume flows

Bypass slow IP forwarding by using ATM switching

Fall back to IP forwarding in case of an error

Problem: How to identify “elephant” flows?

Discussion

Complex technology, replication of functionality

ATM switching core is simple and efficient

ATM signalling is complicated

325 / 531

References

Le Boudec.

The Asynchronous Transfer Mode: A Tutorial.
Computer Networks and ISDN Systems, 24(4), May 1992.

326 / 531

Part: Multiprotocol Label Switching (MPLS)

36 Multiprotocol Label Switching

37 Generalized Multiprotocol Label Switching

327 / 531

Multiprotocol Label Switching

36 Multiprotocol Label Switching

37 Generalized Multiprotocol Label Switching

328 / 531

MPLS Overview

Basic Idea

Classify IP packets with similar characteristics and which
may be forwarded the same way into Forwarding
Equivalence Classes (FECs)

Attach a label to packets when they enter the network

Forwarding is based on the label in the network core

Benefits

Packet forwarding can be faster

Routing can be based on ingress router and interface

Can easily support more complex routing decision than
longest prefix matches

Can force packets to follow a pinned route (even without
a routable prefix)

329 / 531

MPLS Label

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Label | CoS |S| TTL |

+-+

| |

~ Payload ~

| |

+-+

Label = 20-bit label

CoS = 3-bit class of service

S = bottom of stack flag

TTL = 8-bit time to live

330 / 531

Label Features

Label Stacking

Packets may carry multiple labels (stack of labels)

Forwarding decision based on the label on the top of the
stack

The bottom of stack bit indicates the bottom of the stack

Time to Live

Labels carry a TTL field to protect against loops

TTL can be copied back into the IP header on the egress
MPLS switch

331 / 531

MPLS Terminology

LSR = Label Switch Router
A router/switch supporting MPLS label switching.

LSP = Label Switched Path
A label switched path of LSRs from an ingress edge LSR
to an egress edge LSR.

LDP = Label Distribution Protocol
A signalling protocol to setup MPLS forwarding tables by
negotiating labels between LSRs.

332 / 531

Generalized Multiprotocol Label Switching

36 Multiprotocol Label Switching

37 Generalized Multiprotocol Label Switching

333 / 531

Generalized MPLS (GMPLS)

Generalized MPLS (GMPLS) extends MPLS functionality
by establishing and provisioning paths for:

Time Division Multiplexing (TDM) paths, where time
slots are the labels (SONET).
Frequency Division Multiplexing (FDM) paths, where
electromagnetic frequency is the label (light waves).
Space division multiplexed paths, where the label
indicates the physical position of data (Photonic
Cross-connect).

GMPLS is particulary important for mapping traffic to
different wavelengths on optical networks.

334 / 531

References I

W. Stallings.

MPLS.
The Internet Protocol Journal, 4(3):2–14, September 2001.

E. Rosen, A. Viswanathan, and R. Callon.

Multiprotocol Label Switching Architecture.
RFC 3031, Cisco Systems, Force10 Networks, Juniper Networks, January 2001.

E. Mannie.

Generalized Multi-Protocol Label Switching (GMPLS) Architecture.
RFC 3945, October 2004.

L. Andersson, P. Doolan, N. Feldman, A. Fredette, and B. Thomas.

LDP Specification.
RFC 3036, Nortel Networks, Ennovate Networks, IBM, PhotonEx, Cisco Systems, January 2001.

A. Viswanathan, N. Feldman, Z. Wang, and R. Callon.

Evolution of Multiprotocol Label Switching.
IEEE Communications Magazine, 36(5):165–173, May 1998.

A. Banerjee, J. Drake, J. Land, B. Turner, D. Awduche, L. Berger, K. Kompella, and Y. Rekther.

Generalized Multiprotocol Label Switching: An Overview of Signaling Enhancements and Recovery
Techniques.
IEEE Communications Magazine, 39(1):144–151, January 2001.

335 / 531

Part: Security Protocols

38 Internet Protocol Security (IPsec)

39 Transport Layer Security (TLS)

40 Secure Shell (SSH)

336 / 531

Internet Protocol Security (IPsec)

38 Internet Protocol Security (IPsec)

39 Transport Layer Security (TLS)

40 Secure Shell (SSH)

337 / 531

IPsec in a Nutshell

Goal: Secure packets at the IP network layer.

Modes:

Transport mode:
The IPsec header is inserted just after the IP header.
Tunnel mode:
A complete IP packet is encapsulated in a new IP packet.

A Security Association (SA) is a simplex association
between two IPsec endpoints.

For duplex unicast communication, two SAs must be
established.

338 / 531

IPsec Headers

The IP Authentication Header (AH) offers integrity and
data origin authentication, with optional (at the
discretion of the receiver) anti-replay features.

The Encapsulating Security Payload (ESP) protocol offers
the same set of services, and also offers confidentiality.

Both AH and ESP offer access control, enforced through
the distribution of cryptographic keys and the
management of traffic flows as dictated by the Security
Policy Database (SPD).

The index into the SPD is called the SPI and typically
used to identify SAs.

339 / 531

IPsec AH (RFC 4302)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Next Header | Payload Len | RESERVED |

+-+

| Security Parameters Index (SPI) |

+-+

| Sequence Number Field |

+-+

| |

+ Integrity Check Value-ICV (variable) |

| |

+-+

340 / 531

IPsec ESP (RFC 4303)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+ ----

| Security Parameters Index (SPI) | ^Int.

+-+ |Cov-

| Sequence Number | |ered

+-+ | ----

| Payload Data* (variable) | | ^

~ ~ | |

| | |Conf.

+ +-+ |Cov-

| | Padding (0-255 bytes) | |ered*

+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |

| | Pad Length | Next Header | v v

+-+ ------

| Integrity Check Value-ICV (variable) |

~ ~

| |

+-+

341 / 531

IPsec Keying

Manual keying (not really recommended)

Automatic keying with the Internet Key Exchange
(IKEv2) protocol (version 2).

IKEv2 itself uses the Diffie-Hellman algorithm plus
certificates.
IKEv2 is a simplified version IKEv1 (which happened to
be too complicated).

No widespread deployment of an automatic keying
infrastructure and as a consequence transport-mode IPsec
is not widely used on the open Internet.

342 / 531

Manual Keying Example

#!/usr/sbin/setkey -f

Clear the sa database and the spd database

flush;

spdflush;

Traffic going from 212.201.49.188 to 10.70.17.11 needs an AH signed

using HMAC-SHA1 using secret 12345678901234567890

add 212.201.49.188 10.70.17.11 ah 15700 -A hmac-sha1 "12345678901234567890";

Traffic going from 212.201.49.188 to 10.70.17.11 needs encryption

using 3des-cbc with key 123456789012123456789012’

add 212.201.49.188 10.70.17.11 esp 15701 -E 3des-cbc "123456789012123456789012";

Traffic going out to 10.70.17.11 must be encrypted and be wrapped

in an AH authentication header.

spdadd 212.201.49.188 10.70.17.11 any -P out ipsec

esp/transport//require

ah/transport//require;

343 / 531

Manual Keying Example

#!/usr/sbin/setkey -f

Clear the sa database and the spd database

flush;

spdflush;

Traffic going from 212.201.49.188 to 10.70.17.11 needs an AH signed

using HMAC-SHA1 using secret 12345678901234567890

add 212.201.49.188 10.70.17.11 ah 15700 -A hmac-sha1 "12345678901234567890";

Traffic going from 212.201.49.188 to 10.70.17.11 needs encryption

using 3des-cbc with key 123456789012123456789012’

add 212.201.49.188 10.70.17.11 esp 15701 -E 3des-cbc "123456789012123456789012";

Traffic coming in from 212.201.49.188 must be encrypted and wrapped

in an AH authentication header.

spdadd 212.201.49.188 10.70.17.11 any -P in ipsec

esp/transport//require

ah/transport//require;

344 / 531

Transport Layer Security (TLS)

38 Internet Protocol Security (IPsec)

39 Transport Layer Security (TLS)

40 Secure Shell (SSH)

345 / 531

Transport Layer Security

Transport Layer Security (TLS), formerly known as
Secure Socket Layer (SSL), was created by Netscape in
order to secure data transfers on the Web.

As a user-space implementation, TLS can be shipped with
applications and does not require operating system
support.

TLS uses X.509 certificates to authenticate servers and
clients (although client authentication is often not used at
the TLS layer).

X.509 certificates more or less require a public key
infrastructure including revocation server.

TLS is widely used to secure application protocols running
over TCP (e.g., http, smtp, ftp, telnet, imap, IIOP, . . .)

346 / 531

X.509 Certificate ASN.1 Definition

Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate,

signatureAlgorithm AlgorithmIdentifier,

signatureValue BIT STRING }

TBSCertificate ::= SEQUENCE {

version [0] EXPLICIT Version DEFAULT v1,

serialNumber CertificateSerialNumber,

signature AlgorithmIdentifier,

issuer Name,

validity Validity,

subject Name,

subjectPublicKeyInfo SubjectPublicKeyInfo,

issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3

subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

-- If present, version MUST be v2 or v3

extensions [3] EXPLICIT Extensions OPTIONAL

-- If present, version MUST be v3

}

347 / 531

X.509 Certificate ASN.1 Definition

Version ::= INTEGER { v1(0), v2(1), v3(2) }

CertificateSerialNumber ::= INTEGER

Validity ::= SEQUENCE {

notBefore Time,

notAfter Time }

Time ::= CHOICE {

utcTime UTCTime,

generalTime GeneralizedTime }

UniqueIdentifier ::= BIT STRING

SubjectPublicKeyInfo ::= SEQUENCE {

algorithm AlgorithmIdentifier,

subjectPublicKey BIT STRING }

Extensions ::= SEQUENCE SIZE (1..MAX) OF Extension

Extension ::= SEQUENCE {

extnID OBJECT IDENTIFIER,

critical BOOLEAN DEFAULT FALSE,

extnValue OCTET STRING

-- contains the DER encoding of an ASN.1 value

-- corresponding to the extension type identified

-- by extnID

}

348 / 531

X.509 Subject Alternative Name Extension

id-ce-subjectAltName OBJECT IDENTIFIER ::= { id-ce 17 }

SubjectAltName ::= GeneralNames

GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName

GeneralName ::= CHOICE {

otherName [0] OtherName,

rfc822Name [1] IA5String,

dNSName [2] IA5String,

x400Address [3] ORAddress,

directoryName [4] Name,

ediPartyName [5] EDIPartyName,

uniformResourceIdentifier [6] IA5String,

iPAddress [7] OCTET STRING,

registeredID [8] OBJECT IDENTIFIER }

OtherName ::= SEQUENCE {

type-id OBJECT IDENTIFIER,

value [0] EXPLICIT ANY DEFINED BY type-id }

EDIPartyName ::= SEQUENCE {

nameAssigner [0] DirectoryString OPTIONAL,

partyName [1] DirectoryString }

349 / 531

TLS Record Protocol

Record Protocol

The record protocol takes messages to be transmitted,
fragments the data into manageable blocks, optionally
compresses the data, applies a MAC, encrypts, and transmits
the result. Received data is decrypted, verified, decompressed,
reassembled, and then delivered to higher-level clients.

The record layer is used by the handshake protocol, the
change cipher spec protocol, the alert protocol, and the
application data protocol.

The fragmentation and reassembly provided does not
preserve application message boundaries.

350 / 531

TLS Handshake Protocol

Handshake Protocol

The handshake protocol establishes cryptographic parameters:

Exchange messages to agree on algorithms, exchange
random values, and check for session resumption.

Exchange the necessary cryptographic parameters to
allow the client and server to agree on a premaster secret.

Exchange certificates and cryptographic information to
allow the client and server to authenticate themselves.

Generate a master secret from the premaster secret and
exchanged random values.

Provide security parameters to the record layer.

Allow the client and server to verify that their peer has
calculated the same security parameters and that the
handshake occurred without tampering by an attacker.

351 / 531

TLS Change Cipher Spec Protocol

Change Cipher Spec Protocol

The change cipher spec protocol is used to signal transitions in
ciphering strategies.

The protocol consists of a single ChangeCipherSpec
message.

This message is sent by both the client and the server to
notify the receiving party that subsequent records will be
protected under the newly negotiated CipherSpec and
keys.

352 / 531

TLS Alert Protocol

Alert Protocol

The alert protocol is used to signal exceptions (warnings,
errors) that occured during the processing of TLS protocol
messages. An alert has an alert level and an alert description
(enumeration).

The alert protocol is used to properly close a TLS
connection by exchanging close notify alert messages.

The closure exchange allows to detect truncation attacks.

