Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 1

CHAPTER 1

Typical Real-Time Applications

From its title, you can see that this book is about real-time (computing, communication, and
information) systems. Rather than pausing here to define the term precisely, which we will
do in Chapter 2, let us just say for now that a real-time system is required to complete its
work and deliver its services on a timely basis. Examples of real-time systems include digital
control, command and control, signal processing, and telecommunication systems. Every day
these systems provide us with important services. When we drive, they control the engine
and brakes of our car and regulate traffic lights. When we fly, they schedule and monitor the
takeoff and landing of our plane, make it fly, maintain its flight path, and keep it out of harm’s
way. When we are sick, they may monitor and regulate our blood pressure and heart beats.
When we are well, they can entertain us with electronic games and joy rides. Unlike PCs and
workstations that run nonreal-time applications such as our editor and network browser, the
computers and networks that run real-time applications are often hidden from our view. When
real-time systems work correctly and well, they make us forget their existence.

For the most part, this book is devoted to real-time operating systems and communica-
tion protocols, in particular, how they should work so that applications running on them can
reliably deliver valuable services on time. From the examples above, you can see that mal-
functions of some real-time systems can have serious consequences. We not only want such
systems to work correctly and responsively but also want to be able to show that they indeed
do. For this reason, a major emphasis of the book is on techniques for validating real-time
systems. By validation, we mean a rigorous demonstration that the system has the intended
timing behavior.

As an introduction, this chapter describes several representative classes of real-time ap-
plications: digital control, optimal control, command and control, signal processing, tracking,
real-time databases, and multimedia. Their principles are out of the scope of this book. We
provide only a brief overview in order to explain the characteristics of the workloads gener-
ated by the applications and the relation between their timing and functional requirements. In
later chapters, we will work with abstract workload models that supposely capture the rele-
vant characteristics of these applications. This overview aims at making us better judges of
the accuracy of the models.

In this chapter, we start by describing simple digital controllers in Section 1.1. They are
the simplest and the most deterministic real-time applications. They also have the most strin-
gent timing requirements. Section 1.2 describes optimal control and command and control
applications. These high-level controllers either directly or indirectly guide and coordinate

1

2

1.1

1.1.1

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 2

Chapter 1 Typical Real-Time Applications

digital controllers and interact with human operators. High-level controllers may have signif-
icantly higher and widely fluctuating resource demands as well as larger and more relaxed
response time requirements. Section 1.3 describes signal processing applications in general
and radar signal processing and tracking in particular. Section 1.4 describes database and
multimedia applications. Section 1.5 summarizes the chapter.

DIGITAL CONTROL

Many real-time systems are embedded in sensors and actuators and function as digital con-
trollers. Figure 1-1 shows such a system. The term plant in the block diagram refers to a
controlled system, for example, an engine, a brake, an aircraft, a patient. The state of the plant
is monitored by sensors and can be changed by actuators. The real-time (computing) system
estimates from the sensor readings the current state of the plant and computes a control output
based on the difference between the current state and the desired state (called reference input
in the figure). We call this computation the control-law computation of the controller. The
output thus generated activates the actuators, which bring the plant closer to the desired state.

Sampled Data Systems

Long before digital computers became cost-effective and widely used, analog (i.e., continuous-
time and continuous-state) controllers were in use, and their principles were well established.
Consequently, a common approach to designing a digital controller is to start with an analog
controller that has the desired behavior. The analog version is then transformed into a digi-
tal (i.e., discrete-time and discrete-state) version. The resultant controller is a sampled data
system. It typically samples (i.e., reads) and digitizes the analog sensor readings periodically
and carries out its control-law computation every period. The sequence of digital outputs thus
produced is then converted back to an analog form needed to activate the actuators.

A Simple Example. As an example, we consider an analog single-input/single-output
PID (Proportional, Integral, and Derivative) controller. This simple kind of controller is com-
monly used in practice. The analog sensor reading y(#) gives the measured state of the plant
at time 7. Let e(t) = r(¢) — y(¢) denote the difference between the desired state r(¢) and the
measured state y(¢) at time 7. The output u(¢) of the controller consists of three terms: a term

‘ controller:
reference A/D T
. i _
input ; control-law 7
r(t) : Ve computation D/A
; A/D
(1) u(t)
Sensor Plant |[«—— Actuator

FIGURE 1-1 A digital controller.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 3

Section 1.1 Digital Control 3

that is proportional to e(¢), a term that is proportional to the integral of e(¢) and a term that is
proportional to the derivative of e(?).

In the sampled data version, the inputs to the control-law computation are the sampled
values yy and ry, for k = 0, 1,2, ..., which analog-to-digital converters produce by sam-
pling and digitizing y(¢) and r(¢) periodically every T units of time. ¢; = ry — y is the kth
sample value of e(7). There are many ways to discretize the derivative and integral of e(¢). For
example, we can approximate the derivative of e(¢) for (k — 1)T <t < kT by (ex —ex—1)/T
and use the trapezoidal rule of numerical integration to transform a continuous integral into a
discrete form. The result is the following incremental expression of the kth output uy:

up = up +oae+ Ber—1 +yer (1.1

«, B, and y are proportional constants; they are chosen at design time.! During the kth sam-
pling period, the real-time system computes the output of the controller according to this
expression. You can see that this computation takes no more than 10-20 machine instruc-
tions. Different discretization methods may lead to different expressions of uy, but they all are
simple to compute.

From Eq. (1.1), we can see that during any sampling period (say the kth), the control
output u; depends on the current and past measured values y; for i < k. The future measured
values y;’s for i > k in turn depend on u;. Such a system is called a (feedback) control loop
or simply a loop. We can implement it as an infinite timed loop:

set timer to interrupt periodically with period T';
at each timer interrupt, do

do analog-to-digital conversion to get y;

compute control output u;

output u and do digital-to-analog conversion;
end do;

Here, we assume that the system provides a timer. Once set by the program, the timer gener-
ates an interrupt every T units of time until its setting is cancelled.

Selection of Sampling Period. The length 7' of time between any two consecutive
instants at which y(#) and r(¢) are sampled is called the sampling period. T is a key design
choice. The behavior of the resultant digital controller critically depends on this parameter.
Ideally we want the sampled data version to behave like the analog version. This can be done
by making the sampling period small. However, a small sampling period means more frequent
control-law computation and higher processor-time demand. We want a sampling period T
that achieves a good compromise.

In making this selection, we need to consider two factors. The first is the perceived
responsiveness of the overall system (i.e., the plant and the controller). Oftentimes, the system
is operated by a person (e.g., a driver or a pilot). The operator may issue a command at any
time, say at ¢. The consequent change in the reference input is read and reacted to by the digital

I'The choice of the proportional constants for the three terms in the analog PID controller and the methods for
discretization are topics discussed in almost every elementary book on digital control (e.g., [Leig]).

4

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 4

Chapter 1 Typical Real-Time Applications

controller at the next sampling instant. This instant can be as late as # + 7. Thus, sampling
introduces a delay in the system response. The operator will feel the system sluggish when the
delay exceeds a tenth of a second. Therefore, the sampling period of any manual input should
be under this limit.

The second factor is the dynamic behavior of the plant. We want to keep the oscillation
in its response small and the system under control. To illustrate, we consider the disk drive
controller described in [AsWi]. The plant in this example is the arm of a disk. The controller
is designed to move the arm to the selected track each time when the reference input changes.
At each change, the reference input r(¢) is a step function from the initial position to the
final position. In Figure 1-2, these positions are represented by 0 and 1, respectively, and
the time origin is the instant when the step in r(¢) occurs. The dashed lines in Figure 1-2(a)

l i P
y(0)
0
0 5 10
(a)
umax
u(t) |
-u
" 5 10 15
1 4/).(.,’.._4,..4 l 4/).(.,’.._4,?.4\, - o
(0 (1)
0 0
0 5 10 0 5 10
umax
u(t) |
-U
max o 5 10 15
(b)

FIGURE 1-2 Effect of sampling period.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 5

Section 1.1 Digital Control 5

give the output u(¢) of the analog controller and the observed position y(¢) of the arm as a
function of time. The solid lines in the lower and upper graphs give, respectively, the analog
control signal constructed from the digital outputs of the controller and the resultant observed
position y(¢) of the arm. At the sampling rate shown here, the analog and digital versions are
essentially the same. The solid lines in Figure 1-2(b) give the behavior of the digital version
when the sampling period is increased by 2.5 times. The oscillatory motion of the arm is more
pronounced but remains small enough to be acceptable. However, when the sampling period
is increased by five times, as shown in Figure 1-2(c), the arm requires larger and larger control
to stay in the desired position; when this occurs, the system is said to have become unstable.

In general, the faster a plant can and must respond to changes in the reference input,
the faster the input to its actuator varies, and the shorter the sampling period should be. We
can measure the responsiveness of the overall system by its rise time R. This term refers to
the amount of time that the plant takes to reach some small neighborhood around the final
state in response to a step change in the reference input. In the example in Figure 1-2, a small
neighborhood of the final state means the values of y(¢) that are within 5 percent of the final
value. Hence, the rise time of that system is approximately equal to 2.5.

A good rule of thumb is the ratio R/ T of rise time to sampling period is from 10 to
20 [AsWi, FrPW].2 In other words, there are 10 to 20 sampling periods within the rise time.
A sampling period of R/10 should give an acceptably smooth response. However, a shorter
sampling period (and hence a faster sampling rate) is likely to reduce the oscillation in the
system response even further. For example, the sampling period used to obtain Figure 1-2(b)
is around R/10, while the sampling period used to obtain Figure 1-2(a) is around R/20.

The above rule is also commonly stated in terms of the bandwidth, w, of the system.
The bandwidth of the overall system is approximately equal to 1/2R Hz. So the sampling
rate (i.e., the inverse of sampling period) recommended above is 20 to 40 times the system
bandwidth w. The theoretical lower limit of sampling rate is dictated by Nyquist sampling
theorem [Shan]. The theorem says that any time-continuous signal of bandwidth o can be
reproduced faithfully from its sampled values if and only if the sampling rate is 2w or higher.
We see that the recommended sampling rate for simple controllers is significantly higher than
this lower bound. The high sampling rate makes it possible to keep the control input small and
the control-law computation and digital-to-analog conversion of the controller simple.

Multirate Systems. A plant typically has more than one degree of freedom. Its state
is defined by multiple state variables (e.g., the rotation speed, temperature, etc. of an engine
or the tension and position of a video tape). Therefore, it is monitored by multiple sensors and
controlled by multiple actuators. We can think of a multivariate (i.e., multi-input/multi-output)
controller for such a plant as a system of single-output controllers.

Because different state variables may have different dynamics, the sampling periods
required to achieve smooth responses from the perspective of different state variables may
be different. [For example, because the rotation speed of a engine changes faster than its

2Sampling periods smaller than this range may have an adverse effect. The reason is that quantization error
becomes dominant when the difference in analogy sample readings taken in consecutive sampling periods becomes
comparable or even smaller than the quantization granularity.

6

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 6

Chapter 1 Typical Real-Time Applications

temperature, the required sampling rate for RPM (Rotation Per Minute) control is higher than
that for the temperature control.] Of course, we can use the highest of all required sampling
rates. This choice simplifies the controller software since all control laws are computed at
the same repetition rate. However, some control-law computations are done more frequently
than necessary; some processor time is wasted. To prevent this waste, multivariate digital
controllers usually use multiple rates and are therefore called multirate systems.

Oftentimes, the sampling periods used in a multirate system are related in a harmonic
way, that is, each longer sampling period is an integer multiple of every shorter period. To
explain the control-theoretical reason for this choice,® we note that some degree of coupling
among individual single-output controllers in a system is inevitable. Consequently, the sam-
pling periods of the controllers cannot be selected independently. A method for the design
and analysis of multirate systems is the successive loop closure method [FrPW]. According
to this method, the designer begins by selecting the sampling period of the controller that
should have the fastest sampling rate among all the controllers. In this selection, the controller
is assumed to be independent of the others in the system. After a digital version is designed,
it is converted back into an analog form. The analog model is then integrated with the slower
portion of the plant and is treated as a part of the plant. This step is then repeated for the
controller that should have the fastest sampling rate among the controllers whose sampling
periods remain to be selected. The iteration process continues until the slowest digital con-
troller is designed. Each step uses the model obtained during the previous step as the plant.
When the chosen sampling periods are harmonic, the analog models of the digital controllers
used in this iterative process are exact. The only approximation arises from the assumption
made in the first step that the fastest controller is independent, and the error due to this approx-
imation can be corrected to some extent by incorporating the effect of the slower controllers
in the plant model and then repeating the entire iterative design process.

An Example of Software Control Structures. As an example, Figure 1-3 shows the
software structure of a flight controller [Elli]. The plant is a helicopter. It has three velocity
components; together, they are called “collective” in the figure. It also has three rotational
(angular) velocities, referred to as roll, pitch, and yaw.* The system uses three sampling rates:
180, 90, and 30 Hz. After initialization, the system executes a do loop at the rate of one
iteration every 1/180 second; in the figure a cycle means a 1/180-second cycle, and the term
computation means a control-law computation.

Specifically, at the start of each 1/180-second cycle, the controller first checks its own
health and reconfigures itself if it detects any failure. It then does either one of the three
avionics tasks or computes one of the 30-Hz control laws. We note that the pilot’s command
(i.e., keyboard input) is checked every 1/30 second. At this sampling rate, the pilot should
not perceive the additional delay introduced by sampling. The movement of the aircraft along
each of the coordinates is monitored and controlled by an inner and faster loop and an outer
and slower loop. The output produced by the outer loop is the reference input to the inner
loop. Each inner loop also uses the data produced by the avionics tasks.

3In later chapters, we will see that harmonic periods also have the advantage over arbitrary periods from the
standpoint of achievable processor utilization.

“The three velocity components are forward, side-slip, and altitude rates. Roll, pitch, and yaw are the rates of
rotation about these axes, respectively.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 7

Section 1.1 Digital Control 7

Do the following in each 1/180-second cycle:

e Validate sensor data and select data source; in the presence of failures, reconfigure the system.

e Do the following 30-Hz avionics tasks, each once every six cycles:
— keyboard input and mode selection
— data normalization and coordinate transformation
— tracking reference update

e Do the following 30-Hz computations, each once every six cycles:
— control laws of the outer pitch-control loop
— control laws of the outer roll-control loop
— control laws of the outer yaw- and collective-control loop

e Do each of the following 90-Hz computations once every two cycles, using outputs produced by
30-Hz computations and avionics tasks as input:
— control laws of the inner pitch-control loop
— control laws of the inner roll- and collective-control loop

e Compute the control laws of the inner yaw-control loop, using outputs produced by 90-Hz control-
law computations as input.

e Output commands.

e Carry out built-in-test.

e Wait until the beginning of the next cycle.

FIGURE 1-3 An example: Software control structure of a flight controller.

This multirate controller controls only flight dynamics. The control system on board
an aircraft is considerably more complex than indicated by the figure. It typically contains
many other equally critical subsystems (e.g., air inlet, fuel, hydraulic, brakes, and anti-ice
controllers) and many not so critical subsystems (e.g., lighting and environment temperature
controllers). So, in addition to the flight control-law computations, the system also computes
the control laws of these subsystems.

Timing Characteristics. To generalize from the above example, we can see that the
workload generated by each multivariate, multirate digital controller consists of a few periodic
control-law computations. Their periods range from a few milliseconds to a few seconds.
A control system may contain numerous digital controllers, each of which deals with some
attribute of the plant. Together they demand tens or hundreds of control laws be computed
periodically, some of them continuously and others only when requested by the operator or
in reaction to some events. The control laws of each multirate controller may have harmonic
periods. They typically use the data produced by each other as inputs and are said to be a rate
group. On the other hand, there is no control theoretical reason to make sampling periods of
different rate groups related in a harmonic way.

Each control-law computation can begin shortly after the beginning of each sampling
period when the most recent sensor data become available. (Typically, the time taken by an
analog-to-digital converter to produce sampled data and place the data in memory does not
vary from period to period and is very small compared with the sampling period.) It is natural
to want the computation complete and, hence, the sensor data processed before the data taken

8

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 8

Chapter 1 Typical Real-Time Applications

in the next period become available. This objective is met when the response time of each
control-law computation never exceeds the sampling period. As we will see in later chapters,
the response time of the computation can vary from period to period. In some systems, it
is necessary to keep this variation small so that the digital control outputs produced by the
controller become available at time instants more regularly spaced in time. In this case, we
may impose a timing jitter requirement on the control-law computation: the variation in its
response time does not exceed some threshold.

1.1.2 More Complex Control-Law Computations

The simplicity of a PID or similar digital controller follows from three assumptions. First, sen-
sor data give accurate estimates of the state-variable values being monitored and controlled.
This assumption is not valid when noise and disturbances inside or outside the plant prevent
accurate observations of its state. Second, the sensor data give the state of the plant. In gen-
eral, sensors monitor some observable attributes of the plant. The values of the state variables
must be computed from the measured values (i.e., digitized sensor readings). Third, all the
parameters representing the dynamics of the plant are known. This assumption is not valid for
some plants. (An example is a flexible robot arm. Even the parameters of typical manipulators
used in automated factories are not known accurately.)

When any of the simplifying assumptions is not valid, the simple feedback loop in
Section 1.1.1 no longer suffices. Since these assumptions are often not valid, you often see
digital controllers implemented as follows.

set timer to interrupt periodically with period T';

at each clock interrupt, do
sample and digitize sensor readings to get measured values;
compute control output from measured and state-variable values;
convert control output to analog form;
estimate and update plant parameters;
compute and update state variables;

end do;

The last two steps in the loop can increase the processor time demand of the controller signif-
icantly. We now give two examples where the state update step is needed.

Deadbeat Control. A discrete-time control scheme that has no continuous-time
equivalence is deadbeat control. In response to a step change in the reference input, a dead-
beat controller brings the plant to the desired state by exerting on the plant a fixed number
(say n) of control commands. A command is generated every T seconds. (7 is still called a
sampling period.) Hence, the plant reaches its desired state in n7T" second.

In principle, the control-law computation of a deadbeat controller is also simple. The
output produced by the controller during the kth sampling period is given by

k k
we=ay (ri—y)+ Y Pixi
i=0 i=0

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 9

Section 1.1 Digital Control 9

[This expression can also be written in an incremental form similar to Eq. (1.1).] Again, the
constants o and S;’s are chosen at design time. x; is the value of the state variable in the ith
sampling period. During each sampling period, the controller must compute an estimate of xj
from measured values y; for i < k. In other words, the state update step in the above do loop
is needed.

Kalman Filter. Kalman filtering is a commonly used means to improve the accuracy
of measurements and to estimate model parameters in the presence of noise and uncertainty.
To illustrate, we consider a simple monitor system that takes a measured value y; every sam-
pling period k in order to estimate the value x; of a state variable. Suppose that starting from
time O, the value of this state variable is equal to a constant x. Because of noise, the measured
value yj is equal to x + &, where &; is a random variable whose average value is 0 and stan-
dard deviation is o;. The Kalman filter starts with the initial estimate X; = y; and computes
a new estimate each sampling period. Specifically, for k > 1, the filter computes the estimate
Xy as follows:

Xk = Xk—1 + K (e — Xk—1) (1.2a)
In this expression,
_ b (1.2b)
kT o2+ Py '

is called the Kalman gain and P; is the variance of the estimation error X; — x; the latter is
given by

P = E[(F — x)’1 = (1 — K4_1) Pi_y (1.2¢)

This value of the Kalman gain gives the best compromise between the rate at which P de-
creases with k and the steady-state variance, that is, P, for large k.

In a multivariate system, the state variable x; is an n-dimensional vector, where n is the
number of variables whose values define the state of the plant. The measured value y; is an
n’-dimensional vector, if during each sampling period, the readings of n’ sensors are taken.
We let A denote the measurement matrix; it is an n x n’ matrix that relates the n” measured
variables to the n state variables. In other words,

Y = AX; + e

The vector e; gives the additive noise in each of the n’ measured values. Eq. (1.2a) becomes
an n-dimensional vector equation

X = Xp—1 + Ke (Ve — AXp—1)
Similarly, Kalman gain K and variance P} are given by the matrix version of Egs. (1.2b) and

(1.2¢). So, the computation in each sampling period involves a few matrix multiplications and
additions and one matrix inversion.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 10

10 Chapter 1 Typical Real-Time Applications
1.2 HIGH-LEVEL CONTROLS

Controllers in a complex monitor and control system are typically organized hierarchically.
One or more digital controllers at the lowest level directly control the physical plant. Each
output of a higher-level controller is a reference input of one or more lower-level controllers.
With few exceptions, one or more of the higher-level controllers interfaces with the opera-
tor(s).

1.2.1 Examples of Control Hierarchy

For example, a patient care system may consist of microprocessor-based controllers that mon-
itor and control the patient’s blood pressure, respiration, glucose, and so forth. There may be
a higher-level controller (e.g., an expert system) which interacts with the operator (a nurse
or doctor) and chooses the desired values of these health indicators. While the computation
done by each digital controller is simple and nearly deterministic, the computation of a high-
level controller is likely to be far more complex and variable. While the period of a low-
level control-law computation ranges from milliseconds to seconds, the periods of high-level
control-law computations may be minutes, even hours.

Figure 1-4 shows a more complex example: the hierarchy of flight control, avionics,
and air traffic control systems.’ The Air Traffic Control (ATC) system is at the highest level. It
regulates the flow of flights to each destination airport. It does so by assigning to each aircraft
an arrival time at each metering fix® (or waypoint) en route to the destination: The aircraft is
supposed to arrive at the metering fix at the assigned arrival time. At any time while in flight,
the assigned arrival time to the next metering fix is a reference input to the on-board flight
management system. The flight management system chooses a time-referenced flight path
that brings the aircraft to the next metering fix at the assigned arrival time. The cruise speed,
turn radius, decent/accent rates, and so forth required to follow the chosen time-referenced
flight path are the reference inputs to the flight controller at the lowest level of the control
hierarchy.

In general, there may be several higher levels of control. Take a control system of robots
that perform assembly tasks in a factory for example. Path and trajectory planners at the
second level determine the trajectory to be followed by each industrial robot. These planners
typically take as an input the plan generated by a task planner, which chooses the sequence
of assembly steps to be performed. In a space robot control system, there may be a scenario
planner, which determines how a repair or rendezvous function should be performed. The plan
generated by this planner is an input of the task planner.

1.2.2 Guidance and Control

While a digital controller deals with some dynamical behavior of the physical plant, a second-
level controller typically performs guidance and path planning functions to achieve a higher-

SFigure 1-4 shows that some sensor data to both on-board controllers come from an air-data system. This is a
system of sensors and a computer. The computer computes flight and environment parameters (e.g., wind speed, true
airspeed, static-air temperature, Mach number, altitude hold and rate) from aerodynamic and thermodynamic sensor
data. These parameters are used by the controllers as well as being displayed for the pilot.

A metering fix is a known geographical point. Adjacent metering fixes are 40-60 nautical miles apart.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 11

Section 1.2 High-Level Controls 11

responses commands
3
operator-system
interface
from state Air-traffic
Sensors estimator control
A
— | virtwalplant |
navigation
> state flight
> estimator management
3
| virtualplant i ””””
state flight
estimator control
air data

physical plant

FIGURE 1-4 Air traffic/flight control hierarchy.

level goal. In particular, it tries to find one of the most desirable trajectories among all
trajectories that meet the constraints of the system. The trajectory is most desirable because it
optimizes some cost function(s). The algorithm(s) used for this purpose is the solution(s) of
some constrained optimization problem(s).

As an example, we look again at a flight management system. The constraints that must
be satisfied by the chosen flight path include the ones imposed by the characteristics of the
aircraft, such as the maximum and minimum allowed cruise speeds and decent/accent rates, as
well as constraints imposed by external factors, such as the ground track and altitude profile
specified by the ATC system and weather conditions. A cost function is fuel consumption: A
most desirable flight path is a most fuel efficient among all paths that meet all the constraints
and will bring the aircraft to the next metering fix at the assigned arrival time. This problem
is known as the constrained fixed-time, minimum-fuel problem. When the flight is late, the
flight management system may try to bring the aircraft to the next metering fix in the shortest
time. In that case, it will use an algorithm that solves the time-optimal problem.

12

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 12

Chapter 1 Typical Real-Time Applications

Complexity and Timing Requirements. The constrained optimization problems
that a guidance (or path planning) system must solve are typically nonlinear. In principle,
these problems can be solved using dynamic programming and mathematical programming
techniques. In practice, however, optimal algorithms are rarely used because most of them are
not only very compute intensive but also do not guarantee to find a usable solution. Heuristic
algorithms [GiMW] used for guidance and control purposes typically consider one constraint
at a time, rather than all the constraints at the same time. They usually start with an initial
condition (e.g., in the case of a flight management systems, the initial condition includes the
initial position, speed, and heading of the aircraft) and some initial solution and adjust the
value of one solution parameter at a time until a satisfactory solution is found.

Fortunately, a guidance system does not need to compute its control laws as frequently
as a digital controller. Often, this computation can be done off-line. In the case of a flight
management system, for example, it needs to compute and store a climb speed schedule for
use during takeoff, an optimum cruise trajectory for use en route, and a descent trajectory for
landing. This computation can be done before takeoff and hence is not time-critical. While
in-flight, the system still needs to compute some control laws to monitor and control the
transitions between different flight phases (i.e., from climb to cruise and cruise to descent) as
well as algorithms for estimating and predicting times to waypoints, and so forth. These time-
critical computations tend to be simpler and more deterministic and have periods in order of
seconds and minutes. When the precomputed flight plan needs to be updated or a new one
computed in-flight, the system has minutes to compute and can accept suboptimal solutions
when there is no time.

Other Capabilities. The complexity of a higher-level control system arises for many
other reasons in addition to its complicated control algorithms. It often interfaces with the
operator and other systems. To interact with the operator, it updates displays and reacts to op-
erator commands. By other systems, we mean those outside the control hierarchy. An example
is a voice, telemetry, or multimedia communication system that supports operator interactions.
Other examples are radar and navigation devices. The control system may use the information
provided by these devices and partially control these devices.

An avionic or flight management system has these capabilities. One of its functions is
to update the display of radar, flight path, and air-data information. Like keyboard monitoring,
the display updates must done no less frequently than once every 100 milliseconds to achieve
a satisfactory performance. Similarly, it periodically updates navigation data provided by in-
ertial and radio navigation aids.” An avionics system for a military aircraft also does tracking
and ballistic computations and coordinates radar and weapon control systems, and it does
them with repetition periods of a few to a few hundred milliseconds. (You can find detailed
timing information on this types of avionics system in [LoVM].) The workload due to these
functions is demanding even for today’s fast processors and data links.

"The period of navigation updates depends on the speed of the plane. To get within 100-feet position accuracy,
this update rate should be as high as 20-30 Hz for a fighter jet flying at Mach 2 but 10 Hz is sufficient for a plane at
a subsonic speed.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 13

Section 1.2 High-Level Controls 13

1.2.3 Real-Time Command and Control

The controller at the highest level of a control hierarchy is a command and control system.
An Air Traffic Control (ATC) system is an excellent example. Figure 1-5 shows a possible
architecture. The ATC system monitors the aircraft in its coverage area and the environment
(e.g, weather condition) and generates and presents the information needed by the operators
(i.e., the air traffic controllers). Outputs from the ATC system include the assigned arrival
times to metering fixes for individual aircraft. As stated earlier, these outputs are reference
inputs to on-board flight management systems. Thus, the ATC system indirectly controls the
embedded components in low levels of the control hierarchy. In addition, the ATC system
provides voice and telemetry links to on-board avionics. Thus it supports the communication
among the operators at both levels (i.e., the pilots and air traffic controllers).

