
Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 1

C H A P T E R 1

Typical Real-Time Applications

From its title, you can see that this book is about real-time (computing, communication, and
information) systems. Rather than pausing here to define the term precisely, which we will
do in Chapter 2, let us just say for now that a real-time system is required to complete its
work and deliver its services on a timely basis. Examples of real-time systems include digital
control, command and control, signal processing, and telecommunication systems. Every day
these systems provide us with important services. When we drive, they control the engine
and brakes of our car and regulate traffic lights. When we fly, they schedule and monitor the
takeoff and landing of our plane, make it fly, maintain its flight path, and keep it out of harm’s
way. When we are sick, they may monitor and regulate our blood pressure and heart beats.
When we are well, they can entertain us with electronic games and joy rides. Unlike PCs and
workstations that run nonreal-time applications such as our editor and network browser, the
computers and networks that run real-time applications are often hidden from our view. When
real-time systems work correctly and well, they make us forget their existence.

For the most part, this book is devoted to real-time operating systems and communica-
tion protocols, in particular, how they should work so that applications running on them can
reliably deliver valuable services on time. From the examples above, you can see that mal-
functions of some real-time systems can have serious consequences. We not only want such
systems to work correctly and responsively but also want to be able to show that they indeed
do. For this reason, a major emphasis of the book is on techniques for validating real-time
systems. By validation, we mean a rigorous demonstration that the system has the intended
timing behavior.

As an introduction, this chapter describes several representative classes of real-time ap-
plications: digital control, optimal control, command and control, signal processing, tracking,
real-time databases, and multimedia. Their principles are out of the scope of this book. We
provide only a brief overview in order to explain the characteristics of the workloads gener-
ated by the applications and the relation between their timing and functional requirements. In
later chapters, we will work with abstract workload models that supposely capture the rele-
vant characteristics of these applications. This overview aims at making us better judges of
the accuracy of the models.

In this chapter, we start by describing simple digital controllers in Section 1.1. They are
the simplest and the most deterministic real-time applications. They also have the most strin-
gent timing requirements. Section 1.2 describes optimal control and command and control
applications. These high-level controllers either directly or indirectly guide and coordinate

1

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 2

2 Chapter 1 Typical Real-Time Applications

digital controllers and interact with human operators. High-level controllers may have signif-
icantly higher and widely fluctuating resource demands as well as larger and more relaxed
response time requirements. Section 1.3 describes signal processing applications in general
and radar signal processing and tracking in particular. Section 1.4 describes database and
multimedia applications. Section 1.5 summarizes the chapter.

1.1 DIGITAL CONTROL

Many real-time systems are embedded in sensors and actuators and function as digital con-
trollers. Figure 1–1 shows such a system. The term plant in the block diagram refers to a
controlled system, for example, an engine, a brake, an aircraft, a patient. The state of the plant
is monitored by sensors and can be changed by actuators. The real-time (computing) system
estimates from the sensor readings the current state of the plant and computes a control output
based on the difference between the current state and the desired state (called reference input
in the figure). We call this computation the control-law computation of the controller. The
output thus generated activates the actuators, which bring the plant closer to the desired state.

1.1.1 Sampled Data Systems

Long before digital computers became cost-effective and widely used, analog (i.e., continuous-
time and continuous-state) controllers were in use, and their principles were well established.
Consequently, a common approach to designing a digital controller is to start with an analog
controller that has the desired behavior. The analog version is then transformed into a digi-
tal (i.e., discrete-time and discrete-state) version. The resultant controller is a sampled data
system. It typically samples (i.e., reads) and digitizes the analog sensor readings periodically
and carries out its control-law computation every period. The sequence of digital outputs thus
produced is then converted back to an analog form needed to activate the actuators.

A Simple Example. As an example, we consider an analog single-input/single-output
PID (Proportional, Integral, and Derivative) controller. This simple kind of controller is com-
monly used in practice. The analog sensor reading y(t) gives the measured state of the plant
at time t . Let e(t) = r(t) − y(t) denote the difference between the desired state r(t) and the
measured state y(t) at time t . The output u(t) of the controller consists of three terms: a term

A/D

A/D

Sensor Plant Actuator

controller

control-law
computation D/A

reference
input
r(t)

y(t) u(t)

rk

yk

uk

FIGURE 1–1 A digital controller.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 3

Section 1.1 Digital Control 3

that is proportional to e(t), a term that is proportional to the integral of e(t) and a term that is
proportional to the derivative of e(t).

In the sampled data version, the inputs to the control-law computation are the sampled
values yk and rk , for k = 0, 1, 2, . . . , which analog-to-digital converters produce by sam-
pling and digitizing y(t) and r(t) periodically every T units of time. ek = rk − yk is the kth
sample value of e(t). There are many ways to discretize the derivative and integral of e(t). For
example, we can approximate the derivative of e(t) for (k − 1)T ≤ t ≤ kT by (ek − ek−1)/T
and use the trapezoidal rule of numerical integration to transform a continuous integral into a
discrete form. The result is the following incremental expression of the kth output uk :

uk = uk−2 + αek + βek−1 + γ ek−2 (1.1)

α, β, and γ are proportional constants; they are chosen at design time.1 During the kth sam-
pling period, the real-time system computes the output of the controller according to this
expression. You can see that this computation takes no more than 10–20 machine instruc-
tions. Different discretization methods may lead to different expressions of uk , but they all are
simple to compute.

From Eq. (1.1), we can see that during any sampling period (say the kth), the control
output uk depends on the current and past measured values yi for i ≤ k. The future measured
values yi ’s for i > k in turn depend on uk . Such a system is called a (feedback) control loop
or simply a loop. We can implement it as an infinite timed loop:

set timer to interrupt periodically with period T ;
at each timer interrupt, do

do analog-to-digital conversion to get y;
compute control output u;
output u and do digital-to-analog conversion;

end do;

Here, we assume that the system provides a timer. Once set by the program, the timer gener-
ates an interrupt every T units of time until its setting is cancelled.

Selection of Sampling Period. The length T of time between any two consecutive
instants at which y(t) and r(t) are sampled is called the sampling period. T is a key design
choice. The behavior of the resultant digital controller critically depends on this parameter.
Ideally we want the sampled data version to behave like the analog version. This can be done
by making the sampling period small. However, a small sampling period means more frequent
control-law computation and higher processor-time demand. We want a sampling period T
that achieves a good compromise.

In making this selection, we need to consider two factors. The first is the perceived
responsiveness of the overall system (i.e., the plant and the controller). Oftentimes, the system
is operated by a person (e.g., a driver or a pilot). The operator may issue a command at any
time, say at t . The consequent change in the reference input is read and reacted to by the digital

1The choice of the proportional constants for the three terms in the analog PID controller and the methods for
discretization are topics discussed in almost every elementary book on digital control (e.g., [Leig]).

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 4

4 Chapter 1 Typical Real-Time Applications

controller at the next sampling instant. This instant can be as late as t + T . Thus, sampling
introduces a delay in the system response. The operator will feel the system sluggish when the
delay exceeds a tenth of a second. Therefore, the sampling period of any manual input should
be under this limit.

The second factor is the dynamic behavior of the plant. We want to keep the oscillation
in its response small and the system under control. To illustrate, we consider the disk drive
controller described in [AsWi]. The plant in this example is the arm of a disk. The controller
is designed to move the arm to the selected track each time when the reference input changes.
At each change, the reference input r(t) is a step function from the initial position to the
final position. In Figure 1–2, these positions are represented by 0 and 1, respectively, and
the time origin is the instant when the step in r(t) occurs. The dashed lines in Figure 1–2(a)

y(t)

5 10

1

0
0

5 10 15

umax

u(t)

0
-umax

5 10

1

0
0

5 10 150

y(t)

umax

u(t)

-umax

5 10

1

0
0

5 10 150

y(t)

umax

u(t)

-umax

(a)

(b) (c)
FIGURE 1–2 Effect of sampling period.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 5

Section 1.1 Digital Control 5

give the output u(t) of the analog controller and the observed position y(t) of the arm as a
function of time. The solid lines in the lower and upper graphs give, respectively, the analog
control signal constructed from the digital outputs of the controller and the resultant observed
position y(t) of the arm. At the sampling rate shown here, the analog and digital versions are
essentially the same. The solid lines in Figure 1–2(b) give the behavior of the digital version
when the sampling period is increased by 2.5 times. The oscillatory motion of the arm is more
pronounced but remains small enough to be acceptable. However, when the sampling period
is increased by five times, as shown in Figure 1–2(c), the arm requires larger and larger control
to stay in the desired position; when this occurs, the system is said to have become unstable.

In general, the faster a plant can and must respond to changes in the reference input,
the faster the input to its actuator varies, and the shorter the sampling period should be. We
can measure the responsiveness of the overall system by its rise time R. This term refers to
the amount of time that the plant takes to reach some small neighborhood around the final
state in response to a step change in the reference input. In the example in Figure 1–2, a small
neighborhood of the final state means the values of y(t) that are within 5 percent of the final
value. Hence, the rise time of that system is approximately equal to 2.5.

A good rule of thumb is the ratio R/T of rise time to sampling period is from 10 to
20 [AsWi, FrPW].2 In other words, there are 10 to 20 sampling periods within the rise time.
A sampling period of R/10 should give an acceptably smooth response. However, a shorter
sampling period (and hence a faster sampling rate) is likely to reduce the oscillation in the
system response even further. For example, the sampling period used to obtain Figure 1–2(b)
is around R/10, while the sampling period used to obtain Figure 1–2(a) is around R/20.

The above rule is also commonly stated in terms of the bandwidth, ω, of the system.
The bandwidth of the overall system is approximately equal to 1/2R Hz. So the sampling
rate (i.e., the inverse of sampling period) recommended above is 20 to 40 times the system
bandwidth ω. The theoretical lower limit of sampling rate is dictated by Nyquist sampling
theorem [Shan]. The theorem says that any time-continuous signal of bandwidth ω can be
reproduced faithfully from its sampled values if and only if the sampling rate is 2ω or higher.
We see that the recommended sampling rate for simple controllers is significantly higher than
this lower bound. The high sampling rate makes it possible to keep the control input small and
the control-law computation and digital-to-analog conversion of the controller simple.

Multirate Systems. A plant typically has more than one degree of freedom. Its state
is defined by multiple state variables (e.g., the rotation speed, temperature, etc. of an engine
or the tension and position of a video tape). Therefore, it is monitored by multiple sensors and
controlled by multiple actuators. We can think of a multivariate (i.e., multi-input/multi-output)
controller for such a plant as a system of single-output controllers.

Because different state variables may have different dynamics, the sampling periods
required to achieve smooth responses from the perspective of different state variables may
be different. [For example, because the rotation speed of a engine changes faster than its

2Sampling periods smaller than this range may have an adverse effect. The reason is that quantization error
becomes dominant when the difference in analogy sample readings taken in consecutive sampling periods becomes
comparable or even smaller than the quantization granularity.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 6

6 Chapter 1 Typical Real-Time Applications

temperature, the required sampling rate for RPM (Rotation Per Minute) control is higher than
that for the temperature control.] Of course, we can use the highest of all required sampling
rates. This choice simplifies the controller software since all control laws are computed at
the same repetition rate. However, some control-law computations are done more frequently
than necessary; some processor time is wasted. To prevent this waste, multivariate digital
controllers usually use multiple rates and are therefore called multirate systems.

Oftentimes, the sampling periods used in a multirate system are related in a harmonic
way, that is, each longer sampling period is an integer multiple of every shorter period. To
explain the control-theoretical reason for this choice,3 we note that some degree of coupling
among individual single-output controllers in a system is inevitable. Consequently, the sam-
pling periods of the controllers cannot be selected independently. A method for the design
and analysis of multirate systems is the successive loop closure method [FrPW]. According
to this method, the designer begins by selecting the sampling period of the controller that
should have the fastest sampling rate among all the controllers. In this selection, the controller
is assumed to be independent of the others in the system. After a digital version is designed,
it is converted back into an analog form. The analog model is then integrated with the slower
portion of the plant and is treated as a part of the plant. This step is then repeated for the
controller that should have the fastest sampling rate among the controllers whose sampling
periods remain to be selected. The iteration process continues until the slowest digital con-
troller is designed. Each step uses the model obtained during the previous step as the plant.
When the chosen sampling periods are harmonic, the analog models of the digital controllers
used in this iterative process are exact. The only approximation arises from the assumption
made in the first step that the fastest controller is independent, and the error due to this approx-
imation can be corrected to some extent by incorporating the effect of the slower controllers
in the plant model and then repeating the entire iterative design process.

An Example of Software Control Structures. As an example, Figure 1–3 shows the
software structure of a flight controller [Elli]. The plant is a helicopter. It has three velocity
components; together, they are called “collective” in the figure. It also has three rotational
(angular) velocities, referred to as roll, pitch, and yaw.4 The system uses three sampling rates:
180, 90, and 30 Hz. After initialization, the system executes a do loop at the rate of one
iteration every 1/180 second; in the figure a cycle means a 1/180-second cycle, and the term
computation means a control-law computation.

Specifically, at the start of each 1/180-second cycle, the controller first checks its own
health and reconfigures itself if it detects any failure. It then does either one of the three
avionics tasks or computes one of the 30-Hz control laws. We note that the pilot’s command
(i.e., keyboard input) is checked every 1/30 second. At this sampling rate, the pilot should
not perceive the additional delay introduced by sampling. The movement of the aircraft along
each of the coordinates is monitored and controlled by an inner and faster loop and an outer
and slower loop. The output produced by the outer loop is the reference input to the inner
loop. Each inner loop also uses the data produced by the avionics tasks.

3In later chapters, we will see that harmonic periods also have the advantage over arbitrary periods from the
standpoint of achievable processor utilization.

4The three velocity components are forward, side-slip, and altitude rates. Roll, pitch, and yaw are the rates of
rotation about these axes, respectively.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 7

Section 1.1 Digital Control 7

Do the following in each 1/180-second cycle:
• Validate sensor data and select data source; in the presence of failures, reconfigure the system.
• Do the following 30-Hz avionics tasks, each once every six cycles:

– keyboard input and mode selection
– data normalization and coordinate transformation
– tracking reference update

• Do the following 30-Hz computations, each once every six cycles:
– control laws of the outer pitch-control loop
– control laws of the outer roll-control loop
– control laws of the outer yaw- and collective-control loop

• Do each of the following 90-Hz computations once every two cycles, using outputs produced by
30-Hz computations and avionics tasks as input:
– control laws of the inner pitch-control loop
– control laws of the inner roll- and collective-control loop

• Compute the control laws of the inner yaw-control loop, using outputs produced by 90-Hz control-
law computations as input.

• Output commands.
• Carry out built-in-test.
• Wait until the beginning of the next cycle.

FIGURE 1–3 An example: Software control structure of a flight controller.

This multirate controller controls only flight dynamics. The control system on board
an aircraft is considerably more complex than indicated by the figure. It typically contains
many other equally critical subsystems (e.g., air inlet, fuel, hydraulic, brakes, and anti-ice
controllers) and many not so critical subsystems (e.g., lighting and environment temperature
controllers). So, in addition to the flight control-law computations, the system also computes
the control laws of these subsystems.

Timing Characteristics. To generalize from the above example, we can see that the
workload generated by each multivariate, multirate digital controller consists of a few periodic
control-law computations. Their periods range from a few milliseconds to a few seconds.
A control system may contain numerous digital controllers, each of which deals with some
attribute of the plant. Together they demand tens or hundreds of control laws be computed
periodically, some of them continuously and others only when requested by the operator or
in reaction to some events. The control laws of each multirate controller may have harmonic
periods. They typically use the data produced by each other as inputs and are said to be a rate
group. On the other hand, there is no control theoretical reason to make sampling periods of
different rate groups related in a harmonic way.

Each control-law computation can begin shortly after the beginning of each sampling
period when the most recent sensor data become available. (Typically, the time taken by an
analog-to-digital converter to produce sampled data and place the data in memory does not
vary from period to period and is very small compared with the sampling period.) It is natural
to want the computation complete and, hence, the sensor data processed before the data taken

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 8

8 Chapter 1 Typical Real-Time Applications

in the next period become available. This objective is met when the response time of each
control-law computation never exceeds the sampling period. As we will see in later chapters,
the response time of the computation can vary from period to period. In some systems, it
is necessary to keep this variation small so that the digital control outputs produced by the
controller become available at time instants more regularly spaced in time. In this case, we
may impose a timing jitter requirement on the control-law computation: the variation in its
response time does not exceed some threshold.

1.1.2 More Complex Control-Law Computations

The simplicity of a PID or similar digital controller follows from three assumptions. First, sen-
sor data give accurate estimates of the state-variable values being monitored and controlled.
This assumption is not valid when noise and disturbances inside or outside the plant prevent
accurate observations of its state. Second, the sensor data give the state of the plant. In gen-
eral, sensors monitor some observable attributes of the plant. The values of the state variables
must be computed from the measured values (i.e., digitized sensor readings). Third, all the
parameters representing the dynamics of the plant are known. This assumption is not valid for
some plants. (An example is a flexible robot arm. Even the parameters of typical manipulators
used in automated factories are not known accurately.)

When any of the simplifying assumptions is not valid, the simple feedback loop in
Section 1.1.1 no longer suffices. Since these assumptions are often not valid, you often see
digital controllers implemented as follows.

set timer to interrupt periodically with period T ;
at each clock interrupt, do

sample and digitize sensor readings to get measured values;
compute control output from measured and state-variable values;
convert control output to analog form;
estimate and update plant parameters;
compute and update state variables;

end do;

The last two steps in the loop can increase the processor time demand of the controller signif-
icantly. We now give two examples where the state update step is needed.

Deadbeat Control. A discrete-time control scheme that has no continuous-time
equivalence is deadbeat control. In response to a step change in the reference input, a dead-
beat controller brings the plant to the desired state by exerting on the plant a fixed number
(say n) of control commands. A command is generated every T seconds. (T is still called a
sampling period.) Hence, the plant reaches its desired state in nT second.

In principle, the control-law computation of a deadbeat controller is also simple. The
output produced by the controller during the kth sampling period is given by

uk = α

k∑

i=0

(ri − yi)+
k∑

i=0

βi xi

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 9

Section 1.1 Digital Control 9

[This expression can also be written in an incremental form similar to Eq. (1.1).] Again, the
constants α and βi ’s are chosen at design time. xi is the value of the state variable in the i th
sampling period. During each sampling period, the controller must compute an estimate of xk

from measured values yi for i ≤ k. In other words, the state update step in the above do loop
is needed.

Kalman Filter. Kalman filtering is a commonly used means to improve the accuracy
of measurements and to estimate model parameters in the presence of noise and uncertainty.
To illustrate, we consider a simple monitor system that takes a measured value yk every sam-
pling period k in order to estimate the value xk of a state variable. Suppose that starting from
time 0, the value of this state variable is equal to a constant x . Because of noise, the measured
value yk is equal to x + εk , where εk is a random variable whose average value is 0 and stan-
dard deviation is σk . The Kalman filter starts with the initial estimate x̃1 = y1 and computes
a new estimate each sampling period. Specifically, for k > 1, the filter computes the estimate
x̃k as follows:

x̃k = x̃k−1 + Kk(yk − x̃k−1) (1.2a)

In this expression,

Kk = Pk

σk
2 + Pk

(1.2b)

is called the Kalman gain and Pk is the variance of the estimation error x̃k − x ; the latter is
given by

Pk = E[(x̃k − x)2] = (1 − Kk−1)Pk−1 (1.2c)

This value of the Kalman gain gives the best compromise between the rate at which Pk de-
creases with k and the steady-state variance, that is, Pk for large k.

In a multivariate system, the state variable xk is an n-dimensional vector, where n is the
number of variables whose values define the state of the plant. The measured value yk is an
n′-dimensional vector, if during each sampling period, the readings of n′ sensors are taken.
We let A denote the measurement matrix; it is an n × n′ matrix that relates the n′ measured
variables to the n state variables. In other words,

yk = Axk + ek

The vector ek gives the additive noise in each of the n′ measured values. Eq. (1.2a) becomes
an n-dimensional vector equation

x̃k = x̃k−1 + Kk(yk − Ax̃k−1)

Similarly, Kalman gain Kk and variance Pk are given by the matrix version of Eqs. (1.2b) and
(1.2c). So, the computation in each sampling period involves a few matrix multiplications and
additions and one matrix inversion.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 10

10 Chapter 1 Typical Real-Time Applications

1.2 HIGH-LEVEL CONTROLS

Controllers in a complex monitor and control system are typically organized hierarchically.
One or more digital controllers at the lowest level directly control the physical plant. Each
output of a higher-level controller is a reference input of one or more lower-level controllers.
With few exceptions, one or more of the higher-level controllers interfaces with the opera-
tor(s).

1.2.1 Examples of Control Hierarchy

For example, a patient care system may consist of microprocessor-based controllers that mon-
itor and control the patient’s blood pressure, respiration, glucose, and so forth. There may be
a higher-level controller (e.g., an expert system) which interacts with the operator (a nurse
or doctor) and chooses the desired values of these health indicators. While the computation
done by each digital controller is simple and nearly deterministic, the computation of a high-
level controller is likely to be far more complex and variable. While the period of a low-
level control-law computation ranges from milliseconds to seconds, the periods of high-level
control-law computations may be minutes, even hours.

Figure 1–4 shows a more complex example: the hierarchy of flight control, avionics,
and air traffic control systems.5 The Air Traffic Control (ATC) system is at the highest level. It
regulates the flow of flights to each destination airport. It does so by assigning to each aircraft
an arrival time at each metering fix6 (or waypoint) en route to the destination: The aircraft is
supposed to arrive at the metering fix at the assigned arrival time. At any time while in flight,
the assigned arrival time to the next metering fix is a reference input to the on-board flight
management system. The flight management system chooses a time-referenced flight path
that brings the aircraft to the next metering fix at the assigned arrival time. The cruise speed,
turn radius, decent/accent rates, and so forth required to follow the chosen time-referenced
flight path are the reference inputs to the flight controller at the lowest level of the control
hierarchy.

In general, there may be several higher levels of control. Take a control system of robots
that perform assembly tasks in a factory for example. Path and trajectory planners at the
second level determine the trajectory to be followed by each industrial robot. These planners
typically take as an input the plan generated by a task planner, which chooses the sequence
of assembly steps to be performed. In a space robot control system, there may be a scenario
planner, which determines how a repair or rendezvous function should be performed. The plan
generated by this planner is an input of the task planner.

1.2.2 Guidance and Control

While a digital controller deals with some dynamical behavior of the physical plant, a second-
level controller typically performs guidance and path planning functions to achieve a higher-

5Figure 1–4 shows that some sensor data to both on-board controllers come from an air-data system. This is a
system of sensors and a computer. The computer computes flight and environment parameters (e.g., wind speed, true
airspeed, static-air temperature, Mach number, altitude hold and rate) from aerodynamic and thermodynamic sensor
data. These parameters are used by the controllers as well as being displayed for the pilot.

6A metering fix is a known geographical point. Adjacent metering fixes are 40–60 nautical miles apart.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 11

Section 1.2 High-Level Controls 11

Air-traffic
control

state
estimator

responses

operator-system
interface

commands

-

flight
management

state
estimator

virtual plant

-

flight
control

state
estimator

virtual plant

physical plant

-

navigation

air data

from
sensors

FIGURE 1–4 Air traffic/flight control hierarchy.

level goal. In particular, it tries to find one of the most desirable trajectories among all
trajectories that meet the constraints of the system. The trajectory is most desirable because it
optimizes some cost function(s). The algorithm(s) used for this purpose is the solution(s) of
some constrained optimization problem(s).

As an example, we look again at a flight management system. The constraints that must
be satisfied by the chosen flight path include the ones imposed by the characteristics of the
aircraft, such as the maximum and minimum allowed cruise speeds and decent/accent rates, as
well as constraints imposed by external factors, such as the ground track and altitude profile
specified by the ATC system and weather conditions. A cost function is fuel consumption: A
most desirable flight path is a most fuel efficient among all paths that meet all the constraints
and will bring the aircraft to the next metering fix at the assigned arrival time. This problem
is known as the constrained fixed-time, minimum-fuel problem. When the flight is late, the
flight management system may try to bring the aircraft to the next metering fix in the shortest
time. In that case, it will use an algorithm that solves the time-optimal problem.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 12

12 Chapter 1 Typical Real-Time Applications

Complexity and Timing Requirements. The constrained optimization problems
that a guidance (or path planning) system must solve are typically nonlinear. In principle,
these problems can be solved using dynamic programming and mathematical programming
techniques. In practice, however, optimal algorithms are rarely used because most of them are
not only very compute intensive but also do not guarantee to find a usable solution. Heuristic
algorithms [GiMW] used for guidance and control purposes typically consider one constraint
at a time, rather than all the constraints at the same time. They usually start with an initial
condition (e.g., in the case of a flight management systems, the initial condition includes the
initial position, speed, and heading of the aircraft) and some initial solution and adjust the
value of one solution parameter at a time until a satisfactory solution is found.

Fortunately, a guidance system does not need to compute its control laws as frequently
as a digital controller. Often, this computation can be done off-line. In the case of a flight
management system, for example, it needs to compute and store a climb speed schedule for
use during takeoff, an optimum cruise trajectory for use en route, and a descent trajectory for
landing. This computation can be done before takeoff and hence is not time-critical. While
in-flight, the system still needs to compute some control laws to monitor and control the
transitions between different flight phases (i.e., from climb to cruise and cruise to descent) as
well as algorithms for estimating and predicting times to waypoints, and so forth. These time-
critical computations tend to be simpler and more deterministic and have periods in order of
seconds and minutes. When the precomputed flight plan needs to be updated or a new one
computed in-flight, the system has minutes to compute and can accept suboptimal solutions
when there is no time.

Other Capabilities. The complexity of a higher-level control system arises for many
other reasons in addition to its complicated control algorithms. It often interfaces with the
operator and other systems. To interact with the operator, it updates displays and reacts to op-
erator commands. By other systems, we mean those outside the control hierarchy. An example
is a voice, telemetry, or multimedia communication system that supports operator interactions.
Other examples are radar and navigation devices. The control system may use the information
provided by these devices and partially control these devices.

An avionic or flight management system has these capabilities. One of its functions is
to update the display of radar, flight path, and air-data information. Like keyboard monitoring,
the display updates must done no less frequently than once every 100 milliseconds to achieve
a satisfactory performance. Similarly, it periodically updates navigation data provided by in-
ertial and radio navigation aids.7 An avionics system for a military aircraft also does tracking
and ballistic computations and coordinates radar and weapon control systems, and it does
them with repetition periods of a few to a few hundred milliseconds. (You can find detailed
timing information on this types of avionics system in [LoVM].) The workload due to these
functions is demanding even for today’s fast processors and data links.

7The period of navigation updates depends on the speed of the plane. To get within 100-feet position accuracy,
this update rate should be as high as 20–30 Hz for a fighter jet flying at Mach 2 but 10 Hz is sufficient for a plane at
a subsonic speed.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 13

Section 1.2 High-Level Controls 13

1.2.3 Real-Time Command and Control

The controller at the highest level of a control hierarchy is a command and control system.
An Air Traffic Control (ATC) system is an excellent example. Figure 1–5 shows a possible
architecture. The ATC system monitors the aircraft in its coverage area and the environment
(e.g, weather condition) and generates and presents the information needed by the operators
(i.e., the air traffic controllers). Outputs from the ATC system include the assigned arrival
times to metering fixes for individual aircraft. As stated earlier, these outputs are reference
inputs to on-board flight management systems. Thus, the ATC system indirectly controls the
embedded components in low levels of the control hierarchy. In addition, the ATC system
provides voice and telemetry links to on-board avionics. Thus it supports the communication
among the operators at both levels (i.e., the pilots and air traffic controllers).

The ATC system gathers information on the “state” of each aircraft via one or more
active radars. Such a radar interrogates each aircraft periodically. When interrogated, an air-

DSP

DP
surveillance
processor

communication
network

communication network

sensors

digital
signal
processors

database of
track records
and tracks

display processors

displays

DP

DSP DSP

…

… …

…

DB DB

FIGURE 1–5 An architecture of air traffic control system.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 14

14 Chapter 1 Typical Real-Time Applications

craft responds by sending to the ATC system its “state variables”: identifier, position, altitude,
heading, and so on. (In Figure 1–5, these variables are referred to collectively as a track record,
and the current trajectory of the aircraft is a track.) The ATC system processes messages from
aircraft and stores the state information thus obtained in a database. This information is picked
up and processed by display processors. At the same time, a surveillance system continuously
analyzes the scenario and alerts the operators whenever it detects any potential hazard (e.g., a
possible collision). Again, the rates at which human interfaces (e.g., keyboards and displays)
operate must be at least 10 Hz. The other response times can be considerably larger. For
example, the allowed response time from radar inputs is one to two seconds, and the period
of weather updates is in the order of ten seconds.