353 / 531

Details of an SNMP GET Operation over TLS

Manager Agent

3 packets
TCP

6 packets
TLS/TCP

2 packets
SNMP

5 packets
TLS/TCP

CHANGE CIPHER SPEC

SYN

SYN, ACK

FIN

CLOSE NOTIFY

ACK

GET

CHANGE CIPHER SPEC

ACK

CLIENT HELLO

ACK

FIN, ACK

CLOSE NOTIFY

RESPONSE

KEY EXCHANGE
CERTIFICATE VERIFY

CERTIFICATE

SERVER HELLO
CERTIFICATE

CERTIFICATE REQUEST
SERVER HELLO DONE

ACK

3 packets

AgentManager

SNMP

TLS/TCP
5 packets

5 packets

TCP

TLS/TCP

2 packets

CERTIFICATE VERIFY

ACK

SYN

SYN, ACK

CLIENT HELLO

ACK

ACK

GET

CLOSE NOTIFY

FIN

CLOSE NOTIFY

FIN, ACK

ACK

CHANGE CIPHER SPEC

CHANGE CIPHER SPEC
SERVER HELLO

RESPONSE

354 / 531

Secure Shell (SSH)

38 Internet Protocol Security (IPsec)

39 Transport Layer Security (TLS)

40 Secure Shell (SSH)

355 / 531

Secure Shell (SSH)

SSH provides a secure connection through which user
authentication and several inner protocols can be run.

The general architecture of SSH is defined in RFC 4251.

SSH was initially developed by Tatu Ylonen at the
Helsinki University of Technology in 1995, who later
founded SSH Communications Security.

SSH was quickly adopted as a replacement for insecure
remote login protocols such as telnet or rlogin/rsh.

Several commercial and open source implementations are
available running on almost all platforms.

SSH is a Proposed Standard protocol of the IETF since
2006.

356 / 531

SSH Protocol Overview

SSH Protocol Layers

1 The Transport Layer Protocol provides server
authentication, confidentiality, and integrity with perfect
forward secrecy

2 The User Authentication Protocol authenticates the
client-side user to the server

3 The Connection Protocol multiplexes the encrypted
data stream into several logical channels

⇒ SSH authentication is not symmetric!

⇒ The SSH protocol is designed for clarity, not necessarily
for efficiency (shows its academic roots)

357 / 531

SSH Terminology

Host Key

Every machine must have a public/private host key pair. Host
Keys are often identified by their fingerprint.

User Key

Users may have their own public/private key pairs.

User Password

Accounts may have passwords to authenticate users.

Passphrase

The storage of a user’s private key may be protected by a
passphrase.

358 / 531

SSH Features: TCP Forwarding

ssh −f joe@example.com −L 2000:example.com:25 −N

s
m

tp

s
s

h

22 25

s
s

h

m
a

il

2000 encrypted

example.com

TCP Forwarding

TCP forwarding allows users to tunnel unencrypted traffic
through an encrypted SSH connection.

359 / 531

SSH Features: X11 Forwarding

DISPLAY

s
s

h

X
1

1

encrypted

example.com

ssh −X joe@example.com

x
e

y
e

s

s
s

h

22

multiple channels

X11 Forwarding

X11 forwarding is a special application of TCP forwarding
allowing X11 clients on remote machines to access the local
X11 server (managing the display and the keyboard/mouse).

360 / 531

SSH Features: Connection Sharing

ssh joe@example.com

s
s

h

encrypted

example.com

s
s

h

s
s

h

22

multiple channels

s
s

h

local socket

Connection Sharing

New SSH connections hook as a new channel into an existing
SSH connection, reducing session startup times (speeding up
shell features such as tab expansion).

361 / 531

SSH Features: IP Tunneling

1
0

.0
.9

9
.0

/2
4

s
s

h

encrypted

example.com

s
s

h

s
s

h

ssh −f −w 0:1 example.com

tun0

IP

10.1.1.1

IP

tun110.1.1.2

ifconfig tun0 10.1.1.1 10.1.1.2 \

route add 10.0.99.0/24 10.1.1.2

 netmask 255.255.255.255 netmask 255.255.255.255

route add 10.0.50.0/24 10.1.1.1

ifconfig tun0 10.1.1.2 10.1.1.1 \

1
0

.0
.5

0
.0

/2
4

IP Tunneling

Tunnel IP packets over an SSH connection by inserting tunnel
interfaces into the kernels and by configuring IP forwarding.

362 / 531

SSH Features: SSH Agent

ssh joe@example.com

s
s

h

a
g

e
n

t

encrypted

example.com

s
s

h

22longlived
handling of keys

SSH Agent

Maintains client credentials during a login session so that
credentials can be reused by different SSH invocations without
further user interaction.

363 / 531

SSH Features: SSH Agent Forwarding

ssh ben@example.org

s
s

h

a
g

e
n

t

encrypted

example.com

s
s

h

22longlived
handling of keys

s
s

h

multiple channels

forwarded
agent endpoint

ssh joe@example.com

SSH Agent Forwarding

An SSH server emulates an SSH Agent and forwards requests
to the SSH Agent of its client, creating a chain of SSH Agent
delegations.

364 / 531

Details of an SNMP GET Operation over SSH

packets

Manager Agent

3 TCP

10 SSH
transport

packets

packets

2 TCP

HELLO

KEX_INIT

KEXDH_INIT

KEXDH_REPLY

NEWKEYS

SERVICE_REQUEST

SERVICE_ACCEPT

NEWKEYS

SYN, ACK

ACK

KEX_INIT

HELLO

SYN

ACK

ACK

3 TCP

2 SSH

2 SSH
channel

user auth

6 SSH

packets

packets

packets

packets

packets

2 SNMP

AgentManager

RESPONSE

CHANNEL_OPEN

FIN, ACK

DISCONNECT

USERAUTH_FAILURE

USERAUTH_REQUEST

GET

USERAUTH_FAILURE

FIN, ACK

CHANNEL_OPEN_CONF.

ACK

USERAUTH_REQUEST

USERAUTH_SUCCESS

USERAUTH_REQUEST

DISCONNECT

365 / 531

SSH Transport Protocol

Transport Protocol (RFC 4253) provides

strong encryption,
server authentication,
integrity protection, and
optionally compression.

SSH transport protocol typically runs over TCP

3DES (required), AES128 (recommended)

HMAC-SHA1 (recommended)

Automatic key re-exchange, usually after 1 GB of data
have been transferred or after 1 hour has passed,
whichever is sooner.

366 / 531

SSH Key Exchange

The SSH host key keyex identifies a server by its
hostname or IP address and possibly port number.

Other keyex mechanisms use different naming schemes for
a host.

Different key exchange algorithms

Diffie-Hellman style key exchange
GSS-API style key exchange

Different Host key algorithms

Host key used to authenticate key exchange
SSH RSA and DSA keys
X.509 (under development)

367 / 531

SSH User Authentication

Executes after transport protocol initialization (key
exchange) to authenticate client.

Authentication methods:

Password (classic password authentication)
Interactive (challenge response authentication)
Host-based (uses host key for user authentication)
Public key (usually DSA or RSA keypairs)
GSS-API (Kerberos / NETLM authentication)
X.509 (under development)

Authentication is client-driven.

368 / 531

SSH Connection Protocol

Allows opening of multiple independent channels.

Channels may be multiplexed in a single SSH connection.

Channel requests are used to relay out-of-band channel
specific data (e.g., window resizing information).

Channels commonly used for TCP forwarding.

369 / 531

OpenSSH Implementation

Privilege Separation

Privilege separation is a technique in which a program is
divided into parts which are limited to the specific privileges
they require in order to perform a specific task.

OpenSSH is using two processes: one running with special
privileges and one running under normal user privileges

The process with special privileges carries out all
operations requiring special permissions.

The process with normal user privileges performs the bulk
of the computation not requiring special rights.

Bugs in the code running with normal user privileges do
not give special access rights to an attacker.

370 / 531

Performance of Short Lived Sessions

Protocol
Time (meat) [ms] Time (turtle) [ms]

Data [bytes] Packets
min avg max min avg max

v1/CSM/UDP/nn 0.24 0.25 0.29 0.85 0.95 1.43 292 2
v1/CSM/TCP/nn 0.39 0.40 0.43 1.27 1.38 1.72 1012 10
v2/CSM/UDP/nn 0.24 0.25 0.30 0.85 0.96 1.50 292 2
v2/CSM/TCP/nn 0.46 0.48 0.58 1.28 1.46 2.40 1012 10
v3/USM/UDP/nn 0.48 0.48 0.54 1.75 1.84 1.95 718 4
v3/USM/TCP/nn 0.63 0.64 0.69 2.22 2.46 9.59 1490 12
v3/USM/UDP/an 0.50 0.63 0.87 1.79 1.89 2.34 742 4
v3/USM/TCP/an 0.65 0.66 0.70 2.21 2.31 2.48 1514 12
v3/USM/UDP/ap 0.51 0.52 0.59 1.88 2.05 4.17 763 4
v3/USM/TCP/ap 0.66 0.68 0.71 2.31 2.42 2.60 1535 12
v3/TSM/SSH/ap 13.49 13.73 14.20 107.35 110.45 144.33 5310 31
v3/TSM/TLS/ap 11.01 11.15 12.57 67.44 68.70 86.59 4107 16

v3/TSM/DTLS/ap 10.89 11.05 12.00 67.68 69.96 155.10 3457 8
v3/TSM/TLSsr/ap 2.23 2.27 2.45 5.47 5.72 6.28 1457 15

SSH (TLS/DTLS) transports behave like a DoS attack
for short-lived SNMP sessions (e.g., shell scripts)

TLS’s session resumption mechanism cures the problem

How can we do session resumption with SSH?

371 / 531

Session Resumption Key Exchange

NEWKEYS

Client

KEXINIT

KEXINIT

KEX_SR_INIT

KEX_SR_OK

Server

NEWKEYS

Server maintains session state for recently closed sessions

Client and server perform session resumption by using of
a session resumption key exchange algorithm

SSH’s algorithm negotiation feature handles this nicely

372 / 531

Session Resumption with Server Side State

Algorithm (Server Side State)

C: Client sends the session identifier and a MAC computed
over the session keys to the server in a
SSH2 MSG KEXSR INIT message

S: Server looks up the cached session and verifies the MAC

If successful, it returns an SSH2 MSG KEX SR OK message,
followed by a standard SSH2 MSG NEWKEYS exchange
On failure, SSH2 MSG KEX SR ERROR is sent and key
exchange proceeds with another key exchange algorithm,
or fails

+ Simple design and easy to implement

− Server has to maintain session state (scalability)

373 / 531

Session Resumption with Client Side State

Algorithm (Client Side State)

S: After key (re)negotiation, the server sends an encrypted
ticket in a SSH2 MSG KEX SR TICKET message

C: The client sends the encrypted ticket and a MAC
computed over the session identifier to the server in a
SSH2 MSG KEXSR INIT message

S: The server decrypts the ticket and verifies the MAC

If successful, it returns an SSH2 MSG KEX SR OK message,
followed by a standard SSH2 MSG NEWKEYS exchange.
On failure, SSH2 MSG KEX SR ERROR is sent and key
exchange proceeds with another key exchange algorithm,
or fails.

+ Server side state reduced to a key for encrypting tickets

374 / 531

TicketContent Data Structure

struct TicketEnc { struct TicketContent {

char* name; u_char* session_id;

u_char* key; u_int session_id_len;

u_char* iv; TicketEnc tenc_ctos;

}; TicketEnc tenc_stoc;

TicketMac tmac_ctos;

TicketMac tmac_stoc;

struct TicketMac { char* tcomp_ctos;

char* name; char* tcomp_stoc;

u_char* key; int hostkey_type;

}; char* client_version_string;

char* server_version_string;

};

SSH allows to use different algorithms in each direction!

375 / 531

Ticket Data Structure

struct Ticket {

u_int seq_nr;

u_char* id;

u_char* enc_ticket;

u_int enc_ticket_len;

int64_t time_stamp;

};

Contains the encrypted TicketContent data structure in
enc ticket

The id uniquely identifiers a ticket

The seq nr and time stamp fields can be used to
quickly discard outdated tickets

Encryption key and its IV are generated at server start-up

376 / 531

Performance Evaluation

Name CPUs RAM Ethernet Kernel
meat 2 Xeon 3 GHz 2 GB 1 Gbps 2.6.16.29

veggie 2 Xeon 3 GHz 1 GB 1 Gbps 2.6.16.29
turtle 1 Ultra Sparc IIi 128 MB 100 Mbps 2.6.20

SSH client: veggie / SSH server: meat and turtle

Measuring overall execution time of “ssh $host exit”

Used HMAC-MD5 hash function and AES-128 encryption

Hosts and the network were idle during the experiments

1000 experiments, results sorted by the measured latency

Absolute numbers irrelevant, look at relative numbers

377 / 531

Session Resumption Performance (key length 1024)

 100

 120

 140

 160

 180

 200

 220

 240

 0 100 200 300 400 500 600 700 800 900 1000

o
v
e

ra
ll

la
te

n
c
y
 [

m
s
]

test runs (sorted by increasing latency)

impact of session resumption on meat (key len 1024 bit)

session resumption
no session resumption

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900 1000

o
v
e

ra
ll

la
te

n
c
y
 [

m
s
]

test runs (sorted by increasing latency)

impact of session resumption on turtle (key len 1024 bit)

session resumption
no session resumption

With a key length of 1024 bits, the performance gain on
an idle fast machine is observable but small

With the same key length, the performance gain on a
small idle machine is significant (factor 4)

⇒ Session resumption is particularly useful for processing
power constrained low-end consumer /enterprise products

378 / 531

Impact of the Key Length on the Performance

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600 700 800 900 1000

o
v
e

ra
ll

la
te

n
c
y
 [

m
s
]

test runs (sorted by increasing latency)

impact of session resumption on meat (varying key len)

 sr (3072 bit)
no sr (1024 bit)
no sr (2048 bit)
no sr (3072 bit)

Session resumption performance is largely independent of
the key length

With increasing key length, the performance gain
increases also on fast idle machines

⇒ Even on a fast processors, the performance gain is
significant if you need long keys to achieve strong security

379 / 531

References I

S. Kent and K. Seo.

Security Architecture for the Internet Protocol.
RFC 4301, BBN Technologies, December 2005.