The ATC system gathers information on the “state” of each aircraft via one or more
active radars. Such a radar interrogates each aircraft periodically. When interrogated, an air-

—d
—d
T

digital
signal DSP

processors l l l

database of - -
track records !
and tracks

; ¥ 1
N surveillance
Dp DP processor
display processors l

communication

displays network

FIGURE 1-5 An architecture of air traffic control system.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 14

14 Chapter 1 Typical Real-Time Applications

craft responds by sending to the ATC system its “state variables”: identifier, position, altitude,
heading, and so on. (In Figure 1-5, these variables are referred to collectively as a track record,
and the current trajectory of the aircraft is a track.) The ATC system processes messages from
aircraft and stores the state information thus obtained in a database. This information is picked
up and processed by display processors. At the same time, a surveillance system continuously
analyzes the scenario and alerts the operators whenever it detects any potential hazard (e.g., a
possible collision). Again, the rates at which human interfaces (e.g., keyboards and displays)
operate must be at least 10 Hz. The other response times can be considerably larger. For
example, the allowed response time from radar inputs is one to two seconds, and the period
of weather updates is in the order of ten seconds.

From this example, we can see that a command and control system bears little resem-
blance to low-level controllers. In contrast to a low-level controller whose workload is either
purely or mostly periodic, a command and control system also computes and communicates
in response to sporadic events and operators’ commands. Furthermore, it may process im-
age and speech, query and update databases, simulate various scenarios, and the like. The
resource and processing time demands of these tasks can be large and varied. Fortunately,
most of the timing requirements of a command and control system are less stringent. Whereas
a low-level control system typically runs on one computer or a few computers connected by
a small network or dedicated links, a command and control system is often a large distributed
system containing tens and hundreds of computers and many different kinds of networks. In
this respect, it resembles interactive, on-line transaction systems (e.g., a stock price quotation
system) which are also sometimes called real-time systems.

1.3 SIGNAL PROCESSING

Most signal processing applications have some kind of real-time requirements. We focus here
on those whose response times must be under a few milliseconds to a few seconds. Examples
are digital filtering, video and voice compressing/decompression, and radar signal processing.

1.3.1 Processing Bandwidth Demands

Typically, a real-time signal processing application computes in each sampling period one or
more outputs. Each output x (k) is a weighted sum of n inputs y(i)’s:

n

x(k) = a(k.i)y(i) (1.3)

i=I

In the simplest case, the weights, a(k, i)’s, are known and fixed.® In essence, this computation
transforms the given representation of an object (e.g., a voice, an image or a radar signal) in
terms of the inputs, y(i)’s, into another representation in terms of the outputs, x (k)’s. Different
sets of weights, a(k, i)’s, give different kinds of transforms. This expression tells us that the
time required to produce an output is O (n).

$1n the case of adaptive filtering applications (e.g., echo suppression), each weight changes with time and must
be updated. The update of each weight typically takes one multiplication and one addition each sampling period.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 15

Section 1.3 Signal Processing 15

The processor time demand of an application also depends on the number of outputs it
is required to produce in each sampling period. At one extreme, a digital filtering application
(e.g., a filter that suppresses noise and interferences in speech and audio) produces one output
each sampling period. The sampling rates of such applications range from a few kHz to tens
of kHz.? n ranges from tens to hundreds. Hence, such an application performs 10* to 107
multiplications and additions per second.

Some other signal processing applications are more computationally intensive. The
number of outputs may also be of order 7, and the complexity of the computation is O (n?) in
general. An example is image compression. Most image compression methods have a trans-
form step. This step transforms the space representation of each image into a transform repre-
sentation (e.g., a hologram). To illustrate the computational demand of a compression process,
let us consider an m x m pixel, 30 frames per second video. Suppose that we were to compress
each frame by first computing its transform. The number of inputs is n = m?. The transforma-
tion of each frame takes m* multiplications and additions. If m is 100, the transformation of
the video takes 3 x 10° multiplications and additions per second! One way to reduce the com-
putational demand at the expense of the compression ratio is to divide each image into smaller
squares and perform the transform on each square. This indeed is what the video compression
standard MPEG [ISO94]) does. Each image is divided into squares of 8 x 8 pixels. In this
way, the number of multiplications and additions performed in the transform stage is reduced
to 64m? per frame (in the case of our example, to 1.92 x 107). Today, there is a broad spectrum
of Digital Signal Processors (DSPs) designed specifically for signal processing applications.
Computationally intensive signal processing applications run on one or more DSPs. In this
way, the compression process can keep pace with the rate at which video frames are captured.

1.3.2 Radar System

A signal processing application is typically a part of a larger system. As an example, Figure
1-6 shows a block diagram of a (passive) radar signal processing and tracking system. The
system consists of an Input/Output (I/O) subsystem that samples and digitizes the echo signal
from the radar and places the sampled values in a shared memory. An array of digital signal
processors processes these sampled values. The data thus produced are analyzed by one or
more data processors, which not only interface with the display system, but also generate
commands to control the radar and select parameters to be used by signal processors in the
next cycle of data collection and analysis.

Radar Signal Processing. To search for objects of interest in its coverage area, the
radar scans the area by pointing its antenna in one direction at a time. During the time the
antenna dwells in a direction, it first sends a short radio frequency pulse. It then collects and
examines the echo signal returning to the antenna.

The echo signal consists solely of background noise if the transmitted pulse does not hit
any object. On the other hand, if there is a reflective object (e.g., an airplane or storm cloud)
at a distance x meters from the antenna, the echo signal reflected by the object returns to the
antenna at approximately 2x /c seconds after the transmitted pulse, where ¢ = 3 x 10® meters

9The sampling rates of telephone voice, speech in general, and audio are 8 kHz, 8-10 kHz, and 44.1 kHz
(compact disc digital audio) or 48 kHz (digital audio tape), respectively.

16

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 16

Chapter 1 Typical Real-Time Applications

memory
sampled 17T T .
digitized N I N I - :
data T T T 11 E E
i | Dsp E
1 signal
256-1024 ' !
samples/bin track | p rocessors o
records
track
records
\
control R data signal
status “| processor processing
parameters

FIGURE 1-6 Radar signal processing and tracking system.

per second is the speed of light. The echo signal collected at this time should be stronger than
when there is no reflected signal. If the object is moving, the frequency of the reflected signal is
no longer equal to that of the transmitted pulse. The amount of frequency shift (called Doppler
shift) is proportional to the velocity of the object. Therefore, by examining the strength and
frequency spectrum of the echo signal, the system can determine whether there are objects
in the direction pointed at by the antenna and if there are objects, what their positions and
velocities are.

Specifically, the system divides the time during which the antenna dwells to collect the
echo signal into small disjoint intervals. Each time interval corresponds to a distance range,
and the length of the interval is equal to the range resolution divided by c. (For example, if
the distance resolution is 300 meters, then the range interval is one microsecond long.) The
digital sampled values of the echo signal collected during each range interval are placed in
a buffer, called a bin in Figure 1-6. The sampled values in each bin are the inputs used by
a digital signal processor to produce outputs of the form given by Eq. (1.3). These outputs
represent a discrete Fourier transform of the corresponding segment of the echo signal. Based
on the characteristics of the transform, the signal processor decides whether there is an object
in that distance range. If there is an object, it generates a track record containing the position
and velocity of the object and places the record in the shared memory.

The time required for signal processing is dominated by the time required to produce
the Fourier transforms, and this time is nearly deterministic. The time complexity of Fast
Fourier Transform (FFT) is O(nlogn), where n is the number of sampled values in each
range bin. 7 is typically in the range from 128 to a few thousand. So, it takes roughly 10° to
10° multiplications and additions to generate a Fourier transform. Suppose that the antenna
dwells in each direction for 100 milliseconds and the range of the radar is divided into 1000
range intervals. Then the signal processing system must do 107 to 10° multiplications and
additions per second. This is well within the capability of today’s digital signal processors.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 17

Section 1.3 Signal Processing 17

However, the 100-millisecond dwell time is a ballpark figure for mechanical radar an-
tennas. This is orders of magnitude larger than that for phase array radars, such as those used
in many military applications. A phase array radar can switch the direction of the radar beam
electronically, within a millisecond, and may have multiple beams scanning the coverage area
and tracking individual objects at the same time. Since the radar can collect data orders of
magnitude faster than the rates stated above, the signal processing throughput demand is also
considerably higher. This demand is pushing the envelope of digital signal processing tech-
nology.

Tracking. Strong noise and man-made interferences, including electronic counter
measure (i.e., jamming), can lead the signal processing and detection process to wrong con-
clusions about the presence of objects. A track record on a nonexisting object is called a false
return. An application that examines all the track records in order to sort out false returns from
real ones and update the trajectories of detected objects is called a tracker.'® Using the jargon
of the subject area, we say that the tracker assigns each measured value (i.e., the tuple of po-
sition and velocity contained in each of the track records generated in a scan) to a trajectory.
If the trajectory is an existing one, the measured value assigned to it gives the current position
and velocity of the object moving along the trajectory. If the trajectory is new, the measured
value gives the position and velocity of a possible new object. In the example in Figure 1-6,
the tracker runs on one or more data processors which communicate with the signal processors
via the shared memory.

Gating. Typically, tracking is carried out in two steps: gating and data association
[Bogl]. Gating is the process of putting each measured value into one of two categories de-
pending on whether it can or cannot be tentatively assigned to one or more established tra-
jectories. The gating process tentatively assigns a measured value to an established trajectory
if it is within a threshold distance G away from the predicted current position and velocity
of the object moving along the trajectory. (Below, we call the distance between the measured
and predicted values the distance of the assignment.) The threshold G is called the track gate.
It is chosen so that the probability of a valid measured value falling in the region bounded by
a sphere of radius G centered around a predicted value is a desired constant.

Figure 1-7 illustrates this process. At the start, the tracker computes the predicted po-
sition (and velocity) of the object on each established trajectory. In this example, there are
two established trajectories, L and L,. We also call the predicted positions of the objects on
these tracks L; and L,. X, X5, and X3 are the measured values given by three track records.
X is assigned to L because it is within distance G from L;. X3 is assigned to both L; and
L, for the same reason. On the other hand, X, is not assigned to any of the trajectories. It
represents either a false return or a new object. Since it is not possible to distinguish between
these two cases, the tracker hypothesizes that X, is the position of a new object. Subsequent
radar data will allow the tracker to either validate or invalidate this hypothesis. In the latter
case, the tracker will discard this trajectory from further consideration.

10The term tracking also refers to the process of keeping track of an individual object (e.g., an aircraft under
surveillance, a missile, etc.).

18

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 18

Chapter 1 Typical Real-Time Applications

e X,
T T T T

/ X) h

| {5(3\ \

L L
. 1 . | ’ |
/ /

AN /\

FIGURE 1-7 Gating process.

Data Association. The tracking process completes if, after gating, every measured
value is assigned to at most one trajectory and every trajectory is assigned at most one mea-
sured value. This is likely to be case when (1) the radar signal is strong and interference is
low (and hence false returns are few) and (2) the density of objects is low. Under adverse con-
ditions, the assignment produced by gating may be ambiguous, that is, some measured value
is assigned to more than one trajectory or a trajectory is assigned more than one measured
value. The data association step is then carried out to complete the assignments and resolve
ambiguities.

There are many data association algorithms. One of the most intuitive is the the nearest
neighbor algorithm. This algorithm works as follows:

1. Examine the tentative assignments produced by the gating step.

a. For each trajectory that is tentatively assigned a single unique measured value, assign
the measured value to the trajectory. Discard from further examination the trajectory
and the measured value, together with all tentative assignments involving them.

b. For each measured value that is tentatively assigned to a single trajectory, discard the
tentative assignments of those measured values that are tentatively assigned to this
trajectory if the values are also assigned to some other trajectories.

2. Sort the remaining tentative assignments in order of nondecreasing distance.

3. Assign the measured value given by the first tentative assignment in the list to the cor-
responding trajectory and discard the measured value and trajectory.

4. Repeat step (3) until the list of tentative assignments is empty.

In the example in Figure 1-7, the tentative assignment produced by the gating step is
ambiguous. Step (1a) does not eliminate any tentative assignment. However, step (1b) finds
that X is assigned to only L, while X3 is assigned to both L; and L,. Hence, the assign-
ment of X3 to L, is discarded from further consideration. After step (1), there still are two
tentative assignments, X; to L; and X3 to L,. Step (2) leaves them in this order, and the
subsequent steps make these assignments. X, initiates a new trajectory. If during subsequent

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 19

Section 1.4 Other Real-Time Applications 19

scans, no measured values are assigned to the new trajectory, it will be discarded from further
consideration.

The nearest neighbor algorithm attempts to minimize a simple local objective function:
the distance (between the measured and predicted values) of each assignment. Data associa-
tion algorithms of higher time complexity are designed to optimize some global, and therefore
more complicated, objective functions, for example, the sum of distances of all assignments
and probability of errors. The most complex in both time and space is the class of multiple
hypothesis tracking algorithms. Often it is impossible to eliminate some assignments from
further consideration by looking at the measured values produced in one scan. (An example is
when the distances between a measured value to two or more predicted values are essentially
equal.) While a single-hypothesis tracking algorithm (e.g., the nearest neighbor algorithm)
must choose one assignment from equally good assignments, a multiple-hypothesis tracking
algorithm keeps all of them. In other words, a trajectory may be temporally branched into
multiple trajectories, each ending at one of many hypothesized current positions. The tracker
then uses the data provided in future scans to eliminate some of the branches. The use of this
kind of algorithms is confined to where the tracked objects are dense and the number of false
returns are large (e.g., for tracking military targets in the presence of decoys and jamming).

Complexity and Timing Requirements. In contrast to signal processing, the amounts
of processor time and memory space required by the tracker are data dependent and can vary
widely. When there are n established trajectories and m measured values, the time complexity
of gating is O (nm logm). (This can be done by first sorting the m measured values according
to their distances from the predicted value for each of the established trajectories and then
comparing the distances with the track gate G.) In the worst case, all m measured values are
tentatively assigned to all n trajectories in the gating step. The nearest neighbor algorithm
must sort all nm tentative assignments and hence has time complexity O (nm lognm). The
amounts of time and space required by multiple-hypothesis tracking grow exponentially with
the maximum number of hypotheses, the exponent being the number of scans required to
eliminate each false hypothesis. Without modern fast processors and large memory, multiple-
hypothesis tracking would not be feasible.

Figure 1-6 shows that the operation of the radar is controlled by a controller that exe-
cutes on the data processor. In particular, the controller may alter the search strategy or change
the radar operation mode (say from searching to tracking an object) depending on the results
found by the tracker. (As we mentioned earlier, a phase-array radar can redirect its beam
in any direction in less than a millisecond. This capability makes it possible to dynamically
adapt the operation of the radar system to changes in the detected scenario.) Similarly, the
controller may alter the signal processing parameters (e.g., detection threshold and transform
type) in order to be more effective in rejecting interferences and differentiating objects. The
responsiveness and iteration rate of this feedback process increase as the total response time of
signal processing and tracking decreases. For this reason, the developers of these applications
are primarily concerned with their throughputs and response times.

1.4 OTHER REAL-TIME APPLICATIONS

This section describes the characteristics and requirements of two most common real-time
applications. They are real-time databases and multimedia applications.

20

1.4.1

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 20

Chapter 1 Typical Real-Time Applications

TABLE 1-1 Requirements of typical real-time databases

Ave. Max
Applications Size Resp. Time Resp. Time Abs. Cons. Rel. Cons. Permanence
Air traffic control 20,000 0.50 ms 5.00 ms 3.00 sec. 6.00 sec. 12 hours
Aircraft mission 3,000 0.05 ms 1.00 ms 0.05 sec. 0.20 sec. 4 hours
Spacecraft control 5,000 0.05 ms 1.00 ms 0.20 sec. 1.00 sec. 25 years
Process control 0.80 ms 5.00 sec 1.00 sec. 2.00 sec 24 hours

Real-Time Databases

The term real-time database systems refers to a diverse spectrum of information systems, rang-
ing from stock price quotation systems, to track records databases, to real-time file systems.
Table 1-1 lists several examples [Lock96]. What distinguish these databases from nonreal-
time databases is the perishable nature of the data maintained by them.

Specifically, a real-time database contains data objects, called image objects, that rep-
resent real-world objects. The attributes of an image object are those of the represented real-
world object. For example, an air traffic control database contains image objects that represent
aircraft in the coverage area. The attributes of such an image object include the position and
heading of the aircraft. The values of these attributes are updated periodically based on the
measured values of the actual position and heading provided by the radar system. Without
this update, the stored position and heading will deviate more and more from the actual po-
sition and heading. In this sense, the quality of stored data degrades. This is why we say that
real-time data are perishable. In contrast, an underlying assumption of nonreal-time databases
(e.g., a payroll database) is that in the absence of updates the data contained in them remain
good (i.e., the database remains in some consistent state satisfying all the data integrity con-
straints of the database).

Absolute Temporal Consistency. The temporal quality of real-time data is often
quantified by parameters such as age and temporal dispersion. The age of a data object mea-
sures how up-to-date the information provided by the object is. There are many formal defi-
nitions of age. Intuitively, the age of an image object at any time is the length of time since
the instant of the last update, that is, when its value is made equal to that of the real-world
object it represents.!! The age of a data object whose value is computed from the values of
other objects is equal to the oldest of the ages of those objects.

A set of data objects is said to be absolutely (temporally) consistent if the maximum
age of the objects in the set is no greater than a certain threshold. The column labeled “Abs.
Cons.” in Table 1-1 lists the typical threshold values that define absolute consistency for
different applications. As an example, “aircraft mission” listed in the table refers to the kind

"This intuitive definition of age ignores the rate at which information ages. As examples, we consider two
objects: One represents the position of an aircraft, and the other represents the position of a storm cloud. Because
the position of the aircraft can change considerably in three seconds, three seconds is a relatively long time and large
age. However, for the storm cloud position, three seconds should be a small age since the cloud does not move much
in this amount of time. Rigorous definitions of age take the rate of change into account in various ways.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 21

Section 1.4 Other Real-Time Applications 21

of database used to support combat missions of military aircraft. A fighter jet and the targets it
tracks move at supersonic speeds. Hence the information on where they are must be less than
50 milliseconds old. On the other hand, an air traffic control system monitors commercial
aircraft at subsonic speeds; this is why the absolute temporal consistency threshold for air
traffic control is much larger.

Relative Temporal Consistency. A set of data objects is said to be relatively consis-
tent if the maximum difference in ages of the objects in the set is no greater than the relative
consistency threshold used by the application. The column labeled “Rel. Cons.” in Table 1-1
gives typical values of this threshold. For some applications the absolute age of data may not
be as important as the differences in their ages. An example is a planning system that corre-
lates traffic densities along a highway with the flow rates of vehicles entering and exiting the
highway. The system does not require the most up-to-date flow rates at all interchanges and
hence can tolerate a relatively large age (e.g., two minutes). However, if the difference in the
ages of flow rates is large (e.g., one minute), the flow rates no longer give a valid snapshot of
the traffic scenario and can lead the system to wrong conclusions.

Consistency Models. Concurrency control mechanisms, such as two-phase locking,
have traditionally been used to ensure the serializability of read and update transactions and
maintain data integrity of nonreal-time databases. These mechanisms often make it more dif-
ficult for updates to complete in time. Late updates may cause the data to become tempo-
rally inconsistent. Yet temporal consistency of real-time data is often as important as, or even
more important than, data integrity. For this reason, several weaker consistency models have
been proposed (e.g., [KoSp]). Concurrency control mechanisms required to maintain a weaker
sense of consistency tend to improve the timeliness of updates and reads.

As an example, we may only require update transactions to be executed in some serializ-
able order. Read-only transactions are not required to be serializable. Some applications may
require some stronger consistency (e.g., all real-only transactions perceive the same serializa-
tion order of update transactions) while others are satisfied with view consistency (e.g., each
read-only transaction perceives some serialization order of update transactions). Usually, the
more relaxed the serialization requirement, the more flexibility the system has in interleaving
the read and write operations from different transactions, and the easier it is to schedule the
transactions and have them complete in time.

Kuo and Mok [Kuo, KuMo093] proposed the use of similarity as a correctness criterion
for real-time data. Intuitively, we say that two values of a data object are similar if the dif-
ference between the values is within an acceptable threshold from the perspective of every
transaction that may read the object. Two views of a transaction are similar if every read oper-
ation gets similar values of every data object read by the transaction. Two database states are
similar if, in the states, the corresponding values of every data object are similar. Two sched-
ules of a set of transactions are similar if, for any initial state, (1) the transactions transform
similar database states to similar final database states and (2) every transaction in the set has
similar views in both schedules. Kuo, et al. pointed out that the similarity relation provides
a formal means for real-time application developers to capture the semantic constraints of
real-time data. They also proposed a concurrent control protocol that takes advantage of the
relaxed correctness criterion to enhance the temporal consistency of data.

22

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 22

Chapter 1 Typical Real-Time Applications

1.4.2 Multimedia Applications

Finally, let us look at one of the most frequently encountered real-time applications: mul-
timedia. A multimedia application may process, store, transmit, and display any number of
video streams, audio streams, images, graphics, and text. A video stream is a sequence of data
frames which encodes a video. An audio stream encodes a voice, sound, or music.

Without compression, the storage space and transmission bandwidth required by a video
are enormous. (As an example, we consider a small 100 x 100-pixel, 30-frames/second color
video. The intensity and color of each pixel is given by the sample values of a luminance and
two chrominance signal components,'? respectively, at the location of the pixel. If uncom-
pressed, the video requires a transmission bandwidth of 2.7 Mbits per second when the value
of each component at each pixel is encoded with 3 bits.) Therefore, a video stream, as well as
the associated audio stream, is invariably compressed as soon as it is captured.

MPEG Compression/Decompression. A video compression standard is MPEG-2
[ISO94]. The standard makes use of three techniques. They are motion compensation for re-
ducing temporal redundancy, discrete cosine transform for reducing spatial redundancy, and
entropy encoding for reducing the number of bits required to encode all the information. De-
pending on the application, the compressed bit rate ranges from 1.5 Mbits/sec to 35 Mbits/sec.
As you will see from the description below, the achievable compression ratio depends on the
content of the video.

Motion Estimation. The first step of compression is motion analysis and estima-
tion. Because consecutive video frames are not independent, significant compression can be
achieved by exploiting interframe dependency. This is the rationale behind the motion esti-
mation step. The motion-compensation techniques used in this step assume that most small
pieces of the image in the current frame can be obtained either by translating in space corre-
sponding small pieces of the image in some previous frame or by interpolating some small
pieces in some previous and subsequent frames. For this reason, each image is divided into
16 x 16-pixel square pieces; they are called major blocks. The luminance component of each
major block consists of four 8 x 8 pixel blocks. Each of the chrominance components has
only a quarter of this resolution. Hence, each chrominance component of a major block is an
8 x 8 pixel block.

Only frames 1 + ak, for k = 0, 1, 2, ... are encoded independently of other frames,
where « is an application-specified integer constant. These frames are called I-frames (i.e.,
intra-coded frames). The coder treats each I-frame as a still image, and the decoder can de-
compress each compressed I-frame independently of other frames. Consequently, I-frames are
points for random access of the video. The smaller the constant ¢, the more random accessible
is the video and the poorer the compression ratio. A good compromise is « = 9.

The frames between consecutive I-frames are called P- and B-frames. When « is equal
to 9, the sequence of frames produced by the motion estimation step are I, B, B, P, B, B, P,
B,B,I,B,B,P,.... Forevery k > 0, frame 1 + 9k + 3 is a P-frame (i.e., a predictive-coded
frame). The coder obtains a P-frame from the previous I-frame (or P-frame) by predicting

2The luminance signal gives us a black and white video. Linear combinations of this signal and the two
chrominance signals give the red, blue, and green components of a color video.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 23

Section 1.4 Other Real-Time Applications 23

how the image carried by the I-frame changes in the time interval between the times of these
frames. Specifically, if a major block in the P-frame closely resembles a major block in the pre-
vious I-frame, then the coder represents the P-frame major block by six 8 x 8 pixel blocks that
give the differences between the six P-frame pixel blocks and the corresponding pixel blocks
of the best matching (i.e., resembling most closely) major block in the previous I-frame. In
addition, the coder generates a motion vector based on which the decoder can identify the best
matching I-frame major block. Such a P-frame major block is said to be predictively coded.
On the other hand, some P-frame major blocks may be images of newly visible objects and,
hence, cannot be obtained from any major block in the previous I-frame. The coder represents
them in the same way as I-frame major blocks.

A B-frame is a bidirectionally predicted frame: It is predicted from both the previous
I-frame (or P-frame) and the subsequent P-frame (or I-frame). One way is to represent every
B-frame major block by the differences between the values of its pixel blocks and the cor-
responding pixel blocks of the best matching major block in either the previous I-frame or
the subsequent P-frame. Alternatively, for each B-frame major block, an interpolation of the
best matching major blocks in the I-frame and P-frame is first computed. The B-frame major
block is represented by the difference between it and this interpolation. Again, the coder gen-
erates the motion vectors that the decoder will need to identify the best matching I-frame and
P-frame major blocks. Whereas some P-frame major blocks are encoded independently, none
of the B-frame major blocks are.

Discrete Cosine Transform and Encoding. In the second step, a cosine transform'?
is performed on each of the 8 x 8 pixel blocks produced by the coder after motion estimation.
Weletx(i, j),fori, j =1,2,..., 8, denote the elements of an 8 x 8 transform matrix obtained
from transforming the original matrix that gives the 8 x 8 values of a pixel block. The transform
matrix usually has more zeros than the original matrix. [In the extreme when all the entries
of the original matrix are equal, only x (0, 0) is nonzero.] Moreover, if the entries x (i, j)’s are
ordered in nondecreasing order of i 4 j, zero entries tend to be adjacent, forming sequences
of zeros, and adjacent entries tend to have similar values. By quantizing the x (i, j)’s to create
more zeros, encoding the entries in the transform matrix as 2-tuples (run length, value), and
using a combination of variable-length and fixed-length codes to further reduce the bit rate,
significant compression is achieved.

Decompression. During decompression, the decoder first produces a close approxi-
mation of the original matrix (i.e., an 8 x 8 pixel block) by performing an inverse transform
on each stored transform matrix. (The computation of an inverse transform is the essentially
the same as the cosine transform.) It then reconstruct the images in all the frames from the
major blocks in I-frames and difference blocks in P- and B-frames.

Real-Time Characteristics. As we can see from the above description, video com-
pression is a computational-intensive process. For batch applications such as video on de-

BWe let y(i, j) fori,j = 1,2,..., 8 denote the inputs to the transform. Each of the outputs x (i, j) for
i,j=1,2,...,8of the transform is given by a double-weighted sum analogous to the one in Eq. (1.3). The transform
is called cosine transform because the weight of each input y(i, j) in the sum is proportional to a product of cosine
functions, that is, [cos (2i + 1)7/k][cos (2] + 1)Im /16].

24

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 24

Chapter 1 Typical Real-Time Applications

mand, compression is done in batch and off-line, while it must be an on-line process for
interactive applications (e.g., teleconferencing). Decompression should be done just before
the time the video and audio are presented, in other words, on the just-in-time basis. Today,
compression and decompression functions are often handled by an affordable special-purpose
processor (e.g., the mmx), rather than by general-purpose processors.

To a great extent, the timing requirements of a multimedia application follow from the
required video and audio quality. From the user’s point of view, the quality of a video is
partially characterized by its frame rate and resolution. A video of standard television quality
consists of 30 frames per second. High-definition television uses 60 frames per second to
give the picture even less flicker. On the other hand, much lower frame rates (e.g., 10-20) are
tolerable for other applications, such as teleconferencing.