From this example, we can see that a command and control system bears little resem-
blance to low-level controllers. In contrast to a low-level controller whose workload is either
purely or mostly periodic, a command and control system also computes and communicates
in response to sporadic events and operators’ commands. Furthermore, it may process im-
age and speech, query and update databases, simulate various scenarios, and the like. The
resource and processing time demands of these tasks can be large and varied. Fortunately,
most of the timing requirements of a command and control system are less stringent. Whereas
a low-level control system typically runs on one computer or a few computers connected by
a small network or dedicated links, a command and control system is often a large distributed
system containing tens and hundreds of computers and many different kinds of networks. In
this respect, it resembles interactive, on-line transaction systems (e.g., a stock price quotation
system) which are also sometimes called real-time systems.

1.3 SIGNAL PROCESSING

Most signal processing applications have some kind of real-time requirements. We focus here
on those whose response times must be under a few milliseconds to a few seconds. Examples
are digital filtering, video and voice compressing/decompression, and radar signal processing.

1.3.1 Processing Bandwidth Demands

Typically, a real-time signal processing application computes in each sampling period one or
more outputs. Each output x(k) is a weighted sum of n inputs y(i)’s:

x(k) =
n∑

i=1

a(k, i)y(i) (1.3)

In the simplest case, the weights, a(k, i)’s, are known and fixed.8 In essence, this computation
transforms the given representation of an object (e.g., a voice, an image or a radar signal) in
terms of the inputs, y(i)’s, into another representation in terms of the outputs, x(k)’s. Different
sets of weights, a(k, i)’s, give different kinds of transforms. This expression tells us that the
time required to produce an output is O(n).

8In the case of adaptive filtering applications (e.g., echo suppression), each weight changes with time and must
be updated. The update of each weight typically takes one multiplication and one addition each sampling period.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 15

Section 1.3 Signal Processing 15

The processor time demand of an application also depends on the number of outputs it
is required to produce in each sampling period. At one extreme, a digital filtering application
(e.g., a filter that suppresses noise and interferences in speech and audio) produces one output
each sampling period. The sampling rates of such applications range from a few kHz to tens
of kHz.9 n ranges from tens to hundreds. Hence, such an application performs 104 to 107

multiplications and additions per second.
Some other signal processing applications are more computationally intensive. The

number of outputs may also be of order n, and the complexity of the computation is O(n2) in
general. An example is image compression. Most image compression methods have a trans-
form step. This step transforms the space representation of each image into a transform repre-
sentation (e.g., a hologram). To illustrate the computational demand of a compression process,
let us consider an m ×m pixel, 30 frames per second video. Suppose that we were to compress
each frame by first computing its transform. The number of inputs is n = m2. The transforma-
tion of each frame takes m4 multiplications and additions. If m is 100, the transformation of
the video takes 3×109 multiplications and additions per second! One way to reduce the com-
putational demand at the expense of the compression ratio is to divide each image into smaller
squares and perform the transform on each square. This indeed is what the video compression
standard MPEG [ISO94]) does. Each image is divided into squares of 8 × 8 pixels. In this
way, the number of multiplications and additions performed in the transform stage is reduced
to 64m2 per frame (in the case of our example, to 1.92×107). Today, there is a broad spectrum
of Digital Signal Processors (DSPs) designed specifically for signal processing applications.
Computationally intensive signal processing applications run on one or more DSPs. In this
way, the compression process can keep pace with the rate at which video frames are captured.

1.3.2 Radar System

A signal processing application is typically a part of a larger system. As an example, Figure
1–6 shows a block diagram of a (passive) radar signal processing and tracking system. The
system consists of an Input/Output (I/O) subsystem that samples and digitizes the echo signal
from the radar and places the sampled values in a shared memory. An array of digital signal
processors processes these sampled values. The data thus produced are analyzed by one or
more data processors, which not only interface with the display system, but also generate
commands to control the radar and select parameters to be used by signal processors in the
next cycle of data collection and analysis.

Radar Signal Processing. To search for objects of interest in its coverage area, the
radar scans the area by pointing its antenna in one direction at a time. During the time the
antenna dwells in a direction, it first sends a short radio frequency pulse. It then collects and
examines the echo signal returning to the antenna.

The echo signal consists solely of background noise if the transmitted pulse does not hit
any object. On the other hand, if there is a reflective object (e.g., an airplane or storm cloud)
at a distance x meters from the antenna, the echo signal reflected by the object returns to the
antenna at approximately 2x/c seconds after the transmitted pulse, where c = 3 × 108 meters

9The sampling rates of telephone voice, speech in general, and audio are 8 kHz, 8–10 kHz, and 44.1 kHz
(compact disc digital audio) or 48 kHz (digital audio tape), respectively.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 16

16 Chapter 1 Typical Real-Time Applications

data
processor

control
status

signal
processing
parameters

sampled
digitized
data

track
records

track
records

256–1024
samples/bin

memory

radar

signal
processors

…

DSP

FIGURE 1–6 Radar signal processing and tracking system.

per second is the speed of light. The echo signal collected at this time should be stronger than
when there is no reflected signal. If the object is moving, the frequency of the reflected signal is
no longer equal to that of the transmitted pulse. The amount of frequency shift (called Doppler
shift) is proportional to the velocity of the object. Therefore, by examining the strength and
frequency spectrum of the echo signal, the system can determine whether there are objects
in the direction pointed at by the antenna and if there are objects, what their positions and
velocities are.

Specifically, the system divides the time during which the antenna dwells to collect the
echo signal into small disjoint intervals. Each time interval corresponds to a distance range,
and the length of the interval is equal to the range resolution divided by c. (For example, if
the distance resolution is 300 meters, then the range interval is one microsecond long.) The
digital sampled values of the echo signal collected during each range interval are placed in
a buffer, called a bin in Figure 1–6. The sampled values in each bin are the inputs used by
a digital signal processor to produce outputs of the form given by Eq. (1.3). These outputs
represent a discrete Fourier transform of the corresponding segment of the echo signal. Based
on the characteristics of the transform, the signal processor decides whether there is an object
in that distance range. If there is an object, it generates a track record containing the position
and velocity of the object and places the record in the shared memory.

The time required for signal processing is dominated by the time required to produce
the Fourier transforms, and this time is nearly deterministic. The time complexity of Fast
Fourier Transform (FFT) is O(n log n), where n is the number of sampled values in each
range bin. n is typically in the range from 128 to a few thousand. So, it takes roughly 103 to
105 multiplications and additions to generate a Fourier transform. Suppose that the antenna
dwells in each direction for 100 milliseconds and the range of the radar is divided into 1000
range intervals. Then the signal processing system must do 107 to 109 multiplications and
additions per second. This is well within the capability of today’s digital signal processors.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 17

Section 1.3 Signal Processing 17

However, the 100-millisecond dwell time is a ballpark figure for mechanical radar an-
tennas. This is orders of magnitude larger than that for phase array radars, such as those used
in many military applications. A phase array radar can switch the direction of the radar beam
electronically, within a millisecond, and may have multiple beams scanning the coverage area
and tracking individual objects at the same time. Since the radar can collect data orders of
magnitude faster than the rates stated above, the signal processing throughput demand is also
considerably higher. This demand is pushing the envelope of digital signal processing tech-
nology.

Tracking. Strong noise and man-made interferences, including electronic counter
measure (i.e., jamming), can lead the signal processing and detection process to wrong con-
clusions about the presence of objects. A track record on a nonexisting object is called a false
return. An application that examines all the track records in order to sort out false returns from
real ones and update the trajectories of detected objects is called a tracker.10 Using the jargon
of the subject area, we say that the tracker assigns each measured value (i.e., the tuple of po-
sition and velocity contained in each of the track records generated in a scan) to a trajectory.
If the trajectory is an existing one, the measured value assigned to it gives the current position
and velocity of the object moving along the trajectory. If the trajectory is new, the measured
value gives the position and velocity of a possible new object. In the example in Figure 1–6,
the tracker runs on one or more data processors which communicate with the signal processors
via the shared memory.

Gating. Typically, tracking is carried out in two steps: gating and data association
[Bogl]. Gating is the process of putting each measured value into one of two categories de-
pending on whether it can or cannot be tentatively assigned to one or more established tra-
jectories. The gating process tentatively assigns a measured value to an established trajectory
if it is within a threshold distance G away from the predicted current position and velocity
of the object moving along the trajectory. (Below, we call the distance between the measured
and predicted values the distance of the assignment.) The threshold G is called the track gate.
It is chosen so that the probability of a valid measured value falling in the region bounded by
a sphere of radius G centered around a predicted value is a desired constant.

Figure 1–7 illustrates this process. At the start, the tracker computes the predicted po-
sition (and velocity) of the object on each established trajectory. In this example, there are
two established trajectories, L1 and L2. We also call the predicted positions of the objects on
these tracks L1 and L2. X1, X2, and X3 are the measured values given by three track records.
X1 is assigned to L1 because it is within distance G from L1. X3 is assigned to both L1 and
L2 for the same reason. On the other hand, X2 is not assigned to any of the trajectories. It
represents either a false return or a new object. Since it is not possible to distinguish between
these two cases, the tracker hypothesizes that X2 is the position of a new object. Subsequent
radar data will allow the tracker to either validate or invalidate this hypothesis. In the latter
case, the tracker will discard this trajectory from further consideration.

10The term tracking also refers to the process of keeping track of an individual object (e.g., an aircraft under
surveillance, a missile, etc.).

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 18

18 Chapter 1 Typical Real-Time Applications

X1

X3L1 L2

X2

FIGURE 1–7 Gating process.

Data Association. The tracking process completes if, after gating, every measured
value is assigned to at most one trajectory and every trajectory is assigned at most one mea-
sured value. This is likely to be case when (1) the radar signal is strong and interference is
low (and hence false returns are few) and (2) the density of objects is low. Under adverse con-
ditions, the assignment produced by gating may be ambiguous, that is, some measured value
is assigned to more than one trajectory or a trajectory is assigned more than one measured
value. The data association step is then carried out to complete the assignments and resolve
ambiguities.

There are many data association algorithms. One of the most intuitive is the the nearest
neighbor algorithm. This algorithm works as follows:

1. Examine the tentative assignments produced by the gating step.

a. For each trajectory that is tentatively assigned a single unique measured value, assign
the measured value to the trajectory. Discard from further examination the trajectory
and the measured value, together with all tentative assignments involving them.

b. For each measured value that is tentatively assigned to a single trajectory, discard the
tentative assignments of those measured values that are tentatively assigned to this
trajectory if the values are also assigned to some other trajectories.

2. Sort the remaining tentative assignments in order of nondecreasing distance.

3. Assign the measured value given by the first tentative assignment in the list to the cor-
responding trajectory and discard the measured value and trajectory.

4. Repeat step (3) until the list of tentative assignments is empty.

In the example in Figure 1–7, the tentative assignment produced by the gating step is
ambiguous. Step (1a) does not eliminate any tentative assignment. However, step (1b) finds
that X1 is assigned to only L1, while X3 is assigned to both L1 and L2. Hence, the assign-
ment of X3 to L1 is discarded from further consideration. After step (1), there still are two
tentative assignments, X1 to L1 and X3 to L2. Step (2) leaves them in this order, and the
subsequent steps make these assignments. X2 initiates a new trajectory. If during subsequent

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 19

Section 1.4 Other Real-Time Applications 19

scans, no measured values are assigned to the new trajectory, it will be discarded from further
consideration.

The nearest neighbor algorithm attempts to minimize a simple local objective function:
the distance (between the measured and predicted values) of each assignment. Data associa-
tion algorithms of higher time complexity are designed to optimize some global, and therefore
more complicated, objective functions, for example, the sum of distances of all assignments
and probability of errors. The most complex in both time and space is the class of multiple
hypothesis tracking algorithms. Often it is impossible to eliminate some assignments from
further consideration by looking at the measured values produced in one scan. (An example is
when the distances between a measured value to two or more predicted values are essentially
equal.) While a single-hypothesis tracking algorithm (e.g., the nearest neighbor algorithm)
must choose one assignment from equally good assignments, a multiple-hypothesis tracking
algorithm keeps all of them. In other words, a trajectory may be temporally branched into
multiple trajectories, each ending at one of many hypothesized current positions. The tracker
then uses the data provided in future scans to eliminate some of the branches. The use of this
kind of algorithms is confined to where the tracked objects are dense and the number of false
returns are large (e.g., for tracking military targets in the presence of decoys and jamming).

Complexity and Timing Requirements. In contrast to signal processing, the amounts
of processor time and memory space required by the tracker are data dependent and can vary
widely. When there are n established trajectories and m measured values, the time complexity
of gating is O(nm log m). (This can be done by first sorting the m measured values according
to their distances from the predicted value for each of the established trajectories and then
comparing the distances with the track gate G.) In the worst case, all m measured values are
tentatively assigned to all n trajectories in the gating step. The nearest neighbor algorithm
must sort all nm tentative assignments and hence has time complexity O(nm log nm). The
amounts of time and space required by multiple-hypothesis tracking grow exponentially with
the maximum number of hypotheses, the exponent being the number of scans required to
eliminate each false hypothesis. Without modern fast processors and large memory, multiple-
hypothesis tracking would not be feasible.

Figure 1–6 shows that the operation of the radar is controlled by a controller that exe-
cutes on the data processor. In particular, the controller may alter the search strategy or change
the radar operation mode (say from searching to tracking an object) depending on the results
found by the tracker. (As we mentioned earlier, a phase-array radar can redirect its beam
in any direction in less than a millisecond. This capability makes it possible to dynamically
adapt the operation of the radar system to changes in the detected scenario.) Similarly, the
controller may alter the signal processing parameters (e.g., detection threshold and transform
type) in order to be more effective in rejecting interferences and differentiating objects. The
responsiveness and iteration rate of this feedback process increase as the total response time of
signal processing and tracking decreases. For this reason, the developers of these applications
are primarily concerned with their throughputs and response times.

1.4 OTHER REAL-TIME APPLICATIONS

This section describes the characteristics and requirements of two most common real-time
applications. They are real-time databases and multimedia applications.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 20

20 Chapter 1 Typical Real-Time Applications

TABLE 1–1 Requirements of typical real-time databases

Ave. Max
Applications Size Resp. Time Resp. Time Abs. Cons. Rel. Cons. Permanence

Air traffic control 20,000 0.50 ms 5.00 ms 3.00 sec. 6.00 sec. 12 hours
Aircraft mission 3,000 0.05 ms 1.00 ms 0.05 sec. 0.20 sec. 4 hours
Spacecraft control 5,000 0.05 ms 1.00 ms 0.20 sec. 1.00 sec. 25 years
Process control 0.80 ms 5.00 sec 1.00 sec. 2.00 sec 24 hours

1.4.1 Real-Time Databases

The term real-time database systems refers to a diverse spectrum of information systems, rang-
ing from stock price quotation systems, to track records databases, to real-time file systems.
Table 1–1 lists several examples [Lock96]. What distinguish these databases from nonreal-
time databases is the perishable nature of the data maintained by them.

Specifically, a real-time database contains data objects, called image objects, that rep-
resent real-world objects. The attributes of an image object are those of the represented real-
world object. For example, an air traffic control database contains image objects that represent
aircraft in the coverage area. The attributes of such an image object include the position and
heading of the aircraft. The values of these attributes are updated periodically based on the
measured values of the actual position and heading provided by the radar system. Without
this update, the stored position and heading will deviate more and more from the actual po-
sition and heading. In this sense, the quality of stored data degrades. This is why we say that
real-time data are perishable. In contrast, an underlying assumption of nonreal-time databases
(e.g., a payroll database) is that in the absence of updates the data contained in them remain
good (i.e., the database remains in some consistent state satisfying all the data integrity con-
straints of the database).

Absolute Temporal Consistency. The temporal quality of real-time data is often
quantified by parameters such as age and temporal dispersion. The age of a data object mea-
sures how up-to-date the information provided by the object is. There are many formal defi-
nitions of age. Intuitively, the age of an image object at any time is the length of time since
the instant of the last update, that is, when its value is made equal to that of the real-world
object it represents.11 The age of a data object whose value is computed from the values of
other objects is equal to the oldest of the ages of those objects.

A set of data objects is said to be absolutely (temporally) consistent if the maximum
age of the objects in the set is no greater than a certain threshold. The column labeled “Abs.
Cons.” in Table 1–1 lists the typical threshold values that define absolute consistency for
different applications. As an example, “aircraft mission” listed in the table refers to the kind

11This intuitive definition of age ignores the rate at which information ages. As examples, we consider two
objects: One represents the position of an aircraft, and the other represents the position of a storm cloud. Because
the position of the aircraft can change considerably in three seconds, three seconds is a relatively long time and large
age. However, for the storm cloud position, three seconds should be a small age since the cloud does not move much
in this amount of time. Rigorous definitions of age take the rate of change into account in various ways.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 21

Section 1.4 Other Real-Time Applications 21

of database used to support combat missions of military aircraft. A fighter jet and the targets it
tracks move at supersonic speeds. Hence the information on where they are must be less than
50 milliseconds old. On the other hand, an air traffic control system monitors commercial
aircraft at subsonic speeds; this is why the absolute temporal consistency threshold for air
traffic control is much larger.

Relative Temporal Consistency. A set of data objects is said to be relatively consis-
tent if the maximum difference in ages of the objects in the set is no greater than the relative
consistency threshold used by the application. The column labeled “Rel. Cons.” in Table 1–1
gives typical values of this threshold. For some applications the absolute age of data may not
be as important as the differences in their ages. An example is a planning system that corre-
lates traffic densities along a highway with the flow rates of vehicles entering and exiting the
highway. The system does not require the most up-to-date flow rates at all interchanges and
hence can tolerate a relatively large age (e.g., two minutes). However, if the difference in the
ages of flow rates is large (e.g., one minute), the flow rates no longer give a valid snapshot of
the traffic scenario and can lead the system to wrong conclusions.

Consistency Models. Concurrency control mechanisms, such as two-phase locking,
have traditionally been used to ensure the serializability of read and update transactions and
maintain data integrity of nonreal-time databases. These mechanisms often make it more dif-
ficult for updates to complete in time. Late updates may cause the data to become tempo-
rally inconsistent. Yet temporal consistency of real-time data is often as important as, or even
more important than, data integrity. For this reason, several weaker consistency models have
been proposed (e.g., [KoSp]). Concurrency control mechanisms required to maintain a weaker
sense of consistency tend to improve the timeliness of updates and reads.

As an example, we may only require update transactions to be executed in some serializ-
able order. Read-only transactions are not required to be serializable. Some applications may
require some stronger consistency (e.g., all real-only transactions perceive the same serializa-
tion order of update transactions) while others are satisfied with view consistency (e.g., each
read-only transaction perceives some serialization order of update transactions). Usually, the
more relaxed the serialization requirement, the more flexibility the system has in interleaving
the read and write operations from different transactions, and the easier it is to schedule the
transactions and have them complete in time.

Kuo and Mok [Kuo, KuMo93] proposed the use of similarity as a correctness criterion
for real-time data. Intuitively, we say that two values of a data object are similar if the dif-
ference between the values is within an acceptable threshold from the perspective of every
transaction that may read the object. Two views of a transaction are similar if every read oper-
ation gets similar values of every data object read by the transaction. Two database states are
similar if, in the states, the corresponding values of every data object are similar. Two sched-
ules of a set of transactions are similar if, for any initial state, (1) the transactions transform
similar database states to similar final database states and (2) every transaction in the set has
similar views in both schedules. Kuo, et al. pointed out that the similarity relation provides
a formal means for real-time application developers to capture the semantic constraints of
real-time data. They also proposed a concurrent control protocol that takes advantage of the
relaxed correctness criterion to enhance the temporal consistency of data.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 22

22 Chapter 1 Typical Real-Time Applications

1.4.2 Multimedia Applications

Finally, let us look at one of the most frequently encountered real-time applications: mul-
timedia. A multimedia application may process, store, transmit, and display any number of
video streams, audio streams, images, graphics, and text. A video stream is a sequence of data
frames which encodes a video. An audio stream encodes a voice, sound, or music.

Without compression, the storage space and transmission bandwidth required by a video
are enormous. (As an example, we consider a small 100 × 100-pixel, 30-frames/second color
video. The intensity and color of each pixel is given by the sample values of a luminance and
two chrominance signal components,12 respectively, at the location of the pixel. If uncom-
pressed, the video requires a transmission bandwidth of 2.7 Mbits per second when the value
of each component at each pixel is encoded with 3 bits.) Therefore, a video stream, as well as
the associated audio stream, is invariably compressed as soon as it is captured.

MPEG Compression/Decompression. A video compression standard is MPEG-2
[ISO94]. The standard makes use of three techniques. They are motion compensation for re-
ducing temporal redundancy, discrete cosine transform for reducing spatial redundancy, and
entropy encoding for reducing the number of bits required to encode all the information. De-
pending on the application, the compressed bit rate ranges from 1.5 Mbits/sec to 35 Mbits/sec.
As you will see from the description below, the achievable compression ratio depends on the
content of the video.

Motion Estimation. The first step of compression is motion analysis and estima-
tion. Because consecutive video frames are not independent, significant compression can be
achieved by exploiting interframe dependency. This is the rationale behind the motion esti-
mation step. The motion-compensation techniques used in this step assume that most small
pieces of the image in the current frame can be obtained either by translating in space corre-
sponding small pieces of the image in some previous frame or by interpolating some small
pieces in some previous and subsequent frames. For this reason, each image is divided into
16 × 16-pixel square pieces; they are called major blocks. The luminance component of each
major block consists of four 8 × 8 pixel blocks. Each of the chrominance components has
only a quarter of this resolution. Hence, each chrominance component of a major block is an
8 × 8 pixel block.

Only frames 1 + αk, for k = 0, 1, 2, . . . are encoded independently of other frames,
where α is an application-specified integer constant. These frames are called I-frames (i.e.,
intra-coded frames). The coder treats each I-frame as a still image, and the decoder can de-
compress each compressed I-frame independently of other frames. Consequently, I-frames are
points for random access of the video. The smaller the constant α, the more random accessible
is the video and the poorer the compression ratio. A good compromise is α = 9.

The frames between consecutive I-frames are called P- and B-frames. When α is equal
to 9, the sequence of frames produced by the motion estimation step are I, B, B, P, B, B, P,
B, B, I, B, B, P, For every k ≥ 0, frame 1 + 9k + 3 is a P-frame (i.e., a predictive-coded
frame). The coder obtains a P-frame from the previous I-frame (or P-frame) by predicting

12The luminance signal gives us a black and white video. Linear combinations of this signal and the two
chrominance signals give the red, blue, and green components of a color video.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 23

Section 1.4 Other Real-Time Applications 23

how the image carried by the I-frame changes in the time interval between the times of these
frames. Specifically, if a major block in the P-frame closely resembles a major block in the pre-
vious I-frame, then the coder represents the P-frame major block by six 8×8 pixel blocks that
give the differences between the six P-frame pixel blocks and the corresponding pixel blocks
of the best matching (i.e., resembling most closely) major block in the previous I-frame. In
addition, the coder generates a motion vector based on which the decoder can identify the best
matching I-frame major block. Such a P-frame major block is said to be predictively coded.
On the other hand, some P-frame major blocks may be images of newly visible objects and,
hence, cannot be obtained from any major block in the previous I-frame. The coder represents
them in the same way as I-frame major blocks.

A B-frame is a bidirectionally predicted frame: It is predicted from both the previous
I-frame (or P-frame) and the subsequent P-frame (or I-frame). One way is to represent every
B-frame major block by the differences between the values of its pixel blocks and the cor-
responding pixel blocks of the best matching major block in either the previous I-frame or
the subsequent P-frame. Alternatively, for each B-frame major block, an interpolation of the
best matching major blocks in the I-frame and P-frame is first computed. The B-frame major
block is represented by the difference between it and this interpolation. Again, the coder gen-
erates the motion vectors that the decoder will need to identify the best matching I-frame and
P-frame major blocks. Whereas some P-frame major blocks are encoded independently, none
of the B-frame major blocks are.

Discrete Cosine Transform and Encoding. In the second step, a cosine transform13

is performed on each of the 8 × 8 pixel blocks produced by the coder after motion estimation.
We let x(i, j), for i, j = 1, 2, . . . , 8, denote the elements of an 8×8 transform matrix obtained
from transforming the original matrix that gives the 8×8 values of a pixel block. The transform
matrix usually has more zeros than the original matrix. [In the extreme when all the entries
of the original matrix are equal, only x(0, 0) is nonzero.] Moreover, if the entries x(i, j)’s are
ordered in nondecreasing order of i + j , zero entries tend to be adjacent, forming sequences
of zeros, and adjacent entries tend to have similar values. By quantizing the x(i, j)’s to create
more zeros, encoding the entries in the transform matrix as 2-tuples (run length, value), and
using a combination of variable-length and fixed-length codes to further reduce the bit rate,
significant compression is achieved.

Decompression. During decompression, the decoder first produces a close approxi-
mation of the original matrix (i.e., an 8 × 8 pixel block) by performing an inverse transform
on each stored transform matrix. (The computation of an inverse transform is the essentially
the same as the cosine transform.) It then reconstruct the images in all the frames from the
major blocks in I-frames and difference blocks in P- and B-frames.

Real-Time Characteristics. As we can see from the above description, video com-
pression is a computational-intensive process. For batch applications such as video on de-

13We let y(i, j) for i, j = 1, 2, . . . , 8 denote the inputs to the transform. Each of the outputs x(i, j) for
i, j = 1, 2, . . . , 8 of the transform is given by a double-weighted sum analogous to the one in Eq. (1.3). The transform
is called cosine transform because the weight of each input y(i, j) in the sum is proportional to a product of cosine
functions, that is, [cos (2i + 1)π/k][cos (2 j + 1)lπ/16].

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 24

24 Chapter 1 Typical Real-Time Applications

mand, compression is done in batch and off-line, while it must be an on-line process for
interactive applications (e.g., teleconferencing). Decompression should be done just before
the time the video and audio are presented, in other words, on the just-in-time basis. Today,
compression and decompression functions are often handled by an affordable special-purpose
processor (e.g., the mmx), rather than by general-purpose processors.

To a great extent, the timing requirements of a multimedia application follow from the
required video and audio quality. From the user’s point of view, the quality of a video is
partially characterized by its frame rate and resolution. A video of standard television quality
consists of 30 frames per second. High-definition television uses 60 frames per second to
give the picture even less flicker. On the other hand, much lower frame rates (e.g., 10–20) are
tolerable for other applications, such as teleconferencing.

The term resolution roughly refers to the number of pixels in each frame (i.e., the size
of the frame) and the number of bits used to encode each pixel (i.e., intensity and color reso-
lution). Together, the resolution and frame rate of a video tell us roughly the amount of time
required to compress/decompress it and the amounts of storage and transmission bandwidth
required to store and transmit it.

Similarly, the quality of an audio component depends on the sampling rate and gran-
ularity used to digitize the audio signal. The total bit rate of an audio ranges from 16 Kbits
per second for telephone speech quality to 128 Kbits per second for CD quality. Some loss of
audio data is unavoidable, because the system may discard data during congestion and some
data may arrive too late to be presented to the user, and so on. The quality of speech is usually
tolerable when the loss rate is under one percent.

Another dimension of quality of a multimedia application is lip synchronization. This
term refers to the temporal synchronization of the video frames and related audio data units.
In the case where the video is that of a speaker, the speaker’s lips should appear to move to
make the accompanied speech. Experimental results indicate that the time interval between
the display of each frame and the presentation of the corresponding audio segment should
ideally be no more than 80 msec and should definitely be no more than 160 msec [StNa] for
sake of achieving lip synchronization.

For batch applications, a system can often provide the desired quality by trading be-
tween real-time performance and space usage. For example, we want to present the audio to
the user without pauses. This can clearly be achieved if there is little or no jitter (i.e., variation)
in the delay suffered by audio data packets as they are transmitted over the network. However,
the system can nevertheless deliver good audio despite large jitter by providing a sufficiently
large amount of buffer to smooth out the jitter.

Finally, our ears are extremely sensitive to glitches and pauses in audio, and an end-
to-end delay in the order of a few hundred milliseconds significantly decreases the quality of
a conversation. Therefore, both end-to-end response time and response time jitter are impor-
tant for interactive applications. Now-a-days, news programs often televise live conversations
between people who are continents apart. You may have noticed that the interviewee some-
times seems to take forever to react and start to answer a question. The delay is actually only
a second or two and is the effect of the large end-to-end propagation delay across a global
communication channel.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:45 a.m. chap1 page 25

Section 1.5 Summary 25

1.5 SUMMARY

As a summary, we divide real-time applications into the following four types according to
their timing attributes.

1. Purely cyclic: Every task in a purely cyclic application executes periodically. Even I/O
operations are polled. Moreover, its demands in (computing, communication, and stor-
age) resources do not vary significantly from period to period. Most digital controllers,
exemplified by the flight control system in Figure 1–3, and real-time monitors are of
this type.