S. Kent.

IP Authentication Header.
RFC 4302, BBN Technologies, December 2005.

S. Kent.

IP Encapsulating Security Payload (ESP).
RFC 4303, BBN Technologies, December 2005.

T. Ylonen and C. Lonvick.

The Secure Shell (SSH) Protocol Architecture.
RFC 4251, SSH Communications Security Corp, Cisco Systems, January 2006.

T. Ylonen and C. Lonvick.

The Secure Shell (SSH) Authentication Protocol.
RFC 4252, SSH Communications Security Corp, Cisco Systems, January 2006.

T. Ylonen and C. Lonvick.

The Secure Shell (SSH) Transport Layer Protocol.
RFC 4253, SSH Communications Security Corp, Cisco Systems, January 2006.

T. Ylonen and C. Lonvick.

The Secure Shell (SSH) Connection Protocol.
RFC 4254, SSH Communications Security Corp, Cisco Systems, January 2006.

380 / 531

References II

J. Schönwälder, G. Chulkov, E. Asgarov, and M. Cretu.

Session Resumption for the Secure Shell Protocol.
In Proc. 11th IFIP/IEEE International Symposium on Integrated Network Management (IM 2009), pages
157–163, May 2009.

T. Dierks and E. Rescorla.

The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246, Independent, RTFM, August 2008.

E. Rescorla and N. Modadugu.

Datagram Transport Layer Security.
RFC 4347, RTFM, Stanford University, April 2006.

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk.

Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
RFC 5280, NIST, Microsoft, Trinity College Dublin, Entrust, Vigil Security, May 2008.

381 / 531

Part: Network Management and Measurement

41 Network Management Overview

42 Network Monitoring using SNMP

43 Network Configuration using NETCONF / YANG
Configuration Management Approaches
NETCONF Protocol Overview
YANG Data Modeling Overview

44 System Logging Protocol (SYSLOG)

45 Traffic Analysis using NETFLOW / IPFIX

382 / 531

Network Management Overview

41 Network Management Overview

42 Network Monitoring using SNMP

43 Network Configuration using NETCONF / YANG
Configuration Management Approaches
NETCONF Protocol Overview
YANG Data Modeling Overview

44 System Logging Protocol (SYSLOG)

45 Traffic Analysis using NETFLOW / IPFIX

383 / 531

Why Network Management?

Networks of non-trivial size need management:

Fault detection and isolation
Configuration generation and installation
Accounting data gathering
Performance monitoring and tuning
Security management (keys, access control)

⇒ FCAPS functional areas (very broad but widely accepted
functional categorization)

384 / 531

Why is Network Management Hard?

Scalability is a key concern (millions of devices/users)

Short technology life times (what happened to ATM?)

Heterogenity requires standards-based solutions

Lack of skilled persons

=⇒ But network management is not really fundamentally
different from other complex control systems (e.g.,
systems that control robots in a vehicle fabric).

=⇒ However, network management terminology is often very
different and sometimes somewhat confusing (especially
for people with computer science background).

385 / 531

Abstraction of Managed Objects (MOs)

Behaviour
Events

Operations
Attributes

in the machine.
switched on but no coffee
Warning: Coffee machine

Management Application Managed Object Resource

A managed object is the abstracted view of a resource
that presents its properties as seen by (and for the
purpose of) management (ISO 7498-4).

The boundary of a managed object defines the level of
details which are accessible for management systems.

386 / 531

Management Information Base (MIB)

MOMO

MO

MO

MOMO

MO
MO

MO
MO

MO
MO

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Protocols Resources

Management Information Base

The set of managed objects within a system, together
with their attributes, constitutes that system’s
management information base (ISO 7498-4).

387 / 531

Management Protocols

Management Protocol

Manager (Client)

Management Protocol

Agent (Server)

Algorithm for solving
a management problem

a resource
MIB−Model of

Management protocols realize the access to MOs
contained in a MIB.

388 / 531

Data-centric Approach

The device is represented as a collection of data objects
representing all the properties and capabilities of a device.

The management protocol manipulates the data objects
representing a device and its state.

Manipulation of data objects might cause side effects.

⇒ Example: Internet management (SNMP)

389 / 531

Command-centric Approach

The device is considered to be a stateful black box.

A sequence of commands can be send to the device to

a) change the state of the device or to
b) retrieve data about the current state of the device (or

portions thereof).

Determining the right sequence of commands to bring a
device into a certain state might not be trivial.

⇒ Example: Command line interfaces of routers or switches

390 / 531

Object-centric Approach

The device is represented as a collection of data objects
with associated methods.

This can be seen as a combination of the data- and the
command-centric approaches.

Usually leads to object-oriented modeling and thus
object-oriented approaches.

A critical design decision is the granularity of the objects
and the level of interdependencies between objects

⇒ Example: OSI management (CMIP), DMTF information
models

391 / 531

Document-centric Approach

The configuration and state of a device is represented as
a structured document.

Management operations are realized by manipulating the
structured document.

Allows to use general document processors for
management purposes.

Closely related to data-centric approaches.

⇒ Example: Most XML-based management approaches
follow this model.

392 / 531

Essential Management Protocol Primitives

From a very abstract viewpoint, the following set of
management protocol primitives is essential for
data-centric or object-centric management protocols:

GET, SET
CREATE, DELETE
SEARCH (or at the very least ITERATE)
LOCK, UNLOCK, COMMIT, ROLLBACK
NOTIFY

EXECUTE an operation or INVOKE a method

Command-centric protocols usually have a very rich set of
primitives (which are often hierarchically structured).

393 / 531

Information Models (RFC 3444)

Information Models (IMs) are used to model managed
objects at a conceptual level, independent of any specific
protocols used to transport the data.

The degree of specificity (or detail) of the abstractions
defined in the IM depends on the modeling needs of its
designers.

In order to make the overall design as clear as possible,
IMs should hide all protocol and implementation details.

IMs focus on relationships between managed objects.

IMs are often represented in Unified Modeling Language
(UML) diagrams, but there are also informal IMs written
in plain English language.

394 / 531

Data Models (RFC 3444)

Data Models (DMs) are defined at a lower level of
abstraction and include many details (compared to IMs).

They are intended for implementors and include
implementation- and protocol-specific constructs.

DMs are often represented in formal data definition
languages that are specific to the management protocol
being used.

395 / 531

Information Models vs. Data Models

conceptual/abstract model
for designers and operators

concrete/detailed model
for implementors

DM DMDM

IM

Since conceptual models can be implemented in different
ways, multiple DMs can be derived from a single IM.

Although IMs and DMs serve different purposes, it is not
always possible to decide which detail belongs to an IM
and which detail belongs to a DM.

Similarily, it is sometimes difficult to determine whether
an abstraction belongs to an IM or a DM.

396 / 531

IMs and DMs in the Real World

Information Model

MIB PIB
Module

Interface Data Model

Information Model

SMIv2 SPPI OMG IDL

Definitions
Schema

BER

Instance Data

XSD

XMLBER

Module Module

Instances
ProvisioningMIB

Variables
XML

Documents

The Architecture for Differentiated Services (RFC 2475)
is an example for an informal definition of the DiffServ
information model.

The DiffServ MIB module (RFC 3289) and the DiffServ
PIP module (RFC 3317) are examples of data models
conforming to the DiffServ information model.

397 / 531

Network Management Standards

1982 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

[D] Draft Standard

Legend:

[P] Proposed Standard

[E] Experimental

[S] Standard

1980 1984

SMI (IETF)

SNMPv3
[S] [P] [D/E] [P] [D]

[S][S] [P] [D]

CMIP CMIS GDMOOSI RM.4

M.30

M.3010 M.3100 M.3400

CORBA (OMG)

[P]

[P]

2.22.01.0 2.3 2.4 2.62.5

SNMPv3SNMPv2cSNMPv2pSNMPv1

SMIv2SMIv2SMIv2SMIv1

SPPIv1

COPS−PRv1

TMN (ITU)

CMIP (ISO)

SNMP (IETF)

3.0

SNMPv3
[S]

YANG (IETF)

NETCONF (IETF)

1.0 2.0 2.2 2.32.4 2.5 2.72.6 2.8

1.0

1.0

2.272.25

2.262.24

2.23

2.0s2.01.0

DMI (DMTF)

CIM (DMTF)

COPS−PR (IETF)

SPPI (IETF)

[P]

[P]

3.1

398 / 531

Architectural Concepts

Transport Layer

Management Application

Function #1 Function #2 Function #3 . . .

Subsystem #1 . . .

Protocol Entity

Subsystem #2

Protocol Engine

Protocol Functions

399 / 531

Architectural Concepts

An protocol Entity can be decomposed into a protocol
engine and protocol functions.

A protocol Engine is concerned with the handling of
protocol messages.

Protocol Functions realize the protocol’s functionality.

Subsystems provide a well defined functionality which is
accessible through a defined subsystem interface.

Models implement a subsystem interface. There may be
one or multiple models that implement the same
subsystem interface.

400 / 531

Naming and Addressing

Naming of Information

Identification of a managed object within a naming scope
Names may be scoped by a protocol engines (which is
identified by an address)
Globally unique names may be constructed from the
pieces
Definition of the naming system is an essential design
step

Addressing of Protocol Engines

Use (extended?) transport addresses to identify protocol
engines
Introduce a new address space for the protocol engines
Uniform Resource Identifiers (URIs)

401 / 531

Security and Access Control

Message-based security

+ Self-contained solution
+ Reduced dependencies on the infrastructure
- Complex specification and verification
- Complex implementation and costs

Session-based security

+ Leveraging existing work
+ Better integration with a security infrastructure
- Dependency on a security infrastructure

Explicit access control rules vs. implicit access control vs.
no access control

402 / 531

Network Monitoring using SNMP

41 Network Management Overview

42 Network Monitoring using SNMP

43 Network Configuration using NETCONF / YANG
Configuration Management Approaches
NETCONF Protocol Overview
YANG Data Modeling Overview

44 System Logging Protocol (SYSLOG)

45 Traffic Analysis using NETFLOW / IPFIX

403 / 531

Overview and Evolution of SNMP

“SNMP” (SNMPv1) circa 1988-1991
(RFC 1155, 1157, 1212, 1213, 1215)

“SNMP Security” and “SMP” circa 1991-1992

“Party-based SNMPv2” (SNMPv2p) circa 1993-1995
(RFC 1441–1452)

“Community-based SNMPv2” (SNMPv2c) circa 1996
(RFC 1901–1907)

“SNMPv2u” and “SNMPv2*” circa 1996

“SNMPv3” circa 1998-2002
(RFC 3411-3418, 2578–2580)

404 / 531

SNMP Design Goals

Minimize the number and complexity of management
functions realized by the management agent.

Reduce development costs for management agents.
Allows to instrument all kind of devices (HUBs as well as
CRAYs).
Allows to develop management functions over time
without the need to continuously change management
agents.

Extensibility through new MIB definitions.

Independence of existing host or gateway architectures.

Robustness (assumes only connection-less transport).

Independence of other network services (e.g., directories).

405 / 531

Manager-Agent Relationship

Protocol Entity

Management

Application

Manager

Transport Service Provider

(UDP, IPX, ...)

Management Information

SNMP Protocol
Protocol Entity

Management

Information Base

Agent

The SNMP protocol provides primitives to read/write
management information maintained by the agent.

Management applications within the manager process the
management information.

The SNMP protocol usually runs over connection-less
transport services.

406 / 531

Manager-Agent Relationship (cont.)

Agent

MIB

Agent

MIB

Agent

MIB

Agent

MIB

Agent

MIB

Manager

In
fo

rm
at

io
n C

o
n

tro
l

An SNMP manager periodically polls agents for basic
management information.

SNMP agents can send unsolicited notifications to inform
managers of exceptional conditions.

An SNMP manager can adapt its polling strategy when
receiving notifications (trap-directed polling).

Information usually flows from the agent to the manager
while control flows from the manager to the agent.