The term resolution roughly refers to the number of pixels in each frame (i.e., the size
of the frame) and the number of bits used to encode each pixel (i.e., intensity and color reso-
lution). Together, the resolution and frame rate of a video tell us roughly the amount of time
required to compress/decompress it and the amounts of storage and transmission bandwidth
required to store and transmit it.

Similarly, the quality of an audio component depends on the sampling rate and gran-
ularity used to digitize the audio signal. The total bit rate of an audio ranges from 16 Kbits
per second for telephone speech quality to 128 Kbits per second for CD quality. Some loss of
audio data is unavoidable, because the system may discard data during congestion and some
data may arrive too late to be presented to the user, and so on. The quality of speech is usually
tolerable when the loss rate is under one percent.

Another dimension of quality of a multimedia application is lip synchronization. This
term refers to the temporal synchronization of the video frames and related audio data units.
In the case where the video is that of a speaker, the speaker’s lips should appear to move to
make the accompanied speech. Experimental results indicate that the time interval between
the display of each frame and the presentation of the corresponding audio segment should
ideally be no more than 80 msec and should definitely be no more than 160 msec [StNa] for
sake of achieving lip synchronization.

For batch applications, a system can often provide the desired quality by trading be-
tween real-time performance and space usage. For example, we want to present the audio to
the user without pauses. This can clearly be achieved if there is little or no jitter (i.e., variation)
in the delay suffered by audio data packets as they are transmitted over the network. However,
the system can nevertheless deliver good audio despite large jitter by providing a sufficiently
large amount of buffer to smooth out the jitter.

Finally, our ears are extremely sensitive to glitches and pauses in audio, and an end-
to-end delay in the order of a few hundred milliseconds significantly decreases the quality of
a conversation. Therefore, both end-to-end response time and response time jitter are impor-
tant for interactive applications. Now-a-days, news programs often televise live conversations
between people who are continents apart. You may have noticed that the interviewee some-
times seems to take forever to react and start to answer a question. The delay is actually only
a second or two and is the effect of the large end-to-end propagation delay across a global
communication channel.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:45a.m. chapl page 25

Section 1.5 Summary 25
1.5 SUMMARY

As a summary, we divide real-time applications into the following four types according to
their timing attributes.

1. Purely cyclic: Every task in a purely cyclic application executes periodically. Even I/O
operations are polled. Moreover, its demands in (computing, communication, and stor-
age) resources do not vary significantly from period to period. Most digital controllers,
exemplified by the flight control system in Figure 1-3, and real-time monitors are of
this type.

2. Mostly cyclic: Most tasks in a mostly cyclic system execute periodically. The system
must also respond to some external events (fault recovery and external commands) asyn-
chronously. Examples are modern avionics and process control systems.

3. Asynchronous and somewhat predictable: In applications such as multimedia communi-
cation, radar signal processing, and tracking, most tasks are not periodic. The duration
between consecutive executions of a task may vary considerably, or the variations in
the amounts of resources demanded in different periods may be large. However, these
variations have either bounded ranges or known statistics.

4. Asynchronous and unpredictable: Applications that react to asynchronous events and
have tasks with high run-time complexity belong to this type. An example is intelligent
real-time control systems [SKNL].

An orthogonal dimension is the size of the application. Like nonreal-time applications,
some of them run on one or a few microprocessors, even on hand-held devices, while others
run on tens and hundreds of computers. They are commonly labeled as uniprocessor, multi-
processor, or distributed systems. As you will see shortly, we will not emphasize this aspect.
Of course, a solution suited for a system containing a few microprocessors (e.g., an automo-
tive control system) may not be applicable to a large distributed system (e.g., air traffic control
system) and vice versa. The subsequent chapters will try to make which ones are which clear
to you.

Integre Technical Publishing Co., Inc. Liu January 12,2000 1:37 p.m. chap2 page 26

CHAPTER 2

Hard versus Soft
Real-Time Systems

Now that we have seen several typical real-time applications, we are ready to discuss in depth
the characteristics that distinguish them from nonreal-time applications. We begin by dis-
cussing exactly what “real time” means.

2.1 JOBS AND PROCESSORS

For the purpose of describing and characterizing different types of real-time systems and
methods for scheduling and resource management, it is more convenient for us to speak of all
kinds of work done by computing and communication systems in general terms. We call each
unit of work that is scheduled and executed by the system a job and a set of related jobs which
jointly provide some system function a fask. Hence, the computation of a control law is a job.
So is the computation of a FFT (Fast Fourier Transform) of sensor data, or the transmission
of a data packet, or the retrieval of a file, and so on. We call them a control-law computation,
a FFT computation, a packet transmission, and so on, only when we want to be specific about
the kinds of work, that is, the types of jobs.

Similarly, rather than using different verbs (e.g., compute and transmit) for different
types of jobs, we say that a job executes or is executed by the (operating) system. Every job
executes on some resource. For example, the jobs mentioned above execute on a CPU, a net-
work, and a disk, respectively. These resources are called servers in queuing theory literature
and, sometimes, active resources in real-time systems literature. In later chapters, we will use
the term server extensively to mean something else. To avoid overloading this term, we call
all these resources processors except occasionally when we want to be specific about what
they are.

26

Integre Technical Publishing Co., Inc. Liu January 12,2000 1:37 p.m. chap2 page 27

Section 2.3 Hard and Soft Timing Constraints 27
2.2 RELEASE TIMES, DEADLINES, AND TIMING CONSTRAINTS

In the next chapter we will discuss in detail how jobs and processors are often characterized
in order to schedule, manage, and reason about them. For now, we focus on the release times
and deadlines of jobs, two parameters that distinguish jobs in real-time systems from those in
nonreal-time systems.

The release time of a job is the instant of time at which the job becomes available for
execution. The job can be scheduled and executed at any time at or after its release time
whenever its data and control dependency conditions are met. As an example, we consider a
system which monitors and controls several furnaces. After it is initialized and starts execution
(say at time 0), the system samples and reads each temperature sensor every 100 msec and
places the sampled readings in memory. It also computes the control law of each furnace
every 100 msec in order to process the temperature readings and determine flow rates of fuel,
air, and coolant. Suppose that the system begins the first control-law computation at time 20
msec. The fact that the control law is computed periodically can be stated in terms of release
times of the control-law computation jobs Jy, Ji, ..., J, The release time of the job J;
in this job stream is 20 4+ k& x 100 msec, for k = 0, 1, We say that jobs have no release
time if all the jobs are released when the system begins execution.

The deadline of a job is the instant of time by which its execution is required to be
completed. Suppose that in the previous example, each control-law computation job must
complete by the release time of the subsequent job. Then, their deadlines are 120 msec, 220
msec, and so on, respectively. Alternatively, if the control-law computation jobs must com-
plete sooner, their deadlines may be 70 msec, 170 msec, and so on. We say that a job has no
deadline if its deadline is at infinity.

In this example, as in many others, it is more natural to state the timing requirement
of a job in terms of its response time, that is, the length of time from the release time of
the job to the instant when it completes. We call the maximum allowable response time of
a job its relative deadline. Hence the relative deadline of every control-law computation job
mentioned above is 100 or 50 msec. The deadline of a job, sometimes called its absolute
deadline, is equal to its release time plus its relative deadline.

In general, we call a constraint imposed on the timing behavior of a job a timing con-
straint. In its simplest form, a timing constraint of a job can be specified in terms of its release
time and relative or absolute deadlines, as illustrated by the above example. Some complex
timing constraints cannot be specified conveniently in terms of release times and deadlines.
We will discuss the parameters needed to specify those constraints when they arise, but in
most of this book, we are concerned primarily with this simple form.

2.3 HARD AND SOFT TIMING CONSTRAINTS

It is common to divide timing constraints into two types: hard and soft. There are many defi-
nitions of hard and soft real-time constraints. Before stating the definition used in this book,
let us first look at three frequently encountered definitions so you will be aware of them. They
are based on the functional criticality of jobs, usefulness of late results, and deterministic or
probabilistic nature of the constraints.

28

Integre Technical Publishing Co., Inc. Liu January 12,2000 1:37 p.m. chap2 page 28

Chapter 2 Hard versus Soft Real-Time Systems

2.3.1 Common Definitions

According to a commonly used definition, a timing constraint or deadline is hard if the failure
to meet it is considered to be a fatal fault. A hard deadline is imposed on a job because a late
result produced by the job after the deadline may have disastrous consequences. (As examples,
a late command to stop a train may cause a collision, and a bomb dropped too late may hit a
civilian population instead of the intended military target.) In contrast, the late completion of
a job that has a soft deadline is undesirable. However, a few misses of soft deadlines do no
serious harm; only the system’s overall performance becomes poorer and poorer when more
and more jobs with soft deadlines complete late. This definition of hard and soft deadlines
invariably leads to the question of whether the consequence of a missed deadline is indeed
serious enough. The question of whether a timing constraint is hard or soft degenerates to that
of how serious is serious.

In real-time systems literature, the distinction between hard and soft timing constraints
is sometimes stated quantitatively in terms of the usefulness of results (and therefore the over-
all system performance) as functions of the tardinesses of jobs. The tardiness of a job mea-
sures how late it completes respective to its deadline. Its tardiness is zero if the job completes
at or before its deadline; otherwise, if the job is late, its tardiness is equal to the difference
between its completion time (i.e., the time instant at which it completes execution) and its
deadline. The usefulness of a result produced by a soft real-time job (i.e, a job with a soft
deadline) decreases gradually as the tardiness of the job increases, but the usefulness of a re-
sult produced by a hard real-time job (i.e., a job with a hard deadline) falls off abruptly and
may even become negative when the tardiness of the job becomes larger than zero. The dead-
line of a job is softer if the usefulness of its result decreases at a slower rate. By this means, we
can define a spectrum of hard/soft timing constraints. This quantitative measure of hardness
and softness of deadlines is sometimes useful. It is certainly more appealing to computer sci-
entists and engineers who have been trained not to rely on handwaving, qualitative measures.
However, there is often no natural choice of usefulness functions. When choices are made,
it is difficult to validate that the choices are sound and that different measures of the overall
system performance as functions of tardinesses indeed behave as specified by the usefulness
functions. Consequently, this kind of quantitative measure is not as rigorous as it appears to be.

Sometimes, we see this distinction made on the basis of whether the timing constraint
is expressed in deterministic or probabilistic terms. If a job must never miss its deadline, then
the deadline is hard. On the other hand, if its deadline can be missed occasionally with some
acceptably low probability, then its timing constraint is soft. An example is that the system
recovery job or a point-of-sales transaction completes within one minute 99.999 percent of
the time. In other words, the probability of failure to meet the one-minute relative deadline is
1073, This definition ignores completely the consequence of a timing failure. In our example,
if the failure of an on-time recovery could cause loss of life and property, we would require
a rigorous demonstration that the timing failure probability is indeed never more than 10~>.
However, we would not require a demonstration of nearly the same rigor for a credit valida-
tion.

2.3.2 Hard Timing Constraints and Temporal Quality-of-Service Guarantees

In most of this book, we adopt a simple operational definition: The timing constraint of a job
is hard, and the job is a hard real-time job, if the user requires the validation that the system

Integre Technical Publishing Co., Inc. Liu January 12,2000 1:37 p.m. chap2 page 29

Section 2.4 Hard Real-Time Systems 29

always meet the timing constraint. By validation, we mean a demonstration by a provably
correct, efficient procedure or by exhaustive simulation and testing. A large part of this book
is devoted to efficient validation algorithms and methods as well as scheduling and resource
management strategies that allow the system to be thus validated.

On the other hand, if no validation is required, or only a demonstration that the job
meet some statistical constraint (i.e., a timing constraint specified in terms of statistical av-
erages) suffices, then the timing constraint of the job is soft. The satisfaction of statistical
constraints (e.g., the average number of missed deadlines per minute is two or less) can usu-
ally be demonstrated with a performance profile somewhat more thorough than those used
to demonstrate the performance of general interactive systems. Most of the techniques for
validation discussed in later chapters are not needed.

This way to differentiate between hard and soft timing constraints is compatible with the
distinction between guaranteed and best-effort services [Lock86, Clar90]. Stated another way,
if the user wants the temporal quality (e.g., response time and jitter) of the service provided by
a task guaranteed and the satisfaction of the timing constraints defining the temporal quality
validated, then the timing constraints are hard. On the other hand, if the user demands the best
quality of service the system can provide but allows the system to deliver qualities below what
is defined by the timing constraints, then the timing constraints are soft.

We call an application (task) with hard timing constraints a hard real-time application
and a system containing mostly hard real-time applications a hard real-time system. For many
traditional hard real-time applications (e.g., digital controllers), all the tasks and jobs executed
in every operation mode of the system are known a priori. The traditional approach to building
and validating such systems is to avoid hardware and software features that may lead to non-
determinism. Therefore, it is possible to verify the satisfaction of all hard timing constraints
by exhaustive simulation and testing. Indeed, until recently, this has been the only approach
used to build hard real-time systems.

In recent years, several efficient validation methods for a large class of hard real-time
applications have been developed. These methods make on-line validation feasible and, thus,
make hard real-time applications that dynamically create and destroy tasks feasible. When an
application creates a new task with hard timing constraints, it submits an admission request
to the scheduler. Upon the receipt of such a request, the scheduler does an acceptance test to
determine whether the system can meet the timing constraints of the new task while meeting
all the hard timing constraints of tasks previously admitted into the system. The scheduler
accepts and admits the new task to the system only when the task passes the acceptance test.
This acceptance test is an on-line validation test. Many of the validation algorithms described
in Chapters 6-9 are suitable for this purpose.

2.4 HARD REAL-TIME SYSTEMS

The requirement that all hard timing constraints must be validated invariably places many re-
strictions on the design and implementation of hard real-time applications as well as on the
architectures of hardware and system software used to support them. To justify this require-
ment, this section examines briefly several examples of hard real-time systems and discuss
why hard timing constraints are imposed and why users require their satisfaction be validated
and guaranteed.

30

2.4.1

Integre Technical Publishing Co., Inc. Liu January 12,2000 1:37 p.m. chap2 page 30

Chapter 2 Hard versus Soft Real-Time Systems

Some Reasons for Requiring Timing Guarantees

Many embedded systems are hard real-time systems. Deadlines of jobs in an embedded system
are typically derived from the required responsiveness of the sensors and actuators monitored
and controlled by it. As an example, we consider an automatically controlled train. It cannot
stop instantaneously. When the signal is red (stop), its braking action must be activated a
certain distance away from the signal post at which the train must stop. This braking distance
depends on the speed of the train and the safe value of deceleration. From the speed and safe
deceleration of the train, the controller can compute the time for the train to travel the braking
distance. This time in turn imposes a constraint on the response time of the jobs which sense
and process the stop signal and activate the brake. No one would question that this timing
constraint should be hard and that its satisfaction must be guaranteed.

Similarly, each control-law computation job of a flight controller must be completed in
time so that its command can be issued in time. Otherwise, the plane controlled by it may
become oscillatory (and the ride bumpy) or even unstable and uncontrollable. For this reason,
we want the timely completion of all control-law computations guaranteed.

Jobs in some nonembedded systems may also have hard deadlines. An example is a
critical information system that must be highly available: The system must never be down for
more than a minute. Because of this requirement, reconfiguration and recovery of database
servers and network connections in the system must complete within a few seconds or tens of
seconds, and this relative deadline is hard.

A frequently asked question is how serious is the consequence of a few missed dead-
lines. A real-time monitor may nevertheless function satisfactorily when some sensor readings
are not processed or lost. A single late recovery job may not cause an information system to
crash. We surely have more design options and can make the system better in some other
respect and make it less costly if some of the hard timing requirements are relaxed, even to a
small degree.

In recent years, this observation motivated a variety of approaches to soften hard dead-
lines. Examples are to allow a few missed deadlines (e.g., [HaRa]) or premature terminations
(e.g., [LLSB, LLSC]) as long as they occur in some acceptable way. We will discuss some of
these approaches in Chapter 10. Needless to say, these approaches can be applied only when
application domain experts know the effects of missed deadlines. Unfortunately, this is some-
times not the case. Even for some simple monitor and control applications, it is difficult to
assess the effects of lost sample readings and late commands. In more complex systems, such
as the NAVSTAR system,! the effect of missed deadlines may be combined with other factors

'The NAVSTAR Global Positioning System [DoEl] is a distributed system of space-based and ground-based
computers and communication links. The system allows users equipped with navigation receivers to determine accu-
rately their own locations. The space subsystem is a constellation of satellites. Together, the satellites provide 24-hour
coverage at all locations. On board each satellite, telemetry and track-control subsystems, as well as other subsys-
tems, communicate with each other via the Mission Data Unit (MDU). MDU contains hardware for timing control,
modulation control, and navigation. It also interfaces with the intersatellite link and the downlink. The former sup-
ports communication among the satellites. The latter allows the satellite to broadcast to the control system on the
ground as well as to its users. Each satellite must periodically estimates its own location. The satellites do this in a
cooperative manner by exchanging messages with other satellites that are in range. By measuring the differences in
the delays severed by messages from other satellites, each satellite can determine its own location with respect to the
locations of the satellites whose messages are used for this purpose. This process is called ranging and is an example
of functions that require accurate clock and timing signals and has real-time constraints.

Integre Technical Publishing Co., Inc. Liu January 12,2000 1:37 p.m. chap2 page 31

Section 2.5 Soft Real-Time Systems 31

in ways impossible to predict. Consequently, the designer makes sure that the system misses
no deadline as long as it is in operation. The hard real-time requirement in fact simplifies the
process of validating the overall system.

In general, if safety or property loss is involved, the designer/builder of the system
has the burden of proof that bad things will never happen. Whenever it is not possible to
prove without doubt that a few timing constraint violations will not jeopardize the safety of
users or availability of some critical infrastructure, we take the safe approach and insist on
the satisfaction of all timing constraints, even though the requirement may be unnecessarily
stringent.

2.4.2 More on Hard Timing Constraints

The above examples also show that there may be no advantage in completing a job with a hard
deadline early. As long as the job completes by its deadline, its response time is not important.
In fact, it is often advantageous, sometimes even essential, to keep jitters in the response times
of a stream of jobs small. (Section 1.4.2 gives an example.) In this case, we do not want to
complete the jobs too early or too late. In later chapters, you will see that we often choose to
delay the start and completion of hard real-time jobs, in favor of soft real-time or background
jobs, and this is the reason.

In principle, our definition of hard and soft timing constraints allows a hard timing
constraint to be specified in any terms. Examples are

1. deterministic constraints (e.g., the relative deadline of every control-law computation
is 50 msec or the response time of at most one out of five consecutive control-law
computations exceeds 50 msec);

2. probabilistic constraints, that is, constraints defined in terms of tails of some probability
distributions (e.g., the probability of the response time exceeding 50 milliseconds is less
than 0.2); and

3. constraints in terms of some usefulness function (e.g., the usefulness of every control-
law computation is 0.8 or more).

In practice, hard timing constraints are rarely specified in the latter two ways. We mostly
use deterministic hard timing constraints in this book, as in real-time systems literature. A
good question is why. The answer is that it is much easier to validate deterministic timing
constraints than probabilistic constraints and those expressed in terms of usefulness functions.
We will discuss what some of the difficulties are in Chapter 6.

2.5 SOFT REAL-TIME SYSTEMS

A system in which jobs have soft deadlines is a soft real-time system. The developer of a soft
real-time system is rarely required to prove rigorously that the system surely meet its real-
time performance objective. Examples of such systems include on-line transaction systems
and telephone switches, as well as electronic games. The less rigorous validation required of
the system and, often, more relaxed timing constraints allow the developer to consider other
performance metrics equally seriously. Meeting all deadlines is not the only consideration,

32

Integre Technical Publishing Co., Inc. Liu January 12,2000 1:37 p.m. chap2 page 32

Chapter 2 Hard versus Soft Real-Time Systems

sometimes, not even the primary consideration. An occasional missed deadline or aborted
execution is usually considered tolerable; it may be more important for such a system to have
a small average response time and high throughput.

A system may have critical timing requirements but is nevertheless considered to be a
soft real-time system. An example is a stock price quotation system. It should update the price
of each stock each time the price changes. Here, a late update may be highly undesirable,
because the usefulness of a late price quotation decreases rapidly with time. However, in a
volatile market when prices fluctuate at unusually high rates, we expect that the system cannot
keep up with every price change but does its best according to some criteria. Occasional late
or missed updates are tolerated as a trade-off for other factors, such as cost and availability of
the system and the number of users the system can serve.

The timing requirements of soft real-time systems are often specified in probabilistic
terms. Take a telephone network for example. In response to our dialing a telephone number,
a sequence of jobs executes in turn, each routes the control signal from one switch to another
in order to set up a connection through the network on our behalf. We expect that our call
will be put through in a short time. To ensure that this expectation is met most of the time
by the network, a timing constraint may be imposed on this sequence of jobs as a design
objective (e.g., the sequence must complete in no more than 10 seconds for 95 percent of the
time and in no more than 20 seconds for 99.95 percent of the time). The users are usually
satisfied if after extensive simulation and trial use, the system indeed appears to meet this
requirement.

As a final example, let us consider multimedia systems that provide the user with ser-
vices of “guaranteed” quality. For example, a frame of a movie must be delivered every thirti-
eth of a second, and the difference in the times when each video frame is displayed and when
the accompanied speech is presented should be no more than 80 msec. In fact, it is common
to subject each new video stream to be transmitted by a network to an acceptance test. If the
network cannot guarantee the satisfaction of timing constraints of the stream without violating
the constraints of existing streams, the new stream is rejected, and its admission is requested
again at some later time. However, the users are often willing to tolerate a few glitches, as
long as the glitches occur rarely and for short lengths of time. At the same time, they are not
willing to pay the cost of eliminating the glitches completely. For this reason, we often see
timing constraints of multimedia systems guaranteed on a statistical basis, (e.g., the average
number of late/lost frames per minute is less than 2). Moreover, users of such systems rarely
demand any proof that the system indeed honor its guarantees. The quality-of-service guar-
antee is soft, the validation requirement is soft, and the timing constraints defining the quality
are soft.

2.6 SUMMARY

This chapter defines several terms that will be used frequently in subsequent chapters. They
are jobs, tasks, and timing constraints. Most of this book focuses on timing constraints that
can be expressed in terms of release times and deadlines of jobs. In particular, we say that
the scheduler works correctly if it never schedules any job before the release time of the job.
A correctly scheduled job meets its timing constraint if it completes by its deadline, or it
completes by its deadline with at least a certain probability, and so on.

Integre Technical Publishing Co., Inc. Liu January 12,2000 1:37 p.m. chap2 page 33

Section 2.6 Summary 33

The timing constraint of a task can be hard or soft, depending on whether a rigorous
validation of the timing constraint is required (hard) or not (soft). In practice, a hard real-time
system invariably has many soft real-time jobs and vice versa. The division is not always as
obvious as we made it out to be here and, moreover, is not always necessary. In subsequent
chapters, we will use the simpler terms real-time system or system whenever we mean either
a hard real-time system or a soft real-time system or when there is no ambiguity about which
type of system is meant by it.

We will focus on how to design a system so it is possible to validate its timing con-
straints and how to do validation if validation is required. In general, the process of validating
that a system indeed meets its real-time performance objectives involves three major steps.
The first step ensures that the timing constraints of each application are consistent with its
high-level real-time requirements and that the timing constraints of its individual components
are mutually consistent. The second step ensures that every component can meet its timing
constraints if it executes alone and has all the required resources. The third and last step
ensures that when scheduled together according to the algorithms used by the underlying op-
erating system and networks, the timing constraints of all applications competing for all the
available system resources are always met. In other words, the first step verifies that the timing
constraints are specified correctly. The second step verifies the feasibility of each component
with the underlying hardware and software resources. The last step verifies that the system as
a whole behaves as specified by its timing constraints.

You may have noticed that in our discussion thus far the term validation has been used
to mean specifically the last step of the validation process. Indeed, the book focuses on the
last step of the validation process. We assume that the correct specification of the timing con-
straints and the feasibility of every individual component have already been verified. There-
fore, the timing constraints of the system are given. For methods on specifying timing con-
straints and verifying their correctness, you need to read books and articles on formal methods
(e.g., [Heit, VaKo]). Similarly, you can find algorithms for finding processor time demands of
jobs in [AMWH, HeWh, KiMH, LBJR].

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 34

CHAPTER 3

A Reference Model of
Real-Time Systems

When we study how given applications should be scheduled on a system of processors and
resources and how we can determine whether the resultant system meets all its timing re-
quirements, many specific details about each application (e.g., whether it is a Kalman filter
computation or a sorting routine, whether it is implemented in Ada or C++) are not relevant.
We do not want to keep track of these details and let them cloud relevant issues. Similarly,
we do not want to keep track of irrelevant properties of system resources (e.g., whether the
processor is by Intel or Motorola or whether the transmission medium is cable or fiber.) A
good model abstracts the irrelevant details. It allows us to focus on the timing properties and
resource requirements of system components and the way the operating system allocates the
available system resources among them. By focusing on the relevant characteristics of the
system, we can reason better about the timing behavior of each component and the overall
system. By describing the algorithms used to schedule the applications and the methods for
validating their timing constraints abstractly, rather than in implementation-specific terms, we
can appreciate their general applicability better.

In this chapter, we describe a reference model of real-time systems. According to this
model, each system is characterized by three elements: (1) a workload model that describes
the applications supported by the system, (2) a resource model that describes the system re-
sources available to the applications, and (3) algorithms that define how the application system
uses the resources at all times. The model aims at being good in the sense mentioned above.
It has a sufficiently rich set of features in terms of which we can describe the relevant char-
acteristics of a wide spectrum of real-time applications and the properties of the underlying
platform. If we choose to do so, we can describe a system in a sufficiently faithful manner
in terms of the model so we can analyze, simulate, and even emulate the system based on its
description. In particular, analysis and simulation tools (e.g., PERTS [LLRD]) can use such
a system description as input to produce accurate estimates of the real-time performance and
the associated overhead of the system.

In the following sections, we describe the first two elements of the reference model:
the models that describe the applications and resources. In most of this book, we assume that
these descriptions are given to us, for some systems, a priori before the execution begins, and
for most systems, as new tasks are created and admitted into the system. The third element

34

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 35

Section 3.1 Processors and Resources 35

is the set of scheduling and resource management algorithms. We describe here how this
element completes the description of the overall system, but defer the details on how the
algorithms work and why they work until the next several chapters. We also introduce here
the terminology and notation that we will use later.

Several features of the reference model are not needed to understand the basic schedul-
ing and resource access-control algorithms described in later chapters. However, the models
used by some analysis and simulation tools have these features. Sections describing these fea-
tures are included in this chapter for reference. These sections are marked by “*.” You can
skip them without loss of continuity.

3.1 PROCESSORS AND RESOURCES

We divide all the system resources into two major types: processors and resources. Again,
processors are often called servers and active resources; computers, transmission links, disks,
and database server are examples of processors. They carry out machine instructions, move
data from one place to another, retrieve files, process queries, and so on. Every job must have
one or more processors in order to execute and make progress toward completion.

Sometimes, we will need to distinguish the rypes of processors. Two processors are of
the same type if they are functionally identical and can be used interchangeably. Hence two
transmission links with the same transmission rate between a pair of sender and receiver are
processors of the same type; processors in a Symmetrical Multiprocessor (SMP) system are of
the same type, and so on. Processors that are functionally different, or for some other reason
cannot be used interchangeably, are of different types. CPUs, transmission links, and disks are
of different types, because they are functionally different. A transmission link connecting an
on-board flight management system to the ground controller is a different type of processor
from the link connecting two air traffic control centers even when the links have the same
characteristics, because they cannot be used interchangeably.

We will consistently use the letter P to denote processor(s). When we want focus on
how the jobs on each processor are scheduled, how the jobs on different processors are syn-
chronized, and how well the processors are utilized, there is no need to be concerned with
whether the processors are identical or different. At these times, we will ignore the types of
processors and call the m processors in the system Py, P, ..., P,.