2. Mostly cyclic: Most tasks in a mostly cyclic system execute periodically. The system
must also respond to some external events (fault recovery and external commands) asyn-
chronously. Examples are modern avionics and process control systems.

3. Asynchronous and somewhat predictable: In applications such as multimedia communi-
cation, radar signal processing, and tracking, most tasks are not periodic. The duration
between consecutive executions of a task may vary considerably, or the variations in
the amounts of resources demanded in different periods may be large. However, these
variations have either bounded ranges or known statistics.

4. Asynchronous and unpredictable: Applications that react to asynchronous events and
have tasks with high run-time complexity belong to this type. An example is intelligent
real-time control systems [SKNL].

An orthogonal dimension is the size of the application. Like nonreal-time applications,
some of them run on one or a few microprocessors, even on hand-held devices, while others
run on tens and hundreds of computers. They are commonly labeled as uniprocessor, multi-
processor, or distributed systems. As you will see shortly, we will not emphasize this aspect.
Of course, a solution suited for a system containing a few microprocessors (e.g., an automo-
tive control system) may not be applicable to a large distributed system (e.g., air traffic control
system) and vice versa. The subsequent chapters will try to make which ones are which clear
to you.

Integre Technical Publishing Co., Inc. Liu January 12, 2000 1:37 p.m. chap2 page 26

C H A P T E R 2

Hard versus Soft
Real-Time Systems

Now that we have seen several typical real-time applications, we are ready to discuss in depth
the characteristics that distinguish them from nonreal-time applications. We begin by dis-
cussing exactly what “real time” means.

2.1 JOBS AND PROCESSORS

For the purpose of describing and characterizing different types of real-time systems and
methods for scheduling and resource management, it is more convenient for us to speak of all
kinds of work done by computing and communication systems in general terms. We call each
unit of work that is scheduled and executed by the system a job and a set of related jobs which
jointly provide some system function a task. Hence, the computation of a control law is a job.
So is the computation of a FFT (Fast Fourier Transform) of sensor data, or the transmission
of a data packet, or the retrieval of a file, and so on. We call them a control-law computation,
a FFT computation, a packet transmission, and so on, only when we want to be specific about
the kinds of work, that is, the types of jobs.

Similarly, rather than using different verbs (e.g., compute and transmit) for different
types of jobs, we say that a job executes or is executed by the (operating) system. Every job
executes on some resource. For example, the jobs mentioned above execute on a CPU, a net-
work, and a disk, respectively. These resources are called servers in queuing theory literature
and, sometimes, active resources in real-time systems literature. In later chapters, we will use
the term server extensively to mean something else. To avoid overloading this term, we call
all these resources processors except occasionally when we want to be specific about what
they are.

26

Integre Technical Publishing Co., Inc. Liu January 12, 2000 1:37 p.m. chap2 page 27

Section 2.3 Hard and Soft Timing Constraints 27

2.2 RELEASE TIMES, DEADLINES, AND TIMING CONSTRAINTS

In the next chapter we will discuss in detail how jobs and processors are often characterized
in order to schedule, manage, and reason about them. For now, we focus on the release times
and deadlines of jobs, two parameters that distinguish jobs in real-time systems from those in
nonreal-time systems.

The release time of a job is the instant of time at which the job becomes available for
execution. The job can be scheduled and executed at any time at or after its release time
whenever its data and control dependency conditions are met. As an example, we consider a
system which monitors and controls several furnaces. After it is initialized and starts execution
(say at time 0), the system samples and reads each temperature sensor every 100 msec and
places the sampled readings in memory. It also computes the control law of each furnace
every 100 msec in order to process the temperature readings and determine flow rates of fuel,
air, and coolant. Suppose that the system begins the first control-law computation at time 20
msec. The fact that the control law is computed periodically can be stated in terms of release
times of the control-law computation jobs J0, J1, . . . , Jk, The release time of the job Jk

in this job stream is 20 + k × 100 msec, for k = 0, 1, We say that jobs have no release
time if all the jobs are released when the system begins execution.

The deadline of a job is the instant of time by which its execution is required to be
completed. Suppose that in the previous example, each control-law computation job must
complete by the release time of the subsequent job. Then, their deadlines are 120 msec, 220
msec, and so on, respectively. Alternatively, if the control-law computation jobs must com-
plete sooner, their deadlines may be 70 msec, 170 msec, and so on. We say that a job has no
deadline if its deadline is at infinity.

In this example, as in many others, it is more natural to state the timing requirement
of a job in terms of its response time, that is, the length of time from the release time of
the job to the instant when it completes. We call the maximum allowable response time of
a job its relative deadline. Hence the relative deadline of every control-law computation job
mentioned above is 100 or 50 msec. The deadline of a job, sometimes called its absolute
deadline, is equal to its release time plus its relative deadline.

In general, we call a constraint imposed on the timing behavior of a job a timing con-
straint. In its simplest form, a timing constraint of a job can be specified in terms of its release
time and relative or absolute deadlines, as illustrated by the above example. Some complex
timing constraints cannot be specified conveniently in terms of release times and deadlines.
We will discuss the parameters needed to specify those constraints when they arise, but in
most of this book, we are concerned primarily with this simple form.

2.3 HARD AND SOFT TIMING CONSTRAINTS

It is common to divide timing constraints into two types: hard and soft. There are many defi-
nitions of hard and soft real-time constraints. Before stating the definition used in this book,
let us first look at three frequently encountered definitions so you will be aware of them. They
are based on the functional criticality of jobs, usefulness of late results, and deterministic or
probabilistic nature of the constraints.

Integre Technical Publishing Co., Inc. Liu January 12, 2000 1:37 p.m. chap2 page 28

28 Chapter 2 Hard versus Soft Real-Time Systems

2.3.1 Common Definitions

According to a commonly used definition, a timing constraint or deadline is hard if the failure
to meet it is considered to be a fatal fault. A hard deadline is imposed on a job because a late
result produced by the job after the deadline may have disastrous consequences. (As examples,
a late command to stop a train may cause a collision, and a bomb dropped too late may hit a
civilian population instead of the intended military target.) In contrast, the late completion of
a job that has a soft deadline is undesirable. However, a few misses of soft deadlines do no
serious harm; only the system’s overall performance becomes poorer and poorer when more
and more jobs with soft deadlines complete late. This definition of hard and soft deadlines
invariably leads to the question of whether the consequence of a missed deadline is indeed
serious enough. The question of whether a timing constraint is hard or soft degenerates to that
of how serious is serious.

In real-time systems literature, the distinction between hard and soft timing constraints
is sometimes stated quantitatively in terms of the usefulness of results (and therefore the over-
all system performance) as functions of the tardinesses of jobs. The tardiness of a job mea-
sures how late it completes respective to its deadline. Its tardiness is zero if the job completes
at or before its deadline; otherwise, if the job is late, its tardiness is equal to the difference
between its completion time (i.e., the time instant at which it completes execution) and its
deadline. The usefulness of a result produced by a soft real-time job (i.e, a job with a soft
deadline) decreases gradually as the tardiness of the job increases, but the usefulness of a re-
sult produced by a hard real-time job (i.e., a job with a hard deadline) falls off abruptly and
may even become negative when the tardiness of the job becomes larger than zero. The dead-
line of a job is softer if the usefulness of its result decreases at a slower rate. By this means, we
can define a spectrum of hard/soft timing constraints. This quantitative measure of hardness
and softness of deadlines is sometimes useful. It is certainly more appealing to computer sci-
entists and engineers who have been trained not to rely on handwaving, qualitative measures.
However, there is often no natural choice of usefulness functions. When choices are made,
it is difficult to validate that the choices are sound and that different measures of the overall
system performance as functions of tardinesses indeed behave as specified by the usefulness
functions. Consequently, this kind of quantitative measure is not as rigorous as it appears to be.

Sometimes, we see this distinction made on the basis of whether the timing constraint
is expressed in deterministic or probabilistic terms. If a job must never miss its deadline, then
the deadline is hard. On the other hand, if its deadline can be missed occasionally with some
acceptably low probability, then its timing constraint is soft. An example is that the system
recovery job or a point-of-sales transaction completes within one minute 99.999 percent of
the time. In other words, the probability of failure to meet the one-minute relative deadline is
10−5. This definition ignores completely the consequence of a timing failure. In our example,
if the failure of an on-time recovery could cause loss of life and property, we would require
a rigorous demonstration that the timing failure probability is indeed never more than 10−5.
However, we would not require a demonstration of nearly the same rigor for a credit valida-
tion.

2.3.2 Hard Timing Constraints and Temporal Quality-of-Service Guarantees

In most of this book, we adopt a simple operational definition: The timing constraint of a job
is hard, and the job is a hard real-time job, if the user requires the validation that the system

Integre Technical Publishing Co., Inc. Liu January 12, 2000 1:37 p.m. chap2 page 29

Section 2.4 Hard Real-Time Systems 29

always meet the timing constraint. By validation, we mean a demonstration by a provably
correct, efficient procedure or by exhaustive simulation and testing. A large part of this book
is devoted to efficient validation algorithms and methods as well as scheduling and resource
management strategies that allow the system to be thus validated.

On the other hand, if no validation is required, or only a demonstration that the job
meet some statistical constraint (i.e., a timing constraint specified in terms of statistical av-
erages) suffices, then the timing constraint of the job is soft. The satisfaction of statistical
constraints (e.g., the average number of missed deadlines per minute is two or less) can usu-
ally be demonstrated with a performance profile somewhat more thorough than those used
to demonstrate the performance of general interactive systems. Most of the techniques for
validation discussed in later chapters are not needed.

This way to differentiate between hard and soft timing constraints is compatible with the
distinction between guaranteed and best-effort services [Lock86, Clar90]. Stated another way,
if the user wants the temporal quality (e.g., response time and jitter) of the service provided by
a task guaranteed and the satisfaction of the timing constraints defining the temporal quality
validated, then the timing constraints are hard. On the other hand, if the user demands the best
quality of service the system can provide but allows the system to deliver qualities below what
is defined by the timing constraints, then the timing constraints are soft.

We call an application (task) with hard timing constraints a hard real-time application
and a system containing mostly hard real-time applications a hard real-time system. For many
traditional hard real-time applications (e.g., digital controllers), all the tasks and jobs executed
in every operation mode of the system are known a priori. The traditional approach to building
and validating such systems is to avoid hardware and software features that may lead to non-
determinism. Therefore, it is possible to verify the satisfaction of all hard timing constraints
by exhaustive simulation and testing. Indeed, until recently, this has been the only approach
used to build hard real-time systems.

In recent years, several efficient validation methods for a large class of hard real-time
applications have been developed. These methods make on-line validation feasible and, thus,
make hard real-time applications that dynamically create and destroy tasks feasible. When an
application creates a new task with hard timing constraints, it submits an admission request
to the scheduler. Upon the receipt of such a request, the scheduler does an acceptance test to
determine whether the system can meet the timing constraints of the new task while meeting
all the hard timing constraints of tasks previously admitted into the system. The scheduler
accepts and admits the new task to the system only when the task passes the acceptance test.
This acceptance test is an on-line validation test. Many of the validation algorithms described
in Chapters 6–9 are suitable for this purpose.

2.4 HARD REAL-TIME SYSTEMS

The requirement that all hard timing constraints must be validated invariably places many re-
strictions on the design and implementation of hard real-time applications as well as on the
architectures of hardware and system software used to support them. To justify this require-
ment, this section examines briefly several examples of hard real-time systems and discuss
why hard timing constraints are imposed and why users require their satisfaction be validated
and guaranteed.

Integre Technical Publishing Co., Inc. Liu January 12, 2000 1:37 p.m. chap2 page 30

30 Chapter 2 Hard versus Soft Real-Time Systems

2.4.1 Some Reasons for Requiring Timing Guarantees

Many embedded systems are hard real-time systems. Deadlines of jobs in an embedded system
are typically derived from the required responsiveness of the sensors and actuators monitored
and controlled by it. As an example, we consider an automatically controlled train. It cannot
stop instantaneously. When the signal is red (stop), its braking action must be activated a
certain distance away from the signal post at which the train must stop. This braking distance
depends on the speed of the train and the safe value of deceleration. From the speed and safe
deceleration of the train, the controller can compute the time for the train to travel the braking
distance. This time in turn imposes a constraint on the response time of the jobs which sense
and process the stop signal and activate the brake. No one would question that this timing
constraint should be hard and that its satisfaction must be guaranteed.

Similarly, each control-law computation job of a flight controller must be completed in
time so that its command can be issued in time. Otherwise, the plane controlled by it may
become oscillatory (and the ride bumpy) or even unstable and uncontrollable. For this reason,
we want the timely completion of all control-law computations guaranteed.

Jobs in some nonembedded systems may also have hard deadlines. An example is a
critical information system that must be highly available: The system must never be down for
more than a minute. Because of this requirement, reconfiguration and recovery of database
servers and network connections in the system must complete within a few seconds or tens of
seconds, and this relative deadline is hard.

A frequently asked question is how serious is the consequence of a few missed dead-
lines. A real-time monitor may nevertheless function satisfactorily when some sensor readings
are not processed or lost. A single late recovery job may not cause an information system to
crash. We surely have more design options and can make the system better in some other
respect and make it less costly if some of the hard timing requirements are relaxed, even to a
small degree.

In recent years, this observation motivated a variety of approaches to soften hard dead-
lines. Examples are to allow a few missed deadlines (e.g., [HaRa]) or premature terminations
(e.g., [LLSB, LLSC]) as long as they occur in some acceptable way. We will discuss some of
these approaches in Chapter 10. Needless to say, these approaches can be applied only when
application domain experts know the effects of missed deadlines. Unfortunately, this is some-
times not the case. Even for some simple monitor and control applications, it is difficult to
assess the effects of lost sample readings and late commands. In more complex systems, such
as the NAVSTAR system,1 the effect of missed deadlines may be combined with other factors

1The NAVSTAR Global Positioning System [DoEl] is a distributed system of space-based and ground-based
computers and communication links. The system allows users equipped with navigation receivers to determine accu-
rately their own locations. The space subsystem is a constellation of satellites. Together, the satellites provide 24-hour
coverage at all locations. On board each satellite, telemetry and track-control subsystems, as well as other subsys-
tems, communicate with each other via the Mission Data Unit (MDU). MDU contains hardware for timing control,
modulation control, and navigation. It also interfaces with the intersatellite link and the downlink. The former sup-
ports communication among the satellites. The latter allows the satellite to broadcast to the control system on the
ground as well as to its users. Each satellite must periodically estimates its own location. The satellites do this in a
cooperative manner by exchanging messages with other satellites that are in range. By measuring the differences in
the delays severed by messages from other satellites, each satellite can determine its own location with respect to the
locations of the satellites whose messages are used for this purpose. This process is called ranging and is an example
of functions that require accurate clock and timing signals and has real-time constraints.

Integre Technical Publishing Co., Inc. Liu January 12, 2000 1:37 p.m. chap2 page 31

Section 2.5 Soft Real-Time Systems 31

in ways impossible to predict. Consequently, the designer makes sure that the system misses
no deadline as long as it is in operation. The hard real-time requirement in fact simplifies the
process of validating the overall system.

In general, if safety or property loss is involved, the designer/builder of the system
has the burden of proof that bad things will never happen. Whenever it is not possible to
prove without doubt that a few timing constraint violations will not jeopardize the safety of
users or availability of some critical infrastructure, we take the safe approach and insist on
the satisfaction of all timing constraints, even though the requirement may be unnecessarily
stringent.

2.4.2 More on Hard Timing Constraints

The above examples also show that there may be no advantage in completing a job with a hard
deadline early. As long as the job completes by its deadline, its response time is not important.
In fact, it is often advantageous, sometimes even essential, to keep jitters in the response times
of a stream of jobs small. (Section 1.4.2 gives an example.) In this case, we do not want to
complete the jobs too early or too late. In later chapters, you will see that we often choose to
delay the start and completion of hard real-time jobs, in favor of soft real-time or background
jobs, and this is the reason.

In principle, our definition of hard and soft timing constraints allows a hard timing
constraint to be specified in any terms. Examples are

1. deterministic constraints (e.g., the relative deadline of every control-law computation
is 50 msec or the response time of at most one out of five consecutive control-law
computations exceeds 50 msec);

2. probabilistic constraints, that is, constraints defined in terms of tails of some probability
distributions (e.g., the probability of the response time exceeding 50 milliseconds is less
than 0.2); and

3. constraints in terms of some usefulness function (e.g., the usefulness of every control-
law computation is 0.8 or more).

In practice, hard timing constraints are rarely specified in the latter two ways. We mostly
use deterministic hard timing constraints in this book, as in real-time systems literature. A
good question is why. The answer is that it is much easier to validate deterministic timing
constraints than probabilistic constraints and those expressed in terms of usefulness functions.
We will discuss what some of the difficulties are in Chapter 6.

2.5 SOFT REAL-TIME SYSTEMS

A system in which jobs have soft deadlines is a soft real-time system. The developer of a soft
real-time system is rarely required to prove rigorously that the system surely meet its real-
time performance objective. Examples of such systems include on-line transaction systems
and telephone switches, as well as electronic games. The less rigorous validation required of
the system and, often, more relaxed timing constraints allow the developer to consider other
performance metrics equally seriously. Meeting all deadlines is not the only consideration,

Integre Technical Publishing Co., Inc. Liu January 12, 2000 1:37 p.m. chap2 page 32

32 Chapter 2 Hard versus Soft Real-Time Systems

sometimes, not even the primary consideration. An occasional missed deadline or aborted
execution is usually considered tolerable; it may be more important for such a system to have
a small average response time and high throughput.

A system may have critical timing requirements but is nevertheless considered to be a
soft real-time system. An example is a stock price quotation system. It should update the price
of each stock each time the price changes. Here, a late update may be highly undesirable,
because the usefulness of a late price quotation decreases rapidly with time. However, in a
volatile market when prices fluctuate at unusually high rates, we expect that the system cannot
keep up with every price change but does its best according to some criteria. Occasional late
or missed updates are tolerated as a trade-off for other factors, such as cost and availability of
the system and the number of users the system can serve.

The timing requirements of soft real-time systems are often specified in probabilistic
terms. Take a telephone network for example. In response to our dialing a telephone number,
a sequence of jobs executes in turn, each routes the control signal from one switch to another
in order to set up a connection through the network on our behalf. We expect that our call
will be put through in a short time. To ensure that this expectation is met most of the time
by the network, a timing constraint may be imposed on this sequence of jobs as a design
objective (e.g., the sequence must complete in no more than 10 seconds for 95 percent of the
time and in no more than 20 seconds for 99.95 percent of the time). The users are usually
satisfied if after extensive simulation and trial use, the system indeed appears to meet this
requirement.

As a final example, let us consider multimedia systems that provide the user with ser-
vices of “guaranteed” quality. For example, a frame of a movie must be delivered every thirti-
eth of a second, and the difference in the times when each video frame is displayed and when
the accompanied speech is presented should be no more than 80 msec. In fact, it is common
to subject each new video stream to be transmitted by a network to an acceptance test. If the
network cannot guarantee the satisfaction of timing constraints of the stream without violating
the constraints of existing streams, the new stream is rejected, and its admission is requested
again at some later time. However, the users are often willing to tolerate a few glitches, as
long as the glitches occur rarely and for short lengths of time. At the same time, they are not
willing to pay the cost of eliminating the glitches completely. For this reason, we often see
timing constraints of multimedia systems guaranteed on a statistical basis, (e.g., the average
number of late/lost frames per minute is less than 2). Moreover, users of such systems rarely
demand any proof that the system indeed honor its guarantees. The quality-of-service guar-
antee is soft, the validation requirement is soft, and the timing constraints defining the quality
are soft.

2.6 SUMMARY

This chapter defines several terms that will be used frequently in subsequent chapters. They
are jobs, tasks, and timing constraints. Most of this book focuses on timing constraints that
can be expressed in terms of release times and deadlines of jobs. In particular, we say that
the scheduler works correctly if it never schedules any job before the release time of the job.
A correctly scheduled job meets its timing constraint if it completes by its deadline, or it
completes by its deadline with at least a certain probability, and so on.

Integre Technical Publishing Co., Inc. Liu January 12, 2000 1:37 p.m. chap2 page 33

Section 2.6 Summary 33

The timing constraint of a task can be hard or soft, depending on whether a rigorous
validation of the timing constraint is required (hard) or not (soft). In practice, a hard real-time
system invariably has many soft real-time jobs and vice versa. The division is not always as
obvious as we made it out to be here and, moreover, is not always necessary. In subsequent
chapters, we will use the simpler terms real-time system or system whenever we mean either
a hard real-time system or a soft real-time system or when there is no ambiguity about which
type of system is meant by it.

We will focus on how to design a system so it is possible to validate its timing con-
straints and how to do validation if validation is required. In general, the process of validating
that a system indeed meets its real-time performance objectives involves three major steps.
The first step ensures that the timing constraints of each application are consistent with its
high-level real-time requirements and that the timing constraints of its individual components
are mutually consistent. The second step ensures that every component can meet its timing
constraints if it executes alone and has all the required resources. The third and last step
ensures that when scheduled together according to the algorithms used by the underlying op-
erating system and networks, the timing constraints of all applications competing for all the
available system resources are always met. In other words, the first step verifies that the timing
constraints are specified correctly. The second step verifies the feasibility of each component
with the underlying hardware and software resources. The last step verifies that the system as
a whole behaves as specified by its timing constraints.

You may have noticed that in our discussion thus far the term validation has been used
to mean specifically the last step of the validation process. Indeed, the book focuses on the
last step of the validation process. We assume that the correct specification of the timing con-
straints and the feasibility of every individual component have already been verified. There-
fore, the timing constraints of the system are given. For methods on specifying timing con-
straints and verifying their correctness, you need to read books and articles on formal methods
(e.g., [Heit, VaKo]). Similarly, you can find algorithms for finding processor time demands of
jobs in [AMWH, HeWh, KiMH, LBJR].

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 34

C H A P T E R 3

A Reference Model of
Real-Time Systems

When we study how given applications should be scheduled on a system of processors and
resources and how we can determine whether the resultant system meets all its timing re-
quirements, many specific details about each application (e.g., whether it is a Kalman filter
computation or a sorting routine, whether it is implemented in Ada or C++) are not relevant.
We do not want to keep track of these details and let them cloud relevant issues. Similarly,
we do not want to keep track of irrelevant properties of system resources (e.g., whether the
processor is by Intel or Motorola or whether the transmission medium is cable or fiber.) A
good model abstracts the irrelevant details. It allows us to focus on the timing properties and
resource requirements of system components and the way the operating system allocates the
available system resources among them. By focusing on the relevant characteristics of the
system, we can reason better about the timing behavior of each component and the overall
system. By describing the algorithms used to schedule the applications and the methods for
validating their timing constraints abstractly, rather than in implementation-specific terms, we
can appreciate their general applicability better.

In this chapter, we describe a reference model of real-time systems. According to this
model, each system is characterized by three elements: (1) a workload model that describes
the applications supported by the system, (2) a resource model that describes the system re-
sources available to the applications, and (3) algorithms that define how the application system
uses the resources at all times. The model aims at being good in the sense mentioned above.
It has a sufficiently rich set of features in terms of which we can describe the relevant char-
acteristics of a wide spectrum of real-time applications and the properties of the underlying
platform. If we choose to do so, we can describe a system in a sufficiently faithful manner
in terms of the model so we can analyze, simulate, and even emulate the system based on its
description. In particular, analysis and simulation tools (e.g., PERTS [LLRD]) can use such
a system description as input to produce accurate estimates of the real-time performance and
the associated overhead of the system.

In the following sections, we describe the first two elements of the reference model:
the models that describe the applications and resources. In most of this book, we assume that
these descriptions are given to us, for some systems, a priori before the execution begins, and
for most systems, as new tasks are created and admitted into the system. The third element

34

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 35

Section 3.1 Processors and Resources 35

is the set of scheduling and resource management algorithms. We describe here how this
element completes the description of the overall system, but defer the details on how the
algorithms work and why they work until the next several chapters. We also introduce here
the terminology and notation that we will use later.

Several features of the reference model are not needed to understand the basic schedul-
ing and resource access-control algorithms described in later chapters. However, the models
used by some analysis and simulation tools have these features. Sections describing these fea-
tures are included in this chapter for reference. These sections are marked by “*.” You can
skip them without loss of continuity.

3.1 PROCESSORS AND RESOURCES

We divide all the system resources into two major types: processors and resources. Again,
processors are often called servers and active resources; computers, transmission links, disks,
and database server are examples of processors. They carry out machine instructions, move
data from one place to another, retrieve files, process queries, and so on. Every job must have
one or more processors in order to execute and make progress toward completion.

Sometimes, we will need to distinguish the types of processors. Two processors are of
the same type if they are functionally identical and can be used interchangeably. Hence two
transmission links with the same transmission rate between a pair of sender and receiver are
processors of the same type; processors in a Symmetrical Multiprocessor (SMP) system are of
the same type, and so on. Processors that are functionally different, or for some other reason
cannot be used interchangeably, are of different types. CPUs, transmission links, and disks are
of different types, because they are functionally different. A transmission link connecting an
on-board flight management system to the ground controller is a different type of processor
from the link connecting two air traffic control centers even when the links have the same
characteristics, because they cannot be used interchangeably.

We will consistently use the letter P to denote processor(s). When we want focus on
how the jobs on each processor are scheduled, how the jobs on different processors are syn-
chronized, and how well the processors are utilized, there is no need to be concerned with
whether the processors are identical or different. At these times, we will ignore the types of
processors and call the m processors in the system P1, P2, . . . , Pm .

By resources, we will specifically mean passive resources. Examples of resources are
memory, sequence numbers, mutexes, and database locks. A job may need some resources
in addition to the processor in order to make progress. One of the attributes of a processor is
its speed. Although we will rarely mention this attribute, we will implicitly assume that the
rate of progress a job makes toward its completion depends on the speed of the processor on
which it executes. We can explicitly model this dependency by making the amount of time a
job requires to complete a function of the processor speed. In contrast, we do not associate
speed with a resource. In other words, how long a job takes to complete does not depend on
the speed of any resource it uses during execution.

For example, a computation job may share data with other computations, and the data
may be guarded by semaphores. We model (the lock of) each semaphore as a resource.
When a job wants to access the shared data guarded by a semaphore R, it must first lock
the semaphore, and then it enters the critical section of the code where it accesses the shared

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 36

36 Chapter 3 A Reference Model of Real-Time Systems

data. In this case, we say that the job requires the resource R for the duration of this critical
section.

As another example, we consider a data link that uses the sliding-window scheme to
regulate message transmission. Only a maximum number of messages are allowed to be in
transit (i.e., they have been transmitted but their reception has not yet been positively ac-
knowledged). One way to implement this scheme is for the sender to maintain a window of
valid sequence numbers. The window is moved forward as messages transmitted earlier are
acknowledged by the receiver. A message waiting to be transmitted must first be given one
of the valid sequence numbers before it can be transmitted. We model the transmission of
a message as a job; the job executes when the message is being transmitted. This job needs
the data link, as well as a valid sequence number. The data link is a processor. The sequence
numbers are units of the sequence-number resource.

Similarly, we usually model transactions that query and update a database as jobs; these
jobs execute on a database server. If the database server uses a locking mechanism to ensure
data integrity, then a transaction also needs the locks on the data objects it reads or writes in
order to proceed. The locks on the data objects are resources.

We will use the letter R to denote resources. The resources in the examples mentioned
above are reusable, because they are not consumed during use. (In contrast, a message pro-
duced by a process and consumed by another process is not reusable because it no longer
exists after use.) In our discussion, a “resource” almost always mean a reusable resource. The
statement that the system contains ρ resources means that there are ρ types of serially reusable
resources, each resource may have one or more units, and each unit is used in a mutually ex-
clusive manner. For example, if the sliding window of a data link has eight valid sequence
numbers, then there are eight units of the sequence-number resource (type). The write lock on
a file is a resource that has only one unit because only one job can have the lock at a time. A
resource that can be shared by a finite number x of jobs is modeled as a resource (type) that
has x units, each of which can be used by only one job at a time.

To prevent our model from being cluttered by irrelevant details, we typically omit the
resources that are plentiful. A resource is plentiful if no job is ever prevented from execution
by the lack of this resource. A resource that can be shared by an infinite number of jobs
(e.g., a file that is readable simultaneously by all) need not be explicitly modeled and hence
never appears in our model. You will notice later that we rarely mention the memory resource.
Clearly, memory is an essential type of resource. All computing and communication systems
have this resource. We omit it from our model whenever we can account for the speed of the
memory by the speed of the processor and memory is not a bottleneck of the system. For
example, we can account for the speed of the buffer memory in a packet switch by letting
the speed of each input (or output) link equal the transmission rate of the link or the rate at
which data can go in (or out of) the buffer, whichever is smaller. Therefore, there is no need
to explicitly model this aspect of the memory. By memory not being the bottleneck, we mean
that whenever a job is scheduled to execute, it always has a sufficient amount of memory.
Many real-time systems are designed so that this assumption is valid. When this assumption
is not valid, the timing behavior of the system critically depends on how memory is allocated
to jobs. Clearly, the model of the system must include the memory resource in this case.