407 / 531

SNMP Deployment Model

Agent

SNMP Device

Subagent Subagent

Instrumentation

Agent

SNMP Device

Subagent Subagent

Instrumentation

Agent

SNMP Device

Subagent Subagent

Instrumentation

Proxy

Manager

Applications

SNMP Manager

SNMP Proxy

408 / 531

SNMP Version 3

→ Architectural Concepts

→ Protocol Operations

→ Message Format

→ Authentication and Privacy

→ Authorization and Access Control

→ Remote Configuration

→ Status and Limitations

409 / 531

Architectural Model (RFC 3411)

Dispatcher
Subsystem
Processing
Message

Subsystem
Security

Subsystem
Control
Access

SNMP Engine (identified by snmpEngineID)

Responder
Command Notification

Originator
Notification
Receiver Forwarder

Proxy
Generator
Command

SNMP Applications

SNMP Entity

Fine grained SNMP applications instead of coarse grained
agents and managers.

Exactly on engine per SNMP entity and exactly one
dispatcher per SNMP engine.

Every abstract subsystem may have of one or more
concrete models.

Modularization enables incremental enhancements.
410 / 531

Extended Architectural Model (RFC 5590)

Subsystem

SNMP Engine (identified by snmpEngineID)

Subsystem
Control
Access

Originator
Command

Receiver
Notification

Responder
Proxy

Forwarder

Transport

Command
Generator

Subsystem

Notification

SNMP Functions

Dispatcher

SNMP Entity

Subsystem
Processing
Message Security

411 / 531

SNMP Contexts

An context is a collection of management information
accessible by an SNMP entity.

SNMP entities may have access to multiple contexts.
Identical management information may exist in more
than one context.

Within a management domain, a managed object is
uniquely identified by:

1 the identification of the engine within the SNMP entity
(e.g., “800007e580e16e1566696f7440”)

2 the context name within the SNMP entity (e.g.,
“board1”)

3 the managed object type (e.g., “IF-MIB.ifDescr”)
4 the instance identifier (e.g., “1”)

412 / 531

Manager and Agent in the SNMP Architecture

 Mappings

 Transport

 Dispatcher

 Message

 Dispatcher

 PDU

 other MP

 v3MP

 v2cMP

 v1MP

 Subsystem

 Message Processing

 Security Model

 Other

 Security Model

 User-based

 Security Model

 Community

Security Subsystem

 Originator

NotificationCommand

Responder

 Proxy

 ForwarderAccess Control

 View-based

 Access Control Subsystem

MIB Instrumentation

UDP IPX

Command

Generator

Notification

 Receiver

Notification

 Originator

 Message Processing

 Subsystem

 v2cMP

 v3MP

 v1MP

Security Subsystem

 Security Model

 Security Model

 Community

 Other

 Security Model Transport

 Dispatcher

 Message

 Dispatcher

 PDU

 other MP

 Mappings

UDP IPX

 User-based

Traditional Agent

Traditional Manager

Communication Network

413 / 531

SNMPv3/USM Textual Conventions

SnmpEngineID

Unique identification of an SNMP engine within a
management domain.

SnmpSecurityModel

Identification of a specific security model.

SnmpMessageProcessingModel

Identification of a specific message processing model.
The message processing model is encoded in the
msgVersion.

414 / 531

SNMPv3/USM Textual Conventions

SnmpSecurityLevel

The security level of a given message (noAuthNoPriv,
authNoPriv, authPriv).
The security level is encoded in the msgFlags.

KeyChange

Defines a cryptographic algorithm to change
authentication or encryption keys.
Does not require encryption.
An attacker can “drill forward” once a key is broken.

415 / 531

Protocol Operations (RFC 3416)

Generator
Command

Generator
Command

Responder
Command Notification

Originator

Notification
Originator

Notification
Receiver

Notification
Receiver

Responder
Command

Responder
Command

Responder
Command

Generator
Command

Generator
Command

Get

Inform

Response Response

GetNext

Trap

Response Response Response

GetBulkSet

An additional Report protocol operation is used
internally for error notifications, engine discovery and
clock synchronization.

416 / 531

Lexicographic Ordering

Given are two vectors of natural numbers x = (x1, . . . , xn)
and y = (y1, . . . , ym) with n ≤ m. We say that x is
lexicographically less than y if and only if one of the
following conditions is true:

(a) xj = yj for 1 ≤ j ≤ k and xk < yk with k ≤ n and k ≤ m

(b) xj = yj for 1 ≤ j ≤ n and n < m

All OIDs identifying instances can be lexicographically
ordered.

The SNMP protocol operates only on the
lexicographically ordered list of MIB instances and not on
the OID registration tree or on conceptual tables.

417 / 531

Simple Forwarding Table Example

(1)

address (1)

uptime (2)

fwdTable (3)

fwdEntry (1)

fwdDest (2) fwdNext (3)fwdIndex (1)

1

3

5

6

2

4

info (2)

2

3

2

2

3

3

2

3

5

7

8

9

1

2

3

5

7

8

9

name (1)

418 / 531

Lexicographic Ordering Example

Lexicographic ordered list of MIB instances:
OID name value
1.1.0 address.0 10.1.2.1
1.2.1.0 name.0 ”ACME Router”
1.2.2.0 uptime.0 54321
1.3.1.1.1 fwdIndex.1 1
1.3.1.1.2 fwdIndex.2 2
1.3.1.1.3 fwdIndex.3 3
1.3.1.1.4 fwdIndex.4 4
1.3.1.1.5 fwdIndex.5 5
1.3.1.1.6 fwdIndex.6 6
1.3.1.2.1 fwdDest.1 2
1.3.1.2.2 fwdDest.2 3

OID name value
1.3.1.2.3 fwdDest.3 5
1.3.1.2.4 fwdDest.4 7
1.3.1.2.5 fwdDest.5 8
1.3.1.2.6 fwdDest.6 9
1.3.1.3.1 fwdNext.1 2
1.3.1.3.2 fwdNext.2 3
1.3.1.3.3 fwdNext.3 2
1.3.1.3.4 fwdNext.4 2
1.3.1.3.5 fwdNext.5 3
1.3.1.3.6 fwdNext.6 3

Conceptual table instances are ordered column by column
not row by row.

419 / 531

PDU Processing Errors

An error response signals the complete failure of the
corresponding request.

An error response contains an error status (numeric error
code) and an error index (position in the variable list
where the error occured).

Error responses contain no useful management
information.

There is only a single error status and error index even if
there are multiple errors.

An error in general implies that none of the actions has
taken place during a write operation (as if simultaneous
writes).

420 / 531

PDU Error Codes (RFC 3416)

SNMPv3 Error Code Get/GetNext/GetBulk Set Trap/Inform SNMPv1 Error Code

noError(0) X X X noError(0)
tooBig(1) X X X tooBig(1)

noSuchName(2) noSuchName(2)
badValue(3) badValue(3)
readOnly(4) readOnly(4)

genErr(5) X X X genErr(5)
noAccess(6) X noSuchName(2)

wrongType(7) X badValue(3)
wrongLength(8) X badValue(3)

wrongEncoding(9) X badValue(3)
wrongValue(10) X badValue(3)
noCreation(11) X noSuchName(2)

inconsistentValue(12) X badValue(3)
resourceUnavailable(13) X genErr(5)

commitFailed(14) X genErr(5)
undoFailed(15) X genErr(5)

authorizationError(16) X X X noSuchName(2)
notWritable(17) X noSuchName(2)

inconsistentName(18) X noSuchName(2)

421 / 531

PDU Processing Exceptions

A response can contain per variable binding exceptions.

One or more exceptions in a response are not considered
to be an error condition of the corresponding request.

A response with exceptions still contains useful
management information.

Applications receiving response messages

must check the error code,
must detect exceptions, and
they must deal with them gracefully.

Not all applications get this right...

422 / 531

PDU Exceptions (RFC 3416)

SNMPv3 Exception Get GetNext/GetBulk SNMPv1 Error Status

noSuchObject X noSuchName(2)
noSuchInstance X noSuchName(2)
endOfMibView X noSuchName(2)

The noSuchInstance exceptions indicates that a
particular instances does not exist, but that other
instances of the object type can exist.

The noSuchObject exception indicates that a certain
object type is not available.

This distinctions allows smart applications to adapt to the
capabilities of a particular command responder
implementation.

423 / 531

Get Operation (RFC 3416)

Generator
Command

Responder
Command

Get

Response

The Get operation is used to read one or more MIB
variables.

Possible error codes: tooBig, genErr

Possible exceptions: noSuchObject, noSuchInstance

424 / 531

Example Get Operations

1. Get(1.1.0)

Response(noError@0, 1.1.0=10.1.2.1)

2. Get(1.2.0)

Response(noError@0, 1.2.0=noSuchObject)

3. Get(1.1.1)

Response(noError@0, 1.1.1=noSuchInstance)

4. Get(1.1.0, 1.2.2.0)

Response(noError@0, 1.1.0=10.1.2.1, 1.2.2.0=54321)

5. Get(1.3.1.1.4, 1.3.1.3.4)

Response(noError@0, 1.3.1.1.4=4, 1.3.1.3.4=2)

6. Get(1.1.0, 1.1.1)

Response(noError@0, 1.1.0=10.1.2.1, 1.1.1=noSuchInstance)

425 / 531

GetNext Operation (RFC 3416)

Responder
Command

Generator
Command

Response

GetNext

The GetNext operation allows to retrieve the value of the
next existing MIB instances in lexicographic order.

Successive GetNext operations can be used to walk the
MIB instances without prior knowledge about the MIB
structure.

Possible error codes: tooBig, genErr

Possible exceptions: endOfMibView

426 / 531

Example GetNext Operations

1. GetNext(1.1.0)

Response(noError@0, 1.2.1.0="ACME Router")

2. GetNext(1.2.1.0)

Response(noError@0, 1.2.2.0=54321)

3. GetNext(1.1)

Response(noError@0, 1.1.0=10.1.2.1)

4. GetNext(1.3.1.1.1)

Response(noError@0, 1.3.1.1.2=2)

5. GetNext(1.3.1.1.6)

Response(noError@0, 1.3.1.2.1=2)

6. GetNext(1.3.1.1.1, 1.3.1.2.1, 1.3.1.3.1)

Response(noError@0, 1.3.1.1.2=2, 1.3.1.2.2=3, 1.3.1.3.2=3)

427 / 531

GetBulk Operation (RFC 3416)

Responder
Command

Generator
Command

Response

GetBulk

The GetBulk operation is a generalization of the
GetNext operation where the agent performs a series of
GetNext operations internally.

The GetBulk operation like all the other protocol
operations operates only on the lexicographically ordered
list of MIB instances and does therefore not respect
conceptual table boundaries.

428 / 531

GetBulk Operation (RFC 3416)

GetBulk processing details:

The first N elements (non-repeaters) of the varbind
list will be processed similar to the GetNext operation.
The remaining R elements of the varbind list are
repeatedly processed similar to the GetNext operation.
The parameter M (max-repetitions) defines the
upper bound of repetitions.

The manager usually does not know how to choose a
value for max-repetitions.

If max-repetitions is too small, the potential gain will
be small. If it is too large, there might be a costly
overshoot.

429 / 531

Example GetBulk Operations

1. GetBulk(non-repeaters=0, max-repetitions=4, 1.1)

Response(noError@0, 1.1.0=10.1.2.1, 1.2.1.0="ACME Router",

1.2.2.0=54321, 1.3.1.1.1=1)

2. GetBulk(non-repeaters=1, max-repetitions=2, 1.2.2,

1.3.1.1, 1.3.1.2, 1.3.1.3)

Response(noError@0, 1.2.2.0=54321,

1.3.1.1.1=1, 1.3.1.2.1=2, 1.3.1.3.1=2,

1.3.1.1.2=2, 1.3.1.2.2=3, 1.3.1.3.2=3)

The non-repeaters are typically used to retrieve a
discontinuity indicating scalars, such as sysUpTime.0.

Any ideas for a better GetBulk operation?

430 / 531

Set Operation (RFC 3416)

Generator
Command

Responder
Command

Response

Set

The Set operation allows to modify a set of MIB
instances. The operation is atomic (either all instances
are modified or none).

Possible error codes: wrongValue, wrongEncoding,
wrongType, wrongLength, inconsistentValue,
noAccess, notWritable, noCreation,
inconsistentName, resourceUnavailable,
commitFailed, undoFailed

431 / 531

Example Set Operations

1. Set(1.2.1.0="Moo Router")

Response(noError@0, 1.2.1.0="Moo Router")

2. Set(1.1.0="foo.bar.com")

Response(badValue@1, 1.1.0="foo.bar.com")

3. Set(1.1.1=10.2.3.4)

Response(noSuchName@1, 1.1.1=10.2.3.4)

4. Set(1.2.1.0="Moo Router", 1.1.0="foo.bar.com")

Response(badValue@2, 1.2.1.0="Moo Router", 1.1.0="foo.bar.com")

5. Set(1.3.1.1.7=7, 1.3.1.2.7=2, 1.3.1.3.7=3)

Response(noError@0, 1.3.1.1.7=7, 1.3.1.2.7=2, 1.3.1.3.7=3)

The error codes authorizationError and readOnly

are not used.
No support for object type specific error codes.