By resources, we will specifically mean passive resources. Examples of resources are
memory, sequence numbers, mutexes, and database locks. A job may need some resources
in addition to the processor in order to make progress. One of the attributes of a processor is
its speed. Although we will rarely mention this attribute, we will implicitly assume that the
rate of progress a job makes toward its completion depends on the speed of the processor on
which it executes. We can explicitly model this dependency by making the amount of time a
job requires to complete a function of the processor speed. In contrast, we do not associate
speed with a resource. In other words, how long a job takes to complete does not depend on
the speed of any resource it uses during execution.

For example, a computation job may share data with other computations, and the data
may be guarded by semaphores. We model (the lock of) each semaphore as a resource.
When a job wants to access the shared data guarded by a semaphore R, it must first lock
the semaphore, and then it enters the critical section of the code where it accesses the shared

36

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 36

Chapter 3 A Reference Model of Real-Time Systems

data. In this case, we say that the job requires the resource R for the duration of this critical
section.

As another example, we consider a data link that uses the sliding-window scheme to
regulate message transmission. Only a maximum number of messages are allowed to be in
transit (i.e., they have been transmitted but their reception has not yet been positively ac-
knowledged). One way to implement this scheme is for the sender to maintain a window of
valid sequence numbers. The window is moved forward as messages transmitted earlier are
acknowledged by the receiver. A message waiting to be transmitted must first be given one
of the valid sequence numbers before it can be transmitted. We model the transmission of
a message as a job; the job executes when the message is being transmitted. This job needs
the data link, as well as a valid sequence number. The data link is a processor. The sequence
numbers are units of the sequence-number resource.

Similarly, we usually model transactions that query and update a database as jobs; these
jobs execute on a database server. If the database server uses a locking mechanism to ensure
data integrity, then a transaction also needs the locks on the data objects it reads or writes in
order to proceed. The locks on the data objects are resources.

We will use the letter R to denote resources. The resources in the examples mentioned
above are reusable, because they are not consumed during use. (In contrast, a message pro-
duced by a process and consumed by another process is not reusable because it no longer
exists after use.) In our discussion, a “resource” almost always mean a reusable resource. The
statement that the system contains p resources means that there are p types of serially reusable
resources, each resource may have one or more units, and each unit is used in a mutually ex-
clusive manner. For example, if the sliding window of a data link has eight valid sequence
numbers, then there are eight units of the sequence-number resource (type). The write lock on
a file is a resource that has only one unit because only one job can have the lock at a time. A
resource that can be shared by a finite number x of jobs is modeled as a resource (type) that
has x units, each of which can be used by only one job at a time.

To prevent our model from being cluttered by irrelevant details, we typically omit the
resources that are plentiful. A resource is plentiful if no job is ever prevented from execution
by the lack of this resource. A resource that can be shared by an infinite number of jobs
(e.g., a file that is readable simultaneously by all) need not be explicitly modeled and hence
never appears in our model. You will notice later that we rarely mention the memory resource.
Clearly, memory is an essential type of resource. All computing and communication systems
have this resource. We omit it from our model whenever we can account for the speed of the
memory by the speed of the processor and memory is not a bottleneck of the system. For
example, we can account for the speed of the buffer memory in a packet switch by letting
the speed of each input (or output) link equal the transmission rate of the link or the rate at
which data can go in (or out of) the buffer, whichever is smaller. Therefore, there is no need
to explicitly model this aspect of the memory. By memory not being the bottleneck, we mean
that whenever a job is scheduled to execute, it always has a sufficient amount of memory.
Many real-time systems are designed so that this assumption is valid. When this assumption
is not valid, the timing behavior of the system critically depends on how memory is allocated
to jobs. Clearly, the model of the system must include the memory resource in this case.

Another point to keep in mind is that we sometimes model some elements of a system
as processors and sometimes as resources, depending on how we will use the model. For
example, in a distributed system, a computation job may invoke a server on a remote processor.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 37

Section 3.2 Temporal Parameters of Real-Time Workload 37

When we want to focus on how the response time of this job depends on the way the job
is scheduled with other jobs on its local processor, we may model the remote server as a
resource. We may also model the remote server (or more precisely the remote processor) as a
processor. As you will see that in Chapter 9, we indeed use both of these alternatives to model
remote execution in distributed systems. They give us two different points of view and lead to
different scheduling and resource management strategies.

As a final example, let us consider the I/O bus. Every computation job must have the
I/O bus in addition to the processor to execute. Most of the time, we model the I/O bus as a
resource, oftentimes a plentiful and therefore ignored resource. However, when we want to
study how long I/O activities may delay the completion of computation jobs that share the I/O
bus or when we want to determine the real-time performance of an I/O bus arbitration scheme,
we want to model the bus as a resource or a processor.

There are no cookbook rules to guide us in making this and many other modeling
choices. A good model can give us better insight into the problem at hand. A bad model
can clutter our mind with irrelevant details and may even give us a wrong point of view and
lead to a poor design and implementation. For this reason, the skill and art in modeling are
essential to a system designer and developer.

3.2 TEMPORAL PARAMETERS OF REAL-TIME WORKLOAD

As stated in Chapter 2, the workload on processors consists of jobs, each of which is a unit
of work to be allocated processor time and other resources. A set of related jobs that execute
to support a function of the system is a task. We typically assume that many parameters of
hard real-time jobs and tasks are known at all times; otherwise, it would not be possible to
ensure that the system meet its hard real-time requirements. The number of tasks (or jobs) in
the system is one such parameter. In many embedded systems, the number of tasks is fixed
as long as the system remains in an operation mode. The number of tasks may change when
the system operation mode changes, and the number of tasks in the new mode is also known.
Moreover, these numbers are known a priori before the system begins execution. Take the
flight control system in Figure 1-3 as an example. During cruise mode, the system has 12
tasks (i.e., 3 30-Hz avionics tasks, 3 30-Hz computations and 2 90-Hz computations, plus
180-Hz computation, validation, output and built-in-test tasks). If the system triply replicates
all control-law computations during landing, the number of tasks increases to 24 when it
operates in the landing mode.

In some other systems, however, the number of tasks may change as tasks are added
and deleted while the system executes. As an example, in an air traffic control system, each
surveillance task monitors an aircraft. The number of such tasks changes as tasks are added
and deleted when aircraft enter and leave the coverage area. Nevertheless, the number of
tasks with hard timing constraints is known at all times. This assumption is valid. When the
satisfaction of their timing constraints is to be guaranteed, the admission and deletion of hard
real-time tasks are usually done under the control of the run-time system (e.g., by having the
application system request admission and deletion of tasks). For this purpose, the system must
maintain information on all existing hard real-time tasks, including the number of such tasks.

Each job J; is characterized by its temporal parameters, functional parameters, resource
parameters, and interconnection parameters. Its temporal parameters tell us its timing con-

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 38

38 Chapter 3 A Reference Model of Real-Time Systems

straints and behavior. Its interconnection parameters describe how it depends on other jobs
and how other jobs depend on it. Its functional parameters specify the intrinsic properties of
the job. Finally, its resource parameters give us its resource requirements.

We already defined in Section 2.2 the release time, absolute deadline, and relative dead-
line of a job J;; these are temporal parameters. We will use r;, d;, and D;, respectively, to
denote them and call the time interval (r;, d;]' between the release time and absolute deadline
of the job J; its feasible interval. d; and D; are usually derived from the timing requirements
of J;, jobs in the same task as J;, and the overall system. We consider these parameters to be
part of the system specification.

3.2.1 Fixed, Jittered, and Sporadic Release Times

In many systems, we do not know exactly when each job will be released. In other words, we
do not know the actual release time r; of each job J;; only that r; is in a range [r; —, r;T]. r;
can be as early as the earliest release time r; ~ and as late as the latest release time r; ™. Indeed,
some models assume that only the range of r; is known and call this range the jitter in r;, or
release-time jitter. Sometimes, the jitter is negligibly small compared with the values of other
temporal parameters. If, for all practical purposes, we can approximate the actual release time
of each job by its earliest or latest release time, then we say that the job has a fixed release
time.

Almost every real-time system is required to respond to external events which occur
at random instants of time. When such an event occurs, the system executes a set of jobs in
response. The release times of these jobs are not known until the event triggering them occurs.
These jobs are called sporadic jobs or aperiodic jobs because they are released at random time
instants. (We will return shortly to discuss the difference between these two types of jobs.)
For example, the pilot may disengage the autopilot system at any time. When this occurs,
the autopilot system changes from cruise mode to standby mode. The jobs that execute to
accomplish this mode change are sporadic jobs.

The release times of sporadic and aperiodic jobs are random variables. The model of the
system gives the probability distribution A(x) of the release time of such a job, or when there
is a stream of similar sporadic or aperiodic jobs, the probability distribution of interrelease
time (i.e., the length of the time interval between the release times of two consecutive jobs
in the stream). A(x) gives us the probability that the release time of the job is at or earlier
than x (or the interrelease time of the stream of jobs is equal to or less than x) for all valid
values of x. Rather than speaking of release times of aperiodic jobs, we sometimes use the
term arrival times (or interarrival time) which is commonly used in queueing theory. An
aperiodic job arrives when it is released. A(x) is the arrival time distribution (or interarrival
time distribution).

3.2.2 Execution Time

Another temporal parameter of a job, J;, is its execution time, e;. e; is the amount of time
required to complete the execution of J; when it executes alone and has all the resources it

!"The notation (r;, d;] means specifically the interval that begins immediately after r; and ends at d;. In general,
a square bracket [or] indicates that the interval includes the endpoint next to the bracket, while a round bracket (or)
indicates that the endpoint is not included.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 39

Section 3.2 Temporal Parameters of Real-Time Workload 39

requires. Hence, the value of this parameter depends mainly on the complexity of the job and
the speed of the processor used to execute the job, not on how the job is scheduled.

The actual amount of time required by a job to complete its execution may vary for
many reasons. As examples, a computation may contain conditional branches, and these con-
ditional branches may take different amounts of time to complete. The branches taken during
the execution of the computation job depend on the input data. If the underlying system has
performance enhancing features (e.g., cache memory and pipeline), the amount of time a
computation takes to complete may vary each time it executes even when it has no condi-
tional branches. For these reasons, the actual execution time of a computation job is unknown
until it completes. Similarly, the actual amount of time to transmit each frame of a MPEG-
compressed video is different from frame to frame because the numbers of bits used to encode
different frames are different. The actual execution time of the job modeling the transmission
of a frame is unknown a priori. What can be determined a priori through analysis and mea-
surement are the maximum and minimum amounts of time required to complete each job.
In other words, we know that the execution time e; of the job J; is in the range [¢; , ¢; 1],
where ¢;~ and e¢; " are the minimum execution time and the maximum execution time of J;,
respectively. We usually assume that we know ¢; ~ and ¢;* of every hard real-time job J; but
the actual execution time of the job is unknown.

For the purpose of determining whether each job can always complete by its deadline,
knowing the maximum execution time of each job often suffices. For this reason, in most
deterministic models used to characterize hard real-time applications, the term execution time
e; of each job J; specifically means its maximum execution time. We will also use this term
in this sense most of the time. However, except where we state otherwise, we never mean that
the actual execution time of the job is fixed and known, only that it never exceeds e;.

You may want to question at this point the accuracy of deterministic models which as-
sume that every job takes its maximum execution time to complete. If we design our system
based on this assumption and allocate this much time to each job, the processor(s) will surely
be underutilized. This statement is clearly true sometimes. We will encounter applications
where the variations in job execution times are so large that working with their maximum
values indeed yields unacceptably conservative designs. We should not model such applica-
tions deterministically. More importantly, as you will see in Chapter 4, in some systems the
response times of some jobs may be larger when the actual execution times of some jobs are
smaller than their maximum values. In these cases, we will have to deal with the variations in
execution times explicitly.

However, there are two good reasons for the common use of the deterministic approach.
Many hard real-time systems are safety-critical. These systems are typically designed and
implemented in a such a way that the variations in job execution times are kept as small
as possible. The need to have relatively deterministic execution times places many restric-
tions on implementation choices. (For example, the programs cannot use dynamic structures
that can lead to variable execution time and memory usage; performance-enhancing features
are not used.) By working with these restrictions and making the execution times of jobs
almost deterministic, the designer can model more accurately the application system deter-
ministically. In return, the deterministic approach makes the validation of the resultant system
easier.

The other reason for the common use of the deterministic approach is that the hard real-
time portion of the system is often small. The timing requirements of the rest of the system

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 40

40 Chapter 3 A Reference Model of Real-Time Systems

are soft. In this case, an option is to design the hard real-time subsystem based on its worst-
case processor time and resource requirements even though their actual requirements may be
much smaller. We can then use the methods and tools supported by the deterministic models
to ensure that the hard timing constraints will surely be met at all times. We also can safely
reclaim the time and resources allocated to but not used by hard real-time jobs and make the
reclaimed time and resources available to soft real-time jobs and nonreal-time jobs. In this
way, the system will not be overdesigned with underutilized resources.

3.3 PERIODIC TASK MODEL

The periodic task model is a well-known deterministic workload model [LiLa]. With its
various extensions, the model characterizes accurately many traditional hard real-time ap-
plications, such as digital control, real-time monitoring, and constant bit-rate voice/video
transmission. Many scheduling algorithms based on this model have good performance and
well-understood behavior. There are now methods and tools to support the design, analysis,
and validation of real-time systems that can be accurately characterized by the model. For
these reasons, we want to know it well and be able to use it proficiently.

3.3.1 Periods, Execution Times, and Phases of Periodic Tasks

In the periodic task model, each computation or data transmission that is executed repeatly
at regular or semiregular time intervals in order to provide a function of the system on a
continuing basis is modeled as a period task. Specifically, each periodic task, denoted by 7;,
is a sequence of jobs. The period p; of the periodic task 7; is the minimum length of all time
intervals between release times of consecutive jobs in 7;. Its execution time is the maximum
execution time of all the jobs in it. With a slight abuse of the notation, we use ¢; to denote
the execution time of the periodic task 7;, as well as that of all the jobs in it. At all times, the
period and execution time of every periodic task in the system are known.

This definition of periodic tasks differs from the one often found in real-time systems
literature. In many published works, the term periodic task refers to a task that is truly periodic,
that is, interrelease times of all jobs in a periodic task are equal to its period. This definition
has led to the common misconception that scheduling and validation algorithms based on the
periodic task model are applicable only when every periodic task is truly periodic. We will
show in Chapter 6 that in fact most existing results remain correct as long as interrelease
times of jobs in each task are bounded from below by the period of the task. This is why we
adopt our definition. What are called periodic tasks here are sometimes called sporadic tasks
in literature. In this book, a sporadic task is one whose interrelease times can be arbitrarily
small; we will define this term shortly.

The accuracy of the periodic task model decreases with increasing jitter in release times
and variations in execution times. So, a periodic task is an inaccurate model of the transmis-
sion of a variable bit-rate video, because of the large variation in the execution times of jobs
(i.e., transmission times of individual frames). A periodic task is also an inaccurate model of
the transmission of cells on a real-time connection through a switched network that does not
do traffic shaping at every switch, because large release-time jitters are possible.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 41

Section 3.3 Periodic Task Model 41

We call the tasks in the system Ti, 75, ..., T,.> When it is necessary to refer to the
individual jobs in a task 7;, we call them J; |, J; » and so on, J; ; being the kth job in 7;. When
we want to talk about properties of individual jobs but are not interested in the tasks to which
they belong, we also call the jobs J;, J», and so on.

The release time r;; of the first job J;; in each task 7; is called the phase of T;. For
the sake of convenience, we use ¢; to denote the phase of T;, that is, ¢; = r; 1. In general,
different tasks may have different phases. Some tasks are in phase, meaning that they have
the same phase.

We use H to denote the least common multiple of p; fori = 1,2, ...n. A time interval
of length H is called a hyperperiod of the periodic tasks. The (maximum) number N of jobs
in each hyperperiod is equal to >, H/p;. The length of a hyperperiod of three periodic
tasks with periods 3, 4, and 10 is 60. The total number N of jobs in the hyperperiod is 41.

We call the ratio u; = e;/p; the utilization of the task T;. u; is equal to the fraction
of time a truly periodic task with period p; and execution time e; keeps a processor busy. It
is an upper bound to the utilization of any task modeled by 7;. The total utilization U of all
the tasks in the system is the sum of the utilizations of the individual tasks in it. So, if the
execution times of the three periodic tasks are 1, 1, and 3, and their periods are 3, 4, and 10,
respectively, then their utilizations are 0.33, 0.25 and 0.3. The total utilization of the tasks is
0.88; these tasks can keep a processor busy at most 88 percent of the time.

A jobin T; that is released at t must complete D; units of time after ¢; D; is the (relative)
deadline of the task T;. We will omit the word “relative” except where it is unclear whether
by deadline, we mean a relative or absolute deadline. We will often assume that for every task
ajob is released and becomes ready at the beginning of each period and must complete by the
end of the period. In other words, D; is equal to p; for all n. This requirement is consistent
with the throughput requirement that the system can keep up with all the work demanded of
it at all times.

However, in general, D; can have an arbitrary value. In particular, it can be shorter than
p;i. Giving a task a short relative deadline is a way to specify that variations in the response
times of individual jobs (i.e., jitters in their completion times) of the task must be sufficiently
small. Sometimes, each job in a task may not be ready when it is released. (For example,
when a computation job is released, its input data are first transferred to memory. Until this
operation completes, the computation job is not ready.) The time between the ready time of
each job and the end of the period is shorter than the period. Similarly, there may be some
operation to perform after the job completes but before the next job is released. Sometimes, a
job may be composed of dependent jobs that must be executed in sequence. A way to enforce
the dependency relation among them is to delay the release of a job later in the sequence while
advancing the deadline of a job earlier in the sequence. The relative deadlines of jobs may be
shortened for these reasons as well.

3.3.2 Aperiodic and Sporadic Tasks

Earlier, we pointed out that a real-time system is invariably required to respond to external
events, and to respond, it executes aperiodic or sporadic jobs whose release times are not

2Again, the number 7 of periodic tasks in the system is known. This number may change when some tasks
are deleted from the system and new tasks are added to the system. The amount of time to complete such a change is
short compared with the length of time between consecutive changes.

42

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 42

Chapter 3 A Reference Model of Real-Time Systems

known a priori. An operator’s adjustment of the sensitivity setting of a radar surveillance
system is an example. The radar system must continue to operate, but in addition, it also must
respond to the operator’s command. Similarly, when a pilot changes the autopilot from cruise
mode to standby mode, the system must respond by reconfiguring itself, while continuing to
execute the control tasks that fly the airplane. A command and control system must process
sporadic data messages, in addition to the continuous voice and video traffic.

In the periodic task model, the workload generated in response to these unexpected
events is captured by aperiodic and sporadic tasks. Each aperiodic or sporadic task is a stream
of aperiodic or sporadic jobs, respectively. The interarrival times between consecutive jobs in
such a task may vary widely and, in particular, can be arbitrarily small. The jobs in each task
model the work done by the system in response to events of the same type. For example, the
jobs that execute to change the detection threshold of the radar system are in one task; the
jobs that change the operation mode of the autopilot are in one task; and the jobs that process
sporadic data messages are in one task, and so on.

Specifically, the jobs in each aperiodic task are similar in the sense that they have the
same statistical behavior and the same timing requirement. Their interarrival times are iden-
tically distributed random variables with some probability distribution A(x). Similarly, the
execution times of jobs in each aperiodic (or sporadic) task are identically distributed random
variables, each distributed according to the probability distribution B(x). These assumptions
mean that the statistical behavior of the system and its environment do not change with time,
that is, the system is stationary. That the system is stationary is usually valid in time intervals
of length on the order of H, in particular, within any hyperperiod of the periodic tasks during
which no periodic tasks are added or deleted.

We say that a task is aperiodic if the jobs in it have either soft deadlines or no deadlines.
The task to adjust radar’s sensitivity is an example. We want the system to be responsive,
that is, to complete each adjustment as soon as possible. On the other hand, a late response
is annoying but tolerable. We therefore want to optimize the responsiveness of the system for
the aperiodic jobs, but never at the expense of hard real-time tasks whose deadlines must be
met at all times.

In contrast, an autopilot system is required to respond to a pilot’s command to disen-
gage the autopilot and take over the control manually within a specific time. Similarly, when
a transient fault occurs, a fault-tolerant system may be required to detect the fault and recover
from it in time. The jobs that execute in response to these events have hard deadlines. Tasks
containing jobs that are released at random time instants and have hard deadlines are spo-
radic tasks. We treat them as hard real-time tasks. Our primary concern is to ensure that their
deadlines are always met; minimizing their response times is of secondary importance.

3.4 PRECEDENCE CONSTRAINTS AND DATA DEPENDENCY

Data and control dependencies among jobs may constrain the order in which they can execute.
In classical scheduling theory, the jobs are said to have precedence constraints if they are
constrained to execute in some order. Otherwise, if the jobs can execute in any order, they are
said to be independent.

For example, in a radar surveillance system, the signal-processing task is the producer
of track records, while the tracker task is the consumer. In particular, each tracker job pro-

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 43

Section 3.4 Precedence Constraints and Data Dependency 43

cesses the track records generated by a signal-processing job. The designer may choose to
synchronize the tasks so that the execution of the kth tracker job does not begin until the kth
signal-processing job completes. The tracker job is precedence constrained. In general, a con-
sumer job has this constraint whenever it must synchronize with the corresponding producer
job(s) and wait until the latter completes in order to execute.

As another example, we consider queries to an information server. Suppose that before
each query is processed and the requested information retrieved, its authorization to access
the requested information is first checked. The retrieval job cannot begin execution until the
authentication job completes. The communication job that forwards the information to the
requester cannot begin until the retrieval job completes. Similarly, in a communication system,
the jobs that generate an acknowledgement of a message and transmit the acknowledgement
message cannot begin until the job that receives and processes the message completes.

3.4.1 Precedence Graph and Task Graph

We use a partial-order relation <, called a precedence relation, over the set of jobs to specify
the precedence constraints among jobs. A job J; is a predecessor of another job J; (and Ji
a successor of J;) if J; cannot begin execution until the execution of J; completes. A short-
hand notation to state this fact is J; < Ji. J; is an immediate predecessor of J; (and J; is an
immediate successor of J;) if J; < Ji and there is no other job J; such that J; < J; < Ji. Two
jobs J; and J; are independent when neither J; < J; nor J; < J;. A job with predecessors is
ready for execution when the time is at or after its release time and all of its predecessors are
completed.

A classical way to represent the precedence constraints among jobs in a set J is by a
directed graph G = (J, <). Each vertex in this graph represents a job in J. We will call each
vertex by the name of the job represented by it. There is a directed edge from the vertex J; to
the vertex J; when the job J; is an immediate predecessor of the job J;. This graph is called
a precedence graph.

A task graph, which gives us a general way to describe the application system, is an
extended precedence graph. Figure 3—1 shows a task graph. As in a precedence graph, the
vertices in a task graph represent jobs. They are shown as circles and squares in this figure.
(Here, we ignore the difference between the types of jobs represented by them. The need

0,7] 2,91 4, 11] (6,13] (8, 15]
o o (o] o o
2,5] ., 8] (8, 11] (11, 14] (14, 17]
o O O O o—> .-
(0, 5] (4, 8] (5, 20] conditional block
(o} O L o— — — —
branch
(0,6] \
C\A o— —
-------------- »>0—— —>

23 2
FIGURE 3-1 Example of task graphs.

44

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 44

Chapter 3 A Reference Model of Real-Time Systems

to differentiate them arises only in the next section.) For simplicity, we show only the job
attributes that are of interest to us. The numbers in the bracket above each job give its feasi-
ble interval. The edges in the graph represent dependencies among jobs. If all the edges are
precedence edges, representing precedence constraints, then the graph is a precedence graph.

Specifically, the system described by the graph in Figure 3—1 includes two periodic
tasks. The task whose jobs are represented by the vertices in the top row has phase 0, period
2, and relative deadline 7. The jobs in it are independent; there are no edges to or from these
jobs. In other words, the jobs released in later periods are ready for execution as soon as
they are released even though some job released earlier is not yet complete. This is the usual
assumption about periodic tasks. The vertices in the second row of Figure 3—1 represent jobs
in a periodic task with phase 2, period 3, and relative deadline 3. The jobs in it are dependent;
the first job is the immediate predecessor of the second job, the second job is the immediate
predecessor of the third job, and so on. The precedence graph of (the jobs in) this task is a
chain as shown here. A subgraph’s being a chain indicates that for every pair of jobs J; and
Ji in the subgraph, either J; < J; or J; > J;. Hence the jobs must be executed in serial order.

In the subsequent chapters, we rarely use a task graph to describe a system of periodic
tasks. You can see why from the above example: A list of periodic tasks and their parameters
suffices. A graph such as the one in Figure 3—1 is necessary only when the system contains
components that have complex dependencies as exemplified by the subgraph below the peri-
odic tasks.

Many types of interactions and communication among jobs are not captured by a prece-
dence graph but can be captured by a task graph. Unlike a precedence graph, a task graph may
contain different types of edges that represent different types of dependencies. The type(s) of
dependency represented by an edge is given by the type(s) of the edge. The types of an edge
connecting two vertices and other parameters of the edge are interconnection parameters of
the jobs represented by the vertices.

3.4.2 Data Dependency

As an example, data dependency cannot be captured by a precedence graph. In many real-
time systems, jobs communicate via shared data. Oftentimes, the designer chooses not to
synchronize producer and consumer jobs. Rather, each producer places the data generated by
it in a shared address space to be used by the consumer at any time. In this case, the classical
precedence graph should show that the producer and consumer are independent because they
are not explicitly constrained to execute in turn.

As an example, in an avionics system, the navigation job updates the location of the air-
plane periodically. These data are placed in a shared space. Whenever the flight management
job needs navigation data, it reads the most current data produced by the navigation job. There
is no precedence constraint between the navigation job and the flight management job.

In a task graph, data dependencies among jobs are represented explicitly by data-
dependency edges among jobs. There is a data-dependency edge from a vertex J; to vertex
Ji in the task graph if the job J; consumes data generated by J; or the job J; sends messages
to Jr. A parameter of an edge from J; to J; is the volume of data from J; to Ji. In Chapter
9, we will describe algorithms that partition an application system into modules and assign
different modules to different processors for execution. Since the cost of communication
between jobs on the same processor is usually much lower than that between jobs on different

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 45

Section 3.5 Other Types of Dependencies 45

processors, one of the key factors we need to consider in choosing a partition is the amount of
data exchanged among jobs. For this purpose, we will make use of the information provided
by the data volume parameter.

As we will see in later chapters, the scheduler may not be able to schedule the naviga-
tion job and the flight management job independently. To ensure data integrity, some locking
mechanism may be in place, and this mechanism allows only one job to access the shared data
at a time. This leads to resource contention, which may also constrain the manner in which
jobs execute. However, this constraint is imposed on jobs by scheduling and resource access-
control algorithms. It is not a precedence constraint because it is not an intrinsic constraint on
the execution order of the jobs.

*3.5 OTHER TYPES OF DEPENDENCIES

Like nonreal-time applications, real-time applications sometimes contain redundant modules,
carry out heuristic searches, use multiple versions, execute some job conditionally, and so
forth. We add other extensions to the classical precedence graphs in order to model such
jobs and dependencies. These extensions include temporal distance, OR jobs, conditional
branches, and pipe (or pipeline).

3.5.1 Temporal Dependency

Some jobs may be constrained to complete within a certain amount of time relative to one
another. We call the difference in the completion times of two jobs the femporal distance
[HaLLH] between them. Jobs are said to have a temporal distance constraint if their temporal
distance must be no more than some finite value. Jobs with temporal distance constraints may
or may not have deadlines.