Another point to keep in mind is that we sometimes model some elements of a system
as processors and sometimes as resources, depending on how we will use the model. For
example, in a distributed system, a computation job may invoke a server on a remote processor.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 37

Section 3.2 Temporal Parameters of Real-Time Workload 37

When we want to focus on how the response time of this job depends on the way the job
is scheduled with other jobs on its local processor, we may model the remote server as a
resource. We may also model the remote server (or more precisely the remote processor) as a
processor. As you will see that in Chapter 9, we indeed use both of these alternatives to model
remote execution in distributed systems. They give us two different points of view and lead to
different scheduling and resource management strategies.

As a final example, let us consider the I/O bus. Every computation job must have the
I/O bus in addition to the processor to execute. Most of the time, we model the I/O bus as a
resource, oftentimes a plentiful and therefore ignored resource. However, when we want to
study how long I/O activities may delay the completion of computation jobs that share the I/O
bus or when we want to determine the real-time performance of an I/O bus arbitration scheme,
we want to model the bus as a resource or a processor.

There are no cookbook rules to guide us in making this and many other modeling
choices. A good model can give us better insight into the problem at hand. A bad model
can clutter our mind with irrelevant details and may even give us a wrong point of view and
lead to a poor design and implementation. For this reason, the skill and art in modeling are
essential to a system designer and developer.

3.2 TEMPORAL PARAMETERS OF REAL-TIME WORKLOAD

As stated in Chapter 2, the workload on processors consists of jobs, each of which is a unit
of work to be allocated processor time and other resources. A set of related jobs that execute
to support a function of the system is a task. We typically assume that many parameters of
hard real-time jobs and tasks are known at all times; otherwise, it would not be possible to
ensure that the system meet its hard real-time requirements. The number of tasks (or jobs) in
the system is one such parameter. In many embedded systems, the number of tasks is fixed
as long as the system remains in an operation mode. The number of tasks may change when
the system operation mode changes, and the number of tasks in the new mode is also known.
Moreover, these numbers are known a priori before the system begins execution. Take the
flight control system in Figure 1–3 as an example. During cruise mode, the system has 12
tasks (i.e., 3 30-Hz avionics tasks, 3 30-Hz computations and 2 90-Hz computations, plus
180-Hz computation, validation, output and built-in-test tasks). If the system triply replicates
all control-law computations during landing, the number of tasks increases to 24 when it
operates in the landing mode.

In some other systems, however, the number of tasks may change as tasks are added
and deleted while the system executes. As an example, in an air traffic control system, each
surveillance task monitors an aircraft. The number of such tasks changes as tasks are added
and deleted when aircraft enter and leave the coverage area. Nevertheless, the number of
tasks with hard timing constraints is known at all times. This assumption is valid. When the
satisfaction of their timing constraints is to be guaranteed, the admission and deletion of hard
real-time tasks are usually done under the control of the run-time system (e.g., by having the
application system request admission and deletion of tasks). For this purpose, the system must
maintain information on all existing hard real-time tasks, including the number of such tasks.

Each job Ji is characterized by its temporal parameters, functional parameters, resource
parameters, and interconnection parameters. Its temporal parameters tell us its timing con-

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 38

38 Chapter 3 A Reference Model of Real-Time Systems

straints and behavior. Its interconnection parameters describe how it depends on other jobs
and how other jobs depend on it. Its functional parameters specify the intrinsic properties of
the job. Finally, its resource parameters give us its resource requirements.

We already defined in Section 2.2 the release time, absolute deadline, and relative dead-
line of a job Ji ; these are temporal parameters. We will use ri , di , and Di , respectively, to
denote them and call the time interval (ri , di]1 between the release time and absolute deadline
of the job Ji its feasible interval. di and Di are usually derived from the timing requirements
of Ji , jobs in the same task as Ji , and the overall system. We consider these parameters to be
part of the system specification.

3.2.1 Fixed, Jittered, and Sporadic Release Times

In many systems, we do not know exactly when each job will be released. In other words, we
do not know the actual release time ri of each job Ji ; only that ri is in a range [ri

−, ri
+]. ri

can be as early as the earliest release time ri
− and as late as the latest release time ri

+. Indeed,
some models assume that only the range of ri is known and call this range the jitter in ri , or
release-time jitter. Sometimes, the jitter is negligibly small compared with the values of other
temporal parameters. If, for all practical purposes, we can approximate the actual release time
of each job by its earliest or latest release time, then we say that the job has a fixed release
time.

Almost every real-time system is required to respond to external events which occur
at random instants of time. When such an event occurs, the system executes a set of jobs in
response. The release times of these jobs are not known until the event triggering them occurs.
These jobs are called sporadic jobs or aperiodic jobs because they are released at random time
instants. (We will return shortly to discuss the difference between these two types of jobs.)
For example, the pilot may disengage the autopilot system at any time. When this occurs,
the autopilot system changes from cruise mode to standby mode. The jobs that execute to
accomplish this mode change are sporadic jobs.

The release times of sporadic and aperiodic jobs are random variables. The model of the
system gives the probability distribution A(x) of the release time of such a job, or when there
is a stream of similar sporadic or aperiodic jobs, the probability distribution of interrelease
time (i.e., the length of the time interval between the release times of two consecutive jobs
in the stream). A(x) gives us the probability that the release time of the job is at or earlier
than x (or the interrelease time of the stream of jobs is equal to or less than x) for all valid
values of x . Rather than speaking of release times of aperiodic jobs, we sometimes use the
term arrival times (or interarrival time) which is commonly used in queueing theory. An
aperiodic job arrives when it is released. A(x) is the arrival time distribution (or interarrival
time distribution).

3.2.2 Execution Time

Another temporal parameter of a job, Ji , is its execution time, ei . ei is the amount of time
required to complete the execution of Ji when it executes alone and has all the resources it

1The notation (ri , di] means specifically the interval that begins immediately after ri and ends at di . In general,
a square bracket [or] indicates that the interval includes the endpoint next to the bracket, while a round bracket (or)
indicates that the endpoint is not included.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 39

Section 3.2 Temporal Parameters of Real-Time Workload 39

requires. Hence, the value of this parameter depends mainly on the complexity of the job and
the speed of the processor used to execute the job, not on how the job is scheduled.

The actual amount of time required by a job to complete its execution may vary for
many reasons. As examples, a computation may contain conditional branches, and these con-
ditional branches may take different amounts of time to complete. The branches taken during
the execution of the computation job depend on the input data. If the underlying system has
performance enhancing features (e.g., cache memory and pipeline), the amount of time a
computation takes to complete may vary each time it executes even when it has no condi-
tional branches. For these reasons, the actual execution time of a computation job is unknown
until it completes. Similarly, the actual amount of time to transmit each frame of a MPEG-
compressed video is different from frame to frame because the numbers of bits used to encode
different frames are different. The actual execution time of the job modeling the transmission
of a frame is unknown a priori. What can be determined a priori through analysis and mea-
surement are the maximum and minimum amounts of time required to complete each job.
In other words, we know that the execution time ei of the job Ji is in the range [ei

−, ei
+],

where ei
− and ei

+ are the minimum execution time and the maximum execution time of Ji ,
respectively. We usually assume that we know ei

− and ei
+ of every hard real-time job Ji but

the actual execution time of the job is unknown.
For the purpose of determining whether each job can always complete by its deadline,

knowing the maximum execution time of each job often suffices. For this reason, in most
deterministic models used to characterize hard real-time applications, the term execution time
ei of each job Ji specifically means its maximum execution time. We will also use this term
in this sense most of the time. However, except where we state otherwise, we never mean that
the actual execution time of the job is fixed and known, only that it never exceeds ei .

You may want to question at this point the accuracy of deterministic models which as-
sume that every job takes its maximum execution time to complete. If we design our system
based on this assumption and allocate this much time to each job, the processor(s) will surely
be underutilized. This statement is clearly true sometimes. We will encounter applications
where the variations in job execution times are so large that working with their maximum
values indeed yields unacceptably conservative designs. We should not model such applica-
tions deterministically. More importantly, as you will see in Chapter 4, in some systems the
response times of some jobs may be larger when the actual execution times of some jobs are
smaller than their maximum values. In these cases, we will have to deal with the variations in
execution times explicitly.

However, there are two good reasons for the common use of the deterministic approach.
Many hard real-time systems are safety-critical. These systems are typically designed and
implemented in a such a way that the variations in job execution times are kept as small
as possible. The need to have relatively deterministic execution times places many restric-
tions on implementation choices. (For example, the programs cannot use dynamic structures
that can lead to variable execution time and memory usage; performance-enhancing features
are not used.) By working with these restrictions and making the execution times of jobs
almost deterministic, the designer can model more accurately the application system deter-
ministically. In return, the deterministic approach makes the validation of the resultant system
easier.

The other reason for the common use of the deterministic approach is that the hard real-
time portion of the system is often small. The timing requirements of the rest of the system

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 40

40 Chapter 3 A Reference Model of Real-Time Systems

are soft. In this case, an option is to design the hard real-time subsystem based on its worst-
case processor time and resource requirements even though their actual requirements may be
much smaller. We can then use the methods and tools supported by the deterministic models
to ensure that the hard timing constraints will surely be met at all times. We also can safely
reclaim the time and resources allocated to but not used by hard real-time jobs and make the
reclaimed time and resources available to soft real-time jobs and nonreal-time jobs. In this
way, the system will not be overdesigned with underutilized resources.

3.3 PERIODIC TASK MODEL

The periodic task model is a well-known deterministic workload model [LiLa]. With its
various extensions, the model characterizes accurately many traditional hard real-time ap-
plications, such as digital control, real-time monitoring, and constant bit-rate voice/video
transmission. Many scheduling algorithms based on this model have good performance and
well-understood behavior. There are now methods and tools to support the design, analysis,
and validation of real-time systems that can be accurately characterized by the model. For
these reasons, we want to know it well and be able to use it proficiently.

3.3.1 Periods, Execution Times, and Phases of Periodic Tasks

In the periodic task model, each computation or data transmission that is executed repeatly
at regular or semiregular time intervals in order to provide a function of the system on a
continuing basis is modeled as a period task. Specifically, each periodic task, denoted by Ti ,
is a sequence of jobs. The period pi of the periodic task Ti is the minimum length of all time
intervals between release times of consecutive jobs in Ti . Its execution time is the maximum
execution time of all the jobs in it. With a slight abuse of the notation, we use ei to denote
the execution time of the periodic task Ti , as well as that of all the jobs in it. At all times, the
period and execution time of every periodic task in the system are known.

This definition of periodic tasks differs from the one often found in real-time systems
literature. In many published works, the term periodic task refers to a task that is truly periodic,
that is, interrelease times of all jobs in a periodic task are equal to its period. This definition
has led to the common misconception that scheduling and validation algorithms based on the
periodic task model are applicable only when every periodic task is truly periodic. We will
show in Chapter 6 that in fact most existing results remain correct as long as interrelease
times of jobs in each task are bounded from below by the period of the task. This is why we
adopt our definition. What are called periodic tasks here are sometimes called sporadic tasks
in literature. In this book, a sporadic task is one whose interrelease times can be arbitrarily
small; we will define this term shortly.

The accuracy of the periodic task model decreases with increasing jitter in release times
and variations in execution times. So, a periodic task is an inaccurate model of the transmis-
sion of a variable bit-rate video, because of the large variation in the execution times of jobs
(i.e., transmission times of individual frames). A periodic task is also an inaccurate model of
the transmission of cells on a real-time connection through a switched network that does not
do traffic shaping at every switch, because large release-time jitters are possible.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 41

Section 3.3 Periodic Task Model 41

We call the tasks in the system T1, T2, . . . , Tn .2 When it is necessary to refer to the
individual jobs in a task Ti , we call them Ji,1, Ji,2 and so on, Ji,k being the kth job in Ti . When
we want to talk about properties of individual jobs but are not interested in the tasks to which
they belong, we also call the jobs J1, J2, and so on.

The release time ri,1 of the first job Ji,1 in each task Ti is called the phase of Ti . For
the sake of convenience, we use φi to denote the phase of Ti , that is, φi = ri,1. In general,
different tasks may have different phases. Some tasks are in phase, meaning that they have
the same phase.

We use H to denote the least common multiple of pi for i = 1, 2, . . . n. A time interval
of length H is called a hyperperiod of the periodic tasks. The (maximum) number N of jobs
in each hyperperiod is equal to

∑n
i=1 H/pi . The length of a hyperperiod of three periodic

tasks with periods 3, 4, and 10 is 60. The total number N of jobs in the hyperperiod is 41.
We call the ratio ui = ei/pi the utilization of the task Ti . ui is equal to the fraction

of time a truly periodic task with period pi and execution time ei keeps a processor busy. It
is an upper bound to the utilization of any task modeled by Ti . The total utilization U of all
the tasks in the system is the sum of the utilizations of the individual tasks in it. So, if the
execution times of the three periodic tasks are 1, 1, and 3, and their periods are 3, 4, and 10,
respectively, then their utilizations are 0.33, 0.25 and 0.3. The total utilization of the tasks is
0.88; these tasks can keep a processor busy at most 88 percent of the time.

A job in Ti that is released at t must complete Di units of time after t ; Di is the (relative)
deadline of the task Ti . We will omit the word “relative” except where it is unclear whether
by deadline, we mean a relative or absolute deadline. We will often assume that for every task
a job is released and becomes ready at the beginning of each period and must complete by the
end of the period. In other words, Di is equal to pi for all n. This requirement is consistent
with the throughput requirement that the system can keep up with all the work demanded of
it at all times.

However, in general, Di can have an arbitrary value. In particular, it can be shorter than
pi . Giving a task a short relative deadline is a way to specify that variations in the response
times of individual jobs (i.e., jitters in their completion times) of the task must be sufficiently
small. Sometimes, each job in a task may not be ready when it is released. (For example,
when a computation job is released, its input data are first transferred to memory. Until this
operation completes, the computation job is not ready.) The time between the ready time of
each job and the end of the period is shorter than the period. Similarly, there may be some
operation to perform after the job completes but before the next job is released. Sometimes, a
job may be composed of dependent jobs that must be executed in sequence. A way to enforce
the dependency relation among them is to delay the release of a job later in the sequence while
advancing the deadline of a job earlier in the sequence. The relative deadlines of jobs may be
shortened for these reasons as well.

3.3.2 Aperiodic and Sporadic Tasks

Earlier, we pointed out that a real-time system is invariably required to respond to external
events, and to respond, it executes aperiodic or sporadic jobs whose release times are not

2Again, the number n of periodic tasks in the system is known. This number may change when some tasks
are deleted from the system and new tasks are added to the system. The amount of time to complete such a change is
short compared with the length of time between consecutive changes.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 42

42 Chapter 3 A Reference Model of Real-Time Systems

known a priori. An operator’s adjustment of the sensitivity setting of a radar surveillance
system is an example. The radar system must continue to operate, but in addition, it also must
respond to the operator’s command. Similarly, when a pilot changes the autopilot from cruise
mode to standby mode, the system must respond by reconfiguring itself, while continuing to
execute the control tasks that fly the airplane. A command and control system must process
sporadic data messages, in addition to the continuous voice and video traffic.

In the periodic task model, the workload generated in response to these unexpected
events is captured by aperiodic and sporadic tasks. Each aperiodic or sporadic task is a stream
of aperiodic or sporadic jobs, respectively. The interarrival times between consecutive jobs in
such a task may vary widely and, in particular, can be arbitrarily small. The jobs in each task
model the work done by the system in response to events of the same type. For example, the
jobs that execute to change the detection threshold of the radar system are in one task; the
jobs that change the operation mode of the autopilot are in one task; and the jobs that process
sporadic data messages are in one task, and so on.

Specifically, the jobs in each aperiodic task are similar in the sense that they have the
same statistical behavior and the same timing requirement. Their interarrival times are iden-
tically distributed random variables with some probability distribution A(x). Similarly, the
execution times of jobs in each aperiodic (or sporadic) task are identically distributed random
variables, each distributed according to the probability distribution B(x). These assumptions
mean that the statistical behavior of the system and its environment do not change with time,
that is, the system is stationary. That the system is stationary is usually valid in time intervals
of length on the order of H , in particular, within any hyperperiod of the periodic tasks during
which no periodic tasks are added or deleted.

We say that a task is aperiodic if the jobs in it have either soft deadlines or no deadlines.
The task to adjust radar’s sensitivity is an example. We want the system to be responsive,
that is, to complete each adjustment as soon as possible. On the other hand, a late response
is annoying but tolerable. We therefore want to optimize the responsiveness of the system for
the aperiodic jobs, but never at the expense of hard real-time tasks whose deadlines must be
met at all times.

In contrast, an autopilot system is required to respond to a pilot’s command to disen-
gage the autopilot and take over the control manually within a specific time. Similarly, when
a transient fault occurs, a fault-tolerant system may be required to detect the fault and recover
from it in time. The jobs that execute in response to these events have hard deadlines. Tasks
containing jobs that are released at random time instants and have hard deadlines are spo-
radic tasks. We treat them as hard real-time tasks. Our primary concern is to ensure that their
deadlines are always met; minimizing their response times is of secondary importance.

3.4 PRECEDENCE CONSTRAINTS AND DATA DEPENDENCY

Data and control dependencies among jobs may constrain the order in which they can execute.
In classical scheduling theory, the jobs are said to have precedence constraints if they are
constrained to execute in some order. Otherwise, if the jobs can execute in any order, they are
said to be independent.

For example, in a radar surveillance system, the signal-processing task is the producer
of track records, while the tracker task is the consumer. In particular, each tracker job pro-

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 43

Section 3.4 Precedence Constraints and Data Dependency 43

cesses the track records generated by a signal-processing job. The designer may choose to
synchronize the tasks so that the execution of the kth tracker job does not begin until the kth
signal-processing job completes. The tracker job is precedence constrained. In general, a con-
sumer job has this constraint whenever it must synchronize with the corresponding producer
job(s) and wait until the latter completes in order to execute.

As another example, we consider queries to an information server. Suppose that before
each query is processed and the requested information retrieved, its authorization to access
the requested information is first checked. The retrieval job cannot begin execution until the
authentication job completes. The communication job that forwards the information to the
requester cannot begin until the retrieval job completes. Similarly, in a communication system,
the jobs that generate an acknowledgement of a message and transmit the acknowledgement
message cannot begin until the job that receives and processes the message completes.

3.4.1 Precedence Graph and Task Graph

We use a partial-order relation <, called a precedence relation, over the set of jobs to specify
the precedence constraints among jobs. A job Ji is a predecessor of another job Jk (and Jk

a successor of Ji) if Jk cannot begin execution until the execution of Ji completes. A short-
hand notation to state this fact is Ji < Jk . Ji is an immediate predecessor of Jk (and Jk is an
immediate successor of Ji) if Ji < Jk and there is no other job Jj such that Ji < Jj < Jk . Two
jobs Ji and Jk are independent when neither Ji < Jk nor Jk < Ji . A job with predecessors is
ready for execution when the time is at or after its release time and all of its predecessors are
completed.

A classical way to represent the precedence constraints among jobs in a set J is by a
directed graph G = (J, <). Each vertex in this graph represents a job in J. We will call each
vertex by the name of the job represented by it. There is a directed edge from the vertex Ji to
the vertex Jk when the job Ji is an immediate predecessor of the job Jk . This graph is called
a precedence graph.

A task graph, which gives us a general way to describe the application system, is an
extended precedence graph. Figure 3–1 shows a task graph. As in a precedence graph, the
vertices in a task graph represent jobs. They are shown as circles and squares in this figure.
(Here, we ignore the difference between the types of jobs represented by them. The need

conditional block

2/3 1/2

J

(0, 5] (4, 8] (5, 20]

branch join

(0, 6]

(2, 10]

(2, 5] (5, 8] (8, 11] (11, 14] (14, 17]

(0, 7] (2, 9] (4, 11] (6, 13] (8, 15]

…

…

FIGURE 3–1 Example of task graphs.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 44

44 Chapter 3 A Reference Model of Real-Time Systems

to differentiate them arises only in the next section.) For simplicity, we show only the job
attributes that are of interest to us. The numbers in the bracket above each job give its feasi-
ble interval. The edges in the graph represent dependencies among jobs. If all the edges are
precedence edges, representing precedence constraints, then the graph is a precedence graph.

Specifically, the system described by the graph in Figure 3–1 includes two periodic
tasks. The task whose jobs are represented by the vertices in the top row has phase 0, period
2, and relative deadline 7. The jobs in it are independent; there are no edges to or from these
jobs. In other words, the jobs released in later periods are ready for execution as soon as
they are released even though some job released earlier is not yet complete. This is the usual
assumption about periodic tasks. The vertices in the second row of Figure 3–1 represent jobs
in a periodic task with phase 2, period 3, and relative deadline 3. The jobs in it are dependent;
the first job is the immediate predecessor of the second job, the second job is the immediate
predecessor of the third job, and so on. The precedence graph of (the jobs in) this task is a
chain as shown here. A subgraph’s being a chain indicates that for every pair of jobs Ji and
Jk in the subgraph, either Ji < Jk or Ji > Jk . Hence the jobs must be executed in serial order.

In the subsequent chapters, we rarely use a task graph to describe a system of periodic
tasks. You can see why from the above example: A list of periodic tasks and their parameters
suffices. A graph such as the one in Figure 3–1 is necessary only when the system contains
components that have complex dependencies as exemplified by the subgraph below the peri-
odic tasks.

Many types of interactions and communication among jobs are not captured by a prece-
dence graph but can be captured by a task graph. Unlike a precedence graph, a task graph may
contain different types of edges that represent different types of dependencies. The type(s) of
dependency represented by an edge is given by the type(s) of the edge. The types of an edge
connecting two vertices and other parameters of the edge are interconnection parameters of
the jobs represented by the vertices.

3.4.2 Data Dependency

As an example, data dependency cannot be captured by a precedence graph. In many real-
time systems, jobs communicate via shared data. Oftentimes, the designer chooses not to
synchronize producer and consumer jobs. Rather, each producer places the data generated by
it in a shared address space to be used by the consumer at any time. In this case, the classical
precedence graph should show that the producer and consumer are independent because they
are not explicitly constrained to execute in turn.

As an example, in an avionics system, the navigation job updates the location of the air-
plane periodically. These data are placed in a shared space. Whenever the flight management
job needs navigation data, it reads the most current data produced by the navigation job. There
is no precedence constraint between the navigation job and the flight management job.

In a task graph, data dependencies among jobs are represented explicitly by data-
dependency edges among jobs. There is a data-dependency edge from a vertex Ji to vertex
Jk in the task graph if the job Jk consumes data generated by Ji or the job Ji sends messages
to Jk . A parameter of an edge from Ji to Jk is the volume of data from Ji to Jk . In Chapter
9, we will describe algorithms that partition an application system into modules and assign
different modules to different processors for execution. Since the cost of communication
between jobs on the same processor is usually much lower than that between jobs on different

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 45

Section 3.5 Other Types of Dependencies 45

processors, one of the key factors we need to consider in choosing a partition is the amount of
data exchanged among jobs. For this purpose, we will make use of the information provided
by the data volume parameter.

As we will see in later chapters, the scheduler may not be able to schedule the naviga-
tion job and the flight management job independently. To ensure data integrity, some locking
mechanism may be in place, and this mechanism allows only one job to access the shared data
at a time. This leads to resource contention, which may also constrain the manner in which
jobs execute. However, this constraint is imposed on jobs by scheduling and resource access-
control algorithms. It is not a precedence constraint because it is not an intrinsic constraint on
the execution order of the jobs.

*3.5 OTHER TYPES OF DEPENDENCIES

Like nonreal-time applications, real-time applications sometimes contain redundant modules,
carry out heuristic searches, use multiple versions, execute some job conditionally, and so
forth. We add other extensions to the classical precedence graphs in order to model such
jobs and dependencies. These extensions include temporal distance, OR jobs, conditional
branches, and pipe (or pipeline).

3.5.1 Temporal Dependency

Some jobs may be constrained to complete within a certain amount of time relative to one
another. We call the difference in the completion times of two jobs the temporal distance
[HaLH] between them. Jobs are said to have a temporal distance constraint if their temporal
distance must be no more than some finite value. Jobs with temporal distance constraints may
or may not have deadlines.

As an example, we consider the display of video frames and the accompanying audio
when the video is that of a person speaking. To have lip synchronization, the time between the
display of each frame and the generation of the corresponding audio segment must be no more
than 160 msec [StNa]. Another example is the visual and audio displays of a passive sonar
system [MoMW]. The synthesized audio signal and the accompanied visual display must be
presented to the operator no more than 100 msec apart. These timing requirements can be
stated more naturally in terms of temporal distance constraints than in terms of deadlines of
jobs.

In a task graph, temporal distance constraints among jobs are represented by temporal-
dependency edges. There is a temporal-dependency edge from a vertex Ji to a vertex Jk if
the job Jk must be completed within a certain time after Ji completes. The temporal distance
between the jobs is given by the temporal distance parameter of the edge. The value of this
parameter is infinite if the jobs have no temporal distance constraint, or equivalently, there is
no temporal-dependency edge between the jobs.

3.5.2 AND/OR Precedence Constraints

In the classical model, a job with more than one immediate predecessor must wait until all
its immediate predecessors have been completed before its execution can begin. Whenever it

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 46

46 Chapter 3 A Reference Model of Real-Time Systems

is necessary to be specific, we call such jobs AND jobs and dependencies among them AND
precedence constraints. AND jobs are represented by unfilled circles in the task graph in Fig-
ure 3–1. An example is the job labeled J in this figure. All three of its immediate predecessors
must be completed before J can begin execution. An AND job such as J may be the transmis-
sion of a message to a user. Its immediate predecessors are the jobs that set up a connection
for the message, encrypt the message to safeguard privacy, and check the user’s account for
the requested quality of the delivery service. These predecessors may execute in any order
relative to each other, but they must all be completed before the message transmission job can
begin.

In contrast, an OR job is one which can begin execution at or after its release time
provided one or some of its immediate predecessors has been completed. In Figure 3–1, we
represent OR jobs by square vertices, as exemplified by the two square vertices at the bottom
of the graph. The one labeled 2/3 can begin execution as soon as two out of its three immediate
predecessors complete. In a system that uses triple redundancy to increase fault tolerance, a
voter can be modeled as a 2/3 job. Its predecessors are three replicated jobs that implement a
critical function. The voter executes and in turn allows its successors to begin whenever two
out of the three predecessors complete (and produce correct results). Similarly, we can model
a two-version computation as the two immediate predecessors of a 1/2 OR job. The operating
system chooses one of the versions depending on factors such as their resource requirements
and quality of their results. Only one of them needs to be completed before the OR job can
begin execution.

In the task graph, the in-type of job (i.e., the vertex representing the job) tells us whether
all its immediate predecessors must complete before its execution can begin. By default, the
value of this job parameter is AND. It can have the value OR, if only one of its immediate
predecessors must be completed, or k-out-of-l, if only k out l of its immediate predecessor
must be completed before its execution can begin.

3.5.3 Conditional Branches

Similarly, in the classical model, all the immediate successors of a job must be executed;
an outgoing edge from every vertex expresses an AND constraint. This convention makes it
inconvenient for us to represent conditional execution of jobs, such as the example in Fig-
ure 3–2.

This system can easily be modeled by a task graph that has edges expressing OR con-
straints. Only one of all the immediate successors of a job whose outgoing edges express OR
constraints is to be executed. Such a job is called a branch job. In a meaningful task graph,
there is a join job associated with each branch job. In Figure 3–1, these jobs are represented by
filled circles. The subgraph that begins from a vertex representing a branch job and ends at the
vertex representing the associated join job is called a conditional block. Only one conditional
branch in each conditional block is to be executed. The conditional block in Figure 3–1 has
two conditional branches: Either the upper conditional branch, containing a chain of jobs, or
the lower conditional branch, containing only one job, is to be executed.

This natural extension allows us to use a task graph to characterize data-dependent
conditional executions exemplified by the program segment in Figure 3–2. As an exercise,
you may want to look at Problem 3.2 which asks you to draw a task graph of an application
that has conditional branches and for comparison, use as many classical precedence graphs as

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 47

Section 3.5 Other Types of Dependencies 47

For every second do the following:
Process radar returns.
Generate track records.
Perform track association.
For the target T on each of the established tracks do:

If the target T is within distance D from self,
Do the following:

Analyze the trajectory of T .
If T is on collision course with self, sound alarm.