432 / 531

Trap Operation (RFC 3416)

Notification
Originator

Notification
Receiver

Trap

The Trap operation is used to notify a manager of the
occurance of an event.

The Trap operation is unconfirmed: The sending agent
does not know whether the trap was received and
processed by a manager.

All trap specific information in encoded in the varbind list
(sysUpTime, snmpTrapOID, snmpTrapEnterprise).

433 / 531

Inform Operation (RFC 3416)

Notification
Originator

Notification
Receiver

Inform

Response

The Inform operation is a confirmed trap.

The contents of the varbind list of an Inform operation is
similar to that of a Trap operation.

The reception of an Inform operation is confirmed by a
response message from the notification receiver.

Confirmation indicates that the notification was delivered,
not that the notification was understood.

434 / 531

Message Format (RFC 3412, RFC 3414)

msgVersion

msgID

msgMaxSize

msgFlags

msgSecurityModel

msgAuthoritativeEngineID

msgAuthoritativeEngineBoots

msgAuthoritativeEngineTime

msgUserName

msgAuthenticationParameters

msgPrivacyParameters

contextEngineID

contextName

request-id

error-status / non-repeaters

error-index / max-repetitions

variable-bindings

(SNMPv3)

message
header

parameters
security

(USM)

selector
(scope)

context

operation
protocol

(PDU)

sc
op

e
of

 e
nc

ry
pt

io
nsc

op
e

of
 a

ut
he

nt
ic

at
io

n

msgVersion identifies the
message processing model

msgSecurityModel

identifies the security
model

contextEngineID and
contextName determine
the context

protocol operation type
(and version) is
determined by the tag of
the PDU

435 / 531

Classes of Protocol Operations (RFC 3411)

Class Description

Read PDUs that retrieve management information.
Write PDUs which attempt to modify management information.

Response PDUs which are sent in response to a request.
Notification PDUs which transmit event notifications.

Internal PDUs exchanged internally between SNMP engines.

Confirmed PDUs which cause the receiver to send a response.
Unconfirmed PDUs which are not acknowledged.

The processing of a message depends on the class of the
embedded protocol operation.

PDU classes support the introduction of new protocol
operations without changes the core specifications.

However, no indication of the set of protocol operations
supported by an SNMP engine implementation.

436 / 531

Encoding of SNMPv3/USM Messages

lentag

0x02 - integer

msgID lentag

0x02 - integer

msgMaxSize lentag

0x04 - octet string

msgFlags lentag msgSecurityModel

0x02 - integer

tag len

0x30 - sequence

SNMPv3Message

lentag

0x02 - integer

msgVersion lentag

0x04 - octet string

msgSecurityParameters lentag

0x30 or 0x04 - sequence or octet string

msgDatalentag

0x30 - sequence

msgGlobalData

lentag

0x30 - sequence

UsmSecurityParameters

lentag

0x04 - octet string

msgAuthEngineID lentag

0x02 - integer

msgAuthEngBoots lentag

0x02 - integer

msgAuthEngTime lentag

0x04 - octet string

msgUserName lentag

0x04 - octet string

msgPrivParamlentag

0x04 - octet string

msgAuthParam

lentag

0x04 - octet string

contextEngineID lentag

0x04 - octet string

contextName lentag

depends on PDU type

PDU

lentag

0x30 - sequence

variable-bindingslentag

0x02 - integer

error-index / max-repetitionstag len error-status / non-repeaters

0x02 - integer

lentag

0x02 - integer

request-id

lentag

0x30 - sequence

VarBindlentag

0x30 - sequence

VarBind

lentag

0x08 - object identifier

name lentag

depends on type of value

value / exceptionlentag

0x08 - object identifier

name lentag

depends on type of value

value / exception

437 / 531

Security Issues

The following questions must be answered in order to
decide whether an operation should be performed or not:

1 Is the message specifying an operation authentic?
2 Who requested the operation to be performed?
3 What objects are accessed in the operation?
4 What are the rights of the requester with regard to the

objects of the operation?

1 and 2 are answered by message security mechanisms
(authentication and privacy).

3 and 4 are answered by authorization mechanisms
(access control).

438 / 531

Security Threats (RFC 3414)

1 Modification of Information
(Unauthorized modification of in-transit SNMP
messages.)

2 Masquerade
(Unauthorized users attempting to use the identity of
authorized users.)

3 Disclosure
(Protection against eavesdropping on the exchanges
between SNMP entities.)

4 Message Stream Modification
(Re-ordered, delayed or replayed messages to effect
unauthorized operations.)

439 / 531

USM Security Services (RFC 3414)

Data Integrity

Data has not been altered or destroyed in an
unauthorized manner.
Data sequences have not been altered to an extent
greater than can occur non-maliciously.

Data Origin Authentication

The claimed identity of the user on whose behalf
received data was originated is corroborated.

Data Confidentiality

Information is not made available or disclosed to
unauthorized individuals, entities, or processes.

440 / 531

USM Security Services (RFC 3414)

Message Timeliness and Limited Replay Protection

A message whose generation time is outside of a time
window is not accepted.
Message reordering is not dealt with and can occur in
normal conditions too.

No protection against Denial of Service attacks

Too hard of a problem to solve.

No protection against Traffic Analysis attacks

Many management traffic patterns are predictable.
Hiding periodic management traffic would be extremly
costly.

441 / 531

Data Integrity and Data Origin Authentication

Sender Receiver

Key Data Key Data

MAC MAC

User User

Hash-Function

Data MACMAC Data

Hash-Function

= ?

Cryptographic strong oneway hash functions generate
message authentication codes (MACs).

The MAC ensures integrity, the symmetric key provides
for authentication.

USM currently uses HMAC-MD5-96 or HMAC-SHA-96.

Other hash functions may be added in the future.

442 / 531

Data Confidentiality

Sender Receiver

Key Key Data

DES (CBC) DES (CBC)

UserUser Encrypted DataEncrypted Data

 Data

Optional encryption of the ScopedPDU using symmetric
but localized keys.

USM currently uses CBC-DES.

Other encryption functions may be added in the future.

Encryption is CPU expensive — use only when needed.

443 / 531

Message Timeliness and Replay Protection

Authoritative Engine Nonauthoritative Engine

Time

Authoritative Clock

EngineID DataDataTimestampEngineID DataDataTimestamp

Boots

Time Window

Boots latestRecvTime

LifetimeTime

valid ?

A non-authoritative engine maintains a notion of the time
at the authoritative engine.

A non-authoritative engine keeps track when the last
authentic message was received from a given engine.

A message is accepted and considered “fresh” if it falls
within a time window.

444 / 531

Generating Keys from Passwords

Algorithmic transformation of a human readable password
into a cryptographic key:

Produce a string S of length 220 = 1048576 bytes by
repeating the password as many times as necessary.
Compute the users key KU using either KU = MD5(S)
or KU = SHA(S).

Slows down naive brute force password attacks.

No serious barrier for an attacker with a transformed
dictionary.

445 / 531

Localized Keys

Algorithmic transformation of the users key KU and an
engine identification E into a localized key:

For a given engine E , compute either
KUE = MD5(KU ,E ,KU) or
KUE = SHA(KU ,E ,KU).

Advantage: A compromised key does not give access to
other SNMP engines.

Very important in environments where devices can easily
be stolen or accessed physically by attackers.

446 / 531

Key Changes

Key change procedure (initiator):
1 Generate a random value r from a random number

generator.
2 Compute d = MD5(Kold , r) or d = SHA(Kold , r).
3 Compute δ = d ⊕ Knew and send (δ, r).

Key change procedure (receiver):
1 Compute d = MD5(Kold , r) or d = SHA(Kold , r).
2 Compute Knew = d ⊕ δ.

The receiver computes the correct new key since
d ⊕ δ = d ⊕ (d ⊕ Knew) = Knew .

447 / 531

Key Change Properties

Key changes must be possible without encryption since
encryption is optional.

An attacker who is able to catch all key updates can
calculate the current keys once an old key has been
broken.

Attackers thus get an unlimited amount of time to break
keys if they can catch all key change requests.

⇒ Use encryption for key changes if at all possible!

448 / 531

Authoritative Engine

Either the sender or the receiver of a message is
designated the authoritative engine.

The receiver is authoritative if the message contains a
confirmed class PDU.

The sender is authoritative if the message contains an
unconfirmed class PDU.

The determination whether a message is recent is made
relative to the authoritative engine.

449 / 531

Timeliness Check

Authoritative Receiver

1 snmpEngineBoots = 231 − 1

2 msgAuthoritativeEngineBoots 6= snmpEngineBoots

3 abs(msgAuthoritativeEngineTime −
snmpEngineTime) > 150 seconds

Non-authoritative Receiver

1 snmpEngineBoots = 231 − 1

2 msgAuthoritativeEngineBoots < snmpEngineBoots

3 msgAuthoritativeEngineBoots = snmpEngineBoots and
msgAuthoritativeEngineTime < snmpEngineTime −150

450 / 531

Clock Synchronization

For each remote authoritative SNMP engine, an SNMP
engine maintains:
snmpEngineBoots, snmpEngineTime and
latestReceivedEngineTime

Time synchronization only occurs if the message is
authentic.

An update occurs, if at least one of the following
conditions is true:

1 msgAuthoritativeEngineBoots > snmpEngineBoots
2 msgAuthoritativeEngineBoots = snmpEngineBoots

and
msgAuthoritativeEngineTime >
latestReceivedEngineTime

451 / 531

Discovery and Initial Synchronization

The engine identification is needed to compute localized
keys and to keep clock information for authoritative
engines.

An SNMP engine can learn the engine identification by
sending a noAuthNoPriv request with a zero-length
msgAuthoritativeEngineID.

The receiver returns a Report PDU with the real
msgAuthoritativeEngineID.

Similarly, (initial) clock synchronization happens by
sending an authentic request and receiving a Report

PDU with the authoritative time.

452 / 531

USM MIB (RFC 3414)

The usmUserTable maps USM user names to
securityNames.

New entries may be created by cloning existing entries
(together with their keys).

The usmUserAuthKeyChange and
usmUserPrivKeyChange objects may be used by the
security administrator to change the user’s keys.

The usmUserOwnAuthKeyChange and
usmUserOwnPrivKeyChange objects may be used by the
user to change his keys.

453 / 531

Authorization and Access Control (RFC 3415)

object instance

object type

viewType

securityLevel

securityModel

contextName

securityName

securityModel

who

where

how

why

what

which

groupName

viewName

variableName

yes/no

Three different securityLevels: noAuthNoPriv,
authNoPriv, authPriv

A securityName is a security model independent name
for a principal.

454 / 531

View-based Access Control (RFC 3415)

��

��

��

�� �	
�

�

������

��

��

��

��

��

�� !

"#

$%

&' ()

*+

,-

./

01
1.1.2.1.*.1

 1.2.1.2.*

1

1

1

 1 2 3

 1 2 3

 1 2 1 2 1 2

 1 2 1 2 1 2

1

1

2

2

A view subtree is a set of managed object instances with
a common OID prefix.

A view tree family is the combination of an OID prefix
with a bit mask (wildcarding of OID prefix components).

A view is an ordered set of view tree families.

Access control rights are defined by a read view, write
view or notify view.

455 / 531

View-based Access Control MIB (RFC 3415)

«smi mib class»
vacmSecurityToGroupEntry

-vacmSecurityModel: SnmpSecurityModel {index}
-vacmSecurityName: SnmpAdminString {index}
+vacmGroupName: SnmpAdminString
+vacmSecurityToGroupStorageType: StorageType
+vacmSecurityToGroupStatus: RowStatus

«smi mib class»
vacmContextEntry

+vacmContextName: SnmpAdminString {index}

«smi mib class»
vacmAccessEntry

+vacmGroupName: SnmpAdminString {index}
-vacmAccessContextPrefix: SnmpAdminString {index}
-vacmAccessSecurityModel: SnmpSecurityModel {index}
-vacmAccessSecurityLevel: SnmpSecurityLevel {index}
+vacmAccessContextMatch: Enumeration
+vacmAccessReadViewName: SnmpAdminString
+vacmAccessWriteViewName: SnmpAdminString
+vacmAccessNotifyViewName: SnmpAdminString
+vacmAccessStorageType: StorageType
+vacmAccessStatus: RowStatus

«smi mib class»
vacmViewTreeFamilyEntry

+vacmViewSpinLock: TestAndIncr
-vacmViewTreeFamilyViewName: SnmpAdminString {index}
-vacmViewTreeFamilySubtree: ObjectIdentifier {index}
+vacmViewTreeFamilyMask: OctetString
+vacmViewTreeFamilyType: Enumeration
+vacmViewTreeFamilyStorageType: StorageType
+vacmViewTreeFamilyStatus: RowStatus

groupMemberRights

0..*

1

readView

0..*

0..*

writeView

0..*

0..*
notifyView

0..*

0..*

A security name (with a given security level) can not be a
member of multiple groups.

The vacmViewTreeFamilyType can be used to include
or exclude a view tree family.

The context table is kind of degenerated.