As an example, we consider the display of video frames and the accompanying audio
when the video is that of a person speaking. To have lip synchronization, the time between the
display of each frame and the generation of the corresponding audio segment must be no more
than 160 msec [StNa]. Another example is the visual and audio displays of a passive sonar
system [MoMW]. The synthesized audio signal and the accompanied visual display must be
presented to the operator no more than 100 msec apart. These timing requirements can be
stated more naturally in terms of temporal distance constraints than in terms of deadlines of
jobs.

In a task graph, temporal distance constraints among jobs are represented by temporal-
dependency edges. There is a temporal-dependency edge from a vertex J; to a vertex J; if
the job J; must be completed within a certain time after J; completes. The temporal distance
between the jobs is given by the temporal distance parameter of the edge. The value of this
parameter is infinite if the jobs have no temporal distance constraint, or equivalently, there is
no temporal-dependency edge between the jobs.

3.5.2 AND/OR Precedence Constraints

In the classical model, a job with more than one immediate predecessor must wait until all
its immediate predecessors have been completed before its execution can begin. Whenever it

46

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 46

Chapter 3 A Reference Model of Real-Time Systems

is necessary to be specific, we call such jobs AND jobs and dependencies among them AND
precedence constraints. AND jobs are represented by unfilled circles in the task graph in Fig-
ure 3—1. An example is the job labeled J in this figure. All three of its immediate predecessors
must be completed before J can begin execution. An AND job such as J may be the transmis-
sion of a message to a user. Its immediate predecessors are the jobs that set up a connection
for the message, encrypt the message to safeguard privacy, and check the user’s account for
the requested quality of the delivery service. These predecessors may execute in any order
relative to each other, but they must all be completed before the message transmission job can
begin.

In contrast, an OR job is one which can begin execution at or after its release time
provided one or some of its immediate predecessors has been completed. In Figure 3-1, we
represent OR jobs by square vertices, as exemplified by the two square vertices at the bottom
of the graph. The one labeled 2/3 can begin execution as soon as two out of its three immediate
predecessors complete. In a system that uses triple redundancy to increase fault tolerance, a
voter can be modeled as a 2/3 job. Its predecessors are three replicated jobs that implement a
critical function. The voter executes and in turn allows its successors to begin whenever two
out of the three predecessors complete (and produce correct results). Similarly, we can model
a two-version computation as the two immediate predecessors of a 1/2 OR job. The operating
system chooses one of the versions depending on factors such as their resource requirements
and quality of their results. Only one of them needs to be completed before the OR job can
begin execution.

In the task graph, the in-type of job (i.e., the vertex representing the job) tells us whether
all its immediate predecessors must complete before its execution can begin. By default, the
value of this job parameter is AND. It can have the value OR, if only one of its immediate
predecessors must be completed, or k-out-of-1, if only k out [of its immediate predecessor
must be completed before its execution can begin.

3.5.3 Conditional Branches

Similarly, in the classical model, all the immediate successors of a job must be executed;
an outgoing edge from every vertex expresses an AND constraint. This convention makes it
inconvenient for us to represent conditional execution of jobs, such as the example in Fig-
ure 3-2.

This system can easily be modeled by a task graph that has edges expressing OR con-
straints. Only one of all the immediate successors of a job whose outgoing edges express OR
constraints is to be executed. Such a job is called a branch job. In a meaningful task graph,
there is a join job associated with each branch job. In Figure 3—1, these jobs are represented by
filled circles. The subgraph that begins from a vertex representing a branch job and ends at the
vertex representing the associated join job is called a conditional block. Only one conditional
branch in each conditional block is to be executed. The conditional block in Figure 3—1 has
two conditional branches: Either the upper conditional branch, containing a chain of jobs, or
the lower conditional branch, containing only one job, is to be executed.

This natural extension allows us to use a task graph to characterize data-dependent
conditional executions exemplified by the program segment in Figure 3-2. As an exercise,
you may want to look at Problem 3.2 which asks you to draw a task graph of an application
that has conditional branches and for comparison, use as many classical precedence graphs as

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 47

Section 3.5 Other Types of Dependencies 47

For every second do the following:
Process radar returns.
Generate track records.
Perform track association.
For the target 7' on each of the established tracks do:
If the target T is within distance D from self,
Do the following:
Analyze the trajectory of T'.
If T is on collision course with self, sound alarm.
Enddo
Else
Compute the current distance of 7' from self.
If the current distance is larger than previous distance,
drop the track of T'.
Endif
Endif
Endfor

FIGURE 3-2 A program with conditional branches.

necessary to represent all of its possible execution paths. In general, we need to use a classical
precedence graph for each branch in each conditional block. For example, the task graph in
Figure 3-1 is equivalent to two precedence graphs: One contains only the upper conditional
branch, and the other graph contains only the lower conditional branch. We need [* classical
precedence graphs to represent an application system that contains k conditional blocks if
each conditional blocks has / branches.

Similar to the parameter in-type, the job parameter out-type tells whether all the job’s
immediate successors are to be executed. The default value of the out-type parameter of every
jobis AND, that is, all its immediate successors are to be executed. On the other hand, the out-
type of a branch job is OR, because only one of its immediate successors must be executed.

3.5.4 Pipeline Relationship

A dependency between a pair of producer-consumer jobs that are pipelined can theoretically
be represented by a precedence graph. In this graph, the vertices are the granules of the pro-
ducer and the consumer. Each granule of the consumer can begin execution when the previous
granule of this job and the corresponding granule of the producer job have completed. Prob-
lem 3.3 gives an example of how this representation works, but the example also illustrates
how inconvenient the representation is. For this reason, we introduce the pipeline relation
between jobs.

In the task graph, we represent a pipeline relationship between jobs by a pipeline edge,
as exemplified by the dotted edge between the jobs in the right-bottom corner of the graph in
Figure 3—1. There is an edge from J; to J; if the output of J; is piped into J; and the execution
of Ji can proceed as long as there are data for it to process.

48

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 48

Chapter 3 A Reference Model of Real-Time Systems

3.6 FUNCTIONAL PARAMETERS

While scheduling and resource access-control decisions are made disregarding most func-
tional characteristics of jobs, several functional properties do affect these decisions. The work-
load model must explicitly describe these relevant properties, and this is done by the values of
functional parameters. Among them are preemptivity, criticality, optional interval, and laxity

type.

3.6.1 Preemptivity of Jobs

Executions of jobs can often be interleaved. The scheduler may suspend the execution of a
less urgent job and give the processor to a more urgent job. Later when the more urgent job
completes, the scheduler returns the processor to the less urgent job so the job can resume
execution. This interruption of job execution is called preemption. A job is preemptable if its
execution can be suspended at any time to allow the execution of other jobs and, later on,
can be resumed from the point of suspension. Computation jobs that execute on CPUs are
examples of preemptable jobs. In nonreal-time systems, such jobs are typically scheduled in
a round-robin manner; this is possible because they are preemptable.

A job is nonpreemptable if it must be executed from start to completion without inter-
ruption. This constraint may be imposed because its execution, if suspended and the processor
given to other jobs, must be executed again from the beginning. As an example, we consider
jobs that model the transmissions of data frames in a token ring (or bus). If transmission of
a frame is interrupted before it completes, the partially transmitted frame is discarded by the
receiver. The entire frame must be retransmitted from the start. To avoid wasting bandwidth
in this way, we make the execution of this job on the ring (or bus) nonpreemptable.

Sometimes, a job may be preemptable everywhere except for a small portion which
is constrained to be nonpreemptable. An example is an interrupt handling job. An interrupt
handling job usually begins by saving the state of the processor (i.e., storing the processor
status register, the stack pointer, the program counter, and so on). This small portion of the
job is nonpreemptable because suspending the execution of this portion and giving the CPU
to another job may cause serious errors in the data structures shared by the jobs.

During preemption, the system must first save the state of the preempted job at the time
of preemption so it can resume the job from that state. Then, the system must prepare the
execution environment for the preempting job before starting the job. For example, in the
case of CPU jobs, the state of the preempted job includes the contents of its program counter,
processor status register, and registers containing temporary results. After saving the contents
of these registers in memory and before the preempting job can start, the operating system
must load the new processor status register, clear pipelines, and so on. In operating system
literature, these actions are collectively called a context switch. The amount of time required
to accomplish a context switch is called a context-switch time. We will use these terms to
mean the overhead work done during preemption and the time required to accomplish the
work, respectively, for all types of jobs, not just CPU jobs.

Finally, we have focused here on the preemptivity of jobs on processors. The fact that a
job is nonpreemptable is treated as a constraint of the job. In Section 3.7, we will see that the
nonpreemptivity of a job may be a consequence of a constraint on the usage of some resource.
Let us keep this point in mind when we discuss the preemptivity attribute of resources in
Section 3.7.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 49

Section 3.6 Functional Parameters 49

3.6.2 Criticality of Jobs

In any system, jobs are not equally important. The importance (or criticality) of a job is a
positive number that indicates how critical the job is with respect to other jobs; the more
critical the job, the larger its importance. In literature, the terms priority and weight are often
used to refer to importance; the more important a job, the higher its priority or the larger its
weight. We will use the terms priority and weight extensively later to mean attributes that
are unrelated to the importance. Throughout this book, we use importance or criticality to
measure criticality in order to avoid overloading these terms.

During an overload when it is not possible to schedule all the jobs to meet their dead-
lines, it may make sense to sacrifice the less critical jobs so that the more critical jobs can
meet their deadlines. For this reason, some scheduling and resource access-control algorithms
try to optimize weighted performance measures such as weighted average response time (i.e.,
the average of response time multipled by importance) or weighted average tardiness (i.e., the
average of tardiness multipled by importance) over all jobs. If the system uses one of these
algorithms, the information concerning the criticality of jobs must be given to the scheduler.
Assigning importance to each job is a natural way to do so.

For example, in a flight control and management system, the job that controls the flight
of the aircraft is more critical than the navigation job that determines the current position
relative to the chosen course. The navigation job is more critical than the job that adjusts
the course and cruise speed in order to minimize fuel consumption. The cabin air flow and
temperature control jobs are more critical than the job that runs the in-flight movies, and so
on. In the model of this system, the designer may give these jobs different importance values.
In this way, the different degrees of criticality of the jobs are explicitly specified.

*3.6.3 Optional Executions

It is often possible to structure an application so that some jobs or portions of jobs are optional.
If an optional job or an optional portion of a job completes late or is not executed at all, the
system performance may degrade, but nevertheless function satisfactorily. In contrast, jobs
and portions of jobs that are not optional are mandatory; they must be executed to completion.
Therefore, during a transient overload when it is not possible to complete all the jobs in time,
we may choose to discard optional jobs (i.e, leave them unexecuted or partially executed) so
that the mandatory jobs can complete in time. In this way, the system can trade the quality of
the results it produces and the services it delivers for timeliness of its results and services.

In our model, the optional parameter of each job indicates the portion of the job that is
optional. Marking a job or a portion of a job optional is another way for the designer to indicate
that the job is not critical. By explicitly identifying the optional jobs and using a scheduling
strategy that takes advantage of this information, the designer can control the manner in which
the system degrades.

As an example, in a collision avoidance system, we may consider the job that computes
the correct evasive action and informs the operator of this action optional. Normally, we want
the system to help the operator by choosing the correct action. However, in the presence of a
failure and when the system is operating in a degraded mode, it is not possible to complete
this computation in time. The collision avoidance system may still function satisfactorily if it
skips this computation as long as it generates a warning and displays the course of the object
about to collide with it in time.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 50

50 Chapter 3 A Reference Model of Real-Time Systems

*3.6.4 Laxity Type and Laxity Function

The laxity type of a job indicates whether its timing constraints are soft or hard. As mentioned
earlier, in real-time systems literature, the laxity type of a job is sometimes supplemented by
a usefulness function. This function gives the usefulness of the result produced by the job as a
function of its tardiness.

Figure 3-3 gives several usefulness functions as examples. The ones shown as solid step
functions are usually associated with hard real-time jobs. The usefulness of the result becomes
zero or negative as soon as the job is tardy. In the latter case, it is better not to execute the
job than to execute it and complete it late. In other words, it is “better never than late.” As
mentioned in Chapter 2, the transmission and execution of a command to release a bomb on a
target is an example of jobs with this laxity type.

The dashed and dotted lines in Figure 3-3 show two other usefulness functions. In par-
ticular, the dotted ones may be that of a point-of-sales transaction, for example, one that exe-
cutes to check whether you have enough credit for the current purchase. If the job is late, you
and the salesperson become more and more impatient. The usefulness of the result decreases
gradually. Eventually, you are likely to give up and walk away. At that point, the usefulness
of the result becomes zero. The dashed line shows a function that decreases faster and be-
comes negative. An example of jobs that have this kind of usefulness function is a stock price
update transaction. It may be tolerable if the update completes slightly late and the price x
written into the database is somewhat old. However, if the transaction completes so late that
the current price differs significantly from x, the result x can be misleading. By that time, the
usefulness of this update becomes negative.

We can use these usefulness functions to describe qualitatively the real-time perfor-
mance objectives of the system. They can guide the choice and implementation of scheduling
strategies. However, their utility as the means to specify timing constraints is small, especially
if the timing constraints are hard. The only exception are those exemplified by the solid step

Value

tardiness

-~ -

FIGURE 3-3 Examples of usefulness functions.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 51

Section 3.7 Resource Parameters of Jobs and Parameters of Resources 51

functions in Figure 3-3, but such constraints can easily be specified without the usefulness
functions.

3.7 RESOURCE PARAMETERS OF JOBS AND PARAMETERS OF RESOURCES

Earlier we said that the basic components of the underlying system available to the appli-
cation system(s) are processors and resources. Every job requires a processor throughout its
execution.? In addition to a processor, a job may also require some resources. The resource
parameters of each job give us the type of processor and the units of each resource type re-
quired by the job and the time intervals during its execution when the units are required. These
parameters provide the information that is needed to support resource management decisions.
In Chapter 8, where we will need these job parameters, we will discuss them in detail.

3.7.1 Preemptivity of Resources

The resource parameters of jobs give us a partial view of the processors and resources from
the perspective of the applications that execute on them. We sometimes want to describe the
characteristics of processors and resources independent of the application and can do so using
parameters of resources. A resource parameter is preemptivity. A resource is nonpreemptable
if each unit of the resource is constrained to be used serially. In other words, once a unit of
a nonpreemptable resource is allocated to a job, other jobs needing the unit must wait until
the job completes its use. Otherwise, if jobs can use every unit of a resource in an interleaved
fashion, the resource is preemptable. The lock on a data object in a database is an example of
nonpreemptable resource. When a job modeling a transaction that reads and writes the data
object has acquired the lock, other jobs that also require this lock at the time must wait. The
lock is a nonpreemptable resource and, consequently, every transaction job is nonpreemptable
in its use of the lock. This does not mean that the job is nonpreemptable on other resources
or on the processor. In fact, the transaction may process the data it has already retrieved and,
for this purpose, it requires the processor while it holds the lock. The transaction can be
preempted on the processor by other transactions that are not waiting for the locks held by it.

In Section 3.6 we used message transmissions on a token ring as an example of where
jobs may be constrained to be nonpreemptable. This is a poor way to model the application and
the resource. A better alternative is to model the token ring as a nonpreemptable resource and
leave message transmission jobs preemptable. The fact that the transmission of a message over
a token ring, if interrupted, must be redone from the beginning is a consequence of the way the
medium-access protocol works. Hence, nonpreemptivity is a property of the token ring. If we

3In general, a job may execute in parallel on a number of processors, and the number and types of processors
it requires may vary during its execution. Moreover the amount of time required by a job to complete may be a
function of the number of processors used to execute the job. (For example, the execution time of a parallelizable
computation on a massively parallel machine decreases with the number of processors used to do the computation.)
The resource parameters of a job give us the type and number of processors required by a job to execute, as well as
how the length of time for which the processors are required depends on the number of processors made available to
the job. However, we will rarely be concerned with parallelizable jobs. Except when we state otherwise, we assume
that every job executes on one processor.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 52

52 Chapter 3 A Reference Model of Real-Time Systems

were to transmit the messages by an ATM switch, we can preempt the transmission of a less
urgent message in preference to more urgent messages without having to retransmit the less
urgent message in entirety. In other words, message transmission jobs are in fact preemptable.

*3.7.2 Resource Graph

We can describe the configuration of the resources using a resource graph. In a resource
graph, there is a vertex R; for every processor or resource R; in the system. (For the sake of
convenience, we now refer to both processors and resources as resources and name each vertex
by the name of the resource represented by it.) The attributes of the vertex are the parameters
of the resource. In particular, the resource type of a resource tells us whether the resource is a
processor or a (passive) resource, and its number gives us the number of available units.

While edges in task graphs represent different types of dependencies among jobs, edges
in a resource graph represent the relationship among resources. Using different types of edges,
we can describe different configurations of the underlying system.

There are two types of edges in resource graphs. An edge from a vertex R; to another
vertex R; can mean that R; is a component of R;. (For example, a memory is part of a com-
puter, and so is a monitor.) This edge is an is-a-part-of edge. Clearly, the subgraph containing
all the is-a-part-of edges is a forest. The root of each tree represents a major component which
contains subcomponents represented by vertices in the tree. As an example, the resource graph
in a system containing two computers consists of two trees. The root of each tree represents
a computer. The children of this vertex include one or more CPUs, main memory, and so
on. Each of these subcomponents is represented by a vertex, and there is an edge from the
computer vertex to each subcomponent vertex.

Some edges in resource graphs represent connectivity between components. These
edges are called accessibility edges. In the above example, if there is a connection between
two CPUs in the two computers, then each CPU is accessible from the other computer, and
there is an accessibility edge from each computer to the CPU on the other computer. Each
accessibility edge may have several parameters whose values help to complete the description
of the interconnection of the resources. A parameter of an accessibility edge from a processor
P; to another Py is the cost for sending a unit of data from a job executing on P; to a job
executing on Py. In Chapter 9, we will describe algorithms that decide on which processors
to place jobs and resources in a statically configured system. These algorithms need the infor-
mation provided by accessibility edges. There we will again discuss this and other parameters
that we will need to describe the resources and their interconnections for the purpose of
scheduling in multiprocessor and distributed systems.

3.8 SCHEDULING HIERARCHY

Figure 3—4 shows the three elements of our model of real-time systems together. The applica-
tion system is represented by a task graph, exemplified by the graph on the top of the diagram.
This graph gives the processor time and resource requirements of jobs, the timing constraints
of each job, and the dependencies of jobs. The resource graph describes the amounts of the
resources available to execute the application system, the attributes of the resources, and the
rules governing their usage. Between them are the scheduling and resource access-control
algorithms used by the operating system.

3.8.1

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 53

Section 3.8 Scheduling Hierarchy 53

-—-=>
-—-=>
O—>0 - - - >
I < -1
P~ : -7
~ o scheduling and _ -
[~ - [
~ o resource-access control ~ _ -
| ~ - |
~ -
~ -
~ -
v P M
1 ' 1 '
| | P |:|:| :
1 ' 1 '
: i ' :
1 ' 1 1
: o :
1 ' 1 '
: o :
' - ' ' '
: o :
1 ' 1 '
' processors Voo resources :

FIGURE 3-4 Model of real-time systems.

Scheduler and Schedules

Jobs are scheduled and allocated resources according to a chosen set of scheduling algo-
rithms and resource access-control protocols. The module which implements these algorithms
is called the scheduler.

Specifically, the scheduler assigns processors to jobs, or equivalently, assigns jobs to
processors. We say that a job is scheduled in a time interval on a processor if the processor
is assigned to the job, and hence the job executes on the processor, in the interval. The total
amount of (processor) time assigned to a job according to a schedule is the total length of all
the time intervals during which the job is scheduled on some processor.

By a schedule, we mean an assignment of all the jobs in the system on the available
processors produced by the scheduler. Throughout this book, we do not question the correct-
ness of the scheduler; rather, we assume that the scheduler works correctly. By correctness, we
mean that the scheduler produces only valid schedules; a valid schedule satisfies the following
conditions:

Every processor is assigned to at most one job at any time.
Every job is assigned at most one processor at any time.

No job is scheduled before its release time.

Eal o

Depending on the scheduling algorithm(s) used, the total amount of processor time
assigned to every job is equal to its maximum or actual execution time.

5. All the precedence and resource usage constraints are satisfied.

Again, an implicit assumption here is that jobs do not run in parallel on more than one pro-
cessor to speed up their execution.

54

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 54

Chapter 3 A Reference Model of Real-Time Systems

3.8.2 Feasibility, Optimality, and Performance Measures

A valid schedule is a feasible schedule if every job completes by its deadline (or, in general,
meets its timing constraints). We say that a set of jobs is schedulable according to a scheduling
algorithm if when using the algorithm the scheduler always produces a feasible schedule.

The criterion we use most of the time to measure the performance of scheduling algo-
rithms for hard real-time applications is their ability to find feasible schedules of the given ap-
plication system whenever such schedules exist. Hence, we say that a hard real-time schedul-
ing algorithm is optimal if (using) the algorithm (the scheduler) always produces a feasible
schedule if the given set of jobs has feasible schedules. (For the sake of simplicity, we will
not mention the scheduler; in other words, we will omit the words in the parentheses in the
previous sentence. When we say what an algorithm does, we mean what the scheduler does
according to the algorithm.) Conversely, if an optimal algorithm fails to find a feasible sched-
ule, we can conclude that the given set of jobs cannot feasibly be scheduled by any algorithm.

In addition to the criterion based on feasibility, other commonly used performance mea-
sures include the maximum and average tardiness, lateness, and response time and the miss,
loss, and invalid rates. The right choice of performance measure depends on the objective of
scheduling. As an example, when a set of jobs is not schedulable by any algorithm, we may
settle for a schedule according to which the number of jobs failing to complete in time is
the smallest. Hence, an algorithm performs better if it can produce a schedule with a smaller
number of late jobs than others. Alternatively, we may not care how many jobs are late, pro-
vided that their tardiness is small. In this case, we want to use algorithms that give us small
maximum or average tardiness.

The lateness of a job is the difference between its completion time and its deadline.
Unlike the tardiness of a job which never has negative values, the lateness of a job which
completes early is negative, while the lateness of a job which completes late is positive. Some-
times, we want to keep jitters in the completion times small; we can do so by using scheduling
algorithms that try to minimize the average absolute lateness of jobs. As an example, suppose
that the jobs model the transmission of packets in a packet-switched network. The packets in
each message are buffered at the switch at the receiving end, assembled into a message, and
then forwarded to the receiving host. The early arrivals must be held in the buffer waiting for
the late arrivals. A larger arrival-time jitter means a larger buffer occupancy time and conse-
quently, a larger total demand for buffer space of all messages arriving at the switch. In this
example, the average lateness of jobs is a meaningful performance measure, because minimiz-
ing it indirectly minimizes the average buffer occupancy time and buffer space requirement.

In the case where all the jobs have the same release time and deadline, the problem of
scheduling the jobs to meet their deadline is in essence the same as that of scheduling to min-
imize the completion time of the job which completes last among all jobs. The response time
of this job is the response time of the set of jobs as a whole and is often called the makespan
of the schedule. This is a performance criterion commonly used to compare scheduling algo-
rithms in classical scheduling literature: an algorithm that produces a schedule with a shorter
makespan is better. Clearly, if the makespan is less than or equal to the length of their feasible
interval, the jobs can meet their deadline.

By far, the most frequently used performance measure for jobs that have soft deadlines
is their average response times. We sometimes compare the performance of scheduling algo-
rithms on a given set of jobs based on the average response times of jobs when scheduled

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 55

Section 3.8 Scheduling Hierarchy 55

according to them. The smaller the average response time, the better the algorithm, just as
for general-purpose, interactive systems. In a system that has a mixture of jobs with hard and
soft deadlines, the objective of scheduling is typically to minimize the average response time
of jobs with soft deadlines while ensuring that all jobs with hard deadlines complete in time.
Since there is no advantage in completing jobs with hard deadlines early, we may delay their
execution in order to improve the response time of jobs with soft deadlines. Indeed, you will
find scheduling algorithms in Chapters 5 and 7 that use this strategy.

For many soft real-time applications, it is acceptable to complete some jobs late or to
discard late jobs. For such an application, suitable performance measures include the miss
rate and loss rate. The former gives the percentage of jobs that are executed but completed
too late, and the latter give the percentage of jobs that are discarded, that is, not executed at
all. When it is impossible to complete all the jobs on time, a scheduler may choose to discard
some jobs. By doing so, the scheduler increases the loss rate but completes more jobs in time.
Thus, it reduces the miss rate. Similarly, reducing the loss rate may lead to an increase in miss
rate. For this reason when we talk about minimization of the miss rate, we mean that the miss
rate is reduced as much as possible subjected to the constraint that the loss rate is below some
acceptable threshold. Alternatively, we may want to minimize the lost rate provided the miss
rate is below some threshold. A performance measure that captures this trade-off is the invalid
rate, which is the sum of the miss and loss rates and gives the percentage of all jobs that do
not produce a useful result. We want to minimize the invalid rate. If the jobs are transmissions
of real-time packets, the miss rate gives the percentage of packets arriving at the receiver too
late, the loss rate gives the percentage of packets discarded en route, and the invalid rate gives
the percentage of packets that are not useful to the application.

3.8.3 Interaction among Schedulers

Thus far, we have been talking solely of scheduling the application system on the underly-
ing processors and resources. In fact, a system typically has a hierarchy of schedulers. This
scheduling hierarchy arises for two reasons. First, some processors and resources used by
the application system are not physical entities; they are logical resources. Logical resources
must be scheduled on physical resources. The algorithms used for this purpose are typically
different from the ones used to schedule the application system. A scheduler that schedules
a logical resource may be different from the scheduler that schedules the application system
using the resource. Second, a job may model a server that executes on behalf of its client
jobs. The time and resources allocated to the server job must in turn be allocated to its client
jobs. Again, the algorithm used by the server to schedule its clients may be different from the
algorithm used by the operating system to schedule the server with other servers.

In an earlier example, we treated database locks as resources. In fact, these resources
are implemented by a database management system whose execution must be scheduled on
one or more processors. The scheduler that schedules the database management system may
be different from the scheduler that schedules the application system using the locks. The
schedulers most likely use different algorithms. Now we have two levels of scheduling. In
the higher level, the application system is scheduled on the resources. In the lower level, the
jobs that execute in order to implement the resources are scheduled on the processors and
resources needed by them.

As an example of servers, we consider an application system containing periodic tasks
and aperiodic jobs on one processor. All the aperiodic jobs are placed in a queue when they

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 56

56 Chapter 3 A Reference Model of Real-Time Systems

are released. There is a poller. Together with the periodic tasks, the poller is scheduled to
execute periodically. When the poller executes, it checks the aperiodic job queue. If there
are aperiodic jobs waiting, it chooses an aperiodic job from the queue and executes the job.
Hence, the aperiodic jobs are the clients of the poller. We again have two levels of scheduling.
In the lower level the scheduler provided by the operating system schedules the poller and the
periodic tasks. In the higher level, the poller schedules its clients.

In every level of the scheduling hierarchy, we can represent the workload by a task graph
and the processors and resources required by it by a resource graph. In this way all levels of
the scheduling hierarchy can be represented in a uniform way.

3.9 SUMMARY

This chapter describes the general model of real-time systems and introduces the terms that we
will use in the subsequent chapters. In the chapters on scheduling and resource management,
we will adopt several simpler models that are special cases of this general model.