Enddo
Else

Compute the current distance of T from self.
If the current distance is larger than previous distance,

drop the track of T .
Endif

Endif
Endfor

FIGURE 3–2 A program with conditional branches.

necessary to represent all of its possible execution paths. In general, we need to use a classical
precedence graph for each branch in each conditional block. For example, the task graph in
Figure 3–1 is equivalent to two precedence graphs: One contains only the upper conditional
branch, and the other graph contains only the lower conditional branch. We need lk classical
precedence graphs to represent an application system that contains k conditional blocks if
each conditional blocks has l branches.

Similar to the parameter in-type, the job parameter out-type tells whether all the job’s
immediate successors are to be executed. The default value of the out-type parameter of every
job is AND, that is, all its immediate successors are to be executed. On the other hand, the out-
type of a branch job is OR, because only one of its immediate successors must be executed.

3.5.4 Pipeline Relationship

A dependency between a pair of producer-consumer jobs that are pipelined can theoretically
be represented by a precedence graph. In this graph, the vertices are the granules of the pro-
ducer and the consumer. Each granule of the consumer can begin execution when the previous
granule of this job and the corresponding granule of the producer job have completed. Prob-
lem 3.3 gives an example of how this representation works, but the example also illustrates
how inconvenient the representation is. For this reason, we introduce the pipeline relation
between jobs.

In the task graph, we represent a pipeline relationship between jobs by a pipeline edge,
as exemplified by the dotted edge between the jobs in the right-bottom corner of the graph in
Figure 3–1. There is an edge from Ji to Jk if the output of Ji is piped into Jk and the execution
of Jk can proceed as long as there are data for it to process.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 48

48 Chapter 3 A Reference Model of Real-Time Systems

3.6 FUNCTIONAL PARAMETERS

While scheduling and resource access-control decisions are made disregarding most func-
tional characteristics of jobs, several functional properties do affect these decisions. The work-
load model must explicitly describe these relevant properties, and this is done by the values of
functional parameters. Among them are preemptivity, criticality, optional interval, and laxity
type.

3.6.1 Preemptivity of Jobs

Executions of jobs can often be interleaved. The scheduler may suspend the execution of a
less urgent job and give the processor to a more urgent job. Later when the more urgent job
completes, the scheduler returns the processor to the less urgent job so the job can resume
execution. This interruption of job execution is called preemption. A job is preemptable if its
execution can be suspended at any time to allow the execution of other jobs and, later on,
can be resumed from the point of suspension. Computation jobs that execute on CPUs are
examples of preemptable jobs. In nonreal-time systems, such jobs are typically scheduled in
a round-robin manner; this is possible because they are preemptable.

A job is nonpreemptable if it must be executed from start to completion without inter-
ruption. This constraint may be imposed because its execution, if suspended and the processor
given to other jobs, must be executed again from the beginning. As an example, we consider
jobs that model the transmissions of data frames in a token ring (or bus). If transmission of
a frame is interrupted before it completes, the partially transmitted frame is discarded by the
receiver. The entire frame must be retransmitted from the start. To avoid wasting bandwidth
in this way, we make the execution of this job on the ring (or bus) nonpreemptable.

Sometimes, a job may be preemptable everywhere except for a small portion which
is constrained to be nonpreemptable. An example is an interrupt handling job. An interrupt
handling job usually begins by saving the state of the processor (i.e., storing the processor
status register, the stack pointer, the program counter, and so on). This small portion of the
job is nonpreemptable because suspending the execution of this portion and giving the CPU
to another job may cause serious errors in the data structures shared by the jobs.

During preemption, the system must first save the state of the preempted job at the time
of preemption so it can resume the job from that state. Then, the system must prepare the
execution environment for the preempting job before starting the job. For example, in the
case of CPU jobs, the state of the preempted job includes the contents of its program counter,
processor status register, and registers containing temporary results. After saving the contents
of these registers in memory and before the preempting job can start, the operating system
must load the new processor status register, clear pipelines, and so on. In operating system
literature, these actions are collectively called a context switch. The amount of time required
to accomplish a context switch is called a context-switch time. We will use these terms to
mean the overhead work done during preemption and the time required to accomplish the
work, respectively, for all types of jobs, not just CPU jobs.

Finally, we have focused here on the preemptivity of jobs on processors. The fact that a
job is nonpreemptable is treated as a constraint of the job. In Section 3.7, we will see that the
nonpreemptivity of a job may be a consequence of a constraint on the usage of some resource.
Let us keep this point in mind when we discuss the preemptivity attribute of resources in
Section 3.7.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 49

Section 3.6 Functional Parameters 49

3.6.2 Criticality of Jobs

In any system, jobs are not equally important. The importance (or criticality) of a job is a
positive number that indicates how critical the job is with respect to other jobs; the more
critical the job, the larger its importance. In literature, the terms priority and weight are often
used to refer to importance; the more important a job, the higher its priority or the larger its
weight. We will use the terms priority and weight extensively later to mean attributes that
are unrelated to the importance. Throughout this book, we use importance or criticality to
measure criticality in order to avoid overloading these terms.

During an overload when it is not possible to schedule all the jobs to meet their dead-
lines, it may make sense to sacrifice the less critical jobs so that the more critical jobs can
meet their deadlines. For this reason, some scheduling and resource access-control algorithms
try to optimize weighted performance measures such as weighted average response time (i.e.,
the average of response time multipled by importance) or weighted average tardiness (i.e., the
average of tardiness multipled by importance) over all jobs. If the system uses one of these
algorithms, the information concerning the criticality of jobs must be given to the scheduler.
Assigning importance to each job is a natural way to do so.

For example, in a flight control and management system, the job that controls the flight
of the aircraft is more critical than the navigation job that determines the current position
relative to the chosen course. The navigation job is more critical than the job that adjusts
the course and cruise speed in order to minimize fuel consumption. The cabin air flow and
temperature control jobs are more critical than the job that runs the in-flight movies, and so
on. In the model of this system, the designer may give these jobs different importance values.
In this way, the different degrees of criticality of the jobs are explicitly specified.

*3.6.3 Optional Executions

It is often possible to structure an application so that some jobs or portions of jobs are optional.
If an optional job or an optional portion of a job completes late or is not executed at all, the
system performance may degrade, but nevertheless function satisfactorily. In contrast, jobs
and portions of jobs that are not optional are mandatory; they must be executed to completion.
Therefore, during a transient overload when it is not possible to complete all the jobs in time,
we may choose to discard optional jobs (i.e, leave them unexecuted or partially executed) so
that the mandatory jobs can complete in time. In this way, the system can trade the quality of
the results it produces and the services it delivers for timeliness of its results and services.

In our model, the optional parameter of each job indicates the portion of the job that is
optional. Marking a job or a portion of a job optional is another way for the designer to indicate
that the job is not critical. By explicitly identifying the optional jobs and using a scheduling
strategy that takes advantage of this information, the designer can control the manner in which
the system degrades.

As an example, in a collision avoidance system, we may consider the job that computes
the correct evasive action and informs the operator of this action optional. Normally, we want
the system to help the operator by choosing the correct action. However, in the presence of a
failure and when the system is operating in a degraded mode, it is not possible to complete
this computation in time. The collision avoidance system may still function satisfactorily if it
skips this computation as long as it generates a warning and displays the course of the object
about to collide with it in time.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 50

50 Chapter 3 A Reference Model of Real-Time Systems

*3.6.4 Laxity Type and Laxity Function

The laxity type of a job indicates whether its timing constraints are soft or hard. As mentioned
earlier, in real-time systems literature, the laxity type of a job is sometimes supplemented by
a usefulness function. This function gives the usefulness of the result produced by the job as a
function of its tardiness.

Figure 3–3 gives several usefulness functions as examples. The ones shown as solid step
functions are usually associated with hard real-time jobs. The usefulness of the result becomes
zero or negative as soon as the job is tardy. In the latter case, it is better not to execute the
job than to execute it and complete it late. In other words, it is “better never than late.” As
mentioned in Chapter 2, the transmission and execution of a command to release a bomb on a
target is an example of jobs with this laxity type.

The dashed and dotted lines in Figure 3–3 show two other usefulness functions. In par-
ticular, the dotted ones may be that of a point-of-sales transaction, for example, one that exe-
cutes to check whether you have enough credit for the current purchase. If the job is late, you
and the salesperson become more and more impatient. The usefulness of the result decreases
gradually. Eventually, you are likely to give up and walk away. At that point, the usefulness
of the result becomes zero. The dashed line shows a function that decreases faster and be-
comes negative. An example of jobs that have this kind of usefulness function is a stock price
update transaction. It may be tolerable if the update completes slightly late and the price x
written into the database is somewhat old. However, if the transaction completes so late that
the current price differs significantly from x , the result x can be misleading. By that time, the
usefulness of this update becomes negative.

We can use these usefulness functions to describe qualitatively the real-time perfor-
mance objectives of the system. They can guide the choice and implementation of scheduling
strategies. However, their utility as the means to specify timing constraints is small, especially
if the timing constraints are hard. The only exception are those exemplified by the solid step

Value

tardiness

FIGURE 3–3 Examples of usefulness functions.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 51

Section 3.7 Resource Parameters of Jobs and Parameters of Resources 51

functions in Figure 3–3, but such constraints can easily be specified without the usefulness
functions.

3.7 RESOURCE PARAMETERS OF JOBS AND PARAMETERS OF RESOURCES

Earlier we said that the basic components of the underlying system available to the appli-
cation system(s) are processors and resources. Every job requires a processor throughout its
execution.3 In addition to a processor, a job may also require some resources. The resource
parameters of each job give us the type of processor and the units of each resource type re-
quired by the job and the time intervals during its execution when the units are required. These
parameters provide the information that is needed to support resource management decisions.
In Chapter 8, where we will need these job parameters, we will discuss them in detail.

3.7.1 Preemptivity of Resources

The resource parameters of jobs give us a partial view of the processors and resources from
the perspective of the applications that execute on them. We sometimes want to describe the
characteristics of processors and resources independent of the application and can do so using
parameters of resources. A resource parameter is preemptivity. A resource is nonpreemptable
if each unit of the resource is constrained to be used serially. In other words, once a unit of
a nonpreemptable resource is allocated to a job, other jobs needing the unit must wait until
the job completes its use. Otherwise, if jobs can use every unit of a resource in an interleaved
fashion, the resource is preemptable. The lock on a data object in a database is an example of
nonpreemptable resource. When a job modeling a transaction that reads and writes the data
object has acquired the lock, other jobs that also require this lock at the time must wait. The
lock is a nonpreemptable resource and, consequently, every transaction job is nonpreemptable
in its use of the lock. This does not mean that the job is nonpreemptable on other resources
or on the processor. In fact, the transaction may process the data it has already retrieved and,
for this purpose, it requires the processor while it holds the lock. The transaction can be
preempted on the processor by other transactions that are not waiting for the locks held by it.

In Section 3.6 we used message transmissions on a token ring as an example of where
jobs may be constrained to be nonpreemptable. This is a poor way to model the application and
the resource. A better alternative is to model the token ring as a nonpreemptable resource and
leave message transmission jobs preemptable. The fact that the transmission of a message over
a token ring, if interrupted, must be redone from the beginning is a consequence of the way the
medium-access protocol works. Hence, nonpreemptivity is a property of the token ring. If we

3In general, a job may execute in parallel on a number of processors, and the number and types of processors
it requires may vary during its execution. Moreover the amount of time required by a job to complete may be a
function of the number of processors used to execute the job. (For example, the execution time of a parallelizable
computation on a massively parallel machine decreases with the number of processors used to do the computation.)
The resource parameters of a job give us the type and number of processors required by a job to execute, as well as
how the length of time for which the processors are required depends on the number of processors made available to
the job. However, we will rarely be concerned with parallelizable jobs. Except when we state otherwise, we assume
that every job executes on one processor.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 52

52 Chapter 3 A Reference Model of Real-Time Systems

were to transmit the messages by an ATM switch, we can preempt the transmission of a less
urgent message in preference to more urgent messages without having to retransmit the less
urgent message in entirety. In other words, message transmission jobs are in fact preemptable.

*3.7.2 Resource Graph

We can describe the configuration of the resources using a resource graph. In a resource
graph, there is a vertex Ri for every processor or resource Ri in the system. (For the sake of
convenience, we now refer to both processors and resources as resources and name each vertex
by the name of the resource represented by it.) The attributes of the vertex are the parameters
of the resource. In particular, the resource type of a resource tells us whether the resource is a
processor or a (passive) resource, and its number gives us the number of available units.

While edges in task graphs represent different types of dependencies among jobs, edges
in a resource graph represent the relationship among resources. Using different types of edges,
we can describe different configurations of the underlying system.

There are two types of edges in resource graphs. An edge from a vertex Ri to another
vertex Rk can mean that Rk is a component of Ri . (For example, a memory is part of a com-
puter, and so is a monitor.) This edge is an is-a-part-of edge. Clearly, the subgraph containing
all the is-a-part-of edges is a forest. The root of each tree represents a major component which
contains subcomponents represented by vertices in the tree. As an example, the resource graph
in a system containing two computers consists of two trees. The root of each tree represents
a computer. The children of this vertex include one or more CPUs, main memory, and so
on. Each of these subcomponents is represented by a vertex, and there is an edge from the
computer vertex to each subcomponent vertex.

Some edges in resource graphs represent connectivity between components. These
edges are called accessibility edges. In the above example, if there is a connection between
two CPUs in the two computers, then each CPU is accessible from the other computer, and
there is an accessibility edge from each computer to the CPU on the other computer. Each
accessibility edge may have several parameters whose values help to complete the description
of the interconnection of the resources. A parameter of an accessibility edge from a processor
Pi to another Pk is the cost for sending a unit of data from a job executing on Pi to a job
executing on Pk . In Chapter 9, we will describe algorithms that decide on which processors
to place jobs and resources in a statically configured system. These algorithms need the infor-
mation provided by accessibility edges. There we will again discuss this and other parameters
that we will need to describe the resources and their interconnections for the purpose of
scheduling in multiprocessor and distributed systems.

3.8 SCHEDULING HIERARCHY

Figure 3–4 shows the three elements of our model of real-time systems together. The applica-
tion system is represented by a task graph, exemplified by the graph on the top of the diagram.
This graph gives the processor time and resource requirements of jobs, the timing constraints
of each job, and the dependencies of jobs. The resource graph describes the amounts of the
resources available to execute the application system, the attributes of the resources, and the
rules governing their usage. Between them are the scheduling and resource access-control
algorithms used by the operating system.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 53

Section 3.8 Scheduling Hierarchy 53

scheduling and
resource-access control

processors resources

FIGURE 3–4 Model of real-time systems.

3.8.1 Scheduler and Schedules

Jobs are scheduled and allocated resources according to a chosen set of scheduling algo-
rithms and resource access-control protocols. The module which implements these algorithms
is called the scheduler.

Specifically, the scheduler assigns processors to jobs, or equivalently, assigns jobs to
processors. We say that a job is scheduled in a time interval on a processor if the processor
is assigned to the job, and hence the job executes on the processor, in the interval. The total
amount of (processor) time assigned to a job according to a schedule is the total length of all
the time intervals during which the job is scheduled on some processor.

By a schedule, we mean an assignment of all the jobs in the system on the available
processors produced by the scheduler. Throughout this book, we do not question the correct-
ness of the scheduler; rather, we assume that the scheduler works correctly. By correctness, we
mean that the scheduler produces only valid schedules; a valid schedule satisfies the following
conditions:

1. Every processor is assigned to at most one job at any time.

2. Every job is assigned at most one processor at any time.

3. No job is scheduled before its release time.

4. Depending on the scheduling algorithm(s) used, the total amount of processor time
assigned to every job is equal to its maximum or actual execution time.

5. All the precedence and resource usage constraints are satisfied.

Again, an implicit assumption here is that jobs do not run in parallel on more than one pro-
cessor to speed up their execution.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 54

54 Chapter 3 A Reference Model of Real-Time Systems

3.8.2 Feasibility, Optimality, and Performance Measures

A valid schedule is a feasible schedule if every job completes by its deadline (or, in general,
meets its timing constraints). We say that a set of jobs is schedulable according to a scheduling
algorithm if when using the algorithm the scheduler always produces a feasible schedule.

The criterion we use most of the time to measure the performance of scheduling algo-
rithms for hard real-time applications is their ability to find feasible schedules of the given ap-
plication system whenever such schedules exist. Hence, we say that a hard real-time schedul-
ing algorithm is optimal if (using) the algorithm (the scheduler) always produces a feasible
schedule if the given set of jobs has feasible schedules. (For the sake of simplicity, we will
not mention the scheduler; in other words, we will omit the words in the parentheses in the
previous sentence. When we say what an algorithm does, we mean what the scheduler does
according to the algorithm.) Conversely, if an optimal algorithm fails to find a feasible sched-
ule, we can conclude that the given set of jobs cannot feasibly be scheduled by any algorithm.

In addition to the criterion based on feasibility, other commonly used performance mea-
sures include the maximum and average tardiness, lateness, and response time and the miss,
loss, and invalid rates. The right choice of performance measure depends on the objective of
scheduling. As an example, when a set of jobs is not schedulable by any algorithm, we may
settle for a schedule according to which the number of jobs failing to complete in time is
the smallest. Hence, an algorithm performs better if it can produce a schedule with a smaller
number of late jobs than others. Alternatively, we may not care how many jobs are late, pro-
vided that their tardiness is small. In this case, we want to use algorithms that give us small
maximum or average tardiness.

The lateness of a job is the difference between its completion time and its deadline.
Unlike the tardiness of a job which never has negative values, the lateness of a job which
completes early is negative, while the lateness of a job which completes late is positive. Some-
times, we want to keep jitters in the completion times small; we can do so by using scheduling
algorithms that try to minimize the average absolute lateness of jobs. As an example, suppose
that the jobs model the transmission of packets in a packet-switched network. The packets in
each message are buffered at the switch at the receiving end, assembled into a message, and
then forwarded to the receiving host. The early arrivals must be held in the buffer waiting for
the late arrivals. A larger arrival-time jitter means a larger buffer occupancy time and conse-
quently, a larger total demand for buffer space of all messages arriving at the switch. In this
example, the average lateness of jobs is a meaningful performance measure, because minimiz-
ing it indirectly minimizes the average buffer occupancy time and buffer space requirement.

In the case where all the jobs have the same release time and deadline, the problem of
scheduling the jobs to meet their deadline is in essence the same as that of scheduling to min-
imize the completion time of the job which completes last among all jobs. The response time
of this job is the response time of the set of jobs as a whole and is often called the makespan
of the schedule. This is a performance criterion commonly used to compare scheduling algo-
rithms in classical scheduling literature: an algorithm that produces a schedule with a shorter
makespan is better. Clearly, if the makespan is less than or equal to the length of their feasible
interval, the jobs can meet their deadline.

By far, the most frequently used performance measure for jobs that have soft deadlines
is their average response times. We sometimes compare the performance of scheduling algo-
rithms on a given set of jobs based on the average response times of jobs when scheduled

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 55

Section 3.8 Scheduling Hierarchy 55

according to them. The smaller the average response time, the better the algorithm, just as
for general-purpose, interactive systems. In a system that has a mixture of jobs with hard and
soft deadlines, the objective of scheduling is typically to minimize the average response time
of jobs with soft deadlines while ensuring that all jobs with hard deadlines complete in time.
Since there is no advantage in completing jobs with hard deadlines early, we may delay their
execution in order to improve the response time of jobs with soft deadlines. Indeed, you will
find scheduling algorithms in Chapters 5 and 7 that use this strategy.

For many soft real-time applications, it is acceptable to complete some jobs late or to
discard late jobs. For such an application, suitable performance measures include the miss
rate and loss rate. The former gives the percentage of jobs that are executed but completed
too late, and the latter give the percentage of jobs that are discarded, that is, not executed at
all. When it is impossible to complete all the jobs on time, a scheduler may choose to discard
some jobs. By doing so, the scheduler increases the loss rate but completes more jobs in time.
Thus, it reduces the miss rate. Similarly, reducing the loss rate may lead to an increase in miss
rate. For this reason when we talk about minimization of the miss rate, we mean that the miss
rate is reduced as much as possible subjected to the constraint that the loss rate is below some
acceptable threshold. Alternatively, we may want to minimize the lost rate provided the miss
rate is below some threshold. A performance measure that captures this trade-off is the invalid
rate, which is the sum of the miss and loss rates and gives the percentage of all jobs that do
not produce a useful result. We want to minimize the invalid rate. If the jobs are transmissions
of real-time packets, the miss rate gives the percentage of packets arriving at the receiver too
late, the loss rate gives the percentage of packets discarded en route, and the invalid rate gives
the percentage of packets that are not useful to the application.

3.8.3 Interaction among Schedulers

Thus far, we have been talking solely of scheduling the application system on the underly-
ing processors and resources. In fact, a system typically has a hierarchy of schedulers. This
scheduling hierarchy arises for two reasons. First, some processors and resources used by
the application system are not physical entities; they are logical resources. Logical resources
must be scheduled on physical resources. The algorithms used for this purpose are typically
different from the ones used to schedule the application system. A scheduler that schedules
a logical resource may be different from the scheduler that schedules the application system
using the resource. Second, a job may model a server that executes on behalf of its client
jobs. The time and resources allocated to the server job must in turn be allocated to its client
jobs. Again, the algorithm used by the server to schedule its clients may be different from the
algorithm used by the operating system to schedule the server with other servers.

In an earlier example, we treated database locks as resources. In fact, these resources
are implemented by a database management system whose execution must be scheduled on
one or more processors. The scheduler that schedules the database management system may
be different from the scheduler that schedules the application system using the locks. The
schedulers most likely use different algorithms. Now we have two levels of scheduling. In
the higher level, the application system is scheduled on the resources. In the lower level, the
jobs that execute in order to implement the resources are scheduled on the processors and
resources needed by them.

As an example of servers, we consider an application system containing periodic tasks
and aperiodic jobs on one processor. All the aperiodic jobs are placed in a queue when they

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 56

56 Chapter 3 A Reference Model of Real-Time Systems

are released. There is a poller. Together with the periodic tasks, the poller is scheduled to
execute periodically. When the poller executes, it checks the aperiodic job queue. If there
are aperiodic jobs waiting, it chooses an aperiodic job from the queue and executes the job.
Hence, the aperiodic jobs are the clients of the poller. We again have two levels of scheduling.
In the lower level the scheduler provided by the operating system schedules the poller and the
periodic tasks. In the higher level, the poller schedules its clients.

In every level of the scheduling hierarchy, we can represent the workload by a task graph
and the processors and resources required by it by a resource graph. In this way all levels of
the scheduling hierarchy can be represented in a uniform way.

3.9 SUMMARY

This chapter describes the general model of real-time systems and introduces the terms that we
will use in the subsequent chapters. In the chapters on scheduling and resource management,
we will adopt several simpler models that are special cases of this general model.

3.9.1 Characterization of Application Systems

According to this model, the basic components of any real-time application system are jobs.
The operating system treats each job as a unit of work and allocates processor and resources to
it. For the purpose of scheduling and validation, it suffices to define each job by its temporal,
resource, interconnection and functional parameters. Among all the parameters of a job Ji ,
we work with the following ones most frequently:

• Release time (or arrival time) ri : ri is the instant of time at which the job becomes
eligible for execution. The release (arrival) time of the job may be jittery (sporadic),
meaning that ri is in the range [ri

−, ri
+] and that only the range of ri is known but not

the actual value of ri .
• Absolute deadline di : di is the instant of time by which the job must complete.
• Relative deadline Di : Di is the maximum allowable response time of the job.
• Laxity type: The deadline (or timing constraint in general) of the job can be hard or soft.
• Execution time ei : ei is the amount of time required to complete the execution of Ji

when it executes alone and has all the resources it requires. The execution time of Ji

may vary, meaning that ei is in the range [ei
−, ei

+] and that this range is known but not
the actual value of ei . Some models assume that Ji always executes for the maximum
amount ei

+ of time; when there is no possible ambiguity, we also use ei to mean the
maximum execution time ei

+.
• Preemptivity: The job may be constrained to be nonpreemptable.
• Resource requirements: This parameter gives the processors and resources required by

the job in order to execute and the time interval(s) during which each resource is re-
quired.

This book assumes that these parameters are known. While others can be deduced from re-
quirements and specification of the system, the execution time and resource parameters are
obtained from measurement and analysis. The execution times of most noncomputation jobs

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 57

Section 3.9 Summary 57

are usually obtained by meaurement. For example, the execution time of a message trans-
mission job is typically obtained by measuring either the transmission time or the length of a
message. On the other hand, analysis is the preferred approach to predicting the maximum ex-
ecution time of a program because timing analysis techniques guarantee the correctness of the
predicted maximum execution time, while measurement techniques do not. (A prediction is
correct if the actual execution time is never less than the predicted maximum execution time.)
You can find techniques used for this purpose in [AMWH, HeWh, KiMH, LiMW, LBJR].

A set of related jobs is called a task. Jobs in a task may be precedence constrained
to execute in a certain order. Sometimes jobs may be constrained to complete within a cer-
tain time from one another (i.e., they are temporal distance constrained). Jobs may have data
dependencies even when they are not precedence constrained.

A periodic task Ti is a sequence of jobs with identical parameters. In addition to the
parameters of its jobs, a periodic task is defined by the following task parameters:

• Period pi : pi is the minimum length of the intervals between the release times of con-
secutive jobs (i.e., interrelease interval).

• Execution time ei : ei of Ti is the maximum execution time of all the jobs in the task.
• Phase φi : φi is the release time of the first job in Ti .

When the interrelease intervals of a sequence of jobs vary widely and are arbitrarily
small, we model the interrelease intervals as random variables. Similarly, the execution times
of jobs are sometimes modeled as random variables. An aperiodic task or a sporadic task
is a sequence of jobs whose interrelease times are identically distributed according to the
probability distribution A(x) and whose execution times are identically distributed according
to the probability distribution B(x). The deadlines of jobs in an aperiodic task are soft, while
the deadlines of jobs in a sporadic task are hard.

In subsequent chapters, we will use a task graph to represent the application system
when the dependencies among its jobs cannot be described in a few sentences. There is a
vertex in this graph for each job in the system. The edges in this graph represent dependencies
among jobs. An edge from a vertex representing Ji to another vertex representing Jk may
represent a precedence constraint and/or a data dependency between the two jobs. Parameters
of the edge include the type of the edge and the volume of data from Ji to Jk .

3.9.2 Characterization of the Underlying Systems

The resources available to the application system are processors and resources. Jobs and tasks
require them in order to execute. The scheduler decides when each job (or task) has its required
processor and resources.

We usually model CPUs, disks, buses, network links, and so on, that compute, retrieve,
transmit, and so on, as processors. Every job must have a processor in order to execute. Pro-
cessors that can be used interchangeably are of the same type, while processors that cannot be
used interchangeably are of different types. In addition to its type, a processor is characterized
by the following parameters:

• Preemptivity: The execution of jobs on the processor may or may not be preemptable.
• Context-Switch Time: This parameter gives the cost in time of each preemption.

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 58

58 Chapter 3 A Reference Model of Real-Time Systems

We model shared data objects, buffers, sequence numbers, and the like, entities some-
times called passive resources, as resources. The amount of time a job requires a resource
usually depends on the speed of the processor on which the job executes, not on some pa-
rameter of the resource. The resources considered here are reusable, because they are not
consumed during use. Each unit of each resource (type) can be used by one job at the time,
and the use of every resource (unit) is nonpreemptable. A shared resource that can be used
simultaneously by at most x jobs at the same time is modeled as a resource with x units, each
of which can be used by at most one job at a time.

3.9.3 Schedulers

A scheduler is a module that allocates processors and resources to jobs and tasks. In most of
this book we assume that a scheduler is completely defined by the scheduling and resource
management algorithms it implements. The only exception is Chapter 12 on operating sys-
tems. There, we will discuss why a real-life scheduler may behave differently from an ideal
one and how to minimize and account for the discrepancy.

Except where stated otherwise, we assume that the scheduler works correctly. It pro-
duces only valid schedules. According to a valid schedule, no job is scheduled before its
release time and the completion of all its predecessors, no job is scheduled on more than one
processor at the same time, no processor is scheduled to execute more than one job at the
same time, and the total amount of time assigned to every job is equal to the execution time
except when the job or a portion of it can be discarded because it is optional. A valid schedule
is feasible if, according to the schedule, every job completes by its deadline.

EXERCISES

3.1 Because sporadic jobs may have varying release times and execution times, the periodic task
model may be too inaccurate and can lead to unduly underutilization of the processor even when
the interrelease times of jobs are bounded from below and their executions are bounded from
above. As an example, suppose we have a stream of sporadic jobs whose interrelease times are
uniformly distributed from 9 to 11. Their execution times are uniformly distributed from 1 to 3.
(a) What are the parameters of the periodic task if we were to use such a task to model the

stream?
(b) Compare the utilization of the periodic task in part (a) with the average utilization of the

sporadic job stream.