456 / 531

Remote Configuration (RFC 3413)

«smi mib class»
snmpTargetParamsEntry

-snmpTargetParamsName: SnmpAdminString {index}
+snmpTargetParamsMPModel: SnmpMessageProcessingModel
+snmpTargetParamsSecurityModel: SnmpSecurityModel
+snmpTargetParamsSecurityName: SnmpAdminString
+snmpTargetParamsSecurityLevel: SnmpSecurityLevel
+snmpTargetParamsStorageType: StorageType
+snmpTargetParamsRowStatus: RowStatus

«smi mib class»
snmpTargetAddrEntry

+snmpTargetSpinLock: TestAndIncr
-snmpTargetAddrName: SnmpAdminString {index}
+snmpTargetAddrTDomain: TDomain
+snmpTargetAddrTAddress: TAddress
+snmpTargetAddrTimeout: TimeInterval
+snmpTargetAddrRetryCount: Integer32
+snmpTargetAddrTagList: SnmpTagList
+snmpTargetAddrParams: SnmpAdminString
+snmpTargetAddrStorageType: StorageType
+snmpTargetAddrRowStatus: RowStatus

usesParameters

 0..*
 1

«smi mib class»
snmpTargetObjects

+snmpUnavailableContexts: Counter32
+snmpUnknownContexts: Counter32

«smi mib class»
snmpNotifyFilterProfileEntry

-snmpTargetParamsName: SnmpAdminString {index}
+snmpNotifyFilterProfileName: SnmpAdminString
+snmpNotifyFilterProfileStorType: StorageType
+snmpNotifyFilterProfileRowStatus: RowStatus

«smi mib class»
snmpNotifyEntry

-snmpNotifyName: SnmpAdminString {index}
+snmpNotifyTag: SnmpTagValue
+snmpNotifyType: Enumeration
+snmpNotifyStorageType: StorageType
+snmpNotifyRowStatus: RowStatus

selectsTargets

 0..*

 0..* «smi mib class»
snmpNotifyFilterEntry

+snmpNotifyFilterProfileName: SnmpAdminString {index}
-snmpNotifyFilterSubtree: ObjectIdentifier {index}
+snmpNotifyFilterMask: OctetString
+snmpNotifyFilterType: Enumeration
+snmpNotifyFilterStorageType: StorageType
+snmpNotifyFilterRowStatus: RowStatus

usesFilters

 1
 0..*

associatedProfile

1

0..1

«smi mib class»
snmpMPDStats

+snmpUnknownSecurityModels: Counter32
+snmpInvalidMsgs: Counter32
+snmpUnknownPDUHandlers: Counter32

«smi mib class»
snmpEngine

+snmpEngineID: SnmpEngineID
+snmpEngineBoots: Integer32
+snmpEngineTime: Integer32
+snmpEngineMaxMessageSize: Integer32

SNMPv3 defines several MIB modules for remote
configuration of SNMP entities.

457 / 531

SNMPv3 Status and Limitations

Many implementations and products are available.

Some technology domains (e.g., cable modem industry in
the US) require SNMPv3 support.

However, general deployment happens much slower than
originally expected.

Manual configuration is an error prone and time
consuming.

Lack of integration in deployed AAA systems.

Remote configuration and key management requires
nontrivial applications.

Work underway to run SNMP over secure transports
(SSH / TLS / DTLS / . . .)

458 / 531

SNMPv3 Status and Limitations

Missing extensibility for new base data types (e.g.,
Unsigned64).

Missing extensibility for new protocol operations (e.g.,
GetRange).

Limited flexibility in VACM grouping rules.

Asymmetries between notification filtering and VACM
filtering.

Strength of USM security (DES versus AES, key change
procedure).

Initial key assignment problematic (no standardized
Diffie-Hellman exchange, no integration with other key
management systems).

459 / 531

Network Configuration using NETCONF / YANG

41 Network Management Overview

42 Network Monitoring using SNMP

43 Network Configuration using NETCONF / YANG
Configuration Management Approaches
NETCONF Protocol Overview
YANG Data Modeling Overview

44 System Logging Protocol (SYSLOG)

45 Traffic Analysis using NETFLOW / IPFIX

460 / 531

“The Network is the Record” Approach

Information
Network Status and

Performance Information

Service Management
Systems

Policy Management
Systems

D
ev

ic
e

C
o

n
fi

g
u

ra
ti

o
n

D
ev

ic
e

C
o

n
fi

g
u

ra
ti

o
n

D
ev

ic
e

C
o

n
fi

g
u

ra
ti

o
n

D
ev

ic
e

C
o

n
fi

g
u

ra
ti

o
n

D
ev

ic
e

C
o

n
fi

g
u

ra
ti

o
n

Configuration
Backup

Repository

Network Topology

Labor intensive, expensive, error prone, widely deployed

461 / 531

“Generate Everything” Approach

Configuration
Database

Translator
Configuration Data

Network Topology
Information

Network Status and
Performance Information

Service Management
Systems

Policy Management
Systems

D
ev

ic
e

C
on

fig
ur

at
io

n

D
ev

ic
e

C
on

fig
ur

at
io

n

D
ev

ic
e

C
on

fig
ur

at
io

n

D
ev

ic
e

C
on

fig
ur

at
io

n

D
ev

ic
e

C
on

fig
ur

at
io

n

Network−Wide

All configuration changes are made (and validated) on the
network-wide configuration database and devices are
never touched manually

462 / 531

Configuration Management Requirements (part 1)

R1: configuration state vs. operational state

A configuration management protocol must be able to
distinguish between configuration state and operational state.

R2: concurrency support

A configuration management protocol must provide primitives
to prevent errors due to concurrent configuration changes.

R3: configuration transactions

A configuration management protocol must provide primitives
to apply configuration changes to a set of network elements in
a robust and transaction-oriented way.

463 / 531

Configuration Management Requirements (part 2)

R4: distribution vs. activation

It is important to distinguish between the distribution of
configurations and the activation of a certain configuration.

R5: distinguish multiple configurations

A configuration management protocol must be able to
distinguish between several configurations and devices should
be able to hold multiple configurations.

R6: persistence of configuration state

A configuration management protocol must be clear about the
persistence of configuration changes.

464 / 531

Configuration Management Requirements (part 3)

R7: configuration change events

A configuration management protocol must be able to report
configuration change events to help tracing back configuration
changes.

R8: configuration dump and restore

A full configuration dump and a full configuration restore are
primitive operations frequently used by operators and must be
supported appropriately.

465 / 531

Configuration Management Requirements (part 4)

R9: support for standard tools

A configuration management protocol must represent
configuration state and operational state in a form which
allows operators to use existing comparison, conversion, and
versioning tools.

R10: minimize impact of configuration changes

Configurations must be described such that devices can
determine a set of operations to bring the devices from a given
configuration state to the desired configuration state,
minimizing the impact caused by the configuration change
itself on networks and systems.

466 / 531

NETCONF IETF Working Group

Milestones

NETCONF WG chartered in May 2003, core
specifications published in December 2006

Heavily influenced by Juniper’s JunoScript

Core contributors from Juniper Networks and Cisco

Some design decisions were difficult to take

Status

The NETCONF WG is still active:

fine grained locking

with-defaults capability

data model for NETCONF monitoring

revision of the NETCONF core specification

467 / 531

Deployment Model

NETCONF Device

Instrumentation

NETCONF Device

Instrumentation

NETCONF Device

Instrumentation

Server Server Server

Client

Applications

NETCONF Manager

Client

CLI

NETCONF CLI

NETCONF enabled devices include a NETCONF server

Management applications include a NETCONF client

Command Line Interfaces (CLIs) can be a wrapped
around a NETCONF client

468 / 531

Layering Model (RFC4741)

Content

Operations

RPC

Transport

Layer Example

<get−config>, <edit−config>

<rpc>, <rpc−reply>

BEEP, SSH, HTTPS, ...

Configuration Data

Security has to be provided by the transport layer.

The operations layer provides the primitives to handle
configurations.

The set of operations is supposed to be extensible.

469 / 531

Architectural Model

Dispatcher

Notify Cmd

Subsystem
Processing
Message

Transport
Subsystem

Subsystem
Control
Access

NETCONF Engine (identified by transport endpoint)

NETCONF Functions

NETCONF Entity

Core Cmd
Generator

Core Cmd
Responder Generator

Notify Cmd . . .
Responder

Does not exist formally (so take this with some care)

Loosely based on SNMP architectural concepts

470 / 531

Configuration Datastores

Definition

A configuration datastore is the complete set of configuration
information that is required to get a device from its initial
default state into a desired operational state.

The <running> configuration datastore represents the
currently active configuration of a device and is always
present.

The <startup> configuration datastore represents the
configuration that will be used during the next startup.

The <candidate> configuration datastore represents a
configuration that may become a <running>

configuration through an explicit commit.

471 / 531

Transaction Models

<edit−config>

running

candidate running

running startup

<commit>
<edit−config>

Direct Model

Candidate Model (optional)

Distinct Startup Model (optional)

<commit>

<copy−config>

<edit−config>

Some operations (edit-config) may support different
error behaviours, including rollback behaviour.

472 / 531

Capability Exchange

Hello

After estabilishing a (secure) transport, both NETCONF
protocol engines send a hello message to announce their
capabilities and the session identifier.

A: <hello>

A: <capabilities>

A: <capability>

A: urn:ietf:params:xml:ns:netconf:base:1.0

A: </capability>

A: <capability>

A: urn:ietf:params:xml:ns:netconf:base:1.0#startup

A: </capability>

A: </capabilities>

A: <session-id>4<session-id>

A: </hello>

473 / 531

Remote Procedure Calls

RPC protocol

The Remote Procedure Call (RPC) protocol consists of a
<rpc/> message followed by an <rpc-reply/> message.

M: <rpc message-id="101"

M: xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

M: <get-config>

M: <source>

M: <running/>

M: </source>

M: </get-config>

M: </rpc>

A: <rpc-reply message-id="101"

A: xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

A: <data><!-- ...contents here... --></data>

A: </rpc-reply>

474 / 531

Remote Procedure Calls (cont.)

RPC protocol

RPC failures are indicated by one or more <rpc-error/>

elements in the <rpc-reply/> element.

M: <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

M: <get-config><source><running/></source></get-config>

M: </rpc>

A: <rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

A: <rpc-error>

A: <error-type>rpc</error-type>

A: <error-tag>missing-attribute</error-tag>

A: <error-severity>error</error-severity>

A: <error-info>

A: <bad-attribute>message-id</bad-attribute>

A: <bad-element>rpc</bad-element>

A: </error-info>

A: </rpc-error>

A: </rpc-reply>

475 / 531

NETCONF Operations Overview

discard−changes

Core Cmd

Generator
Core Cmd

Generator
Core Cmd

Generator
Core Cmd

Generator
Core Cmd

Generator
Core Cmd

Generator
Core Cmd

Generator
Notify Cmd

Generator
Notify Cmd

Generator
Core Cmd

Generator
Core Cmd

Generator
Core Cmd

Responder
Core Cmd

Responder
Core Cmd

Responder
Core Cmd

Responder
Core Cmd

Responder
Core Cmd

Responder
Core Cmd

Responder
Core Cmd

Responder
Core Cmd

Responder
Core Cmd

Responder
Core Cmd

Responder
Notify Cmd

Responder
Notify Cmd

Generator
Core Cmd

Responder
Core Cmd

Generator
Core Cmd

Responder
Core Cmd

response

delete−configcopy−config

response

response response

get close−session

response

validate

response response

get−config edit−config

response

subscribe

notification

response

unlock

response

kill−session

response

lock

response

commit

response

Generator

476 / 531

NETCONF Operations

get-config(source, filter)

Retrieve a (filtered subset of a) configuration from the
configuration datastore source.

edit-config(target, default-operation,

test-option, error-option, config)

Edit the target configuration datastore by merging,
replacing, creating, or deleting new config elements.

copy-config(target, source)

Copy the content of the configuration datastore source

to the configuration datastore target.

delete-config(target)

Delete the named configuration datastore target.

477 / 531

NETCONF Operations (cont.)

lock(target)

Lock the configuration datastore target.

unlock(target)

Unlock the configuration datastore target.

get(filter)

Retrieve (a filtered subset of a) the running configuration
and device state information.

close-session()

Gracefully close the current session.

kill-session(session)
Force the termination of the session session.

478 / 531

NETCONF Operations (cont.)

discard-changes()

Revert the candidate configuration datastore to the
running configuration (#candidate capability).

validate(source)

Validate the contents of the configuration datastore
source (#validate capability).

commit(confirmed, confirm-timeout)

Commit candidate configuration datastore to the running
configuration (#candidate capability).

create-subscription(stream, filter, start,

stop)

Subscribe to a notification stream with a given filter

and the start and stop times.

479 / 531

Editing Configuration

merge

The configuration data is merged with the configuration at the
corresponding level in the configuration datastore.

replace

The configuration data replaces any related configuration in
the configuration datastore identified by the target parameter.

create

The configuration data is added to the configuration if and
only if the configuration data does not already exist.

delete

The configuration data identified by the element containing
this attribute is deleted in the configuration datastore.