3.9.1 Characterization of Application Systems

According to this model, the basic components of any real-time application system are jobs.
The operating system treats each job as a unit of work and allocates processor and resources to
it. For the purpose of scheduling and validation, it suffices to define each job by its temporal,
resource, interconnection and functional parameters. Among all the parameters of a job J;,
we work with the following ones most frequently:

* Release time (or arrival time) r;: r; is the instant of time at which the job becomes
eligible for execution. The release (arrival) time of the job may be jittery (sporadic),
meaning that 7; is in the range [r;~, r; 7] and that only the range of r; is known but not
the actual value of r;.

* Absolute deadline d;: d; is the instant of time by which the job must complete.

* Relative deadline D;: D; is the maximum allowable response time of the job.

* Laxity type: The deadline (or timing constraint in general) of the job can be hard or soft.

» Execution time e;: e; is the amount of time required to complete the execution of J;
when it executes alone and has all the resources it requires. The execution time of J;
may vary, meaning that e; is in the range [e; ~, ¢; 7] and that this range is known but not
the actual value of ¢;. Some models assume that J; always executes for the maximum
amount ¢; " of time; when there is no possible ambiguity, we also use e; to mean the
maximum execution time e; .

* Preemptivity: The job may be constrained to be nonpreemptable.

* Resource requirements: This parameter gives the processors and resources required by
the job in order to execute and the time interval(s) during which each resource is re-
quired.

This book assumes that these parameters are known. While others can be deduced from re-
quirements and specification of the system, the execution time and resource parameters are
obtained from measurement and analysis. The execution times of most noncomputation jobs

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 57

Section 3.9 Summary 57

are usually obtained by meaurement. For example, the execution time of a message trans-
mission job is typically obtained by measuring either the transmission time or the length of a
message. On the other hand, analysis is the preferred approach to predicting the maximum ex-
ecution time of a program because timing analysis techniques guarantee the correctness of the
predicted maximum execution time, while measurement techniques do not. (A prediction is
correct if the actual execution time is never less than the predicted maximum execution time.)
You can find techniques used for this purpose in [AMWH, HeWh, KiMH, LiMW, LBJR].

A set of related jobs is called a task. Jobs in a task may be precedence constrained
to execute in a certain order. Sometimes jobs may be constrained to complete within a cer-
tain time from one another (i.e., they are temporal distance constrained). Jobs may have data
dependencies even when they are not precedence constrained.

A periodic task 7; is a sequence of jobs with identical parameters. In addition to the
parameters of its jobs, a periodic task is defined by the following task parameters:

* Period p;: p; is the minimum length of the intervals between the release times of con-
secutive jobs (i.e., interrelease interval).

* Execution time ¢;: e; of T; is the maximum execution time of all the jobs in the task.
* Phase ¢;: ¢; is the release time of the first job in 7;.

When the interrelease intervals of a sequence of jobs vary widely and are arbitrarily
small, we model the interrelease intervals as random variables. Similarly, the execution times
of jobs are sometimes modeled as random variables. An aperiodic task or a sporadic task
is a sequence of jobs whose interrelease times are identically distributed according to the
probability distribution A(x) and whose execution times are identically distributed according
to the probability distribution B(x). The deadlines of jobs in an aperiodic task are soft, while
the deadlines of jobs in a sporadic task are hard.

In subsequent chapters, we will use a task graph to represent the application system
when the dependencies among its jobs cannot be described in a few sentences. There is a
vertex in this graph for each job in the system. The edges in this graph represent dependencies
among jobs. An edge from a vertex representing J; to another vertex representing J; may
represent a precedence constraint and/or a data dependency between the two jobs. Parameters
of the edge include the type of the edge and the volume of data from J; to Ji.

3.9.2 Characterization of the Underlying Systems

The resources available to the application system are processors and resources. Jobs and tasks
require them in order to execute. The scheduler decides when each job (or task) has its required
processor and resources.

We usually model CPUs, disks, buses, network links, and so on, that compute, retrieve,
transmit, and so on, as processors. Every job must have a processor in order to execute. Pro-
cessors that can be used interchangeably are of the same type, while processors that cannot be
used interchangeably are of different types. In addition to its type, a processor is characterized
by the following parameters:

* Preemptivity: The execution of jobs on the processor may or may not be preemptable.
* Context-Switch Time: This parameter gives the cost in time of each preemption.

58

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 58

Chapter 3 A Reference Model of Real-Time Systems

We model shared data objects, buffers, sequence numbers, and the like, entities some-
times called passive resources, as resources. The amount of time a job requires a resource
usually depends on the speed of the processor on which the job executes, not on some pa-
rameter of the resource. The resources considered here are reusable, because they are not
consumed during use. Each unit of each resource (type) can be used by one job at the time,
and the use of every resource (unit) is nonpreemptable. A shared resource that can be used
simultaneously by at most x jobs at the same time is modeled as a resource with x units, each
of which can be used by at most one job at a time.

3.9.3 Schedulers

A scheduler is a module that allocates processors and resources to jobs and tasks. In most of
this book we assume that a scheduler is completely defined by the scheduling and resource
management algorithms it implements. The only exception is Chapter 12 on operating sys-
tems. There, we will discuss why a real-life scheduler may behave differently from an ideal
one and how to minimize and account for the discrepancy.

Except where stated otherwise, we assume that the scheduler works correctly. It pro-
duces only valid schedules. According to a valid schedule, no job is scheduled before its
release time and the completion of all its predecessors, no job is scheduled on more than one
processor at the same time, no processor is scheduled to execute more than one job at the
same time, and the total amount of time assigned to every job is equal to the execution time
except when the job or a portion of it can be discarded because it is optional. A valid schedule
is feasible if, according to the schedule, every job completes by its deadline.

EXERCISES

3.1 Because sporadic jobs may have varying release times and execution times, the periodic task
model may be too inaccurate and can lead to unduly underutilization of the processor even when
the interrelease times of jobs are bounded from below and their executions are bounded from
above. As an example, suppose we have a stream of sporadic jobs whose interrelease times are
uniformly distributed from 9 to 11. Their execution times are uniformly distributed from 1 to 3.
(a) What are the parameters of the periodic task if we were to use such a task to model the

stream?
(b) Compare the utilization of the periodic task in part (a) with the average utilization of the
sporadic job stream.

3.2 Consider the real-time program described by the psuedocode below. Names of jobs are in italic.

At 9AM, start: have breakfast and go to office;
At 10AM,
If there is class,
teach;
Else, help students;
When teach or help is done, eat_lunch;
Until 2PM, sleep;
If there is a seminar,
If topic is interesting,
listen;

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 59

3.3

3.4

Exercises 59

Else, read;
Else

write in office;
When seminar is over, attend social hour;
discuss;
Jjog;
eat_dinner;
work a little more;
end_the_day;

(a) Draw a task graph to capture the dependencies among jobs.
(b) Use as many precedence graphs as needed to represent all the possible paths of the program

Jjob_l | job_2 denotes a pipe: The result produced by job_I is incrementally consumed by job_2.
(As an example, suppose that job_2 reads and displays one character at a time as each handwritten
character is recognized and placed in a buffer by job_1.) Draw a precedence constraint graph to
represent this producer-consumer relation between the jobs.

Draw a task graph to represent the flight control system described by Figure 1-3.

(a) Assume that producers and consumers do not explicitly synchronize (i.e., each consumer
uses the latest result generated by each of its producers but does not wait for the completion
of the producer.)

(b) Repeat part (a), assuming that producers and consumers do synchronize.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 60

CHAPTER 4

Commonly Used Approaches
to Real-Time Scheduling

This chapter provides a brief overview of three commonly used approaches to scheduling real-
time systems: clock-driven, weighted round-robin and priority-driven. The subsequent five
chapters will study in depth the clock-driven and priority-driven approaches, with particular
emphasis on the latter. We need to be aware of several important facts about priority-driven
scheduling. They are presented here and shown to be true, so they will not be buried in the
details later. We will use these facts to motivate and support the arguments presented in later
chapters. The weighted round-robin approach is used primarily for scheduling real-time traffic
in high-speed switched networks. It will be described in depth in Chapter 11. We discuss here
why this approach is not ideal for scheduling jobs on CPUs.

4.1 CLOCK-DRIVEN APPROACH

As the name implies, when scheduling is clock-driven (also called time-driven), decisions on
what jobs execute at what times are made at specific time instants. These instants are chosen
a priori before the system begins execution. Typically, in a system that uses clock-driven
scheduling, all the parameters of hard real-time jobs are fixed and known. A schedule of the
jobs is computed off-line and is stored for use at run time. The scheduler schedules the jobs
according to this schedule at each scheduling decision time. In this way, scheduling overhead
during run-time can be minimized.

A frequently adopted choice is to make scheduling decisions at regularly spaced time
instants. One way to implement a scheduler that makes scheduling decisions periodically is
to use a hardware timer. The timer is set to expire periodically without the intervention of
the scheduler. When the system is initialized, the scheduler selects and schedules the job(s)
that will execute until the next scheduling decision time and then blocks itself waiting for
the expiration of the timer. When the timer expires, the scheduler awakes and repeats these
actions.

60

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 61

Section 4.2 Weighted Round-Robin Approach 61

4.2 WEIGHTED ROUND-ROBIN APPROACH

The round-robin approach is commonly used for scheduling time-shared applications. When
jobs are scheduled on a round-robin basis, every job joins a First-in-first-out (FIFO) queue
when it becomes ready for execution. The job at the head of the queue executes for at most
one time slice. (A time slice is the basic granule of time that is allocated to jobs. In a time-
shared environment, a time slice is typically in the order of tens of milliseconds.) If the job
does not complete by the end of the time slice, it is preempted and placed at the end of the
queue to wait for its next turn. When there are n ready jobs in the queue, each job gets one time
slice every n time slices, that is, every round. Because the length of the time slice is relatively
short, the execution of every job begins almost immediately after it becomes ready. In essence,
each job gets 1/nth share of the processor when there are n jobs ready for execution. This is
why the round-robin algorithm is also called the processor-sharing algorithm.

The weighted round-robin algorithm has been used for scheduling real-time traffic in
high-speed switched networks. It builds on the basic round-robin scheme. Rather than giving
all the ready jobs equal shares of the processor, different jobs may be given different weights.
Here, the weight of a job refers to the fraction of processor time allocated to the job. Specifi-
cally, a job with weight wt gets wt time slices every round, and the length of a round is equal
to the sum of the weights of all the ready jobs. By adjusting the weights of jobs, we can speed
up or retard the progress of each job toward its completion.

By giving each job a fraction of the processor, a round-robin scheduler delays the com-
pletion of every job. If it is used to schedule precedence constrained jobs, the response time
of a chain of jobs can be unduly large. For this reason, the weighted round-robin approach
is not suitable for scheduling such jobs. On the other hand, a successor job may be able to
incrementally consume what is produced by a predecessor (e.g., as in the case of a UNIX
pipe). In this case, weighted round-robin scheduling is a reasonable approach, since a job and
its successors can execute concurrently in a pipelined fashion. As an example, we consider
the two sets of jobs, J1 = {Ji1.1, Ji1.2} and Jo = {/2.1, J2.2}, shown in Figure 4-1. The release
times of all jobs are 0, and their execution times are 1. J; ; and J, | execute on processor
Py, and J;, and J,, execute on processor P,. Suppose that J; ; is the predecessor of Jj o,
and J; ; is the predecessor of J, ». Figure 4—1(a) shows that both sets of jobs (i.e., the second
jobs Ji» and J, in the sets) complete approximately at time 4 if the jobs are scheduled in
a weighted round-robin manner. (We get this completion time when the length of the time
slice is small compared with 1 and the jobs have the same weight.) In contrast, the schedule in
Figure 4-1(b) shows that if the jobs on each processor are executed one after the other, one of
the chains can complete at time 2, while the other can complete at time 3. On the other hand,
suppose that the result of the first job in each set is piped to the second job in the set. The
latter can execute after each one or a few time slices of the former complete. Then it is better
to schedule the jobs on the round-robin basis because both sets can complete a few time slices
after time 2.

Indeed, the transmission of each message is carried out by switches en route in a pipeline
fashion. A switch downstream can begin to transmit an earlier portion of the message as soon
as it receives the portion without having to wait for the arrival of the later portion of the
message. The weighted round-robin approach does not require a sorted priority queue, only
a round-robin queue. This is a distinct advantage for scheduling message transmissions in
ultrahigh-speed networks, since priority queues with the required speed are expensive. In

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 62

62 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

Jl’l J1’2
[@
J2’1 J2’2
[o
Pl Jl’l & JZ’I -
(a)
P2 leZ& J2’2 o
0 1 2 3 4
Pl Jl:l J2)l o
b
P2 J1)2 J2)2 = ()
0 1 2 3 ”

FIGURE 4-1 Example illustrating round-robin scheduling of precedence-constrained jobs.

Chapter 11 we will describe in detail the application of weighted round-robin algorithms to
network scheduling.

4.3 PRIORITY-DRIVEN APPROACH

The term priority-driven algorithms refers to a large class of scheduling algorithms that never
leave any resource idle intentionally. Stated in another way, a resource idles only when no job
requiring the resource is ready for execution. Scheduling decisions are made when events such
as releases and completions of jobs occur. Hence, priority-driven algorithms are event-driven.

Other commonly used names for this approach are greedy scheduling, list scheduling
and work-conserving scheduling. A priority-driven algorithm is greedy because it tries to
make locally optimal decisions. Leaving a resource idle while some job is ready to use the
resource is not locally optimal. So when a processor or resource is available and some job can
use it to make progress, such an algorithm never makes the job wait. We will return shortly to
illustrate that greed does not always pay; sometimes it is better to have some jobs wait even
when they are ready to execute and the resources they require are available.

The term list scheduling is also descriptive because any priority-driven algorithm can
be implemented by assigning priorities to jobs. Jobs ready for execution are placed in one or

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 63

Section 4.3 Priority-Driven Approach 63

more queues ordered by the priorities of the jobs. At any scheduling decision time, the jobs
with the highest priorities are scheduled and executed on the available processors. Hence,
a priority-driven scheduling algorithm is defined to a great extent by the list of priorities it
assigns to jobs; the priority list and other rules, such as whether preemption is allowed, define
the scheduling algorithm completely.

Most scheduling algorithms used in nonreal-time systems are priority-driven. Examples
include the FIFO (First-In-First-Out) and LIFO (Last-In-First-Out) algorithms, which assign
priorities to jobs according their release times, and the SETF (Shortest-Execution-Time-First)
and LETF (Longest-Execution-Time-First) algorithms, which assign priorities on the basis of
job execution times. Because we can dynamically change the priorities of jobs, even round-
robin scheduling can be thought of as priority-driven: The priority of the executing job is
lowered to the minimum among all jobs waiting for execution after the job has executed for a
time slice.

Figure 4-2 gives an example. The task graph shown here is a classical precedence graph;
all its edges represent precedence constraints. The number next to the name of each job is its
execution time. Js is released at time 4. All the other jobs are released at time 0. We want to
schedule and execute the jobs on two processors P; and P,. They communicate via a shared
memory. Hence the costs of communication among jobs are negligible no matter where they
are executed. The schedulers of the processors keep one common priority queue of ready jobs.
The priority list is given next to the graph: J; has a higher priority than J; if i < k. All the
jobs are preemptable; scheduling decisions are made whenever some job becomes ready for
execution or some job completes.

Figure 4-2(a) shows the schedule of the jobs on the two processors generated by the
priority-driven algorithm following this priority assignment. At time 0, jobs J;, J,, and J;
are ready for execution. They are the only jobs in the common priority queue at this time.
Since J; and J, have higher priorities than J7, they are ahead of J7 in the queue and hence are
scheduled. The processors continue to execute the jobs scheduled on them except when the
following events occur and new scheduling decisions are made.

* Attime 1, J, completes and, hence, J3 becomes ready. J3 is placed in the priority queue
ahead of J; and is scheduled on P;, the processor freed by J,.

* Attime 3, both J; and J3 complete. Js is still not released. J4 and J; are scheduled.

* At time 4, Js is released. Now there are three ready jobs. J; has the lowest priority
among them. Consequently, it is preempted. J; and Js have the processors.

e Attime 5, J4 completes. J; resumes on processor Pj.

* Attime 6, J5 completes. Because J; is not yet completed, both Jg and Jg are not ready
for execution. Consequently, processor P, becomes idle.

» J; finally completes at time 8. Jg and Jg can now be scheduled and they are.

Figure 4-2(b) shows a nonpreemptive schedule according to the same priority assign-
ment. Before time 4, this schedule is the same as the preemptive schedule. However, at time
4 when Js is released, both processors are busy. It has to wait until J; completes (at time 5)
before it can begin execution. It turns out that for this system this postponement of the higher
priority job benefits the set of jobs as a whole. The entire set completes 1 unit of time earlier
according to the nonpreemptive schedule.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 64

64 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

J1,3.
J271 .13’2 'J472
-]5,2 J6’4 (JI’JZ""aJS)
J7, 4 Jg, 1
P, .Jl. ‘].4

(a)

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12
FIGURE 4-2 Example of priority-driven scheduling. (a) Preemptive (b) Nonpreemptive.

In general, however, nonpreemptive scheduling is not better than preemptive scheduling.
A fundamental question is, when is preemptive scheduling better than nonpreemptive schedul-
ing and vice versa? It would be good if we had some rule with which we could determine from
the given parameters of the jobs whether to schedule them preemptively or nonpreemptively.
Unfortunately, there is no known answer to this question in general. In the special case when
jobs have the same release time, preemptive scheduling is better when the cost of preemption
is ignored. Specifically, in a multiprocessor system, the minimum makespan (i.e., the response
time of the job that completes last among all jobs) achievable by an optimal preemptive al-
gorithm is shorter than the makespan achievable by an optimal nonpreemptive algorithm. A
natural question here is whether the difference in the minimum makespans achievable by the
two classes of algorithms is significant, in particular, whether the theoretical gain in makespan
achievable by preemption is enough to compensate for the context switch overhead of pre-
emption. The answer to this question is only known for the two-processor case. Coffman and

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 65

Section 4.5 Effective Release Times and Deadlines 65

Garey [CoGa] recently proved that when there are two processors, the minimum makespan
achievable by nonpreemptive algorithms is never more than 4/3 times the minimum makespan
achievable by preemptive algorithms when the cost of preemption is negligible. The proof of
this seemingly simple results is too lengthy to be included here.

4.4 DYNAMIC VERSUS STATIC SYSTEMS

In the above example, jobs that are ready for execution are placed in a priority queue common
to all processors. When a processor is available, the job at the head of the queue executes on
the processor. We will refer to such a multiprocessor system as a dynamic system, because
jobs are dynamically dispatched to processors. In the example in Figure 4-2, we allowed each
preempted job to resume on any processor and hence, jobs are migratable. We say that a job
migrates if it starts execution on a processor, is preempted, and later resumes on a different
processor.

Another approach to scheduling in multiprocessor and distributed systems is to partition
the jobs in the system into subsystems and assign and bind the subsystems statically to the
processors. Jobs are moved among processors only when the system must be reconfigured,
that is, when the operation mode of the system changes or some processor fails. Such a sys-
tem is called a static system, because the system is statically configured. If jobs on different
processors are dependent, the schedulers on the processors must synchronize the jobs accord-
ing to some synchronization and resource access-control protocol. Except for the constraints
thus imposed, the jobs on each processor are scheduled by themselves.

As an example, a partition and assignment of the jobs in Figure 4-2 put Ji, Jo, J3,
and J4 on P; and the remaining jobs on P,. The priority list is segmented into two parts:
(J1, J2, I3, Ja) and (Js, Jg, J7, Js). The scheduler of processor P; uses the former while the
scheduler of processor P, uses the latter. It is easy to see that the jobs on P; complete by time
8, and the jobs on P, complete by time 11. Moreover, J, completes by time 4 while Jg starts
at time 6. Therefore, the precedence constraint between them is satisfied.

In this example, the response of the static system is just as good as that of the dynamic
system. Intuitively, we expect that we can get better average responses by dynamically dis-
patching and executing jobs. In later chapters we will return to this discussion. Specifically,
we will demonstrate that while dynamic systems may be more responsive on the average,
their worst-case real-time performance may be poorer than static systems. More importantly,
we do not yet have reliable techniques to validate the timing constraints of dynamic systems
while such techniques exist for static systems. For this reason, most hard real-time systems
built today are static.

4.5 EFFECTIVE RELEASE TIMES AND DEADLINES

The given release times and deadlines of jobs are sometimes inconsistent with the precedence
constraints of the jobs. By this, we mean that the release time of a job may be later than that of
its successors, and its deadline may be earlier than that of its predecessors. Therefore, rather
than working with the given release times and deadlines, we first derive a set of effective

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 66

66 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

release times and deadlines from these timing constraints, together with the given precedence
constraints. The derived timing constraints are consistent with the precedence constraints.

When there is only one processor, we can compute the derived constraints according to
the following rules:

Effective Release Time: The effective release time of a job without predecessors is equal to
its given release time. The effective release time of a job with predecessors is equal to
the maximum value among its given release time and the effective release times of all
of its predecessors.

Effective Deadline: The effective deadline of a job without a successor is equal to its given
deadline. The effective deadline of a job with successors is equal to the minimum value
among its given deadline and the effective deadlines of all of its successors.

The effective release times of all the jobs can be computed in one pass through the precedence
graph in O (n?) time where 7 is the number of jobs. Similarly, the effective deadlines can be
computed in O (n?) time.

As an example, we look at the set of jobs in Figure 4-3. The numbers in the parentheses
next to the name of each job are its given release times and deadlines. Because J; and J,
have no predecessors, their effective release times are the given release times, that is, 2 and
0, respectively. The given release time of J3 is 1, but the latest effective release time of its
predecessors is 2, that of J;. Hence, the effective release time of J3 is 2. You can repeat this
procedure and find that the effective release times of the rest of the jobs are 4, 2, 4, and 6,
respectively. Similarly, Js and J; have no successors, and their effective deadlines are equal
to their given deadlines, 20 and 21, respectively. Since the effective deadlines of the successors
of J4 and Js are larger than the given deadlines of J4 and Js, the effective deadlines of J; and
Js are equal to their given deadlines. On the other hand, the given deadline of J3 is equal to 12,
which is larger than the minimum value of 8 among the effective deadlines of its successors.
Hence, the effective deadline of J; is 8. In a similar way, we find that the effective deadlines
of J; and J, are 8 and 7, respectively.

You may have noticed that the calculation of effective release times and deadlines does
not take into account the execution times of jobs. More accurately, the effective deadline of
a job should be as early as the deadline of each of its successors minus the execution time of
the successor. The effective release time of a job is that of its predecessor plus the execution
time of the predecessor. The more accurate calculation is unnecessary, however, when there is
only one processor. Gary and Johnson [GaJo77] have shown that it is feasible to schedule any

J1 (26 10) J3(1, 12) J4(4,9) J6(0,.20)

1,0, 7) Js(1,8) 756, 21)

FIGURE 4-3 Example of effective timing constraints.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 67

Section 4.6 Optimality of the EDF and LST Algorithms 67

set of jobs on a processor according to their given release times and deadlines if and only if it
is feasible to schedule the set according to their effective release times and deadlines defined
above. When there is only one processor and jobs are preemptable, working with the effective
release times and deadlines allows us to temporarily ignore the precedence constraints and
treat all the jobs as if they are independent. Of course, by doing so, it is possible for an
algorithm to produce an invalid schedule that does not meet some precedence constraint.
For example, J; and J3 in Figure 4-3 have the same effective release time and deadline.
An algorithm which ignores the precedence constraint between them may schedule J3 in an
earlier interval and J| in a later interval. If this happens, we can always add a step to swap the
two jobs, that is, move J; to where J3 is scheduled and vice versa. This swapping is always
possible, and it transforms an invalid schedule into a valid one.

Hereafter, by release times and deadlines, we will always mean effective release times
and deadlines. When there is only one processor and jobs are preemptable, we will ignore the
precedence constraints.

4.6 OPTIMALITY OF THE EDF AND LST ALGORITHMS

A way to assign priorities to jobs is on the basis of their deadlines. In particular, the earlier
the deadline, the higher the priority. The priority-driven scheduling algorithm based on this
priority assignment is called the Earliest-Deadline-First (EDF) algorithm. This algorithm is
important because it is optimal when used to schedule jobs on a processor as long as preemp-
tion is allowed and jobs do not contend for resources. This fact is stated formally below.

THEOREM 4.1. When preemption is allowed and jobs do not contend for resources,
the EDF algorithm can produce a feasible schedule of a set J of jobs with arbitrary
release times and deadlines on a processor if and only if J has feasible schedules.

Proof. The proof is based on the following fact: Any feasible schedule of J can be
systematically transformed into an EDF schedule (i.e., a schedule produced by the EDF
algorithm). To see why, suppose that in a schedule, parts of J; and J; are scheduled
in intervals /; and I, respectively. Furthermore, the deadline d; of J; is later than the
deadline d; of Ji, but I, is earlier than I, as shown in Figure 4—4.

There are two cases. In the first case, the release time of J; may be later than
the end of 1. J; cannot be scheduled in /;; the two jobs are already scheduled on the
EDF basis in these intervals. Hence, we need to consider only the second case where
the release time r; of J; is before the end of 7;; without loss of generality, we assume
that r¢ is no later than the beginning of /;.

To transform the given schedule, we swap J; and Ji. Specifically, if the interval
I is shorter than I, as shown in Figure 4—4, we move the portion of J; that fits in [
forward to 7; and move the entire portion of J; scheduled in /; backward to I; and place
it after Ji. The result is as shown in Figure 4-4(b). Clearly, this swap is always possible.
We can do a similar swap if the interval /; is longer than I, : We move the entire portion
of Ji scheduled in /, to I} and place it before J; and move the portion of J; that fits in
I, to the interval. The result of this swap is that these two jobs are now scheduled on the

68

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 68

Chapter 4 Commonly Used Approaches to Real-Time Scheduling

I I,
AN
f_/H 7 N\
J; Ji (a)
! Pt
I dy dy
Ji Ji Ji . (b)
]k Jk Ji R (C)

FIGURE 4-4 Transformation of a non-EDF schedule into an EDF schedule.

EDF basis. We repeat this transformation for every pair of jobs that are not scheduled
on the EDF basis according to the given non-EDF schedule until no such pair exists.

The schedule obtained after this transformation may still not be an EDF schedule
if some interval is left idle while there are jobs ready for execution but are scheduled in
a later interval (e.g., as in the schedule in Figure 4-4(b).) We can eliminate such an idle
interval by moving one or more of these jobs forward into the idle interval and leave the
interval where the jobs were scheduled idle. This is clearly always possible. We repeat
this process if necessary until the processor never idles when there are jobs ready for
execution as in Figure 4—4(c).

That the preemptive EDF algorithm can always produce a feasible schedule as
long as feasible schedules exist follows straightforwardly from the fact that every
feasible schedule can be transformed into a preemptive EDF schedule. If the EDF algo-
rithm fails to produce a feasible schedule, then no feasible schedule exists. (If a feasible
schedule were to exist, it could be transformed into an EDF schedule, which contradicts
the statement that the EDF algorithm fails to produce a feasible schedule.) O

When the goal of scheduling is to meet deadlines, there is no advantage to completing
any job sooner than necessary. We may want to postpone the execution of hard real-time
jobs for some reason (e.g., to enable soft real-time jobs, whose response times are important,
to complete earlier). For this reason, we sometimes also use the latest release time (LRT)
algorithm (or reverse EDF algorithm). This algorithm treats release times as deadlines and
deadlines as release times and schedules the jobs backwards, starting from the latest deadline
of all jobs, in “priority-driven” manner, to the current time. In particular, the “priorities” are
based on the release times of jobs: the later the release time, the higher the “priority.” Because
it may leave the processor idle when there are jobs ready for execution, the LRT algorithm is
not a priority-driven algorithm.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 69

Section 4.6 Optimality of the EDF and LST Algorithms 69

J173(0’ 6] J2’2(57 8]
[>0
J39 2 (25 7]
[J
7| 75 7,
0 2 4 6 8 .