3.2 Consider the real-time program described by the psuedocode below. Names of jobs are in italic.

At 9AM, start: have breakfast and go to office;
At 10AM,

If there is class,
teach;
Else, help students;

When teach or help is done, eat lunch;
Until 2PM, sleep;
If there is a seminar,

If topic is interesting,
listen;

Integre Technical Publishing Co., Inc. Liu January 10, 2000 10:48 a.m. chap3 page 59

Exercises 59

Else, read;
Else

write in office;
When seminar is over, attend social hour;
discuss;
jog;
eat dinner;
work a little more;
end the day;

(a) Draw a task graph to capture the dependencies among jobs.
(b) Use as many precedence graphs as needed to represent all the possible paths of the program

3.3 job 1 | job 2 denotes a pipe: The result produced by job 1 is incrementally consumed by job 2.
(As an example, suppose that job 2 reads and displays one character at a time as each handwritten
character is recognized and placed in a buffer by job 1.) Draw a precedence constraint graph to
represent this producer-consumer relation between the jobs.

3.4 Draw a task graph to represent the flight control system described by Figure 1-3.

(a) Assume that producers and consumers do not explicitly synchronize (i.e., each consumer
uses the latest result generated by each of its producers but does not wait for the completion
of the producer.)

(b) Repeat part (a), assuming that producers and consumers do synchronize.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 60

C H A P T E R 4

Commonly Used Approaches
to Real-Time Scheduling

This chapter provides a brief overview of three commonly used approaches to scheduling real-
time systems: clock-driven, weighted round-robin and priority-driven. The subsequent five
chapters will study in depth the clock-driven and priority-driven approaches, with particular
emphasis on the latter. We need to be aware of several important facts about priority-driven
scheduling. They are presented here and shown to be true, so they will not be buried in the
details later. We will use these facts to motivate and support the arguments presented in later
chapters. The weighted round-robin approach is used primarily for scheduling real-time traffic
in high-speed switched networks. It will be described in depth in Chapter 11. We discuss here
why this approach is not ideal for scheduling jobs on CPUs.

4.1 CLOCK-DRIVEN APPROACH

As the name implies, when scheduling is clock-driven (also called time-driven), decisions on
what jobs execute at what times are made at specific time instants. These instants are chosen
a priori before the system begins execution. Typically, in a system that uses clock-driven
scheduling, all the parameters of hard real-time jobs are fixed and known. A schedule of the
jobs is computed off-line and is stored for use at run time. The scheduler schedules the jobs
according to this schedule at each scheduling decision time. In this way, scheduling overhead
during run-time can be minimized.

A frequently adopted choice is to make scheduling decisions at regularly spaced time
instants. One way to implement a scheduler that makes scheduling decisions periodically is
to use a hardware timer. The timer is set to expire periodically without the intervention of
the scheduler. When the system is initialized, the scheduler selects and schedules the job(s)
that will execute until the next scheduling decision time and then blocks itself waiting for
the expiration of the timer. When the timer expires, the scheduler awakes and repeats these
actions.

60

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 61

Section 4.2 Weighted Round-Robin Approach 61

4.2 WEIGHTED ROUND-ROBIN APPROACH

The round-robin approach is commonly used for scheduling time-shared applications. When
jobs are scheduled on a round-robin basis, every job joins a First-in-first-out (FIFO) queue
when it becomes ready for execution. The job at the head of the queue executes for at most
one time slice. (A time slice is the basic granule of time that is allocated to jobs. In a time-
shared environment, a time slice is typically in the order of tens of milliseconds.) If the job
does not complete by the end of the time slice, it is preempted and placed at the end of the
queue to wait for its next turn. When there are n ready jobs in the queue, each job gets one time
slice every n time slices, that is, every round. Because the length of the time slice is relatively
short, the execution of every job begins almost immediately after it becomes ready. In essence,
each job gets 1/nth share of the processor when there are n jobs ready for execution. This is
why the round-robin algorithm is also called the processor-sharing algorithm.

The weighted round-robin algorithm has been used for scheduling real-time traffic in
high-speed switched networks. It builds on the basic round-robin scheme. Rather than giving
all the ready jobs equal shares of the processor, different jobs may be given different weights.
Here, the weight of a job refers to the fraction of processor time allocated to the job. Specifi-
cally, a job with weight wt gets wt time slices every round, and the length of a round is equal
to the sum of the weights of all the ready jobs. By adjusting the weights of jobs, we can speed
up or retard the progress of each job toward its completion.

By giving each job a fraction of the processor, a round-robin scheduler delays the com-
pletion of every job. If it is used to schedule precedence constrained jobs, the response time
of a chain of jobs can be unduly large. For this reason, the weighted round-robin approach
is not suitable for scheduling such jobs. On the other hand, a successor job may be able to
incrementally consume what is produced by a predecessor (e.g., as in the case of a UNIX
pipe). In this case, weighted round-robin scheduling is a reasonable approach, since a job and
its successors can execute concurrently in a pipelined fashion. As an example, we consider
the two sets of jobs, J1 = {J1,1, J1,2} and J2 = {J2,1, J2,2}, shown in Figure 4–1. The release
times of all jobs are 0, and their execution times are 1. J1,1 and J2,1 execute on processor
P1, and J1,2 and J2,2 execute on processor P2. Suppose that J1,1 is the predecessor of J1,2,
and J2,1 is the predecessor of J2,2. Figure 4–1(a) shows that both sets of jobs (i.e., the second
jobs J1,2 and J2,2 in the sets) complete approximately at time 4 if the jobs are scheduled in
a weighted round-robin manner. (We get this completion time when the length of the time
slice is small compared with 1 and the jobs have the same weight.) In contrast, the schedule in
Figure 4–1(b) shows that if the jobs on each processor are executed one after the other, one of
the chains can complete at time 2, while the other can complete at time 3. On the other hand,
suppose that the result of the first job in each set is piped to the second job in the set. The
latter can execute after each one or a few time slices of the former complete. Then it is better
to schedule the jobs on the round-robin basis because both sets can complete a few time slices
after time 2.

Indeed, the transmission of each message is carried out by switches en route in a pipeline
fashion. A switch downstream can begin to transmit an earlier portion of the message as soon
as it receives the portion without having to wait for the arrival of the later portion of the
message. The weighted round-robin approach does not require a sorted priority queue, only
a round-robin queue. This is a distinct advantage for scheduling message transmissions in
ultrahigh-speed networks, since priority queues with the required speed are expensive. In

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 62

62 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

0 1 2 3

0 1 2 3

4

J1,1 & J2,1P1

J1,2 & J2,2P2

J1,1 J2,1

J1,2 J2,2

J1,1

J2,1

J1,2

J2,2

P1

P2

(a)

(b)

FIGURE 4–1 Example illustrating round-robin scheduling of precedence-constrained jobs.

Chapter 11 we will describe in detail the application of weighted round-robin algorithms to
network scheduling.

4.3 PRIORITY-DRIVEN APPROACH

The term priority-driven algorithms refers to a large class of scheduling algorithms that never
leave any resource idle intentionally. Stated in another way, a resource idles only when no job
requiring the resource is ready for execution. Scheduling decisions are made when events such
as releases and completions of jobs occur. Hence, priority-driven algorithms are event-driven.

Other commonly used names for this approach are greedy scheduling, list scheduling
and work-conserving scheduling. A priority-driven algorithm is greedy because it tries to
make locally optimal decisions. Leaving a resource idle while some job is ready to use the
resource is not locally optimal. So when a processor or resource is available and some job can
use it to make progress, such an algorithm never makes the job wait. We will return shortly to
illustrate that greed does not always pay; sometimes it is better to have some jobs wait even
when they are ready to execute and the resources they require are available.

The term list scheduling is also descriptive because any priority-driven algorithm can
be implemented by assigning priorities to jobs. Jobs ready for execution are placed in one or

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 63

Section 4.3 Priority-Driven Approach 63

more queues ordered by the priorities of the jobs. At any scheduling decision time, the jobs
with the highest priorities are scheduled and executed on the available processors. Hence,
a priority-driven scheduling algorithm is defined to a great extent by the list of priorities it
assigns to jobs; the priority list and other rules, such as whether preemption is allowed, define
the scheduling algorithm completely.

Most scheduling algorithms used in nonreal-time systems are priority-driven. Examples
include the FIFO (First-In-First-Out) and LIFO (Last-In-First-Out) algorithms, which assign
priorities to jobs according their release times, and the SETF (Shortest-Execution-Time-First)
and LETF (Longest-Execution-Time-First) algorithms, which assign priorities on the basis of
job execution times. Because we can dynamically change the priorities of jobs, even round-
robin scheduling can be thought of as priority-driven: The priority of the executing job is
lowered to the minimum among all jobs waiting for execution after the job has executed for a
time slice.

Figure 4–2 gives an example. The task graph shown here is a classical precedence graph;
all its edges represent precedence constraints. The number next to the name of each job is its
execution time. J5 is released at time 4. All the other jobs are released at time 0. We want to
schedule and execute the jobs on two processors P1 and P2. They communicate via a shared
memory. Hence the costs of communication among jobs are negligible no matter where they
are executed. The schedulers of the processors keep one common priority queue of ready jobs.
The priority list is given next to the graph: Ji has a higher priority than Jk if i < k. All the
jobs are preemptable; scheduling decisions are made whenever some job becomes ready for
execution or some job completes.

Figure 4–2(a) shows the schedule of the jobs on the two processors generated by the
priority-driven algorithm following this priority assignment. At time 0, jobs J1, J2, and J7

are ready for execution. They are the only jobs in the common priority queue at this time.
Since J1 and J2 have higher priorities than J7, they are ahead of J7 in the queue and hence are
scheduled. The processors continue to execute the jobs scheduled on them except when the
following events occur and new scheduling decisions are made.

• At time 1, J2 completes and, hence, J3 becomes ready. J3 is placed in the priority queue
ahead of J7 and is scheduled on P2, the processor freed by J2.

• At time 3, both J1 and J3 complete. J5 is still not released. J4 and J7 are scheduled.
• At time 4, J5 is released. Now there are three ready jobs. J7 has the lowest priority

among them. Consequently, it is preempted. J4 and J5 have the processors.
• At time 5, J4 completes. J7 resumes on processor P1.
• At time 6, J5 completes. Because J7 is not yet completed, both J6 and J8 are not ready

for execution. Consequently, processor P2 becomes idle.
• J7 finally completes at time 8. J6 and J8 can now be scheduled and they are.

Figure 4–2(b) shows a nonpreemptive schedule according to the same priority assign-
ment. Before time 4, this schedule is the same as the preemptive schedule. However, at time
4 when J5 is released, both processors are busy. It has to wait until J4 completes (at time 5)
before it can begin execution. It turns out that for this system this postponement of the higher
priority job benefits the set of jobs as a whole. The entire set completes 1 unit of time earlier
according to the nonpreemptive schedule.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 64

64 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

J1, 3

J2, 1

J5, 2

J7, 4

J3, 2

J6, 4 (J1, J2,…, J8)

J8, 1

J1

J2 J3 J7 J8

J4 J7

J4, 2

J1P1

P2

P1

P2

10 2 3 4 5 6 7 8 9 10 11 12

10 2 3 4 5 6 7 8 9 10 11 12

10 2 3 4 5 6 7 8 9 10 11 12

J6

J5
10 2 3 4 5 6 7 8 9 10 11 12

J2 J3 J8J7

J4 J5 J6

(a)

(b)

FIGURE 4–2 Example of priority-driven scheduling. (a) Preemptive (b) Nonpreemptive.

In general, however, nonpreemptive scheduling is not better than preemptive scheduling.
A fundamental question is, when is preemptive scheduling better than nonpreemptive schedul-
ing and vice versa? It would be good if we had some rule with which we could determine from
the given parameters of the jobs whether to schedule them preemptively or nonpreemptively.
Unfortunately, there is no known answer to this question in general. In the special case when
jobs have the same release time, preemptive scheduling is better when the cost of preemption
is ignored. Specifically, in a multiprocessor system, the minimum makespan (i.e., the response
time of the job that completes last among all jobs) achievable by an optimal preemptive al-
gorithm is shorter than the makespan achievable by an optimal nonpreemptive algorithm. A
natural question here is whether the difference in the minimum makespans achievable by the
two classes of algorithms is significant, in particular, whether the theoretical gain in makespan
achievable by preemption is enough to compensate for the context switch overhead of pre-
emption. The answer to this question is only known for the two-processor case. Coffman and

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 65

Section 4.5 Effective Release Times and Deadlines 65

Garey [CoGa] recently proved that when there are two processors, the minimum makespan
achievable by nonpreemptive algorithms is never more than 4/3 times the minimum makespan
achievable by preemptive algorithms when the cost of preemption is negligible. The proof of
this seemingly simple results is too lengthy to be included here.

4.4 DYNAMIC VERSUS STATIC SYSTEMS

In the above example, jobs that are ready for execution are placed in a priority queue common
to all processors. When a processor is available, the job at the head of the queue executes on
the processor. We will refer to such a multiprocessor system as a dynamic system, because
jobs are dynamically dispatched to processors. In the example in Figure 4–2, we allowed each
preempted job to resume on any processor and hence, jobs are migratable. We say that a job
migrates if it starts execution on a processor, is preempted, and later resumes on a different
processor.

Another approach to scheduling in multiprocessor and distributed systems is to partition
the jobs in the system into subsystems and assign and bind the subsystems statically to the
processors. Jobs are moved among processors only when the system must be reconfigured,
that is, when the operation mode of the system changes or some processor fails. Such a sys-
tem is called a static system, because the system is statically configured. If jobs on different
processors are dependent, the schedulers on the processors must synchronize the jobs accord-
ing to some synchronization and resource access-control protocol. Except for the constraints
thus imposed, the jobs on each processor are scheduled by themselves.

As an example, a partition and assignment of the jobs in Figure 4–2 put J1, J2, J3,
and J4 on P1 and the remaining jobs on P2. The priority list is segmented into two parts:
(J1, J2, J3, J4) and (J5, J6, J7, J8). The scheduler of processor P1 uses the former while the
scheduler of processor P2 uses the latter. It is easy to see that the jobs on P1 complete by time
8, and the jobs on P2 complete by time 11. Moreover, J2 completes by time 4 while J6 starts
at time 6. Therefore, the precedence constraint between them is satisfied.

In this example, the response of the static system is just as good as that of the dynamic
system. Intuitively, we expect that we can get better average responses by dynamically dis-
patching and executing jobs. In later chapters we will return to this discussion. Specifically,
we will demonstrate that while dynamic systems may be more responsive on the average,
their worst-case real-time performance may be poorer than static systems. More importantly,
we do not yet have reliable techniques to validate the timing constraints of dynamic systems
while such techniques exist for static systems. For this reason, most hard real-time systems
built today are static.

4.5 EFFECTIVE RELEASE TIMES AND DEADLINES

The given release times and deadlines of jobs are sometimes inconsistent with the precedence
constraints of the jobs. By this, we mean that the release time of a job may be later than that of
its successors, and its deadline may be earlier than that of its predecessors. Therefore, rather
than working with the given release times and deadlines, we first derive a set of effective

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 66

66 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

release times and deadlines from these timing constraints, together with the given precedence
constraints. The derived timing constraints are consistent with the precedence constraints.

When there is only one processor, we can compute the derived constraints according to
the following rules:

Effective Release Time: The effective release time of a job without predecessors is equal to
its given release time. The effective release time of a job with predecessors is equal to
the maximum value among its given release time and the effective release times of all
of its predecessors.

Effective Deadline: The effective deadline of a job without a successor is equal to its given
deadline. The effective deadline of a job with successors is equal to the minimum value
among its given deadline and the effective deadlines of all of its successors.

The effective release times of all the jobs can be computed in one pass through the precedence
graph in O(n2) time where n is the number of jobs. Similarly, the effective deadlines can be
computed in O(n2) time.

As an example, we look at the set of jobs in Figure 4–3. The numbers in the parentheses
next to the name of each job are its given release times and deadlines. Because J1 and J2

have no predecessors, their effective release times are the given release times, that is, 2 and
0, respectively. The given release time of J3 is 1, but the latest effective release time of its
predecessors is 2, that of J1. Hence, the effective release time of J3 is 2. You can repeat this
procedure and find that the effective release times of the rest of the jobs are 4, 2, 4, and 6,
respectively. Similarly, J6 and J7 have no successors, and their effective deadlines are equal
to their given deadlines, 20 and 21, respectively. Since the effective deadlines of the successors
of J4 and J5 are larger than the given deadlines of J4 and J5, the effective deadlines of J4 and
J5 are equal to their given deadlines. On the other hand, the given deadline of J3 is equal to 12,
which is larger than the minimum value of 8 among the effective deadlines of its successors.
Hence, the effective deadline of J3 is 8. In a similar way, we find that the effective deadlines
of J1 and J2 are 8 and 7, respectively.

You may have noticed that the calculation of effective release times and deadlines does
not take into account the execution times of jobs. More accurately, the effective deadline of
a job should be as early as the deadline of each of its successors minus the execution time of
the successor. The effective release time of a job is that of its predecessor plus the execution
time of the predecessor. The more accurate calculation is unnecessary, however, when there is
only one processor. Gary and Johnson [GaJo77] have shown that it is feasible to schedule any

J1(2, 10) J3(1, 12) J4(4, 9)

J5(1, 8)

J6(0, 20)

J2(0, 7) J7(6, 21)

FIGURE 4–3 Example of effective timing constraints.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 67

Section 4.6 Optimality of the EDF and LST Algorithms 67

set of jobs on a processor according to their given release times and deadlines if and only if it
is feasible to schedule the set according to their effective release times and deadlines defined
above. When there is only one processor and jobs are preemptable, working with the effective
release times and deadlines allows us to temporarily ignore the precedence constraints and
treat all the jobs as if they are independent. Of course, by doing so, it is possible for an
algorithm to produce an invalid schedule that does not meet some precedence constraint.
For example, J1 and J3 in Figure 4–3 have the same effective release time and deadline.
An algorithm which ignores the precedence constraint between them may schedule J3 in an
earlier interval and J1 in a later interval. If this happens, we can always add a step to swap the
two jobs, that is, move J1 to where J3 is scheduled and vice versa. This swapping is always
possible, and it transforms an invalid schedule into a valid one.

Hereafter, by release times and deadlines, we will always mean effective release times
and deadlines. When there is only one processor and jobs are preemptable, we will ignore the
precedence constraints.

4.6 OPTIMALITY OF THE EDF AND LST ALGORITHMS

A way to assign priorities to jobs is on the basis of their deadlines. In particular, the earlier
the deadline, the higher the priority. The priority-driven scheduling algorithm based on this
priority assignment is called the Earliest-Deadline-First (EDF) algorithm. This algorithm is
important because it is optimal when used to schedule jobs on a processor as long as preemp-
tion is allowed and jobs do not contend for resources. This fact is stated formally below.

THEOREM 4.1. When preemption is allowed and jobs do not contend for resources,
the EDF algorithm can produce a feasible schedule of a set J of jobs with arbitrary
release times and deadlines on a processor if and only if J has feasible schedules.

Proof. The proof is based on the following fact: Any feasible schedule of J can be
systematically transformed into an EDF schedule (i.e., a schedule produced by the EDF
algorithm). To see why, suppose that in a schedule, parts of Ji and Jk are scheduled
in intervals I1 and I2, respectively. Furthermore, the deadline di of Ji is later than the
deadline dk of Jk , but I1 is earlier than I2 as shown in Figure 4–4.

There are two cases. In the first case, the release time of Jk may be later than
the end of I1. Jk cannot be scheduled in I1; the two jobs are already scheduled on the
EDF basis in these intervals. Hence, we need to consider only the second case where
the release time rk of Jk is before the end of I1; without loss of generality, we assume
that rk is no later than the beginning of I1.

To transform the given schedule, we swap Ji and Jk . Specifically, if the interval
I1 is shorter than I2, as shown in Figure 4–4, we move the portion of Jk that fits in I1

forward to I1 and move the entire portion of Ji scheduled in I1 backward to I2 and place
it after Jk . The result is as shown in Figure 4–4(b). Clearly, this swap is always possible.
We can do a similar swap if the interval I1 is longer than I2 : We move the entire portion
of Jk scheduled in I2 to I1 and place it before Ji and move the portion of Ji that fits in
I2 to the interval. The result of this swap is that these two jobs are now scheduled on the

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 68

68 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

J i

J i

J k (a)

rk dk dk

I1 I2

Jk

Jk

Jk

J iJ k

(b)

(c)

FIGURE 4–4 Transformation of a non-EDF schedule into an EDF schedule.

EDF basis. We repeat this transformation for every pair of jobs that are not scheduled
on the EDF basis according to the given non-EDF schedule until no such pair exists.

The schedule obtained after this transformation may still not be an EDF schedule
if some interval is left idle while there are jobs ready for execution but are scheduled in
a later interval (e.g., as in the schedule in Figure 4–4(b).) We can eliminate such an idle
interval by moving one or more of these jobs forward into the idle interval and leave the
interval where the jobs were scheduled idle. This is clearly always possible. We repeat
this process if necessary until the processor never idles when there are jobs ready for
execution as in Figure 4–4(c).

That the preemptive EDF algorithm can always produce a feasible schedule as
long as feasible schedules exist follows straightforwardly from the fact that every
feasible schedule can be transformed into a preemptive EDF schedule. If the EDF algo-
rithm fails to produce a feasible schedule, then no feasible schedule exists. (If a feasible
schedule were to exist, it could be transformed into an EDF schedule, which contradicts
the statement that the EDF algorithm fails to produce a feasible schedule.)

When the goal of scheduling is to meet deadlines, there is no advantage to completing
any job sooner than necessary. We may want to postpone the execution of hard real-time
jobs for some reason (e.g., to enable soft real-time jobs, whose response times are important,
to complete earlier). For this reason, we sometimes also use the latest release time (LRT)
algorithm (or reverse EDF algorithm). This algorithm treats release times as deadlines and
deadlines as release times and schedules the jobs backwards, starting from the latest deadline
of all jobs, in “priority-driven” manner, to the current time. In particular, the “priorities” are
based on the release times of jobs: the later the release time, the higher the “priority.” Because
it may leave the processor idle when there are jobs ready for execution, the LRT algorithm is
not a priority-driven algorithm.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 69

Section 4.6 Optimality of the EDF and LST Algorithms 69

0 2 4 6 8

J1

J1, 3 (0, 6] J2, 2 (5, 8]

J3 J2

J3, 2 (2, 7]

FIGURE 4–5 Example illustrating the LRT algorithm.

Figure 4–5 gives an example. In the precedence graph, the number next to the job name
is the execution time of the job. Its feasible interval is given by the range of time next to
its execution time. The latest deadline among all jobs is 8. Hence time starts at 8 and goes
backwards to 0. At time 8, J2 is “ready” and is scheduled. At time 7, J3 is also “ready” to be
scheduled, but because J2 has a later release time, it has a higher priority. Consequently, J2

is scheduled from 7 to 6. When J2 “completes” at time 6, J1 is “ready.” However, J3 has a
higher priority and is, therefore, scheduled from 6 to 4. Finally J1 is scheduled from 4 to 1.
The result is a feasible schedule.

The following corollary states that the LRT algorithm is also optimal under the same
conditions that the EDF algorithm is optimal. Its proof follows straightforwardly from the
proof of Theorem 4.1.

COROLLARY 4.2. When preemption is allowed and jobs do not contend for re-
sources, the LRT algorithm can produce a feasible schedule of a set J of jobs with
arbitrary release times and deadlines on a processor if and only if feasible schedules of
J exist.

Another algorithm that is optimal for scheduling preemptive jobs on one processor is
the Least-Slack-Time-First (LST) algorithm (also called the Minimum-Laxity-First (MLF) al-
gorithm) [LeWh, Mok]. At any time t , the slack (or laxity) of a job with deadline at d is equal
to d − t minus the time required to complete the remaining portion of the job. Take the job
J1 in Figure 4–5 as an example. It is released at time 0, its deadline is 6, and its execution
time is 3. Hence, its slack is equal to 3 at time 0. The job starts to execute at time 0. As long
as it executes, its slack remains at 3, because at any time t before its completion, its slack is
6 − t − (3 − t). Now suppose that it is preempted at time 2 by J3, which executes from time
2 to 4. During this interval, the slack of J1 decreases from 3 to 1. (At time 4, the remaining
execution time of J1 is 1, so its slack is 6 − 4 − 1 = 1.)

The LST algorithm assigns priorities to jobs based on their slacks: the smaller the slack,
the higher the priority. The following theorem states that the LST algorithm is also optimal.
Its proof is left as an exercise at the end of this chapter.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 70

70 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

THEOREM 4.3. When preemption is allowed and jobs do not contend for resources,
the LST (MLF) algorithm can produce a feasible schedule of a set J of jobs with arbi-
trary release times and deadlines on a processor if and only if feasible schedules of J
exist.

While the EDF algorithm does not require any knowledge of the execution times of
jobs, the LST algorithm does. This is a serious disadvantage. As discussed earlier, the actual
execution times of jobs are often not known until the jobs complete. Obviously, it is impossible
for us to calculate the actual amounts of slack under this circumstance. We typically calculate
the slack of each job based on its maximum execution time ei

+when the range [ei
−, ei

+] of
execution time ei of every job is relatively small. Furthermore, we require that the maximum
(and sometimes even the actual) execution time of each sporadic or aperiodic job become
known upon its arrival since this knowledge is needed for slack computation.

4.7 NONOPTIMALITY OF THE EDF AND THE LST ALGORITHMS

It is natural to ask here whether the EDF and the LST algorithms remain optimal if preemption
is not allowed or there is more than one processor. Unfortunately, the answer is no.

The fact that the EDF and the LST algorithms are optimal only when preemption is
allowed is illustrated by the example in Figure 4–6. The system shown in this figure has
three independent, nonpreemptable jobs J1, J2, and J3. Their release times are 0, 2 and 4,
respectively, and are indicated by the arrows above the schedules. Their execution times are

0 2 4 6 8 10 12

J1 J2 J3

0 2 4 6 8 10 12 14

14

J1 J3 J2

J3 misses its deadline

(a)

(b)

r1 r2 r3

FIGURE 4–6 Example illustrating nonoptimality of the nonpreemptive EDF algorithm. (a) An EDF schedule. (b)
A non-EDF schedule.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 71

Section 4.7 Nonoptimality of the EDF and the LST Algorithms 71

3, 6, and 4; and their deadlines are 10, 14, and 12, respectively. Figure 4–6(a) shows the
schedule produced by the EDF algorithm. In particular, when J1 completes at time 3, J2 has
already been released but not J3. Hence, J2 is scheduled. When J3 is released at time 4, J2 is
executing. Even though J3 has an earlier deadline and, hence, a higher priority, it must wait
until J2 completes because preemption is not allowed. As a result, J3 misses its deadline. It is
easy to see that the LST algorithm would produce the same infeasible schedule. The fact that
these three jobs can meet their deadlines is demonstrated by the feasible schedule in Figure
4–6(b). At time 3 when J1 completes, the processor is left idle, even though J2 is ready for
execution. Consequently, when J3 is released at 4, it can be scheduled ahead of J2, allowing
both jobs to meet their deadlines.

We note that the schedule in Figure 4–6(b) cannot be produced by any priority-driven
scheduling algorithm. By definition, a priority-driven algorithm never leaves a processor idle
when there are jobs ready to use the processor. This example illustrates the fact that not only
nonpreemptive EDF and LST algorithms are not optimal, but also no nonpreemptive priority-
driven algorithm is optimal when jobs have arbitrary release times, execution times, and dead-
lines.

The example in Figure 4–7 shows that the EDF algorithm is not optimal for scheduling
preemptable jobs on more than one processor. The system in this figure also contains three
jobs, J1, J2, and J3. Their execution times are 1, 1, and 5 and their deadlines are 1, 2, and
5, respectively. The release times of all three jobs are 0. The system has two processors.
According to the EDF algorithm, J1 and J2 are scheduled on the processors at time 0 because
they have higher priorities. The result is the schedule in Figure 4–7(a), and J3 misses its
deadline.

On the other hand, an algorithm which assigns a higher priority to J3 in this case can
feasibly schedule the jobs. An example of such algorithms is the LST algorithm. The slacks
of the J1, J2, and J3 in Figure 4–7 are 0, 1, and 0, respectively. Hence, this algorithm would

0 2 4 6

0 21

0 5

J1 J3P1

J2P2

J1 J2P1

J3P2

J3 misses its deadline (a)

(b)

FIGURE 4–7 Example illustrating nonoptimality of the EDF algorithm for multiprocessor scheduling. (a) The EDF
schedule. (b) A feasible schedule.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 72

72 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

produce the feasible schedule in Figure 4–7(b). Unfortunately, the LST algorithm is also not
optimal for scheduling jobs on more than one processor, as demonstrated by the example in
Problem 4.4.