480 / 531

Editing Configuration Example

M: <rpc message-id="101"

M: xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

M: <edit-config>

M: <target>

M: <running/>

M: </target>

M: <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

M: <top xmlns="http://example.com/schema/1.2/config">

M: <interface xc:operation="replace">

M: <name>Ethernet0/0</name>

M: <mtu>1500</mtu>

M: <address>

M: <name>192.0.2.4</name>

M: <prefix-length>24</prefix-length>

M: </address>

M: </interface>

M: </top>

M: </config>

M: </edit-config>

M: </rpc>

481 / 531

Subtree Filtering

Subtree Filter Expressions

Subtree filter expressions select particular XML subtrees to
include in get and get-config responses.

Namespace Selection

If the ’xmlns’ attribute is present, then the filter output will
only include elements from the specified namespace.

Attribute Match Expressions

The set of (unqualified or qualified) XML attributes present in
any type of filter node form an “attribute match expression”
The selected data must have matching values for every
attribute of an attribute match expression.

482 / 531

Subtree Filtering (cont.)

Containment Nodes

For each containment node specified in a subtree filter, all data
model instances must exactly match the specified namespaces,
element hierarchy, and any attribute match expressions.

Selection Nodes

An empty leaf node within a filter is called a “selection node”
and it selects the specified subtree(s) and it suppresses the
automatic selection of the entire set of sibling nodes in the
underlying data model.

Content Match Nodes

A leaf node that contains simple content is called a “content
match node” and it selects some or all of its sibling nodes. It
represents an exact-match filter on the leaf node element
content. 483 / 531

Subtree Filtering Example

<filter type="subtree">

<!-- namespace selection and containment node selection -->

<t:top xmlns:t="http://example.com/schema/1.2/config">

<!-- containment node selection -->

<t:interfaces>

<!-- containment node selection and attribute match expression -->

<t:interface t:ifName="eth0">

<!-- selection node -->

<t:ifSpeed/>

<!-- content match node -->

<t:ifType>Ethernet</t:if-type>

</t:interface>

</t:interfaces>

</t:top>

</filter>

484 / 531

NETCONF over SSH

Motivation: Use an already deployed security protocol,
thereby reducing the operational costs associated with
key management.

SSH supports multiple logical channels over one transport
layer association.

For framing purposes, the special end of message marker
]]>]]> has been introduced.

NETCONF over SSH has been selected as the mandatory
to implement transport for NETCONF.

485 / 531

NETCONF over SSH Example

A: <?xml version="1.0" encoding="UTF-8"?>

A: <hello>

A: <capabilities>

A: <capability>

A: urn:ietf:params:xml:ns:netconf:base:1.0

A: </capability>

A: <capability>

A: urn:ietf:params:xml:ns:netconf:base:1.0#startup

A: </capability>

A: </capabilities>

A: <session-id>4<session-id>

A: </hello>

A:]]>]]>

486 / 531

NETCONF over SSH Example

M: <?xml version="1.0" encoding="UTF-8"?>

M: <hello>

M: <capabilities>

M: <capability>

M: urn:ietf:params:xml:ns:netconf:base:1.0

M: </capability>

M: </capabilities>

M: </hello>

M:]]>]]>

487 / 531

NETCONF over SSH Example

M: <?xml version="1.0" encoding="UTF-8"?>

M: <rpc message-id="105" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

M: <get-config>

M: <source>

M: <running/>

M: </source>

M: <filter type="subtree">

M: <config xmlns="http://example.com/schema/1.2/config">

M: <users/>

M: </config>

M: </filter>

M: </get-config>

M: </rpc>

M:]]>]]>

488 / 531

NETCONF over SSH Example

A: <?xml version="1.0" encoding="UTF-8"?>

A: <rpc-reply message-id="105" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

A: <data>

A: <config xmlns="http://example.com/schema/1.2/config">

A: <users>

A: <user><name>root</name><type>superuser</type></user>

A: <user><name>fred</name><type>admin</type></user>

A: <user><name>barney</name><type>admin</type></user>

A: </users>

A: </config>

A: </data>

A: </rpc-reply>

A:]]>]]>

489 / 531

BEEP Protocol (RFC 3080)

BEEP is a generic application protocol kernel for
connection-oriented, asynchronous interactions.

BEEP supports multiple channels, application layer
framing and fragmentation.

BEEP exchange styles:

MSG/RPY
MSG/ERR
MSG/ANS

Integrates into SASL (RFC 2222) and TLS (RFC 2246)
for security.

Connections can be initiated by both participating peers
(no strict client/server roles).

490 / 531

NETCONF over BEEP

BEEP supports multiple logical channels.

Every peer can be the initiator of a connection.

SASL allows to map to existing security infrastructures.

Framing and fragmentation services provided by BEEP.

BEEP is currently not widely deployed and there is a lack
of operational experience with BEEP in the operator
community.

BEEP is an optional NETCONF transport.

491 / 531

NETCONF over BEEP Example

M: MSG 0 1 . 10 48 101

M: Content-Type: application/beep+xml

M: <start number="1">

M: <profile uri="http://iana.org/beep/netconf" />

M: </start>

M: END

A: RPY 0 1 . 38 87

A: Content-Type: application/beep+xml

A:

A: <profile uri="http://iana.org/beep/netconf" />

A: END

492 / 531

NETCONF over BEEP Example

A: MSG 1 0 . 0 436

A: Content-Type: application/beep+xml

A:

A: <hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

A: <capabilities>

A: <capability>

A: urn:ietf:params:xml:ns:netconf:base:1.0

A: </capability>

A: <capability>

A: urn:ietf:params:xml:ns:netconf:base:1.0#startup

A: </capability>

A: </capabilities>

A: <session-id>4</session-id>

A: </hello>

A: END

M: RPY 1 0 . 0 0

M: END

493 / 531

NETCONF over BEEP Example

M: MSG 1 42 . 24 344

M: Content-Type: text/xml; charset=utf-8

M:

M: <rpc message-id="105" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

M: <get-config>

M: <source>

M: <running/>

M: </source>

M: <filter type="subtree">

M: <config xmlns="http://example.com/schema/1.2/config">

M: <users/>

M: </config>

M: </filter>

M: </get-config>

M: </rpc>

M: END

494 / 531

NETCONF over BEEP Example

A: RPY 1 42 . 24 542

A: Content-Type: text/xml; charset=utf-8

A:

A: <rpc-reply message-id="105" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

A: <data>

A: <config xmlns="http://example.com/schema/1.2/config">

A: <users>

A: <user><name>root</name><type>superuser</type></user>

A: <user><name>fred</name><type>admin</type></user>

A: <user><name>barney</name><type>admin</type></user>

A: </users>

A: </config>

A: </data>

A: </rpc-reply>

A: END

495 / 531

NETCONF over SOAP/HTTP[S]

Instead of inventing a special purpose RPC protocol, use
existing Web Services standards.

Pros:

more developers / tools available
better integration with IT infrastructure

Cons:

base technology not under control of the IETF
unneeded complexity
interoperability problems (immature technology)
HTTP is a bad generic application protocol kernel

Note: Transport mapping does not map NETCONF
operations to SOAP operations!

496 / 531

NETCONF over SOAP/HTTP Example

M: POST /netconf HTTP/1.1

M: Host: netconfdevice

M: Content-Type: text/xml; charset=utf-8

M: Accept: application/soap+xml, text/*

M: Cache-Control: no-cache

M: Pragma: no-cache

M: Content-Length: 490

M:

M: <?xml version="1.0" encoding="UTF-8"?>

M: <soapenv:Envelope

M: xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

M: <soapenv:Body>

M: <rpc message-id="101"

M: xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

M: <get-config>

M: <source><running/></source>

M: <filter type="subtree">

M: <top xmlns="http://example.com/schema/1.2/config">

M: <users/>

M: </top>

M: </filter>

M: </get-config>

M: </rpc>

M: </soapenv:Body>

M: </soapenv:Envelope>

497 / 531

NETCONF over SOAP/HTTP Example

A: HTTP/1.1 200 OK

A: Content-Type: application/soap+xml; charset=utf-8

A: Content-Length: 668

A:

A: <?xml version="1.0" encoding="UTF-8"?>

A: <soapenv:Envelope

A: xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">

A: <soapenv:Body>

A: <rpc-reply message-id="101"

A: xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

A: <data>

A: <top xmlns="http://example.com/schema/1.2/config">

A: <users>

A: <user>

A: <name>root</name>

A: <type>superuser</type>

A: <full-name>Charlie Root</full-name>

A: <dept>1</dept>

A: <id>1</id>

A: </company-info>

A: </user>

A: </users>

A: </top>

A: </data>

A: </rpc-reply>

A: </soapenv:Body>

A: </soapenv:Envelope>

498 / 531

YANG, YIN, XSD, RELAX NG

YANG’s purpose

YANG is an extensible NETCONF data modeling language
able to model configuration data, state data, operations, and
notifications. YANG definitions directly map to XML content.

YANG vs. YIN

YANG uses a compact SMIng like syntax since readability is
highest priority. YIN is an XML version of YANG (lossless
roundtrip conversion).

YANG vs. XSD or RELAX NG

YANG can be translated to XML Schema (XSD) and RELAX
NG so that existing tools can be utilized.

499 / 531

YANG and IETF NETMOD WG History

YANG Milestones (pre IETF)

YANG design team created in Spring 2007

Three design team meetings (USA, London, Stockholm)

YANG discussions at the 71st IETF (Vancouver)

YANG discussions at the 72nd IETF (Philadelphia)

NETMOD Milestones

Apr. 2008: NETMOD WG chartered

Aug. 2008: initial YANG, YIN, DSDL, . . . documents

Mar. 2009: submit architecture document to the IESG

Sep. 2009: submit YANG, YIN, DSDL, . . . to the IESG

500 / 531

Modules and submodules

Module 2

import

include

SubMod X SubMod Y SubMod Z

SubMod A

Module 1

Module

A self-contained collection of YANG definitions.

Submodule

A partial module definition which contributes derived types,
groupings, data nodes, RPCs, and notifications to a module.

501 / 531

Module Example

module acme-module {

namespace "http://acme.example.com/module";

prefix "acme";

import "yang-types" {

prefix "yang";

}

include "acme-system";

organization "ACME Inc.";

contact "support@acme.example.com";

description

"The module for entities implementing the ACME products";

revision "2007-06-09" {

description "Initial revision.";

}

}

502 / 531

Built-in Data Types

Category Types Restrictions

Integral {u,}int{8,16,32,64} range

Decimals decimal64 range, fraction-digits

String string length, pattern
Enumeration enumeration enum

Bool and Bits boolean, bits
Binary binary length

References leafref path

References identityref base

References instance-identifier

Other empty

Type system

The data type system is mostly an extension of the SMIng
type system, accommodating XML and XSD requirements.

503 / 531

Example: typedef

module inet-types {

namespace "urn:ietf:params:xml:ns:yang:inet-types";

prefix "inet";

typedef ipv4-address {

type string {

pattern ’(([0-1]?[0-9]?[0-9]|2[0-4][0-9]|25[0-5])\.){3}’

+ ’([0-1]?[0-9]?[0-9]|2[0-4][0-9]|25[0-5])’

+ ’(%[\p{N}\p{L}]+)?’;

}

}

// ...

typedef ip-address {

type union {

type inet:ipv4-address;

type inet:ipv6-address;

}

description "Represents a version neutral IP address.";

}

}

504 / 531

Leafs, Leaf-lists, Container, Lists

leaf

A leaf has one value, no children, one instance.

leaf-list

A leaf-list has one value, no children, multiple instances.

container

A container has no value, holds related children, has one
instance.

list

A list has no value, holds related children, has multiple
instances, has a key property.

505 / 531

Example: leaf and leaf-list

leaf domain {

type inet:domain-name; // values are typed (type imported)

mandatory true; // must exist in a valid configuration

config true; // part of the set of configuration objects

description

"The host name of this system.";

}

// XML: <domain>example.com</domain>

leaf-list search {

type inet:domain-name; // imported from the module with prefix inet

ordered-by user; // maintain the order given by the user

description

"List of domain names to search.";

}

// XML: <search>eng.example.com</search>

// XML: <search>example.com</search>

506 / 531

Example: container

container system {

config true;

leaf hostname {

type inet:domain-name;

}

container resolver {

leaf domain { /* see above */ }

leaf-list search { /* see above */ }

description

"The configuration of the resolver library.";

}

}

// XML: <system>

// XML: <hostname>server.example.com</hostname>

// XML: <resolver>

// XML: <domain>example.com</domain>

// XML: <search>eng.example.com</search>

// XML: <search>example.com</search>

// XML: </resolver>

// XML: </system>

507 / 531

Example: list

list nameserver {

key address;

leaf address {

type inet:ip-address;

}

leaf status {

type enumeration {

enum enabled; enum disabled; enum failed;

}

}

}

// XML: <nameserver>

// XML: <address>192.0.2.1</address>

// XML: <status>enabled</status>

// XML: </nameserver>

// XML: <nameserver>

// XML: <address>192.0.2.2</address>

// XML: <status>failed</status>

// XML: </nameserver>

508 / 531

Augment, Must, When

augment

The augment statement can be used to place nodes into an
existing hierarchy using the current module’s namespace.

must

The must statement can be used to express constraints (in the
form of XPATH expressions) that must be satisfied by a valid
configuration.

when

The when statement can be used to define sparse
augmentations where nodes are only added when a condition
(expressed in the form of an XPATH expression) is true.