FIGURE 4-5 Example illustrating the LRT algorithm.

Figure 4-5 gives an example. In the precedence graph, the number next to the job name
is the execution time of the job. Its feasible interval is given by the range of time next to
its execution time. The latest deadline among all jobs is 8. Hence time starts at 8 and goes
backwards to 0. At time 8, J; is “ready” and is scheduled. At time 7, J3 is also “ready” to be
scheduled, but because J, has a later release time, it has a higher priority. Consequently, J,
is scheduled from 7 to 6. When J, “completes” at time 6, J; is “ready.” However, J; has a
higher priority and is, therefore, scheduled from 6 to 4. Finally J; is scheduled from 4 to 1.
The result is a feasible schedule.

The following corollary states that the LRT algorithm is also optimal under the same
conditions that the EDF algorithm is optimal. Its proof follows straightforwardly from the
proof of Theorem 4.1.

COROLLARY 4.2. When preemption is allowed and jobs do not contend for re-
sources, the LRT algorithm can produce a feasible schedule of a set J of jobs with
arbitrary release times and deadlines on a processor if and only if feasible schedules of
J exist.

Another algorithm that is optimal for scheduling preemptive jobs on one processor is
the Least-Slack-Time-First (LST) algorithm (also called the Minimum-Laxity-First (MLF) al-
gorithm) [LeWh, Mok]. At any time #, the slack (or laxity) of a job with deadline at d is equal
to d — t minus the time required to complete the remaining portion of the job. Take the job
Jp in Figure 4-5 as an example. It is released at time 0, its deadline is 6, and its execution
time is 3. Hence, its slack is equal to 3 at time 0. The job starts to execute at time 0. As long
as it executes, its slack remains at 3, because at any time ¢ before its completion, its slack is
6 —t — (3 —). Now suppose that it is preempted at time 2 by J3, which executes from time
2 to 4. During this interval, the slack of J; decreases from 3 to 1. (At time 4, the remaining
execution time of J; is 1, soits slackis6 —4 — 1 =1.)

The LST algorithm assigns priorities to jobs based on their slacks: the smaller the slack,
the higher the priority. The following theorem states that the LST algorithm is also optimal.
Its proof is left as an exercise at the end of this chapter.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 70

70 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

THEOREM 4.3. When preemption is allowed and jobs do not contend for resources,
the LST (MLF) algorithm can produce a feasible schedule of a set J of jobs with arbi-
trary release times and deadlines on a processor if and only if feasible schedules of J
exist.

While the EDF algorithm does not require any knowledge of the execution times of
jobs, the LST algorithm does. This is a serious disadvantage. As discussed earlier, the actual
execution times of jobs are often not known until the jobs complete. Obviously, it is impossible
for us to calculate the actual amounts of slack under this circumstance. We typically calculate
the slack of each job based on its maximum execution time e; "when the range [¢; ~, ¢;] of
execution time e; of every job is relatively small. Furthermore, we require that the maximum
(and sometimes even the actual) execution time of each sporadic or aperiodic job become
known upon its arrival since this knowledge is needed for slack computation.

4.7 NONOPTIMALITY OF THE EDF AND THE LST ALGORITHMS

It is natural to ask here whether the EDF and the LST algorithms remain optimal if preemption
is not allowed or there is more than one processor. Unfortunately, the answer is no.

The fact that the EDF and the LST algorithms are optimal only when preemption is
allowed is illustrated by the example in Figure 4-6. The system shown in this figure has
three independent, nonpreemptable jobs J;, J>, and J3. Their release times are 0, 2 and 4,
respectively, and are indicated by the arrows above the schedules. Their execution times are

r) r3

Ji Js J3
0 2 4 6 8 10 12 14

A
J; misses its deadline
(a)

Ji J3 J>

0 2 4 6 8 10 12 14

(b)

FIGURE 4-6 Example illustrating nonoptimality of the nonpreemptive EDF algorithm. (a) An EDF schedule. (b)
A non-EDF schedule.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 71

Section 4.7 Nonoptimality of the EDF and the LST Algorithms 71

3, 6, and 4; and their deadlines are 10, 14, and 12, respectively. Figure 4-6(a) shows the
schedule produced by the EDF algorithm. In particular, when J; completes at time 3, J, has
already been released but not J3. Hence, J, is scheduled. When J3 is released at time 4, J; is
executing. Even though J3 has an earlier deadline and, hence, a higher priority, it must wait
until J, completes because preemption is not allowed. As a result, /3 misses its deadline. It is
easy to see that the LST algorithm would produce the same infeasible schedule. The fact that
these three jobs can meet their deadlines is demonstrated by the feasible schedule in Figure
4-6(b). At time 3 when J; completes, the processor is left idle, even though J, is ready for
execution. Consequently, when Jj is released at 4, it can be scheduled ahead of J,, allowing
both jobs to meet their deadlines.

We note that the schedule in Figure 4-6(b) cannot be produced by any priority-driven
scheduling algorithm. By definition, a priority-driven algorithm never leaves a processor idle
when there are jobs ready to use the processor. This example illustrates the fact that not only
nonpreemptive EDF and LST algorithms are not optimal, but also no nonpreemptive priority-
driven algorithm is optimal when jobs have arbitrary release times, execution times, and dead-
lines.

The example in Figure 4-7 shows that the EDF algorithm is not optimal for scheduling
preemptable jobs on more than one processor. The system in this figure also contains three
jobs, Ji, Jo, and J3. Their execution times are 1, 1, and 5 and their deadlines are 1, 2, and
5, respectively. The release times of all three jobs are 0. The system has two processors.
According to the EDF algorithm, J; and J, are scheduled on the processors at time 0 because
they have higher priorities. The result is the schedule in Figure 4-7(a), and J3 misses its
deadline.

On the other hand, an algorithm which assigns a higher priority to J3 in this case can
feasibly schedule the jobs. An example of such algorithms is the LST algorithm. The slacks
of the Ji, J», and J3 in Figure 4-7 are 0O, 1, and 0, respectively. Hence, this algorithm would

Py U J3
0 2 4 A 6 ~
Jymisses its deadline (a)
Pyl U,
Pl Ji |)
0 1 2
P, 7, (b)
0 5

FIGURE 4-7 Example illustrating nonoptimality of the EDF algorithm for multiprocessor scheduling. (a) The EDF
schedule. (b) A feasible schedule.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 72

72 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

produce the feasible schedule in Figure 4-7(b). Unfortunately, the LST algorithm is also not
optimal for scheduling jobs on more than one processor, as demonstrated by the example in
Problem 4.4.

4.8 CHALLENGES IN VALIDATING TIMING CONSTRAINTS IN PRIORITY-DRIVEN SYSTEMS

Compared with the clock-driven approach, the priority-driven scheduling approach has many
advantages. As examples, you may have noticed that priority-driven schedulers are easy to im-
plement. Many well-known priority-driven algorithms use very simple priority assignments,
and for these algorithms, the run-time overhead due to maintaining a priority queue of ready
jobs can be made very small. A clock-driven scheduler requires the information on the re-
lease times and execution times of the jobs a priori in order to decide when to schedule them.
In contrast, a priority-driven scheduler does not require most of this information, making it
much better suited for applications with varying time and resource requirements. You will
see in later chapters other advantages of the priority-driven approach which are at least as
compelling as these two.

Despite its merits, the priority-driven approach has not been widely used in hard real-
time systems, especially safety-critical systems, until recently. The major reason is that the
timing behavior of a priority-driven system is nondeterministic when job parameters vary.
Consequently, it is difficult to validate that the deadlines of all jobs scheduled in a priority-
driven manner indeed meet their deadlines when the job parameters vary. In general, this
validation problem [LiHa] can be stated as follows: Given a set of jobs, the set of resources
available to the jobs, and the scheduling (and resource access-control) algorithm to allocate
processors and resources to jobs, determine whether all the jobs meet their deadlines.

4.8.1 Anomalous Behavior of Priority-Driven Systems

Figure 4-8 gives an example illustrating why the validation problem is difficult when the
scheduling algorithm is priority-driven and job parameters may vary. The simple system con-
tains four independent jobs. The jobs are scheduled on two identical processors in a priority-
driven manner. The processors maintain a common priority queue, and the priority order is
Ji, J», J3, and Jy with J; having the highest priority. In other words, the system is dynamic.
The jobs may be preempted but never migrated, meaning that once a job begins execution on
a processor, it is constrained to execute on that processor until completion. (Many systems fit
this simple model. For example, the processors may model two redundant data links connect-
ing a source and destination pair, and the jobs are message transmissions over the links. The
processors may also model two replicated database servers, and the jobs are queries dynam-
ically dispatched by a communication processor to the database servers. The release times,
deadlines, and execution times of the jobs are listed in the table.) The execution times of all
the jobs are fixed and known, except for J,. Its execution time can be any value in the range
[2,6].

Suppose that we want to determine whether the system meets all the deadlines and
whether the completion-time jitter of every job (i.e., the difference between the latest and the
earliest completion times of the job) is no more than 4. A brute force way to do so is to simu-
late the system. Suppose that we schedule the jobs according their given priorities, assuming

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 73

Section 4.8 Challenges in Validating Timing Constraints in Priority-Driven Systems 73

rio dp e, e]
Jil 0 10 5
| 0 10 [2, 6]
Ll 4 15 8
Lo 20 10
(I) 1 1 1 1 ? 1 1 1 1 1IO 1 1 1 1 1|5 1 1 1 1 2;0
P, Ji J3
(a)
P2]2 J4
6 16
Py Ji
(b)
AN 75 7,
2 20
P, Ji
(c)
Pyl S | J3 Jy
3 21
Py Ji J3
P, J, J4)
5 15

FIGURE 4-8 Example illustrating scheduling anomalies.

74

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 74

Chapter 4 Commonly Used Approaches to Real-Time Scheduling

first that the execution time of J, has the maximum value 6 and then that it has the minimum
value 2. The resultant schedules are shown in Figure 4-8(a) and (b), respectively. Looking
at these schedules, we might conclude that all jobs meet their deadlines, and the completion-
time jitters are sufficiently small. This would be an incorrect conclusion, as demonstrated by
the schedules in Figure 4-8(c) and (d). As far as J is concerned, the worst-case schedule
is the one shown in Figure 4-8(c); it occurs when the execution time of J, is 3. According
to this schedule, the completion time of J4 is 21; the job misses its deadline. The best-case
schedule for Jy is shown in Figure 4-8(d); it occurs when the execution time of J, is 5. From
this schedule, we see that J; can complete as early as time 15; its completion-time jitter ex-
ceeds the upper limit of 4. To find the worst-case and best-case schedules, we must try all the
possible values of e;.

The phenomenon illustrated by this example is known as a scheduling anomaly, an
unexpected timing behavior of priority-driven systems. Graham [Grah] has shown that the
completion time of a set of nonpreemptive jobs with identical release times can be later when
more processors are used to execute them and when they have shorter execution times and
fewer dependencies. (Problem 4.5 gives the well-known illustrative example.) Indeed, when
jobs are nonpreemptable, scheduling anomalies can occur even when there is only one proces-
sor. For example, suppose that the execution time e; of the job J; in Figure 4—6 can be either
3 or 4. The figure shows that J3 misses its deadline when e, is 3. However, J3 would complete
at time 8 and meet its deadline if e; were 4. We will see in later chapters that when jobs have
arbitrary release times and share resources, scheduling anomalies can occur even when there
is only one processor and the jobs are preemptable.

Scheduling anomalies make the problem of validating a priority-driven system difficult
whenever job parameters may vary. Unfortunately, variations in execution times and release
times are often unavoidable. If the maximum range of execution times of all n jobs in a system
is X, the time required to find the latest and earliest completion times of all jobs is O (X") if
we were to find these extrema by exhaustive simulation or testing. Clearly, such a strategy is
impractical for all but the smallest systems of practical interest.

4.8.2 Predictability of Executions

When the timing constraints are specified in terms of deadlines of jobs, the validation problem
is the same as that of finding the worst-case (the largest) completion time of every job. This
problem is easy whenever the execution behavior of the set J is predictable, that is, whenever
the system does not have scheduling anomalies. To define predictability more formally, we
call the schedule of J produced by the given scheduling algorithm when the execution time
of every job has its maximum value the maximal schedule of J. Similarly, the schedule of
J produced by the given scheduling algorithm when the execution time of every job has its
minimum value is the minimal schedule. When the execution time of every job has its actual
value, the resultant schedule is the actual schedule of J. So, the schedules in Figure 4-8(a)
and (b) are the maximal and minimal schedules, respectively, of the jobs in that system, and
all the schedules shown in the figure are possible actual schedules.

Since the range of execution time of every job is known, the maximal and minimal
schedules of J can easily be constructed when the release-time jitters are negligible. (We
assume that release times of all jobs are fixed and known for this discussion. How release-
time jitters further complicate the validation problem is beyond the scope of our discussion

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 75

Section 4.8 Challenges in Validating Timing Constraints in Priority-Driven Systems 75

here.) In contrast, its actual schedule is unknown because the actual values of the execution
times are unknown.

The predictability of job execution (behavior) is an intuitive notion: The execution of
J under the given priority-driven scheduling algorithm is predictable if the actual start time
and actual completion time of every job according to the actual schedule are bounded by
its start times and completion times according to the maximal and minimal schedules. More
formally, we let s(J;) be the instant of time at which the execution of J; begins according to
the actual schedule of J. s(J;) is the (actual) start time of J;. Let s*(J;) and s~(J;) be the
start times of J; according to the maximal schedule and minimal schedule of J, respectively.
These start times can easily be found by constructing the maximal and minimal schedules and
observing when J; starts according to these schedules. We say that J; is start-time predictable
if s7(J;) < s(J;) <sT(J;). As an example, for the job J4 in Figure 4-8, s~ (Jy) is 2. s (Jy)
is 6. Its actual start time is in the range [2, 6]. Therefore, J, is start-time predictable.

Similarly, let f(J;) be the actual completion time (also called finishing time) of J; ac-
cording to the actual schedule of J. Let f*(J;) and f~(J;) be the completion times of J;
according to the maximal schedule and minimal schedule of J, respectively. We say that J; is
completion-time predictable if f~(J;) < f(J;) < fT(J;). The execution of J; is predictable,
or simply J; is predictable, if J; is both start-time and completion-time predictable. The ex-
ecution behavior of the entire set J is predictable if every job in J is predictable. Looking at
Figure 4-8 again, we see that f~(Jy) is 20, but £ (Jy) is 16. It is impossible for the inequality
20 < f(J4) < 16 to hold. Therefore, J, is not completion-time predictable, and the system is
not predictable.

In general, whether a set of jobs has predictable execution behavior depends not only
on the parameters of jobs in the set but also on the algorithm used to schedule the jobs.
For example, while the execution of independent, preemptable but nonmigratable jobs is not
predictable in general, as exemplified by the jobs in Figure 4-8, it is predictable when the
priorities are assigned on the FIFO basis [Ha]. In Chapters 6-9, we will use the following
fact, which is true for all priority-driven scheduling algorithms.

THEOREM 4.4. The execution of every job in a set of independent, preemptable jobs
with fixed release times is predictable when scheduled in a priority-driven manner on
one processor.

Proof. That the highest priority job J; is predictable is obvious: It always starts at its
release time, and its maximum execution time is larger than its actual execution time.
Suppose that all the i — 1 highest priority jobs Ji, J», ..., J;_; are predictable. We now
show by contradiction that J;, which has a lower priority than they but a higher priority
than all the other jobs in the system, is also predictable.

Suppose that s~ (J;) < s(J;) < sT(J;) is not true. In particular, we suppose that
s(J;) > sT(J;). Because the scheduler never schedules a job before its release time,
st (J;) is no earlier than the release r; of J;. Because the scheduling algorithm is priority-
driven, every job whose release time is at or earlier than s*(J;) and whose priorities
are higher than J; has completed by s*(J;) according to the maximal schedule. By
induction hypothesis, we know that every such job has completed by s*(J;) according
to the actual schedule as well. s(J;) > s*(J;) means either that the processor is left
idle in the interval [s*(J;), s(J;)] or a job with a priority lower than J; is scheduled

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 76

76 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

in this interval. This contradicts the fact that the algorithm used to schedule the jobs is
priority-driven. Hence, s(J;) > s™(J;) cannot be true.

A similar argument based on the actual and minimal schedules allows us to con-
clude that s~ (J;) > s(J;) cannot be true. In other words, J; is start-time predictable.

To show that J; is also completion-time predictable, we note that since s(J;) <
sT(J;), there is more available time in the interval [s(J;), f*(J;)] than in the interval
[sT(J:), fT(J;)]. Moreover, the actual execution time of every job is never larger than
the maximum execution time of the job. If J; remains incomplete at f*(J;) according
to the actual schedule while it can complete by this time according to the maximal
schedule, it must be delayed by one or more jobs with priorities lower than J; executing
in [s(J;), f(J:)], or the processor must be left idle for some time in this interval. This
contradicts the fact that the scheduling algorithm is priority-driven. We can, therefore,
conclude that £(J;) < f7(J;). A similar argument based on the actual and minimal
schedules tells us that f~(J;) is never later than f(J;), or that J; is also completion-
time predictable. O

Theorem 4.4 tells us that it is relatively easy to validate priority-driven, uniprocessor,
static systems when jobs are independent and preemptable. Because the execution behavior
of all the jobs is predictable, we can confine our attention to the maximum execution times
of all the jobs and ignore the variations in execution times when we want to determine their
maximum possible response times. You will see that this is indeed what we will do in most
parts of Chapters 6-9. Nonpreemptivity and resource contention invariably introduce unpre-
dictability in execution. Fortunately, it is possible to bound the additional delay suffered by
every job due to these factors reasonably accurately. We will describe the methods for doing
so as well.

4.8.3 Validation Algorithms and Their Performance

The validation problem has many variants, and that of validating static priority-driven systems
is an important variant. Recent advances in real-time scheduling and schedulability analysis
have lead to several sufficient conditions and analytical bounds. They are solutions to this vari-
ant and the subjects of discussion in Chapters 6-9. These theoretical results form a rigorous
basis of good validation algorithms and tools for a wide spectrum of static systems. (A vali-
dation algorithm allows us to determine whether all jobs in a system indeed meet their timing
constraints despite scheduling anomalies.) While there are mature validation algorithms and
tools for static systems, good validation algorithms for dynamic, priority-driven systems are
not yet available.

Specifically, we say that a validation algorithm is correct if it never declares that all
timing constraints are met when some constraints may not be. The merits of (correct) val-
idation algorithms are measured in terms of their complexity, robustness, and accuracy. A
validation algorithm is good when it achieves a good balance in performance according to
these conflicting figures of merit.

For example, some existing validation algorithms run in constant time or O (n) time,
where n is the number of tasks in the system. They are well suited for on-line acceptance
tests to determine whether the system should admit a new task. More complex ones run in
pseudopolynomial time but have better performance in the other dimensions.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 77

Section 4.9 Off-Line versus On-Line Scheduling 77

Every rigorous validation algorithm is based on a workload model. When applied to
a system, the conclusion of the algorithm is correct if all the assumptions of the model are
valid for the system. A validation algorithm is said to be robust if it remains correct even
when some assumptions of its underlying workload model are not valid. The use of a robust
validation algorithm significantly reduces the need for an accurate characterization of the
applications and the run-time environment and, thus, the efforts in analysis and measurement
of the individual applications for the purpose of validating the workload model. We will see in
later chapters that existing validation algorithms based on the periodic task model are robust
to a great extent. Although the model assumes that jobs in each task are released periodically
and execute for an equal amount of time, such a validation algorithm remains correct in the
presence of release-time jitters, variations in job execution time, and other deviations from
periodic behavior. It is only necessary for us to know the ranges of task parameters (e.g.,
the minimum interrelease time and maximum execution time of jobs), which are much easier
to obtain and validate, either by timing analysis or measurement, than the actual values or
probability distributions of the parameters.

Efficiency and robustness can be achieved easily if we are not concerned with the accu-
racy of the validation test. A validation algorithm is inaccurate when it is overly pessimistic
and declares tasks unable to meet their timing constraints except when system resources are
unduly underutilized. A scheduler using an inaccurate validation algorithm for an acceptance
test may reject too many new tasks which are in fact acceptable. Because most validation al-
gorithms are based on conditions that are sufficient but not necessary, they are all inaccurate
to some degree, which is the price paid for the sake of robustness. The accuracy of a validation
algorithm depends on whether the actual characteristics of the application systems are accu-
rately captured by the underlying workload model. For example, validation algorithms that
are based on the periodic task model are sufficiently accurate for applications, such as digital
control and constant bit-rate voice and video communications, which are well characterized
by the periodic task model but may have poor accuracy when used to validate applications
that have widely varying processor-time demands and large release-time jitters.

4.9 OFF-LINE VERSUS ON-LINE SCHEDULING

In Section 4.1, we mentioned that a clock-driven scheduler typically makes use of a pre-
computed schedule of all hard real-time jobs. This schedule is computed off-line before the
system begins to execute, and the computation is based on the knowledge of the release times
and processor-time/resource requirements of all the jobs for all times. When the operation
mode of the system changes, the new schedule specifying when each job in the new mode
executes is also precomputed and stored for use. In this case, we say that scheduling is (done)
off-line, and the precomputed schedules are off-line schedules.

An obvious disadvantage of off-line scheduling is inflexibility. This approach is possi-
ble only when the system is deterministic, meaning that the system provides some fixed set(s)
of functions and that the release times and processor-time/resource demands of all its jobs are
known and do not vary or vary only slightly. For a deterministic system, however, off-line
scheduling has several advantages, the deterministic timing behavior of the resultant system
being one of them. Because the computation of the schedules is done off-line, the complex-
ity of the scheduling algorithm(s) used for this purpose is not important. Indeed, as we will

78

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 78

Chapter 4 Commonly Used Approaches to Real-Time Scheduling

see in the next chapter, complex heuristic algorithms are typically used to find good off-line
schedules that can make nearly full use of the resources.

Competitiveness of On-Line Scheduling. 'We say that scheduling is done on-line, or
that we use an on-line scheduling algorithm, if the scheduler makes each scheduling decision
without knowledge about the jobs that will be released in the future; the parameters of each
job become known to the on-line scheduler only after the job is released. The priority-driven
algorithms described earlier and in subsequent chapters are on-line algorithms. In Chapter
2 we talked about the admission of each new task depending on the outcome of an accep-
tance test that is based on the parameters of the new task and tasks admitted earlier. Such an
acceptance test is on-line.

Clearly, on-line scheduling is the only option in a system whose future workload is
unpredictable. An on-line scheduler can accommodate dynamic variations in user demands
and resource availability. The price of the flexibility and adaptability is a reduced ability for
the scheduler to make the best use of system resources. Without prior knowledge about future
jobs, the scheduler cannot make optimal scheduling decisions while a clairvoyant scheduler
that knows about all future jobs can.

As a simple example, suppose that at time 0, a nonpreemptive job J; with execution
time 1 and deadline 2 is released. An on-line scheduler has two options at time O: It either
schedules J; to start execution at time O or it postpones the execution of J; to some later time.
Suppose that the on-line scheduler decides to schedule J; at time 0. Later at time x < 1, a job
J, with execution time 1 — x and deadline 1 is released. J, would miss its deadline because
it cannot start execution until time 1. In contrast, a clairvoyant scheduler, which knows J, at
time 0, would schedule J; to start execution at time 1 and thus allow both jobs to complete in
time. In the second case, the on-line scheduler decides to postpone the execution of J; until
some later time x < 1. Now suppose that at time x, J3 is released instead of J,. The execution
time of J3 is 1, and its deadline is 2. It is impossible for the on-line scheduler to schedule both
Ji and J3 so that they complete in time. Again, a clairvoyant scheduler, knowing the future
release of J3 at time 0, would schedule J; to start execution at time O so it can complete both
Ji and J3 on time.

The system is said to be overloaded when the jobs offered to the scheduler cannot be
feasibly scheduled even by a clairvoyant scheduler. When the system is not overloaded, an
optimal on-line scheduling algorithm is one that always produces a feasible schedule of all
offered jobs. The example above shows that no optimal on-line scheduling algorithm exists
when some jobs are nonpreemptable. On the other hand, if all the jobs are preemptable and
there is only one processor, optimal on-line algorithms exist, and the EDF and LST algorithms
are examples.

During an overload, some jobs must be discarded in order to allow other jobs to com-
plete in time. A reasonable way to measure the performance of a scheduling algorithm during
an overload is by the amount of work the scheduler can feasibly schedule according to the
algorithm: the larger this amount, the better the algorithm. The competitive factor of an algo-
rithm captures this aspect of performance. To define this performance measure, we say that
the value of a job is equal to its execution time if the job completes by its deadline according
to a given schedule and is equal to zero if the job fails to complete in time according to the
schedule. The value of a schedule of a sequence of jobs is equal to the sum of the values of
all the jobs in the sequence according to the schedule. A scheduling algorithm is optimal if

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 79

Section 4.9 Off-Line versus On-Line Scheduling 79

it always produces a schedule of the maximum possible value for every finite set of jobs. An
on-line algorithm has a competitive factor c if and only if the value of the schedule of any
finite sequence of jobs produced by the algorithm is at least ¢ times the value of the schedule
of the jobs produced by an optimal clairvoyant algorithm.

In terms of this performance measure, EDF and LST algorithms are optimal under the
condition that the jobs are preemptable, there is only one processor, and the processor is not
overloaded. Their competitive factors are equal to 1 under this condition. On other hand, when
the system is overloaded, their competitive factors are 0. To demonstrate, let us consider two
jobs. The first one is released at time 0, and its execution time is 2¢; the deadline is ¢ for some
arbitrarily small positive number ¢. At time ¢, a job whose relative deadline is equal to its
execution time e is released. The value achieved by the EDF or LST algorithm is 0, while the
maximum possible value achievable is e.

As it turns out, the EDF and LST algorithms are not the only algorithms with poor
performance when the system is overloaded. In general, all on-line scheduling algorithms
perform rather poorly. The following theorem due to Baruah, et al. [BKMM] gives us the
performance limitation of on-line scheduling when the system is overloaded.

THEOREM 4.5. No on-line scheduling algorithm can achieve a competitive factor
greater than 0.25 when the system is overloaded.

*Informal Proof of Theorem 4.5. To gain some insight into why this upper bound
of 0.25 is true, we summarize the proof of Theorem 4.5; you can find the complete
formal proof in [BKMM]. Suppose that there is an adversary of the on-line scheduler.
Over time, the adversary creates two kinds of jobs and offers (i.e., releases) them to the
scheduler: major jobs and jobs associated with major jobs. The relative deadline of every
job is equal to its execution time. (In other words, the job has no slack; the scheduler
should either schedule the job immediately after it is released, or discard it.) We name
the major jobs J; for i = 0, 1, ..., max in increasing order of their release times and
denote the execution time and release time of each job J; by ¢; and r;, respectively. (max
is some positive integer that we will define shortly.) The adversary creates a sequence
of jobs associated with each major job J;. The execution times of all the associated jobs
in the sequence are equal to some small number ¢ > 0, which is negligible compared
with ¢;. The first job in the sequence associated with each major job J; is released at
the same time with J;. If there is more than one associated job in a sequence, each
subsequent associated job is released at the deadline of the previous associated job in
the sequence. The number of associated jobs in the sequence depends on the action of
the on-line scheduler. Specifically, as long as the on-line scheduler chooses to execute
Ji, the adversary continues to create jobs associated with J; until the deadline d; of J;.
Whenever the scheduler decides to execute a job associated with J;, the adversary stops
releasing any more associated jobs.