4.8 CHALLENGES IN VALIDATING TIMING CONSTRAINTS IN PRIORITY-DRIVEN SYSTEMS

Compared with the clock-driven approach, the priority-driven scheduling approach has many
advantages. As examples, you may have noticed that priority-driven schedulers are easy to im-
plement. Many well-known priority-driven algorithms use very simple priority assignments,
and for these algorithms, the run-time overhead due to maintaining a priority queue of ready
jobs can be made very small. A clock-driven scheduler requires the information on the re-
lease times and execution times of the jobs a priori in order to decide when to schedule them.
In contrast, a priority-driven scheduler does not require most of this information, making it
much better suited for applications with varying time and resource requirements. You will
see in later chapters other advantages of the priority-driven approach which are at least as
compelling as these two.

Despite its merits, the priority-driven approach has not been widely used in hard real-
time systems, especially safety-critical systems, until recently. The major reason is that the
timing behavior of a priority-driven system is nondeterministic when job parameters vary.
Consequently, it is difficult to validate that the deadlines of all jobs scheduled in a priority-
driven manner indeed meet their deadlines when the job parameters vary. In general, this
validation problem [LiHa] can be stated as follows: Given a set of jobs, the set of resources
available to the jobs, and the scheduling (and resource access-control) algorithm to allocate
processors and resources to jobs, determine whether all the jobs meet their deadlines.

4.8.1 Anomalous Behavior of Priority-Driven Systems

Figure 4–8 gives an example illustrating why the validation problem is difficult when the
scheduling algorithm is priority-driven and job parameters may vary. The simple system con-
tains four independent jobs. The jobs are scheduled on two identical processors in a priority-
driven manner. The processors maintain a common priority queue, and the priority order is
J1, J2, J3, and J4 with J1 having the highest priority. In other words, the system is dynamic.
The jobs may be preempted but never migrated, meaning that once a job begins execution on
a processor, it is constrained to execute on that processor until completion. (Many systems fit
this simple model. For example, the processors may model two redundant data links connect-
ing a source and destination pair, and the jobs are message transmissions over the links. The
processors may also model two replicated database servers, and the jobs are queries dynam-
ically dispatched by a communication processor to the database servers. The release times,
deadlines, and execution times of the jobs are listed in the table.) The execution times of all
the jobs are fixed and known, except for J2. Its execution time can be any value in the range
[2, 6].

Suppose that we want to determine whether the system meets all the deadlines and
whether the completion-time jitter of every job (i.e., the difference between the latest and the
earliest completion times of the job) is no more than 4. A brute force way to do so is to simu-
late the system. Suppose that we schedule the jobs according their given priorities, assuming

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 73

Section 4.8 Challenges in Validating Timing Constraints in Priority-Driven Systems 73

J1

J2

J3

J4

0

0

4

0

10

10

15

20

5

ri di [ei
-, ei

+]

[2, 6]

8

10

0 5

6 16

10 15 20

J1 J3P1

J2 J4P2

2 20

J1P1

J4J2 J3 J4P2

3 21

J1P1

J2 J4 J3 J4P2

5 15

J1 J3P1

J2 J4P2

(a)

(b)

(c)

(d)

FIGURE 4–8 Example illustrating scheduling anomalies.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 74

74 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

first that the execution time of J2 has the maximum value 6 and then that it has the minimum
value 2. The resultant schedules are shown in Figure 4–8(a) and (b), respectively. Looking
at these schedules, we might conclude that all jobs meet their deadlines, and the completion-
time jitters are sufficiently small. This would be an incorrect conclusion, as demonstrated by
the schedules in Figure 4–8(c) and (d). As far as J4 is concerned, the worst-case schedule
is the one shown in Figure 4–8(c); it occurs when the execution time of J2 is 3. According
to this schedule, the completion time of J4 is 21; the job misses its deadline. The best-case
schedule for J4 is shown in Figure 4–8(d); it occurs when the execution time of J2 is 5. From
this schedule, we see that J4 can complete as early as time 15; its completion-time jitter ex-
ceeds the upper limit of 4. To find the worst-case and best-case schedules, we must try all the
possible values of e2.

The phenomenon illustrated by this example is known as a scheduling anomaly, an
unexpected timing behavior of priority-driven systems. Graham [Grah] has shown that the
completion time of a set of nonpreemptive jobs with identical release times can be later when
more processors are used to execute them and when they have shorter execution times and
fewer dependencies. (Problem 4.5 gives the well-known illustrative example.) Indeed, when
jobs are nonpreemptable, scheduling anomalies can occur even when there is only one proces-
sor. For example, suppose that the execution time e1 of the job J1 in Figure 4–6 can be either
3 or 4. The figure shows that J3 misses its deadline when e1 is 3. However, J3 would complete
at time 8 and meet its deadline if e1 were 4. We will see in later chapters that when jobs have
arbitrary release times and share resources, scheduling anomalies can occur even when there
is only one processor and the jobs are preemptable.

Scheduling anomalies make the problem of validating a priority-driven system difficult
whenever job parameters may vary. Unfortunately, variations in execution times and release
times are often unavoidable. If the maximum range of execution times of all n jobs in a system
is X , the time required to find the latest and earliest completion times of all jobs is O(Xn) if
we were to find these extrema by exhaustive simulation or testing. Clearly, such a strategy is
impractical for all but the smallest systems of practical interest.

4.8.2 Predictability of Executions

When the timing constraints are specified in terms of deadlines of jobs, the validation problem
is the same as that of finding the worst-case (the largest) completion time of every job. This
problem is easy whenever the execution behavior of the set J is predictable, that is, whenever
the system does not have scheduling anomalies. To define predictability more formally, we
call the schedule of J produced by the given scheduling algorithm when the execution time
of every job has its maximum value the maximal schedule of J. Similarly, the schedule of
J produced by the given scheduling algorithm when the execution time of every job has its
minimum value is the minimal schedule. When the execution time of every job has its actual
value, the resultant schedule is the actual schedule of J. So, the schedules in Figure 4–8(a)
and (b) are the maximal and minimal schedules, respectively, of the jobs in that system, and
all the schedules shown in the figure are possible actual schedules.

Since the range of execution time of every job is known, the maximal and minimal
schedules of J can easily be constructed when the release-time jitters are negligible. (We
assume that release times of all jobs are fixed and known for this discussion. How release-
time jitters further complicate the validation problem is beyond the scope of our discussion

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 75

Section 4.8 Challenges in Validating Timing Constraints in Priority-Driven Systems 75

here.) In contrast, its actual schedule is unknown because the actual values of the execution
times are unknown.

The predictability of job execution (behavior) is an intuitive notion: The execution of
J under the given priority-driven scheduling algorithm is predictable if the actual start time
and actual completion time of every job according to the actual schedule are bounded by
its start times and completion times according to the maximal and minimal schedules. More
formally, we let s(Ji) be the instant of time at which the execution of Ji begins according to
the actual schedule of J. s(Ji) is the (actual) start time of Ji . Let s+(Ji) and s−(Ji) be the
start times of Ji according to the maximal schedule and minimal schedule of J, respectively.
These start times can easily be found by constructing the maximal and minimal schedules and
observing when Ji starts according to these schedules. We say that Ji is start-time predictable
if s−(Ji) ≤ s(Ji) ≤ s+(Ji). As an example, for the job J4 in Figure 4–8, s−(J4) is 2. s+(J4)

is 6. Its actual start time is in the range [2, 6]. Therefore, J4 is start-time predictable.
Similarly, let f (Ji) be the actual completion time (also called finishing time) of Ji ac-

cording to the actual schedule of J. Let f +(Ji) and f −(Ji) be the completion times of Ji

according to the maximal schedule and minimal schedule of J, respectively. We say that Ji is
completion-time predictable if f −(Ji) ≤ f (Ji) ≤ f +(Ji). The execution of Ji is predictable,
or simply Ji is predictable, if Ji is both start-time and completion-time predictable. The ex-
ecution behavior of the entire set J is predictable if every job in J is predictable. Looking at
Figure 4–8 again, we see that f −(J4) is 20, but f +(J4) is 16. It is impossible for the inequality
20 ≤ f (J4) ≤ 16 to hold. Therefore, J4 is not completion-time predictable, and the system is
not predictable.

In general, whether a set of jobs has predictable execution behavior depends not only
on the parameters of jobs in the set but also on the algorithm used to schedule the jobs.
For example, while the execution of independent, preemptable but nonmigratable jobs is not
predictable in general, as exemplified by the jobs in Figure 4–8, it is predictable when the
priorities are assigned on the FIFO basis [Ha]. In Chapters 6–9, we will use the following
fact, which is true for all priority-driven scheduling algorithms.

THEOREM 4.4. The execution of every job in a set of independent, preemptable jobs
with fixed release times is predictable when scheduled in a priority-driven manner on
one processor.

Proof. That the highest priority job J1 is predictable is obvious: It always starts at its
release time, and its maximum execution time is larger than its actual execution time.
Suppose that all the i − 1 highest priority jobs J1, J2, . . . , Ji−1 are predictable. We now
show by contradiction that Ji , which has a lower priority than they but a higher priority
than all the other jobs in the system, is also predictable.

Suppose that s−(Ji) ≤ s(Ji) ≤ s+(Ji) is not true. In particular, we suppose that
s(Ji) > s+(Ji). Because the scheduler never schedules a job before its release time,
s+(Ji) is no earlier than the release ri of Ji . Because the scheduling algorithm is priority-
driven, every job whose release time is at or earlier than s+(Ji) and whose priorities
are higher than Ji has completed by s+(Ji) according to the maximal schedule. By
induction hypothesis, we know that every such job has completed by s+(Ji) according
to the actual schedule as well. s(Ji) > s+(Ji) means either that the processor is left
idle in the interval [s+(Ji), s(Ji)] or a job with a priority lower than Ji is scheduled

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 76

76 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

in this interval. This contradicts the fact that the algorithm used to schedule the jobs is
priority-driven. Hence, s(Ji) > s+(Ji) cannot be true.

A similar argument based on the actual and minimal schedules allows us to con-
clude that s−(Ji) > s(Ji) cannot be true. In other words, Ji is start-time predictable.

To show that Ji is also completion-time predictable, we note that since s(Ji) ≤
s+(Ji), there is more available time in the interval [s(Ji), f +(Ji)] than in the interval
[s+(Ji), f +(Ji)]. Moreover, the actual execution time of every job is never larger than
the maximum execution time of the job. If Ji remains incomplete at f +(Ji) according
to the actual schedule while it can complete by this time according to the maximal
schedule, it must be delayed by one or more jobs with priorities lower than Ji executing
in [s(Ji), f +(Ji)], or the processor must be left idle for some time in this interval. This
contradicts the fact that the scheduling algorithm is priority-driven. We can, therefore,
conclude that f (Ji) ≤ f +(Ji). A similar argument based on the actual and minimal
schedules tells us that f −(Ji) is never later than f (Ji), or that Ji is also completion-
time predictable.

Theorem 4.4 tells us that it is relatively easy to validate priority-driven, uniprocessor,
static systems when jobs are independent and preemptable. Because the execution behavior
of all the jobs is predictable, we can confine our attention to the maximum execution times
of all the jobs and ignore the variations in execution times when we want to determine their
maximum possible response times. You will see that this is indeed what we will do in most
parts of Chapters 6–9. Nonpreemptivity and resource contention invariably introduce unpre-
dictability in execution. Fortunately, it is possible to bound the additional delay suffered by
every job due to these factors reasonably accurately. We will describe the methods for doing
so as well.

4.8.3 Validation Algorithms and Their Performance

The validation problem has many variants, and that of validating static priority-driven systems
is an important variant. Recent advances in real-time scheduling and schedulability analysis
have lead to several sufficient conditions and analytical bounds. They are solutions to this vari-
ant and the subjects of discussion in Chapters 6–9. These theoretical results form a rigorous
basis of good validation algorithms and tools for a wide spectrum of static systems. (A vali-
dation algorithm allows us to determine whether all jobs in a system indeed meet their timing
constraints despite scheduling anomalies.) While there are mature validation algorithms and
tools for static systems, good validation algorithms for dynamic, priority-driven systems are
not yet available.

Specifically, we say that a validation algorithm is correct if it never declares that all
timing constraints are met when some constraints may not be. The merits of (correct) val-
idation algorithms are measured in terms of their complexity, robustness, and accuracy. A
validation algorithm is good when it achieves a good balance in performance according to
these conflicting figures of merit.

For example, some existing validation algorithms run in constant time or O(n) time,
where n is the number of tasks in the system. They are well suited for on-line acceptance
tests to determine whether the system should admit a new task. More complex ones run in
pseudopolynomial time but have better performance in the other dimensions.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 77

Section 4.9 Off-Line versus On-Line Scheduling 77

Every rigorous validation algorithm is based on a workload model. When applied to
a system, the conclusion of the algorithm is correct if all the assumptions of the model are
valid for the system. A validation algorithm is said to be robust if it remains correct even
when some assumptions of its underlying workload model are not valid. The use of a robust
validation algorithm significantly reduces the need for an accurate characterization of the
applications and the run-time environment and, thus, the efforts in analysis and measurement
of the individual applications for the purpose of validating the workload model. We will see in
later chapters that existing validation algorithms based on the periodic task model are robust
to a great extent. Although the model assumes that jobs in each task are released periodically
and execute for an equal amount of time, such a validation algorithm remains correct in the
presence of release-time jitters, variations in job execution time, and other deviations from
periodic behavior. It is only necessary for us to know the ranges of task parameters (e.g.,
the minimum interrelease time and maximum execution time of jobs), which are much easier
to obtain and validate, either by timing analysis or measurement, than the actual values or
probability distributions of the parameters.

Efficiency and robustness can be achieved easily if we are not concerned with the accu-
racy of the validation test. A validation algorithm is inaccurate when it is overly pessimistic
and declares tasks unable to meet their timing constraints except when system resources are
unduly underutilized. A scheduler using an inaccurate validation algorithm for an acceptance
test may reject too many new tasks which are in fact acceptable. Because most validation al-
gorithms are based on conditions that are sufficient but not necessary, they are all inaccurate
to some degree, which is the price paid for the sake of robustness. The accuracy of a validation
algorithm depends on whether the actual characteristics of the application systems are accu-
rately captured by the underlying workload model. For example, validation algorithms that
are based on the periodic task model are sufficiently accurate for applications, such as digital
control and constant bit-rate voice and video communications, which are well characterized
by the periodic task model but may have poor accuracy when used to validate applications
that have widely varying processor-time demands and large release-time jitters.

4.9 OFF-LINE VERSUS ON-LINE SCHEDULING

In Section 4.1, we mentioned that a clock-driven scheduler typically makes use of a pre-
computed schedule of all hard real-time jobs. This schedule is computed off-line before the
system begins to execute, and the computation is based on the knowledge of the release times
and processor-time/resource requirements of all the jobs for all times. When the operation
mode of the system changes, the new schedule specifying when each job in the new mode
executes is also precomputed and stored for use. In this case, we say that scheduling is (done)
off-line, and the precomputed schedules are off-line schedules.

An obvious disadvantage of off-line scheduling is inflexibility. This approach is possi-
ble only when the system is deterministic, meaning that the system provides some fixed set(s)
of functions and that the release times and processor-time/resource demands of all its jobs are
known and do not vary or vary only slightly. For a deterministic system, however, off-line
scheduling has several advantages, the deterministic timing behavior of the resultant system
being one of them. Because the computation of the schedules is done off-line, the complex-
ity of the scheduling algorithm(s) used for this purpose is not important. Indeed, as we will

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 78

78 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

see in the next chapter, complex heuristic algorithms are typically used to find good off-line
schedules that can make nearly full use of the resources.

Competitiveness of On-Line Scheduling. We say that scheduling is done on-line, or
that we use an on-line scheduling algorithm, if the scheduler makes each scheduling decision
without knowledge about the jobs that will be released in the future; the parameters of each
job become known to the on-line scheduler only after the job is released. The priority-driven
algorithms described earlier and in subsequent chapters are on-line algorithms. In Chapter
2 we talked about the admission of each new task depending on the outcome of an accep-
tance test that is based on the parameters of the new task and tasks admitted earlier. Such an
acceptance test is on-line.

Clearly, on-line scheduling is the only option in a system whose future workload is
unpredictable. An on-line scheduler can accommodate dynamic variations in user demands
and resource availability. The price of the flexibility and adaptability is a reduced ability for
the scheduler to make the best use of system resources. Without prior knowledge about future
jobs, the scheduler cannot make optimal scheduling decisions while a clairvoyant scheduler
that knows about all future jobs can.

As a simple example, suppose that at time 0, a nonpreemptive job J1 with execution
time 1 and deadline 2 is released. An on-line scheduler has two options at time 0: It either
schedules J1 to start execution at time 0 or it postpones the execution of J1 to some later time.
Suppose that the on-line scheduler decides to schedule J1 at time 0. Later at time x < 1, a job
J2 with execution time 1 − x and deadline 1 is released. J2 would miss its deadline because
it cannot start execution until time 1. In contrast, a clairvoyant scheduler, which knows J2 at
time 0, would schedule J1 to start execution at time 1 and thus allow both jobs to complete in
time. In the second case, the on-line scheduler decides to postpone the execution of J1 until
some later time x < 1. Now suppose that at time x , J3 is released instead of J2. The execution
time of J3 is 1, and its deadline is 2. It is impossible for the on-line scheduler to schedule both
J1 and J3 so that they complete in time. Again, a clairvoyant scheduler, knowing the future
release of J3 at time 0, would schedule J1 to start execution at time 0 so it can complete both
J1 and J3 on time.

The system is said to be overloaded when the jobs offered to the scheduler cannot be
feasibly scheduled even by a clairvoyant scheduler. When the system is not overloaded, an
optimal on-line scheduling algorithm is one that always produces a feasible schedule of all
offered jobs. The example above shows that no optimal on-line scheduling algorithm exists
when some jobs are nonpreemptable. On the other hand, if all the jobs are preemptable and
there is only one processor, optimal on-line algorithms exist, and the EDF and LST algorithms
are examples.

During an overload, some jobs must be discarded in order to allow other jobs to com-
plete in time. A reasonable way to measure the performance of a scheduling algorithm during
an overload is by the amount of work the scheduler can feasibly schedule according to the
algorithm: the larger this amount, the better the algorithm. The competitive factor of an algo-
rithm captures this aspect of performance. To define this performance measure, we say that
the value of a job is equal to its execution time if the job completes by its deadline according
to a given schedule and is equal to zero if the job fails to complete in time according to the
schedule. The value of a schedule of a sequence of jobs is equal to the sum of the values of
all the jobs in the sequence according to the schedule. A scheduling algorithm is optimal if

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 79

Section 4.9 Off-Line versus On-Line Scheduling 79

it always produces a schedule of the maximum possible value for every finite set of jobs. An
on-line algorithm has a competitive factor c if and only if the value of the schedule of any
finite sequence of jobs produced by the algorithm is at least c times the value of the schedule
of the jobs produced by an optimal clairvoyant algorithm.

In terms of this performance measure, EDF and LST algorithms are optimal under the
condition that the jobs are preemptable, there is only one processor, and the processor is not
overloaded. Their competitive factors are equal to 1 under this condition. On other hand, when
the system is overloaded, their competitive factors are 0. To demonstrate, let us consider two
jobs. The first one is released at time 0, and its execution time is 2ε; the deadline is ε for some
arbitrarily small positive number ε. At time ε, a job whose relative deadline is equal to its
execution time e is released. The value achieved by the EDF or LST algorithm is 0, while the
maximum possible value achievable is e.

As it turns out, the EDF and LST algorithms are not the only algorithms with poor
performance when the system is overloaded. In general, all on-line scheduling algorithms
perform rather poorly. The following theorem due to Baruah, et al. [BKMM] gives us the
performance limitation of on-line scheduling when the system is overloaded.

THEOREM 4.5. No on-line scheduling algorithm can achieve a competitive factor
greater than 0.25 when the system is overloaded.

*Informal Proof of Theorem 4.5. To gain some insight into why this upper bound
of 0.25 is true, we summarize the proof of Theorem 4.5; you can find the complete
formal proof in [BKMM]. Suppose that there is an adversary of the on-line scheduler.
Over time, the adversary creates two kinds of jobs and offers (i.e., releases) them to the
scheduler: major jobs and jobs associated with major jobs. The relative deadline of every
job is equal to its execution time. (In other words, the job has no slack; the scheduler
should either schedule the job immediately after it is released, or discard it.) We name
the major jobs Ji for i = 0, 1, . . . ,max in increasing order of their release times and
denote the execution time and release time of each job Ji by ei and ri , respectively. (max
is some positive integer that we will define shortly.) The adversary creates a sequence
of jobs associated with each major job Ji . The execution times of all the associated jobs
in the sequence are equal to some small number ε > 0, which is negligible compared
with ei . The first job in the sequence associated with each major job Ji is released at
the same time with Ji . If there is more than one associated job in a sequence, each
subsequent associated job is released at the deadline of the previous associated job in
the sequence. The number of associated jobs in the sequence depends on the action of
the on-line scheduler. Specifically, as long as the on-line scheduler chooses to execute
Ji , the adversary continues to create jobs associated with Ji until the deadline di of Ji .
Whenever the scheduler decides to execute a job associated with Ji , the adversary stops
releasing any more associated jobs.

Let us now consider a busy interval which begins at r0 when the adversary releases
the first major job J0 and the first of the sequence of jobs associated with J0. Depending
on the action of the on-line scheduler, the adversary may release major job Ji for i > 0
at time ri ; the release time ri of the i th major job and the first of its associated jobs
is equal to ri−1 + ei−1 − ε. In other words, Ji is released at ε units of time before the
deadline of Ji−1. It is not possible to schedule both Ji−1 and Ji to complete in time. At

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 80

80 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

the time ri , the scheduler must choose either to discard Ji−1 and start to execute Ji or
continue to execute Ji−1 and therefore discard Ji .

If the scheduler chooses to discard Ji−1 and begins to execute Ji , the adversary
then releases Ji+1 at ri+1. As long as the scheduler continues to discard the executing
major job each time a new major job is released in order to execute the new job, the
adversary continues to release the next major job ε units of time before the deadline
of the executing job. This process continues until the major job Jmax is released for
some positive integer max , and the busy interval ends at the deadline of this job. In this
case, the on-line scheduler discards all the jobs but Jmax , and the total value achieved by
the scheduler in this busy interval is emax . In contrast, the clairvoyant scheduler would
schedule the jobs associated with all the major jobs before Jmax and then the major job
Jmax and achieve the value

∑max
k=1 ek .

On the other hand, the scheduler may decide to complete Ji and, upon the com-
pletion of Ji , execute a job associated with Ji+1 for i < max . In this case, the adversary
stops releasing any major job after Ji+1. Moreover, it stops releasing jobs associated
with Ji+1 after the first associated job. (Figure 4–9 shows this situation for i = 2.) The
value achieved in the busy interval by the on-line scheduler is approximately equal to
ei . However, the clairvoyant scheduler would execute all jobs associated with jobs J0,
J1, . . . , Ji−1 and then the job Ji and achieve a value of

∑i
k=0 ei .

Now suppose that the execution time e0 of the first major job J0 is 1, and for
i > 0, the execution time ei of the i th major job is given by

ei = cei−1 −
i−1∑

k=0

ek

If we perform the necessary algebraic manipulation, we will find that competitive factor
of the on-line scheduler is either equal to 1/c, if the scheduler completes Ji followed
by an associate job, or is equal to the ratio of emax to the sum

∑max
k=0 ek , if the scheduler

discards all the major jobs except Jmax . The former is always greater than or equal to
the latter for every positive integer max if c is equal to 4 or more. For c equal to 4,

J1J0 J2
major

jobs
0

0

41 12

J3

r0 r1 r2 r3

associated
jobs

ε 12 12 + ε
FIGURE 4–9 Example illustrating competitiveness of on-line scheduling.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 81

Section 4.10 Summary 81

the competitive factor is 0.25. The execution times of the major jobs are equal to 1, 3,
8, 20, 48, Figure 4–9 shows the case where the on-line scheduler executes J2 to
completion. It achieves a value of 8 while a clairvoyant scheduler, knowing that all the
jobs shown in the figure will be released at all time, can achieve a value of 32.

The system used in the proof of Theorem 4.5 is extremely overloaded. It is not sur-
prising that the performance of on-line scheduling algorithms is poor when the system is so
overloaded. Intuitively, we expect that some on-line algorithms should perform well when the
system is only slightly overloaded. To state this more precisely, we let x(t, t ′) (t ′ > t) denote
the load ratio of the interval [t, t ′] : It is the ratio of the total execution time of all jobs whose
feasible intervals are contained in the interval [t, t ′] to the length t ′ − t of the interval. A sys-
tem is said to have a loading factor X if the load ratio of the system is equal to or less than X
for all intervals. Our intuition says that if the loading factor of a system is 1 + ε for some very
small positive number ε, there should be on-line algorithms whose competitiveness factors
are close to 1. Unfortunately, our intuition fails us. Baruah, et al. showed that the competitive-
ness factor of an on-line scheduling algorithm is at most equal to 0.385 for any system whose
loading factor is just slightly over 1.

The results on competitiveness of on-line algorithms tell us that when scheduling is
done on-line, it is important to keep the system from being overloaded using some overload
management or load shedding algorithms. Most overload management algorithms take into
account the criticality factors of jobs, not just their timing parameters, when choosing jobs to
be discarded. We will describe a few of them in later chapters.

4.10 SUMMARY

This chapter gave a brief overview of the clock-driven, weighted round-robin and priority-
driven approaches to scheduling. They are the subjects of in-depth discussion of the next
few chapters. This chapter also discussed several important facts about the priority-driven
approach. We need to keep them in mind at all times.

An algorithm for scheduling hard real-time jobs is optimal if it can produce a feasible
schedule as long as feasible schedules of the given jobs exist, that is, when the system is not
overloaded. This is the criterion of merit we use most of the time in this book. The EDF
(Earliest-Deadline-First) algorithm is optimal for scheduling preemptable jobs on one proces-
sor. LST (Least-Slack-Time) algorithm is also optimal for preemptable jobs on one processor,
but it requires information on the execution times of all jobs while the EDF algorithm does
not. Neither algorithm is optimal when jobs are nonpreemptable or when there is more than
one processor.

Another important concept is predictability of the timing behavior of jobs. The execu-
tion behavior of a system is predictable if the system exhibits no anomalies. We can conclude
that the jobs in a predictable system can always meet their deadlines if the jobs meet their
deadlines according to the maximal schedule of the system, that is, when every job in the
system executes for as long as its maximum execution time. We have shown that when the
jobs are independent and preemptable and are scheduled on one processor, their execution be-
havior is predictable. This fact allows us to ignore the variations in job execution times during

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 82

82 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

validation and work with their maximum execution times. Indeed, this is what we will do in
most parts of subsequent chapters.

In general, systems that use priority-driven scheduling have scheduling anomalies. In
subsequent chapters we will discuss efficient validation algorithms that allow us to verify the
timely completions of jobs despite scheduling anomalies. Such an algorithm is correct if it
never concludes that some job completes in time when the job may fail to do so. The merits of
correct validation algorithms are measured by their efficiency, robustness, and accuracy. These
measures tell us how much time a validation algorithm takes to reach its conclusion on the
schedulability of each job or the entire system, whether its conclusion remains correct when
some assumptions of its underlying model are no longer valid, and whether the algorithm is
overly pessimistic.

Finally, the EDF and LST algorithms are not optimal when the system is overloaded so
some jobs must be discarded in order to allow other jobs to complete in time. In fact, these
algorithms perform poorly for overloaded systems: Their competitiveness factors are equal to
zero. Some kind of overload management algorithm should be used with these algorithms.

4.11 EXERCISES

4.1 The feasible interval of each job in the precedence graph in Figure 4P–1 is given next to its name.
The execution time of all jobs are equal to 1.
(a) Find the effective release times and deadlines of the jobs in the precedence graph in Figure

4P–1.
(b) Find an EDF schedule of the jobs
(c) A job is said to be at level i if the length of the longest path from the job to jobs that have

no successors is i . So, jobs J3, J6, and J9 are at level 0, jobs J2, J5, and J8 are at level 1, and
so on. Suppose that the priorities of the jobs are assigned based on their levels: the higher
the level, the higher the priority. Find a priority-driven schedule of the jobs in Figure 4P–1
according to this priority assignment.

J1 (0, 10) J2 (1, 4) J3 (0, 5)

J4 (1, 6) J5 (3, 9) J6 (2, 10)

J7 (1, 12) J8 (1, 12) J9 (1, 12)

4.2 (a) The execution times of the jobs in the precedence graph in Figure 4P–2 are all equal to 1,
and their release times are identical. Give a nonpreemptive optimal schedule that minimizes
the completion time of all jobs on three processors. Describe briefly the algorithm you used
to find the schedule.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 83

Exercises 83

A

B C D

E F G H

P

Q R

S

T

(b) If the execution times of jobs are arbitrary rational numbers, can your algorithm be modified
so that it will produce optimal preemptive schedules of such jobs? Explain your answer.