509 / 531

Example: augment and presence

augment system/resolver {

container debug {

presence "enables debugging";

description

"This container enables debugging.";

leaf level {

type enumeration {

enum low;

enum medium;

enum full;

}

default "medium";

mandatory false;

description

"The debugging level; default is medium debug information.";

}

}

}

// XML: <system><resolver>

// XML: <debug/>

// XML: </resolver></system>

510 / 531

Example: augment and must

augment system/resolver {

leaf access-timeout {

type uint32;

unit "seconds";

mandatory true;

description "Maximum time without server response.";

}

leaf retry-timer {

type uint32;

units "seconds";

description "Period after which to retry an operation";

must "$this < ../access-timeout" {

error-app-tag "retry-timer-invalid";

error-message "The retry timer must be less "

+ "than the access timeout";

}

}

}

511 / 531

Example: augment and when

augment system/resolver/nameserver {

when "status = enabled";

leaf tx {

type yang:counter32;

config false;

}

leaf rx {

type yang:counter32;

config false;

}

}

// XML: <nameserver>

// XML: <address>192.0.2.1</address>

// XML: <status>enabled</status>

// XML: <tx>2345</tx>

// XML: <rx>1234</rx>

// XML: </nameserver>

// XML: <nameserver>

// XML: <address>192.0.2.2</address>

// XML: <status>failed</status>

// XML: </nameserver>

512 / 531

Grouping and Choice

grouping

A grouping is a reusable collection of nodes. The grouping

mechanism can be used to emulate structured data types or
objects. A grouping can be refined when it is used.

choice

A choice allows one alternative of the choice to exist. The
choice mechanism can be used to provide extensibility hooks
that can be exploited using augments.

Should a grouping be considered a template mechanism
or a structured data type mechanism?

513 / 531

Example: grouping

grouping target {

leaf address {

type inet:ip-address;

description "Target IP address.";

}

leaf port {

type inet:ip-port;

description "Target port number.";

}

}

list nameserver {

key "address port";

uses target;

}

// XML: <nameserver>

// XML: <address>192.0.2.1</address>

// XML: <port>53</port>

// XML: </nameserver>

514 / 531

Example: choice

container transfer {

choice how {

default interval;

case interval {

leaf interval {

type uint16; default 30; units minutes;

}

}

case daily {

leaf daily {

type empty;

}

leaf time-of-day {

type string; units 24-hour-clock; default 1am;

}

}

case manual {

leaf manual {

type empty;

}

}

}

}

515 / 531

Notification and RPC

notification

The notification statement can be used to define the
contents of notifications.

rpc

The rpc statement can be used to define operations together
with their input and output parameters carried over the RPC
protocol.

Should the rpc statement be called operation since it is
used to define operations?

Should all NETCONF operations be formally defined in
YANG?

516 / 531

Example: notification

notification nameserver-failure {

description

"A failure of a nameserver has been detected and

the server has been disabled."

leaf address {

type leafref {

path "/system/resolver/nameserver/address";

}

}

}

// MSG: <notification>

// MSG: <eventTime>2008-06-03T18:34:50+02:00</eventTime>

// MSG: <nameserver-failure>

// MSG: <address>192.0.2.2</address>

// MSG: </nameserver-failure>

// MSG: </notification>

517 / 531

Example: rpc

rpc activate-software-image {

input {

leaf image name {

type string;

}

}

output {

leaf status {

type string;

}

}

}

// RPC: <rpc xmlns="urn:mumble" message-id="42">

// RPC: <activate-software-image>

// RPC: <image-name>image.tgz</image-name>

// RPC: </activate-software-image>

// RPC: </rpc>

518 / 531

Available Tools

pyang

Open source YANG validator and translator written in Python.

yangdump

Closed source YANG validator and translator written in C.

smidump

Open source SMI to YANG translator written in C.

emacs

Open source YANG editing mode for the emacs editor.

519 / 531

System Logging Protocol (SYSLOG)

41 Network Management Overview

42 Network Monitoring using SNMP

43 Network Configuration using NETCONF / YANG
Configuration Management Approaches
NETCONF Protocol Overview
YANG Data Modeling Overview

44 System Logging Protocol (SYSLOG)

45 Traffic Analysis using NETFLOW / IPFIX

520 / 531

System Logging Protocol (SYSLOG)

SYSLOG Device

Operating System Kernel

Sender

Process Process

SYSLOG Device

Operating System Kernel

SYSLOG Collector

SYSLOG Collector

SYSLOG Relay

Relay Relay

SYSLOG Relay

Collector

Collector

Sender

Process Process

SYSLOG Device

Operating System Kernel

Sender

Process Process

521 / 531

System Logging Protocol (SYSLOG)

Relay

Subsystem
Processing
Message

Transport
Subsystem SYSLOG Engine (identified by transport endpoint)

SYSLOG Functions

SYSLOG Entity

Originator Collector

Dispatcher

522 / 531

System Logging Protocol (SYSLOG)

notification

Relay / Collector Originator

523 / 531

Traffic Analysis using NETFLOW / IPFIX

41 Network Management Overview

42 Network Monitoring using SNMP

43 Network Configuration using NETCONF / YANG
Configuration Management Approaches
NETCONF Protocol Overview
YANG Data Modeling Overview

44 System Logging Protocol (SYSLOG)

45 Traffic Analysis using NETFLOW / IPFIX

524 / 531

Flow Information Export Protocol (IPFIX)

IPFIX Collector

Exporter

Meter Meter

Exporter

Meter Meter

IPFIX Device IPFIX Device

Exporter

Meter

Collector

525 / 531

Flow Information Export Protocol (IPFIX)

IPFIX Functions

Subsystem
Processing
Message

Transport
Subsystem

IPFIX Entity

IPFIX Engine (identified by transport endpoint)

Process
Exporting Collecting

Process

Dispatcher

526 / 531

Flow Information Export Protocol (IPFIX)

Message

Collecting Process Exporting Process

527 / 531

References I

W. Stallings.

SNMP, SNMPv2, SNMPv3, and RMON 1 and 2.
Addison-Wesley, 3 edition, 1999.

D. Zeltserman.

A Practical Guide to SNMPv3 and Network Management.
Prentice Hall, 1999.

U. Blumenthal and B. Wijnen.

Security Features of SNMPv3.
Simple Times, 5(1), December 1997.

J. Case, R. Mundy, D. Partain, and B. Stewart.

Introduction and Applicability Statements for Internet Standard Management Framework.
RFC 3410, SNMP Research, Network Associates Laboratories, Ericsson, December 2002.

D. Harrington, R. Presuhn, and B. Wijnen.

An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks.
RFC 3411, Enterasys Networks, BMC Software, Lucent Technologies, December 2002.

J. Schönwälder.

Handbook of Network and System Administration, chapter Internet Management Protocols, pages 295–328.

Elsevier, November 2007.

L. Sanchez, K. McCloghrie, and J. Saperia.

Requirements for Configuration Management of IP-based Networks.
RFC 3139, Megisto, Cisco, JDS Consultant, June 2001.

528 / 531

References II

J. Schönwälder.

Overview of the 2002 IAB Network Management Workshop.
RFC 3535, International University Bremen, May 2003.

R. Mahajan, D. Wetherall, and T. Anderson.

Understanding BGP Misconfiguration.
In Proc. SIGCOMM 2002. ACM, August 2002.

D. Oppenheimer, A. Ganapathi, and D. A. Patterson.

Why do Internet services fail, and what can be done about it?
In Proc. 4th Usenix Symposium on Internet Technologies and Systems. Usenix, March 2003.

R. Enns.

NETCONF Configuration Protocol.
RFC 4741, Juniper Networks, December 2006.

M. Wasserman and T. Goddard.

Using the NETCONF Configuration Protocol over Secure SHell (SSH).
RFC 4742, ThingMagic, ICEsoft Technologies, December 2006.

T. Goddard.

Using NETCONF over the Simple Object Access Protocol (SOAP).
RFC 4743, ICEsoft Technologies, December 2006.

E. Lear.

Using the NETCONF Protocol over the Blocks Extensible Exchange Protocol (BEEP).
RFC 4744, Cisco Systems, December 2006.

529 / 531

References III

S. Chisholm and H. Trevino.

NETCONF Event Notifications.
RFC 5277, Nortel, Cisco, July 2008.

M. Badra.

NETCONF over Transport Layer Security (TLS).
RFC 5539, CNRS/LIMOS Laboratory, May 2009.

M. Bjorklund.

YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF).
RFC 6020, Tail-f Systems, October 2010.

J. Schönwälder.

Common YANG Data Types.
RFC 6021, Jacobs University, October 2010.

P. Shafer.

An NETCONF- and NETMOD-based Architecture for Network Management.
Internet Draft (work in progress) <draft-ietf-netmod-yang-arch-02.txt>, Juniper Networks, May 2009.

J. Schönwälder.

Protocol Independent Network Management Data Modeling Languages - Lessons Learned from the SMIng
Project.
IEEE Communications Magazine, 46(5):148–153, May 2008.

J. Schönwälder, M. Björklund, and P. Shafer.

Network Configuration Management Using NETCONF and YANG.
IEEE Communications Magazine, 48(9):166–173, September 2010.

530 / 531

References IV

R. Gerhards.

The Syslog Protocol.
RFC 5424, Adiscon GmbH, March 2009.

F. Miao, Y. Ma, and J. Salowey.

Transport Layer Security (TLS) Transport Mapping for Syslog.
RFC 5425, Huawei Technologies, Cisco Systems, March 2009.

A. Okmianski.

Transmission of Syslog Messages over UDP.
RFC 5426, Cisco Systems, March 2009.

G. Sadasivan, N. Brownlee, B. Claise, and J. Quittek.

Architecture for IP Flow Information Export.
RFC 5470, Rohati Systems, CAIDA, University of Auckland, Cisco Systems, NEC, March 2009.

B. Claise.

Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of IP Traffic Flow
Information.
RFC 5101, Cisco Systems, January 2008.

J. Quittek, S. Bryant, B. Claise, P. Aitken, and J. Meyer.

Information Model for IP Flow Information Export.
RFC 5102, NEC, Cisco Systems, PayPal, January 2008.

B. Trammell, E. Boschi, L. Mark, T. Zseby, and A. Wagner.

Specification of the IP Flow Information Export (IPFIX) File Format.
RFC 5655, Hitachi Europe, Fraunhofer IFAM, Fraunhofer FOKUS, ETH Zurich, October 2009.

531 / 531

	Preface
	Course Overview
	Reading Material
	Grading Scheme

	Internet Multicasting
	Multicast Terminology
	Multicast Addresses
	Multicast Socket API Extensions
	Internet Group Management Protocol (IPV4)
	Multicast Listener Discovery Protocol (IPV6)
	Multicast Routing Algorithms
	Internet Multicast Routing Protocols

	High-Speed TCP
	Motivation
	High Speed Congestion Control Algorithms
	Probing TCP Congestion Control Algorithms

	New Internet Transport Protocols
	Motivation for new Transport Protocols
	Stream Control Transmission Protocol (SCTP)
	Datagram Congestion Control Protocol (DCCP)

	Internet Quality of Service
	Basic Quality of Service Concepts
	Integrated Services
	Differentiated Services
	Policy Management

	Multimedia Transport and Signaling
	Real-time Transport Protocol (RTP)
	Session Description Protocol (SDP)
	Session Initiation Protocol (SIP)

	Voice over IP
	Background and Codecs
	VoIP and PSTN
	Voice Quality Metrics

	Internet Mobility
	Mobile IP Terminology
	Mobile IPv4 (MIPv4)
	Mobile IPv4 (MIPv6)
	Host Identity Protocol (HIP) (RFC 4423)

	Asynchronous Transfer Mode (ATM)
	Packet vs. Circuit Switching, Virtual Circuits
	Asynchronous Transfer Mode
	Cells and Cell Switching
	Adaptation Layers
	Practical Usage

	Multiprotocol Label Switching (MPLS)
	Multiprotocol Label Switching
	Generalized Multiprotocol Label Switching

	Security Protocols
	Internet Protocol Security (IPsec)
	Transport Layer Security (TLS)
	Secure Shell (SSH)

	Network Management and Measurement
	Network Management Overview
	Network Monitoring using SNMP
	Network Configuration using NETCONF / YANG
	Configuration Management Approaches
	NETCONF Protocol Overview
	YANG Data Modeling Overview

	System Logging Protocol (SYSLOG)
	Traffic Analysis using NETFLOW / IPFIX