Let us now consider a busy interval which begins at ry when the adversary releases
the first major job Jy and the first of the sequence of jobs associated with Jy. Depending
on the action of the on-line scheduler, the adversary may release major job J; fori > 0
at time r;; the release time r; of the ith major job and the first of its associated jobs
is equal to r,_; + e;—; — €. In other words, J; is released at ¢ units of time before the
deadline of J;_;. It is not possible to schedule both J;_; and J; to complete in time. At

80

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 80

Chapter 4 Commonly Used Approaches to Real-Time Scheduling

the time r;, the scheduler must choose either to discard J;_; and start to execute J; or
continue to execute J;_; and therefore discard J;.

If the scheduler chooses to discard J;_; and begins to execute J;, the adversary
then releases J; 4 at ;1. As long as the scheduler continues to discard the executing
major job each time a new major job is released in order to execute the new job, the
adversary continues to release the next major job ¢ units of time before the deadline
of the executing job. This process continues until the major job J,,,, is released for
some positive integer max, and the busy interval ends at the deadline of this job. In this
case, the on-line scheduler discards all the jobs but J,,,,, and the total value achieved by
the scheduler in this busy interval is e,,,,. In contrast, the clairvoyant scheduler would
schedule the jobs associated with all the major jobs before J,,,, and then the major job
Jimax and achieve the value) ;'] ¢.

On the other hand, the scheduler may decide to complete J; and, upon the com-
pletion of J;, execute a job associated with J; fori < max. In this case, the adversary
stops releasing any major job after J;y,. Moreover, it stops releasing jobs associated
with J; 1 after the first associated job. (Figure 4-9 shows this situation for i = 2.) The
value achieved in the busy interval by the on-line scheduler is approximately equal to
e;. However, the clairvoyant scheduler would execute all jobs associated with jobs Jo,
Ji, ..., Ji—1 and then the job J; and achieve a value of Z;(:o e.

Now suppose that the execution time e, of the first major job Jy is 1, and for
i > 0, the execution time ¢; of the ith major job is given by

i—1
e =ceji_| — E ex
k=0

If we perform the necessary algebraic manipulation, we will find that competitive factor
of the on-line scheduler is either equal to 1/c, if the scheduler completes J; followed
by an associate job, or is equal to the ratio of e, to the sum) ;"%} e, if the scheduler
discards all the major jobs except J,.. The former is always greater than or equal to

the latter for every positive integer max if ¢ is equal to 4 or more. For ¢ equal to 4,

rO r ry }"3
major
obs Pl) A Js
0 1 4 12
associated
jobs

’ N\
12

>llee 12+¢

FIGURE 4-9 Example illustrating competitiveness of on-line scheduling.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 81

Section 4.10 Summary 81

the competitive factor is 0.25. The execution times of the major jobs are equal to 1, 3,
8, 20, 48, Figure 4-9 shows the case where the on-line scheduler executes J, to
completion. It achieves a value of 8 while a clairvoyant scheduler, knowing that all the
jobs shown in the figure will be released at all time, can achieve a value of 32. O

The system used in the proof of Theorem 4.5 is extremely overloaded. It is not sur-
prising that the performance of on-line scheduling algorithms is poor when the system is so
overloaded. Intuitively, we expect that some on-line algorithms should perform well when the
system is only slightly overloaded. To state this more precisely, we let x (¢, t') (#' > t) denote
the load ratio of the interval [z, t'] : It is the ratio of the total execution time of all jobs whose
feasible intervals are contained in the interval [¢, ¢] to the length " — ¢ of the interval. A sys-
tem is said to have a loading factor X if the load ratio of the system is equal to or less than X
for all intervals. Our intuition says that if the loading factor of a system is 1 4 ¢ for some very
small positive number ¢, there should be on-line algorithms whose competitiveness factors
are close to 1. Unfortunately, our intuition fails us. Baruah, ef al. showed that the competitive-
ness factor of an on-line scheduling algorithm is at most equal to 0.385 for any system whose
loading factor is just slightly over 1.

The results on competitiveness of on-line algorithms tell us that when scheduling is
done on-line, it is important to keep the system from being overloaded using some overload
management or load shedding algorithms. Most overload management algorithms take into
account the criticality factors of jobs, not just their timing parameters, when choosing jobs to
be discarded. We will describe a few of them in later chapters.

4.10 SUMMARY

This chapter gave a brief overview of the clock-driven, weighted round-robin and priority-
driven approaches to scheduling. They are the subjects of in-depth discussion of the next
few chapters. This chapter also discussed several important facts about the priority-driven
approach. We need to keep them in mind at all times.

An algorithm for scheduling hard real-time jobs is optimal if it can produce a feasible
schedule as long as feasible schedules of the given jobs exist, that is, when the system is not
overloaded. This is the criterion of merit we use most of the time in this book. The EDF
(Earliest-Deadline-First) algorithm is optimal for scheduling preemptable jobs on one proces-
sor. LST (Least-Slack-Time) algorithm is also optimal for preemptable jobs on one processor,
but it requires information on the execution times of all jobs while the EDF algorithm does
not. Neither algorithm is optimal when jobs are nonpreemptable or when there is more than
one processor.

Another important concept is predictability of the timing behavior of jobs. The execu-
tion behavior of a system is predictable if the system exhibits no anomalies. We can conclude
that the jobs in a predictable system can always meet their deadlines if the jobs meet their
deadlines according to the maximal schedule of the system, that is, when every job in the
system executes for as long as its maximum execution time. We have shown that when the
jobs are independent and preemptable and are scheduled on one processor, their execution be-
havior is predictable. This fact allows us to ignore the variations in job execution times during

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 82

82 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

validation and work with their maximum execution times. Indeed, this is what we will do in
most parts of subsequent chapters.

In general, systems that use priority-driven scheduling have scheduling anomalies. In
subsequent chapters we will discuss efficient validation algorithms that allow us to verify the
timely completions of jobs despite scheduling anomalies. Such an algorithm is correct if it
never concludes that some job completes in time when the job may fail to do so. The merits of
correct validation algorithms are measured by their efficiency, robustness, and accuracy. These
measures tell us how much time a validation algorithm takes to reach its conclusion on the
schedulability of each job or the entire system, whether its conclusion remains correct when
some assumptions of its underlying model are no longer valid, and whether the algorithm is
overly pessimistic.

Finally, the EDF and LST algorithms are not optimal when the system is overloaded so
some jobs must be discarded in order to allow other jobs to complete in time. In fact, these
algorithms perform poorly for overloaded systems: Their competitiveness factors are equal to
zero. Some kind of overload management algorithm should be used with these algorithms.

4.11 EXERCISES

4.1 The feasible interval of each job in the precedence graph in Figure 4P-1 is given next to its name.

The execution time of all jobs are equal to 1.

(a) Find the effective release times and deadlines of the jobs in the precedence graph in Figure
4P-1.

(b) Find an EDF schedule of the jobs

(c) A job is said to be at level i if the length of the longest path from the job to jobs that have
no successors is i. So, jobs J3, Js, and Jy are at level 0, jobs J>, Js, and Jg are at level 1, and
so on. Suppose that the priorities of the jobs are assigned based on their levels: the higher
the level, the higher the priority. Find a priority-driven schedule of the jobs in Figure 4P-1
according to this priority assignment.

J1 (0, 10) Jo(1,4) J3(0,5)

J4 (1, 6)e *J6 (2, 10)

LA 1) (L1 Je(112)

4.2 (a) The execution times of the jobs in the precedence graph in Figure 4P-2 are all equal to 1,
and their release times are identical. Give a nonpreemptive optimal schedule that minimizes
the completion time of all jobs on three processors. Describe briefly the algorithm you used
to find the schedule.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 83

4.3

4.4

4.5

4.6

Exercises 83

(b) If the execution times of jobs are arbitrary rational numbers, can your algorithm be modified
so that it will produce optimal preemptive schedules of such jobs? Explain your answer.

Prove Theorem 4.3 on the optimality of the LST algorithm for scheduling preemptive jobs on one
processor.

Consider a system that has five periodic tasks, A, B, C, D, and E, and three processors Py, Ps,
P;. The periods of A, B, and C are 2 and their execution times are equal to 1. The periods of D
and E are 8 and their execution times are 6. The phase of every task is O, that is, the first job of
the task is released at time 0. The relative deadline of every task is equal to its period.

(a) Show that if the tasks are scheduled dynamically on three processors according to the LST
algorithm, some jobs in the system cannot meet their deadlines.

(b) Find a feasible schedule of the five tasks on three processors.

(¢) Parts (a) and (b) allow us to conclude that the LST algorithm is not optimal for scheduling
on more than one processor. However, when all the jobs have the same release time or when
they have the same deadline, the LST algorithm is optimal. Prove this statement.

[Grah] A system contains nine nonpreemptable jobs named J;, fori = 1,2, ..., 9. Their exe-
cution times are 3, 2, 2, 2, 4, 4, 4, 4, and 9, respectively, their release times are equal to 0, and
their deadlines are 12. J; is the immediate predecessor of Jy, and J, is the immediate predecessor
of Js, Jg, J7, and Jg. There is no other precedence constraints. For all the jobs, J; has a higher
priority than J; if i < k.

(a) Draw the precedence graph of the jobs.

(b) Can the jobs meet their deadlines if they are scheduled on three processors? Explain your
answer.

(c) Can the jobs meet their deadlines if we make them preemptable and schedule them preemp-
tively. Explain your answer.

(d) Can the jobs meet their deadlines if they are scheduled nonpreemptively on four processors?
Explain your answer.

(e) Suppose that due to an improvement of the three processors, the execution time of every job
is reduced by 1. Can the jobs meet their deadlines? Explain your answer.

Consider a system that has two processors and uses an on-line preemptive scheduler to schedule
jobs on the processors. At time 0, three independent jobs, J;, J,, and J3, with execution time 1,
1, and 2, respectively, are released. Their deadlines are 2, 2, and 4, respectively. The scheduler
either schedules a portion of J; before time 1, or it does not schedule J; before time 1. We now
consider these two cases.

(a) In case (1), the scheduler schedules a portion of J; before time 1. Now suppose that two more
independent jobs, J4 and Js, are released at time 2. Their execution times are both equal to 1,

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:46a.m. chap4 page 84

84 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

and their deadlines are equal to 2. Show that in this case, the scheduler can no longer feasibly
schedule all the jobs, while a clairvoyant scheduler, which foresees the releases of J4 and Js,
would not schedule any part of J; before time 1 and therefore could feasibly schedule all the
jobs.
In case (2), the on-line scheduler does not schedule any portion of J; before time 1. Show by
constructing an example that there exist future jobs which the on-line scheduler will not be
able to schedule feasibly, while the jobs could feasibly be scheduled if the on-line scheduler
had scheduled J; before time 1.
4.7 Consider the set of jobs in Figure 4-3. Suppose that the jobs have identical execution time.
(a) What maximum execution time can the jobs have and still can be feasibly scheduled on one
processor? Explain your answer.
(b) Suppose that the release times of J; and J; are jittery. The release time of J; can be as early as
0 and as late as 3, and the release time of J, can be as late as 1. How can you take into account
this variation when you want to determine whether the jobs can all meet their deadlines?

(b

~

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:49 a.m. chap5 page 85

CHAPTER 5

Clock-Driven Scheduling

The previous chapter gave a skeletal description of clock-driven scheduling. This chapter
fleshes out this description and discusses the advantages and disadvantages of this approach.

5.1 NOTATIONS AND ASSUMPTIONS

As it will become evident shortly, the clock-driven approach to scheduling is applicable only
when the system is by and large deterministic, except for a few aperiodic and sporadic jobs
to be accommodated in the deterministic framework. For this reason, we assume a restricted
periodic task model throughout this chapter. The following are the restrictive assumptions that
we will remove in subsequent chapters:

1. There are n periodic tasks in the system. As long as the system stays in an operation
mode, n is fixed.

2. The parameters of all periodic tasks are known a priori. In particular, variations in the
interrelease times of jobs in any periodic task are negligibly small. In other words, for
all practical purposes, each job in T; is released p; units of time after the previous job
in T;.

3. Each job J;; is ready for execution at its release time 7; x.

We refer to a periodic task 7; with phase ¢;, period p;, execution time e;, and relative
deadline D; by the 4-tuple (¢;, p;, e;, D;). For example, (1, 10, 3, 6) is a periodic task whose
phase is 1, period is 10, execution time is 3, and relative deadline is 6. Therefore the first job
in this task is released and ready at time 1 and must be completed by time 7; the second job is
ready at 11 and must be completed by 17, and so on. Each of these jobs executes for at most
3 units of time. The utilization of this task is 0.3. By default, the phase of each task is 0, and
its relative deadline is equal to its period. We will omit the elements of the tuple that have
their default values. As examples, both (10, 3, 6) and (10, 3) have zero phase. Their relative
deadlines are 6 and 10, respectively.

Also, there are aperiodic jobs released at unexpected time instants. For now we assume
that there are no sporadic jobs. We will discuss how to schedule sporadic jobs in Section 5.6.
Most of this chapter focuses on scheduling tasks on one processor. The discussion on how to
generalize the clock-driven uniprocessor scheduling strategy to schedule jobs in multiproces-
sor systems is postponed to Section 5.7.

85

86

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:49 a.m. chap5 page 86

Chapter 5 Clock-Driven Scheduling

5.2 STATIC, TIMER-DRIVEN SCHEDULER

For the sake of concreteness, we assume that the operating system maintains a queue for ape-
riodic jobs. When an aperiodic job is released, it is placed in the queue without the attention
of the scheduler. We are not concerned with how the aperiodic jobs are ordered in this queue
but simply assume that they are ordered in a manner suitable for the applications in the sys-
tem. Whenever the processor is available for aperiodic jobs, the job at the head of this queue
executes.

Whenever the parameters of jobs with hard deadlines are known before the system be-
gins to execute, a straightforward way to ensure that they meet their deadlines is to construct
a static schedule of the jobs off-line. This schedule specifies exactly when each job executes.
According to the schedule, the amount of processor time allocated to every job is equal to
its maximum execution time, and every job completes by its deadline. During run time, the
scheduler dispatches the jobs according to this schedule. Hence, as long as no job ever over-
runs (i.e., some rare or erroneous condition causes it to execute longer than its maximum ex-
ecution time), all deadlines are surely met. Because the schedule is computed off-line, we can
afford to use complex, sophisticated algorithms. Among all the feasible schedules (i.e., sched-
ules where all jobs meet their deadlines), we may want to choose one that is good according
to some criteria (e.g., the processor idles nearly periodically to accommodate aperiodic jobs).

As an example, we consider a system that contains four independent periodic tasks.
They are T} = (4,1), T, = (5,1.8), T5 = (20, 1), and T; = (20, 2). Their utilizations are
0.25, 0.36, 0.05, and 0.1, respectively, and the total utilization is 0.76. It suffices to construct
a static schedule for the first hyperperiod of the tasks. Since the least common multiple of all
periods is 20, the length of each hyperperiod is 20. The entire schedule consists of replicated
segments of length 20. Figure 5-1 shows such a schedule segment on one processor. We see
that 7' starts execution at time 0, 4, 9.8, 13.8, and so on; 75 starts execution at 2, 8, 12, 18,
and so on. All tasks meet their deadlines.

Some intervals, such as (3.8,4), (5,6), and (10.8, 12), are not used by the periodic
tasks. These intervals can be used to execute aperiodic jobs. For this purpose, it may be ad-
vantageous to have the unused intervals scattered more or less periodically in the schedule. If
no aperiodic jobs are ready for execution during these intervals, we can use the time to exe-
cute background nonreal-time jobs whose response times are uncritical to the performance of
the system or some built-in self-test job that checks the status and monitors the health of the
system.

A straightforward way to implement the scheduler is to store the precomputed schedule
as a table. Each entry (#, T'(#)) in this table gives a decision time t;, which is an instant
when a scheduling decision is made, and 7 (#;), which is either the name of the task whose
job should start at 7 or /. The latter indicates an idle interval during which no periodic task is
scheduled. During initialization (say at time 0), the operating system creates all the tasks that
are to be executed. (In other words, it allocates a sufficient amount of memory for the code

7|7 T2|71| T, | |1 7, |7, |71| T2|T1|

0 4 8 12 16 20
FIGURE 5-1 An arbitrary static schedule.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:49 a.m. chap5 page 87

Section 5.2 Static, Timer-Driven Scheduler 87

and data of every task and brings the code executed by the task into memory.) The scheduler
makes use of a timer. Immediately after all the tasks have been created and initialized and
then at every scheduling decision time, the scheduler sets the timer so the timer will expire
and request an interrupt at the next decision time. Upon receiving a timer interrupt at #;, the
scheduler sets the timer to expire at #;,; and prepares the task 7'(f;) for execution. It then
suspends itself, letting the task have the processor and execute. When the timer expires again,
the scheduler repeats this operation.

The pseudocode in Figure 5-2 describes the operation of such a scheduler. H is the
length of the hyperperiod of the system. N is the number of entries in the schedule of each
hyperperiod. The description assumes the existence of a timer. The timer, once set to expire
at a certain time, will generate an interrupt at that time. This interrupt wakes up the scheduler,
which is given the processor with a negligible amount of delay.

In the example in Figure 5-1, the stored table contains 17 entries. They are (0, 7}),
(1, 73), 2,T>), 3.8, 1), (4, T1), ...(19.8, I). Hence, the timer is set to expire at 0, 1, 2, 3.8,
and so on. At these times, the scheduler schedules the execution of tasks 7;, T3, T», and an
aperiodic or background job, respectively. The table is used again during the next hyperperiod,
and new decision times 20, 21, 22, 23.8, and so on, can be obtained from the times in the first
hyperperiod as described in Figure 5-2.

We call a periodic static schedule a cyclic schedule. Again, this approach to scheduling
hard real-time jobs is called the clock-driven or time-driven approach because each scheduling
decision is made at a specific time, independent of events, such as job releases and comple-
tions, in the system. It is easy to see why a clock-driven system never exhibits the anomalous
timing behavior of priority-driven systems.

Input: Stored schedule (#, T'(#)) fork =0,1,... N — 1.
Task SCHEDULER:
set the next decision point i and table entry & to O;
set the timer to expire at ;.
do forever:
accept timer interrupt;
if an aperiodic job is executing, preempt the job;
current task 7 = T (t;);
increment i by 1;
compute the next table entry k = i mod(N);
set the timer to expire at [i/N |H + t;
if the current task 7" is 7,
let the job at the head of the aperiodic job queue execute;
else, let the task 7" execute;
sleep;
end SCHEDULER

FIGURE 5-2 A clock-driven scheduler.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:49 a.m. chap5 page 88

88 Chapter 5 Clock-Driven Scheduling

5.3 GENERAL STRUCTURE OF CYCLIC SCHEDULES

Rather than using ad hoc cyclic schedules, such as the one in Figure 5—-1, we may want to use
a schedule that has a certain structure. By making sure that the structure has the desired char-
acteristics, we can ensure that the cyclic schedule and the scheduler have these characteristics.

5.3.1 Frames and Major Cycles

Figure 5-3 shows a good structure of cyclic schedules [BaSh]. A restriction imposed by this
structure is that scheduling decisions are made periodically, rather than at arbitrary times. The
scheduling decision times partition the time line into intervals called frames. Every frame has
length f; f is the frame size. Because scheduling decisions are made only at the beginning
of every frame, there is no preemption within each frame. The phase of each periodic task is
a nonnegative integer multiple of the frame size. In other words, the first job of every task is
released at the beginning of some frame.

In addition to choosing which job to execute, we want the scheduler to carry out mon-
itoring and enforcement actions at the beginning of each frame. In particular, we want the
scheduler to check whether every job scheduled in the frame has indeed been released and is
ready for execution. We also want the scheduler to check whether there is any overrun and
take the necessary error handling action whenever it finds any erroneous condition. These
design objectives make some choices of frame size more desirable than the others.

5.3.2 Frame Size Constraints

Ideally, we want the frames to be sufficiently long so that every job can start and complete its
execution within a frame. In this way, no job will be preempted. We can meet this objective if
we make the frame size f larger than the execution time e; of every task 7;. In other words,
/= max (e;) (5.1
To keep the length of the cyclic schedule as short as possible, the frame size f should be

chosen so that it divides H, the length of the hyperperiod of the system. This condition is met
when f divides the period p; of at least one task 7;, that is,

Lpi/f1—pi/f =0 (5.2)

for at least one i. When this condition is met, there is an integer number of frames in each
hyperperiod. We let F denote this number and call a hyperperiod that begins at the beginning
of the (kF + 1)st frame, forany k =0, 1, ..., a major cycle.

major

1 cee ! l :i+1
cycles 1 2 3 4 :
frames :

t t+f t+2f t+3f t+4f t+H

FIGURE 5-3 General structure of a cyclic schedule.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:49 a.m. chap5 page 89

Section 5.3 General Structure of Cyclic Schedules 89

frame k

frame k + 1 ‘ frame k + 2
. 5
t t t+f t+2f t'+D; t'+p; t+2f

>

FIGURE 5-4 A constraint on the value of frame size.

On the other hand, to make it possible for the scheduler to determine whether every job
completes by its deadline, we want the frame size to be sufficiently small so that between the
release time and deadline of every job, there is at least one frame. Figure 5—4 illustrates the
suitable range of f for a task 7; = (p;, e;, D;). When f is in this range, there is at least one
frame between the release time and deadline of every job in the task. In this figure, ¢ denotes
the beginning of a frame (called the kth frame) in which a job in 7; is released, and ¢’ denotes
the release time of this job. We need to consider two cases: t' > t and ' = ¢. If ¢’ is later than
t, as shown in this figure, we want the (k + 1)st frame to be in the interval between the release
time 7’ and the deadline ¢’ + D; of this job. For this to be true, we must have 7 42 f equal to or
earlier than ¢’ 4+ D, that is, 2f — (¢ — ¢) < D;. Because the difference ¢ — ¢ is at least equal
to the greatest common divisor gcd(p;, f) of p; and f, this condition is met if the following
inequality holds:

2f —ged(pi, f) < D; (5.3)

We want the inequality of Eq. (5.3) to hold for all i =1, 2, ..., n. In the special case when ¢’
is equal to ¢, it suffices to choose a frame size that is equal to or smaller than D;. The condition
f < D; is satisfied for all values of f that satisfy Eq. (5.3) and, hence, does not need to be
considered separately. We refer to Egs. (5.1), (5.2) and (5.3) as the frame-size constraints.

For the four tasks in Figure 5—1, we see that Eq (5.1) constrains the frame size to be no
less than 2. Their hyperperiod length is 20; hence, 2, 4, 5, 10 and 20 are possible frame sizes
according to Eq. (5.2). However, only 2 satisfies Eq. (5.3). Therefore, we must choose this
frame size and can use the cyclic schedule shown in Figure 5-5.

As another example, we consider the tasks (15, 1, 14), (20, 2, 26), and (22, 3). Because
of Eq. (5.1), we must have f > 3; because of Eq. (5.2), we must have f = 3, 4, 5, 10, 11,
15, 20, and 22; and because of Eq. (5.3), we must have f = 3, 4 or 5. Therefore the possible
choices of the frame size are 3, 4, and 5.

5.3.3 Job Slices

Sometimes, the given parameters of some task systems cannot meet all three frame size con-
straints simultaneously. An example is the system T = {(4, 1), (5, 2, 7), (20, 5)}. For Eq. (5.1)
to be true, we must have f > 5, but to satisfy Eq. (5.3) we must have f < 4. In this situation,

ffelm] [n] (2] 1] [
16 "

0 4 8 12 20
FIGURE 5-5 A cyclic schedule with frame size 2.

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:49 a.m. chap5 page 90

90 Chapter 5 Clock-Driven Scheduling

Tl T2 T%l Tl T32 Tl T2 Tl T2 Tl T2 T%S

B 5

A\ 4

0 4 8 12 16 20
FIGURE 5-6 A preemptive cyclic schedule of 7, = (4, 1), T, = (5,2, 7) and T3 = (20, 5).

we are forced to partition each job in a task that has a large execution time into slices (i.e.,
subjobs) with smaller execution times. (When the job is a message transmission, we divide
the message into several segments. When the job is a computation, we partition the program
into procedures, each of which is to be executed nonpreemptively.) In this way, we can reduce
the lower bound of f imposed by Eq. (5.1).

For T = {(4,1), (5,2,7), (20, 5)}, we can divide each job in (20, 5) into a chain of
three slices with execution times 1, 3, and 1. In other words, the task (20, 5) now consists of
three subtasks (20, 1), (20, 3) and (20, 1). The resultant system has five tasks for which we
can choose the frame size 4. Figure 5-6 shows a cyclic schedule for these tasks. The three
original tasks are called 7}, T, and T3, respectively, and the three subtasks of 73 are called
T3,1, T3,2, and T3’3.

You may question why we choose to decompose (20, 5) into three subtasks. To satisfy
Eq. (5.1), it suffices for us to partition each job in the task into two slices, one with execution
time 3 and the other with execution time 2. However, a look at the schedule in Figure 5-6
shows the necessity of three slices. It would not be possible to fit the two tasks (20, 3) and
(20, 2) together with 7} and 75 in five frames of size 4. T}, with a period of 4, must be sched-
uled in each frame. 75, with a period of 5, must be scheduled in four out of the five frames.
(The fact that the relative deadline of 75 is 7 does not help.) This leaves one frame with 3
units of time for 73. The other frames have only 1 unit of time left for 75. We can schedule
two subtasks each with 1 unit of execution time in these frames, but there is no time in any
frame for a subtask with execution time 2.

From this example, we see that in the process of constructing a cyclic schedule, we have
to make three kinds of design decisions: choosing a frame size, partitioning jobs into slices,
and placing slices in the frames. In general, these decisions cannot be made independently.
The more slices a job is partitioned into, the higher the context switch and communication
overhead. Therefore, we want to partition each job into as few slices as necessary to meet the
frame-size constraints. Unfortunately, this goal is not always attainable. There may not be any
feasible schedule for the choices of frame size and job slices because it is impossible to pack
the large job slices into the frames by their deadlines. In contrast, feasible schedules may
exist if we choose smaller job slices. For this reason, we sometimes are forced to partition
some jobs into more slices than needed to meet the frame size constraints. We will present in
Section 5.8 an algorithm for the construction of good cyclic schedules and will discuss this
issue again.

5.4 CYCLIC EXECUTIVES

The clock-driven scheduler described in Figure 5—-1 must be modified to accommodate the
restriction that scheduling decisions are made only at frame boundaries. The cyclic executive

Integre Technical Publishing Co., Inc. Liu January 13,2000 8:49 a.m. chap5 page 91

Section 5.4 Cyclic Executives 91

approach is a way. In real-time systems literature, the term “cyclic executive” refers to a
scheduler that deterministically interleaves and sequentializes the execution of periodic-tasks
on a CPU according to a given cyclic schedule. Each job slice is a procedure. The cyclic
executive executes a single do loop. Starting from the beginning of each frame, it executes in
turn the slices scheduled in the frame. The flight controller in Figure 1-3 is an example.

Here, we use the term cyclic executive in a more general sense to mean a table-driven
cyclic scheduler for all types of jobs in a multithreaded system. Similar to the scheduler in
Figure 1-3, it makes scheduling decisions only at the beginning of each frame and determin-
istically interleaves the execution of periodic tasks. However, it allows aperiodic and sporadic
jobs to use the time not used by periodic tasks. The pseudocode in Figure 5—7 describes such
a cyclic executive on a CPU. The stored table that gives the precomputed cyclic schedule has
F entries, where F is the number of frames per major cycle. Each entry (say the kth) lists the
names of the job slices that are scheduled to execute in frame k. In Figure 5-7, the entry is
denoted by L(k) and is called a scheduling block, or simply a block. The current block refers
to the list of periodic job slices that are scheduled in the current frame.

In essence, the cyclic executive takes over the processor and executes at each of the
clock interrupts, which occur at the beginning of f