4.3 Prove Theorem 4.3 on the optimality of the LST algorithm for scheduling preemptive jobs on one
processor.

4.4 Consider a system that has five periodic tasks, A, B, C , D, and E , and three processors P1, P2,
P3. The periods of A, B, and C are 2 and their execution times are equal to 1. The periods of D
and E are 8 and their execution times are 6. The phase of every task is 0, that is, the first job of
the task is released at time 0. The relative deadline of every task is equal to its period.

(a) Show that if the tasks are scheduled dynamically on three processors according to the LST
algorithm, some jobs in the system cannot meet their deadlines.

(b) Find a feasible schedule of the five tasks on three processors.
(c) Parts (a) and (b) allow us to conclude that the LST algorithm is not optimal for scheduling

on more than one processor. However, when all the jobs have the same release time or when
they have the same deadline, the LST algorithm is optimal. Prove this statement.

4.5 [Grah] A system contains nine nonpreemptable jobs named Ji , for i = 1, 2, . . . , 9. Their exe-
cution times are 3, 2, 2, 2, 4, 4, 4, 4, and 9, respectively, their release times are equal to 0, and
their deadlines are 12. J1 is the immediate predecessor of J9, and J4 is the immediate predecessor
of J5, J6, J7, and J8. There is no other precedence constraints. For all the jobs, Ji has a higher
priority than Jk if i < k.

(a) Draw the precedence graph of the jobs.
(b) Can the jobs meet their deadlines if they are scheduled on three processors? Explain your

answer.
(c) Can the jobs meet their deadlines if we make them preemptable and schedule them preemp-

tively. Explain your answer.
(d) Can the jobs meet their deadlines if they are scheduled nonpreemptively on four processors?

Explain your answer.
(e) Suppose that due to an improvement of the three processors, the execution time of every job

is reduced by 1. Can the jobs meet their deadlines? Explain your answer.

4.6 Consider a system that has two processors and uses an on-line preemptive scheduler to schedule
jobs on the processors. At time 0, three independent jobs, J1, J2, and J3, with execution time 1,
1, and 2, respectively, are released. Their deadlines are 2, 2, and 4, respectively. The scheduler
either schedules a portion of J3 before time 1, or it does not schedule J3 before time 1. We now
consider these two cases.

(a) In case (1), the scheduler schedules a portion of J3 before time 1. Now suppose that two more
independent jobs, J4 and J5, are released at time 2. Their execution times are both equal to 1,

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:46 a.m. chap4 page 84

84 Chapter 4 Commonly Used Approaches to Real-Time Scheduling

and their deadlines are equal to 2. Show that in this case, the scheduler can no longer feasibly
schedule all the jobs, while a clairvoyant scheduler, which foresees the releases of J4 and J5,
would not schedule any part of J3 before time 1 and therefore could feasibly schedule all the
jobs.

(b) In case (2), the on-line scheduler does not schedule any portion of J3 before time 1. Show by
constructing an example that there exist future jobs which the on-line scheduler will not be
able to schedule feasibly, while the jobs could feasibly be scheduled if the on-line scheduler
had scheduled J3 before time 1.

4.7 Consider the set of jobs in Figure 4-3. Suppose that the jobs have identical execution time.
(a) What maximum execution time can the jobs have and still can be feasibly scheduled on one

processor? Explain your answer.
(b) Suppose that the release times of J1 and J2 are jittery. The release time of J1 can be as early as

0 and as late as 3, and the release time of J2 can be as late as 1. How can you take into account
this variation when you want to determine whether the jobs can all meet their deadlines?

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 85

C H A P T E R 5

Clock-Driven Scheduling

The previous chapter gave a skeletal description of clock-driven scheduling. This chapter
fleshes out this description and discusses the advantages and disadvantages of this approach.

5.1 NOTATIONS AND ASSUMPTIONS

As it will become evident shortly, the clock-driven approach to scheduling is applicable only
when the system is by and large deterministic, except for a few aperiodic and sporadic jobs
to be accommodated in the deterministic framework. For this reason, we assume a restricted
periodic task model throughout this chapter. The following are the restrictive assumptions that
we will remove in subsequent chapters:

1. There are n periodic tasks in the system. As long as the system stays in an operation
mode, n is fixed.

2. The parameters of all periodic tasks are known a priori. In particular, variations in the
interrelease times of jobs in any periodic task are negligibly small. In other words, for
all practical purposes, each job in Ti is released pi units of time after the previous job
in Ti .

3. Each job Ji,k is ready for execution at its release time ri,k .

We refer to a periodic task Ti with phase φi , period pi , execution time ei , and relative
deadline Di by the 4-tuple (φi , pi , ei , Di). For example, (1, 10, 3, 6) is a periodic task whose
phase is 1, period is 10, execution time is 3, and relative deadline is 6. Therefore the first job
in this task is released and ready at time 1 and must be completed by time 7; the second job is
ready at 11 and must be completed by 17, and so on. Each of these jobs executes for at most
3 units of time. The utilization of this task is 0.3. By default, the phase of each task is 0, and
its relative deadline is equal to its period. We will omit the elements of the tuple that have
their default values. As examples, both (10, 3, 6) and (10, 3) have zero phase. Their relative
deadlines are 6 and 10, respectively.

Also, there are aperiodic jobs released at unexpected time instants. For now we assume
that there are no sporadic jobs. We will discuss how to schedule sporadic jobs in Section 5.6.
Most of this chapter focuses on scheduling tasks on one processor. The discussion on how to
generalize the clock-driven uniprocessor scheduling strategy to schedule jobs in multiproces-
sor systems is postponed to Section 5.7.

85

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 86

86 Chapter 5 Clock-Driven Scheduling

5.2 STATIC, TIMER-DRIVEN SCHEDULER

For the sake of concreteness, we assume that the operating system maintains a queue for ape-
riodic jobs. When an aperiodic job is released, it is placed in the queue without the attention
of the scheduler. We are not concerned with how the aperiodic jobs are ordered in this queue
but simply assume that they are ordered in a manner suitable for the applications in the sys-
tem. Whenever the processor is available for aperiodic jobs, the job at the head of this queue
executes.

Whenever the parameters of jobs with hard deadlines are known before the system be-
gins to execute, a straightforward way to ensure that they meet their deadlines is to construct
a static schedule of the jobs off-line. This schedule specifies exactly when each job executes.
According to the schedule, the amount of processor time allocated to every job is equal to
its maximum execution time, and every job completes by its deadline. During run time, the
scheduler dispatches the jobs according to this schedule. Hence, as long as no job ever over-
runs (i.e., some rare or erroneous condition causes it to execute longer than its maximum ex-
ecution time), all deadlines are surely met. Because the schedule is computed off-line, we can
afford to use complex, sophisticated algorithms. Among all the feasible schedules (i.e., sched-
ules where all jobs meet their deadlines), we may want to choose one that is good according
to some criteria (e.g., the processor idles nearly periodically to accommodate aperiodic jobs).

As an example, we consider a system that contains four independent periodic tasks.
They are T1 = (4, 1), T2 = (5, 1.8), T3 = (20, 1), and T4 = (20, 2). Their utilizations are
0.25, 0.36, 0.05, and 0.1, respectively, and the total utilization is 0.76. It suffices to construct
a static schedule for the first hyperperiod of the tasks. Since the least common multiple of all
periods is 20, the length of each hyperperiod is 20. The entire schedule consists of replicated
segments of length 20. Figure 5–1 shows such a schedule segment on one processor. We see
that T1 starts execution at time 0, 4, 9.8, 13.8, and so on; T2 starts execution at 2, 8, 12, 18,
and so on. All tasks meet their deadlines.

Some intervals, such as (3.8, 4), (5, 6), and (10.8, 12), are not used by the periodic
tasks. These intervals can be used to execute aperiodic jobs. For this purpose, it may be ad-
vantageous to have the unused intervals scattered more or less periodically in the schedule. If
no aperiodic jobs are ready for execution during these intervals, we can use the time to exe-
cute background nonreal-time jobs whose response times are uncritical to the performance of
the system or some built-in self-test job that checks the status and monitors the health of the
system.

A straightforward way to implement the scheduler is to store the precomputed schedule
as a table. Each entry (tk, T (tk)) in this table gives a decision time tk , which is an instant
when a scheduling decision is made, and T (tk), which is either the name of the task whose
job should start at tk or I . The latter indicates an idle interval during which no periodic task is
scheduled. During initialization (say at time 0), the operating system creates all the tasks that
are to be executed. (In other words, it allocates a sufficient amount of memory for the code

0 4 8 12 16 20

T1 T3 T2 T1 T4 T2 T1 T2 T1 T1 T2 T1

FIGURE 5–1 An arbitrary static schedule.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 87

Section 5.2 Static, Timer-Driven Scheduler 87

and data of every task and brings the code executed by the task into memory.) The scheduler
makes use of a timer. Immediately after all the tasks have been created and initialized and
then at every scheduling decision time, the scheduler sets the timer so the timer will expire
and request an interrupt at the next decision time. Upon receiving a timer interrupt at tk , the
scheduler sets the timer to expire at tk+1 and prepares the task T (tk) for execution. It then
suspends itself, letting the task have the processor and execute. When the timer expires again,
the scheduler repeats this operation.

The pseudocode in Figure 5–2 describes the operation of such a scheduler. H is the
length of the hyperperiod of the system. N is the number of entries in the schedule of each
hyperperiod. The description assumes the existence of a timer. The timer, once set to expire
at a certain time, will generate an interrupt at that time. This interrupt wakes up the scheduler,
which is given the processor with a negligible amount of delay.

In the example in Figure 5–1, the stored table contains 17 entries. They are (0, T1),
(1, T3), (2, T2), (3.8, I), (4, T1), . . . (19.8, I). Hence, the timer is set to expire at 0, 1, 2, 3.8,
and so on. At these times, the scheduler schedules the execution of tasks T1, T3, T2, and an
aperiodic or background job, respectively. The table is used again during the next hyperperiod,
and new decision times 20, 21, 22, 23.8, and so on, can be obtained from the times in the first
hyperperiod as described in Figure 5–2.

We call a periodic static schedule a cyclic schedule. Again, this approach to scheduling
hard real-time jobs is called the clock-driven or time-driven approach because each scheduling
decision is made at a specific time, independent of events, such as job releases and comple-
tions, in the system. It is easy to see why a clock-driven system never exhibits the anomalous
timing behavior of priority-driven systems.

Input: Stored schedule (tk, T (tk)) for k = 0, 1, . . . N − 1.
Task SCHEDULER:

set the next decision point i and table entry k to 0;
set the timer to expire at tk .
do forever:

accept timer interrupt;
if an aperiodic job is executing, preempt the job;
current task T = T (tk);
increment i by 1;
compute the next table entry k = i mod(N);
set the timer to expire at �i/N�H + tk ;
if the current task T is I ,

let the job at the head of the aperiodic job queue execute;
else, let the task T execute;

sleep;
end SCHEDULER

FIGURE 5–2 A clock-driven scheduler.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 88

88 Chapter 5 Clock-Driven Scheduling

5.3 GENERAL STRUCTURE OF CYCLIC SCHEDULES

Rather than using ad hoc cyclic schedules, such as the one in Figure 5–1, we may want to use
a schedule that has a certain structure. By making sure that the structure has the desired char-
acteristics, we can ensure that the cyclic schedule and the scheduler have these characteristics.

5.3.1 Frames and Major Cycles

Figure 5–3 shows a good structure of cyclic schedules [BaSh]. A restriction imposed by this
structure is that scheduling decisions are made periodically, rather than at arbitrary times. The
scheduling decision times partition the time line into intervals called frames. Every frame has
length f ; f is the frame size. Because scheduling decisions are made only at the beginning
of every frame, there is no preemption within each frame. The phase of each periodic task is
a nonnegative integer multiple of the frame size. In other words, the first job of every task is
released at the beginning of some frame.

In addition to choosing which job to execute, we want the scheduler to carry out mon-
itoring and enforcement actions at the beginning of each frame. In particular, we want the
scheduler to check whether every job scheduled in the frame has indeed been released and is
ready for execution. We also want the scheduler to check whether there is any overrun and
take the necessary error handling action whenever it finds any erroneous condition. These
design objectives make some choices of frame size more desirable than the others.

5.3.2 Frame Size Constraints

Ideally, we want the frames to be sufficiently long so that every job can start and complete its
execution within a frame. In this way, no job will be preempted. We can meet this objective if
we make the frame size f larger than the execution time ei of every task Ti . In other words,

f ≥ max
1≤i≤n

(ei) (5.1)

To keep the length of the cyclic schedule as short as possible, the frame size f should be
chosen so that it divides H , the length of the hyperperiod of the system. This condition is met
when f divides the period pi of at least one task Ti , that is,

�pi/ f � − pi/ f = 0 (5.2)

for at least one i . When this condition is met, there is an integer number of frames in each
hyperperiod. We let F denote this number and call a hyperperiod that begins at the beginning
of the (k F + 1)st frame, for any k = 0, 1, . . . , a major cycle.

21 3 4

major
cycles

frames

… … i + 1

t + Ht + 4 ft + 3 ft + 2 ft + ft

i

FIGURE 5–3 General structure of a cyclic schedule.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 89

Section 5.3 General Structure of Cyclic Schedules 89

t' + pi t + 2 ft' + Dit + 2 ft + ft't

frame k + 1frame k frame k + 2

FIGURE 5–4 A constraint on the value of frame size.

On the other hand, to make it possible for the scheduler to determine whether every job
completes by its deadline, we want the frame size to be sufficiently small so that between the
release time and deadline of every job, there is at least one frame. Figure 5–4 illustrates the
suitable range of f for a task Ti = (pi , ei , Di). When f is in this range, there is at least one
frame between the release time and deadline of every job in the task. In this figure, t denotes
the beginning of a frame (called the kth frame) in which a job in Ti is released, and t ′ denotes
the release time of this job. We need to consider two cases: t ′ > t and t ′ = t . If t ′ is later than
t , as shown in this figure, we want the (k +1)st frame to be in the interval between the release
time t ′ and the deadline t ′ + Di of this job. For this to be true, we must have t +2 f equal to or
earlier than t ′ + Di , that is, 2 f − (t ′ − t) ≤ Di . Because the difference t ′ − t is at least equal
to the greatest common divisor gcd(pi , f) of pi and f , this condition is met if the following
inequality holds:

2 f − gcd(pi , f) ≤ Di (5.3)

We want the inequality of Eq. (5.3) to hold for all i = 1, 2, . . . , n. In the special case when t ′
is equal to t , it suffices to choose a frame size that is equal to or smaller than Di . The condition
f ≤ Di is satisfied for all values of f that satisfy Eq. (5.3) and, hence, does not need to be
considered separately. We refer to Eqs. (5.1), (5.2) and (5.3) as the frame-size constraints.

For the four tasks in Figure 5–1, we see that Eq (5.1) constrains the frame size to be no
less than 2. Their hyperperiod length is 20; hence, 2, 4, 5, 10 and 20 are possible frame sizes
according to Eq. (5.2). However, only 2 satisfies Eq. (5.3). Therefore, we must choose this
frame size and can use the cyclic schedule shown in Figure 5–5.

As another example, we consider the tasks (15, 1, 14), (20, 2, 26), and (22, 3). Because
of Eq. (5.1), we must have f ≥ 3; because of Eq. (5.2), we must have f = 3, 4, 5, 10, 11,
15, 20, and 22; and because of Eq. (5.3), we must have f = 3, 4 or 5. Therefore the possible
choices of the frame size are 3, 4, and 5.

5.3.3 Job Slices

Sometimes, the given parameters of some task systems cannot meet all three frame size con-
straints simultaneously. An example is the system T = {(4, 1), (5, 2, 7), (20, 5)}. For Eq. (5.1)
to be true, we must have f ≥ 5, but to satisfy Eq. (5.3) we must have f ≤ 4. In this situation,

0 4 8 12 16 20

T1 T3 T2 T1 T4 T2 T1 T2 T1 T1 T2 T1

FIGURE 5–5 A cyclic schedule with frame size 2.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 90

90 Chapter 5 Clock-Driven Scheduling

0 4 8 12 16 20

T1 T2 T3,1 T1 T3,2 T1 T2 T1 T2 T1 T2 T3,3

FIGURE 5–6 A preemptive cyclic schedule of T1 = (4, 1), T2 = (5, 2, 7) and T3 = (20, 5).

we are forced to partition each job in a task that has a large execution time into slices (i.e.,
subjobs) with smaller execution times. (When the job is a message transmission, we divide
the message into several segments. When the job is a computation, we partition the program
into procedures, each of which is to be executed nonpreemptively.) In this way, we can reduce
the lower bound of f imposed by Eq. (5.1).

For T = {(4, 1), (5, 2, 7), (20, 5)}, we can divide each job in (20, 5) into a chain of
three slices with execution times 1, 3, and 1. In other words, the task (20, 5) now consists of
three subtasks (20, 1), (20, 3) and (20, 1). The resultant system has five tasks for which we
can choose the frame size 4. Figure 5–6 shows a cyclic schedule for these tasks. The three
original tasks are called T1, T2 and T3, respectively, and the three subtasks of T3 are called
T3,1, T3,2, and T3,3.

You may question why we choose to decompose (20, 5) into three subtasks. To satisfy
Eq. (5.1), it suffices for us to partition each job in the task into two slices, one with execution
time 3 and the other with execution time 2. However, a look at the schedule in Figure 5–6
shows the necessity of three slices. It would not be possible to fit the two tasks (20, 3) and
(20, 2) together with T1 and T2 in five frames of size 4. T1, with a period of 4, must be sched-
uled in each frame. T2, with a period of 5, must be scheduled in four out of the five frames.
(The fact that the relative deadline of T2 is 7 does not help.) This leaves one frame with 3
units of time for T3. The other frames have only 1 unit of time left for T3. We can schedule
two subtasks each with 1 unit of execution time in these frames, but there is no time in any
frame for a subtask with execution time 2.

From this example, we see that in the process of constructing a cyclic schedule, we have
to make three kinds of design decisions: choosing a frame size, partitioning jobs into slices,
and placing slices in the frames. In general, these decisions cannot be made independently.
The more slices a job is partitioned into, the higher the context switch and communication
overhead. Therefore, we want to partition each job into as few slices as necessary to meet the
frame-size constraints. Unfortunately, this goal is not always attainable. There may not be any
feasible schedule for the choices of frame size and job slices because it is impossible to pack
the large job slices into the frames by their deadlines. In contrast, feasible schedules may
exist if we choose smaller job slices. For this reason, we sometimes are forced to partition
some jobs into more slices than needed to meet the frame size constraints. We will present in
Section 5.8 an algorithm for the construction of good cyclic schedules and will discuss this
issue again.

5.4 CYCLIC EXECUTIVES

The clock-driven scheduler described in Figure 5–1 must be modified to accommodate the
restriction that scheduling decisions are made only at frame boundaries. The cyclic executive

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 91

Section 5.4 Cyclic Executives 91

approach is a way. In real-time systems literature, the term “cyclic executive” refers to a
scheduler that deterministically interleaves and sequentializes the execution of periodic-tasks
on a CPU according to a given cyclic schedule. Each job slice is a procedure. The cyclic
executive executes a single do loop. Starting from the beginning of each frame, it executes in
turn the slices scheduled in the frame. The flight controller in Figure 1–3 is an example.

Here, we use the term cyclic executive in a more general sense to mean a table-driven
cyclic scheduler for all types of jobs in a multithreaded system. Similar to the scheduler in
Figure 1–3, it makes scheduling decisions only at the beginning of each frame and determin-
istically interleaves the execution of periodic tasks. However, it allows aperiodic and sporadic
jobs to use the time not used by periodic tasks. The pseudocode in Figure 5–7 describes such
a cyclic executive on a CPU. The stored table that gives the precomputed cyclic schedule has
F entries, where F is the number of frames per major cycle. Each entry (say the kth) lists the
names of the job slices that are scheduled to execute in frame k. In Figure 5–7, the entry is
denoted by L(k) and is called a scheduling block, or simply a block. The current block refers
to the list of periodic job slices that are scheduled in the current frame.

In essence, the cyclic executive takes over the processor and executes at each of the
clock interrupts, which occur at the beginning of frames. When it executes, the cyclic execu-
tive copies the table entry for the current frame into the current block. It then wakes up a job,
called periodic task server,1 and lets the server execute the job slices in the current block. Upon

Input: Stored schedule: L(k) for k = 0, 1, . . . , F − 1;
Aperiodic job queue

Task CYCLIC EXECUTIVE:
the current time t = 0;
the current frame k = 0;
do forever

accept clock interrupt at time t f ;
currentBlock = L(k);
t = t + 1;
k = t mod F ;
if the last job is not completed, take appropriate action;
if any of the slices in currentBlock is not released, take appropriate action;
wake up the periodic task server to execute the slices in currentBlock;
sleep until the periodic task server completes;

while the aperiodic job queue is nonempty;
wake up the job at the head of the aperiodic job queue;
sleep until the aperiodic job completes;
remove the aperiodic job from the queue;

endwhile;
sleep until the next clock interrupt;

enddo;
end CYCLIC EXECUTIVE

FIGURE 5–7 A table-driven cyclic executive.

1In a system where periodic tasks never overrun, the periodic task server is not needed; the cyclic executive
simply executes the job slices.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 92

92 Chapter 5 Clock-Driven Scheduling

the completion of the periodic task server, the cyclic executive wakes up the aperiodic jobs in
the aperiodic job queue in turn and allows them to use the remaining time in the frame. The
assumption here is that whenever the server or a job completes, the cyclic executive wakes
up and executes. Alternatively, the system may have an aperiodic task server, which when
awaked executes aperiodic jobs in the aperiodic job queue.

In addition to scheduling, the cyclic executive also checks for overruns at the beginning
of each frame. If the last job executed in the previous frame is not complete at that time,
the cyclic executive preempts the execution of the job if the last job is an aperiodic job. The
job remains in the aperiodic job queue and will be resumed whenever there is time again for
aperiodic jobs. If the cyclic executive finds the periodic task server still executing at the time
of a clock interrupt, a frame overrun occurs; some slice(s) scheduled in the previous frame has
executed longer than the time allocated to it by the precomputed cyclic schedule. The cyclic
executive takes an appropriate action to recover from this frame overrun. (We will discuss
ways to handle frame overruns in Section 5.7.)

After checking for overruns, the cyclic executive makes sure that all the job slices sched-
uled in the current block are ready for execution and then wakes up the periodic task server to
execute them. If there is still time after all the slices in the current block are completed and the
aperiodic job queue is nonempty, it lets the job at the head of the aperiodic job queue execute.

To conclude this section, let us examine two important assumptions that we have made
here; these assumptions must be valid in order for the cyclic executive to work as intended.
The first assumption is the existence of a timer. The timer generates interrupts periodically
without intervention. The second assumption is that each timer interrupt is handled by the
cyclic executive within a bounded amount of delay. Specifically, either this delay is negligibly
small, or at least we know how large it can be and therefore can take this delay into account
when we compute the cyclic schedule. As we will see in Chapter 12, both assumptions are
valid in most modern operating systems.

5.5 IMPROVING THE AVERAGE RESPONSE TIME OF APERIODIC JOBS

Thus far we have paid no attention to the performance of the scheduler as far as the aperi-
odic jobs are concerned. They are scheduled in the background after all the job slices with
hard deadlines scheduled in each frame are completed. However, the strategy of delaying the
execution, and hence the completion, of aperiodic jobs in preference of periodic tasks is not
a good one. There is no advantage to completing a job with a hard deadline early. On the
other hand, an aperiodic job is released and executed by the system in response to an event.
The sooner an aperiodic job completes, the more responsive the system is. For this reason,
minimizing the response time of each aperiodic job or the average response time of all the
aperiodic jobs is typically one of the design goals of real-time schedulers.

5.5.1 Slack Stealing

A natural way to improve the response times of aperiodic jobs is by executing the aperi-
odic jobs ahead of the periodic jobs whenever possible. This approach, called slack stealing,
was originally proposed for priority-driven systems [RaLe]. For the slack-stealing scheme de-
scribed below to work, every periodic job slice must be scheduled in a frame that ends no
later than its deadline. Let the total amount of time allocated to all the slices scheduled in the

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 93

Section 5.5 Improving the Average Response Time of Aperiodic Jobs 93

frame k be xk . The slack (time) available in the frame is equal to f − xk at the beginning
of the frame. If the aperiodic job queue is nonempty at this time, the cyclic executive can let
aperiodic jobs execute for this amount of time without causing any job to miss its deadline.

When an aperiodic job executes ahead of slices of periodic tasks, it consumes the slack
in the frame. After y units of slack time are used by aperiodic jobs, the available slack is
reduced to f − xk − y. The cyclic executive can let aperiodic jobs execute in frame k as long
as there is slack, that is, the available slack f − xk − y in the frame is larger than 0.

When the cyclic executive finds the aperiodic job queue empty, it lets the periodic task
server execute the next slice in the current block. The amount of slack remains the same during
this execution. As long as there is slack, the cyclic executive returns to examine the aperiodic
job queue after each slice completes.

Figure 5–8 gives an illustrative example. Figure 5–8(a) shows the first major cycle in
the cyclic schedule of the periodic tasks. Figure 5–8(b) shows three aperiodic jobs A1, A2,
and A3. Their release times are immediately before 4, 9.5. and 10.5, and their execution times
are 1.5, 0.5 and 2, respectively. Figure 5–8(c) shows when the aperiodic jobs execute if we
use the cyclic executive shown in Figure 5–7, which schedules aperiodic jobs after the slices
of periodic tasks in each frame are completed. The execution of A1 starts at time 7. It does
not complete at time 8 when the frame ends and is, therefore, preempted. It is resumed at time
10 after both slices in the next frame complete. Consequently, its response time is 6.5. A2

executes after A1 completes and has a response time equal to 1.5. Similarly, A3 follows A2

and is preempted once and completes at the end of the following frame. The response time of
A3 is 5.5. The average response time of these three jobs is 4.5.

Figure 5–8(d) shows what happens if the cyclic executive does slack stealing. At time
4, the cyclic executive finds A1 in the aperiodic job queue, and there is 1 unit of slack. Hence
it lets A1 execute. At time 5, there is no more slack. It preempts A1 and lets the periodic task

0 4

4

8 12 16 20

11 16

0 4 8.5 10 13

1.5

9.5

A3A1

A1

A1 A3

A1 A2

A3

A3

A1 A2

A3

0.5

10.5

A3

2.0

(a)

(b)

(c)

(d)

FIGURE 5–8 Example illustrating slack stealing.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 94

94 Chapter 5 Clock-Driven Scheduling

server execute the job slices scheduled in the frame. At the beginning of the next frame, the
available slack is 2. It resumes A1, which completes at time 8.5. At the time, the first slice
in the current block is executed, since the aperiodic job queue is empty. Upon completion
of the slice at time 9.5, the cyclic executive checks the aperiodic job queue again, finds A2

ready, and lets A2 execute. When the job completes at time 10, the cyclic executive finds the
aperiodic job queue empty and lets the periodic task server execute the next job slice in the
current block. At time 11, it finds A3 and lets the job execute during the last unit of time in the
frame, as well as in the beginning of the next frame. The job completes by time 13. According
to this schedule, the response times of the jobs are 4.5, 0.5, and 2.5, with an average of 2.5.

Let us now examine how to implement slack stealing. The initial amount of slack in each
frame can be precomputed along with the cyclic schedule and stored in the table defining the
schedule. It is necessary for the cyclic executive to keep track of the amount of available slack
and update this amount as it consumes the slack. This can be done using an interval timer.
At the beginning of each frame, the cyclic executive sets the timer to the value of the initial
slack in the frame. The timer counts down whenever an aperiodic job executes ahead of any
slice in the current block. When the timer expires, indicating that there is no more slack,
the cyclic executive preempts the executing aperiodic job and lets the execution of the next
job slice in the current block begin. Unfortunately as you will see in Section 12.2.2, most
operating systems do not offer interval timers of submillisecond granularity and accuracy. So,
this scheme is practical only when the temporal parameters of periodic tasks are in orders of
hundreds of milliseconds or seconds.

5.5.2 Average Response Time

While we are not required to ensure the completion of aperiodic jobs by some specific times,
we are often required to guarantee that their average response time is no greater than some
value. To give this guarantee, we need to be able estimate the average response time of these
jobs.

In general, an accurate estimate of the average response time can be found only by
simulation and/or measurement. This process is time consuming and can be done only after
a large portion of the system is designed and built. On the other hand, we can apply known
results in queueing theory to get a rough estimate of the average response time as soon as
we know some statistical behavior of the aperiodic jobs. For example, a requirement of the
system may be that it must respond satisfactorily as long as the average rate of arrival (i.e.,
releases) of aperiodic jobs is within a given limit. We can estimate the average response time
of the system for this average arrival rate. We also need to know the mean and mean square
values of the execution times of aperiodic jobs. These values can be estimated by analysis,
simulation, and/or measurement of the jobs’ execution by themselves.

To express average response time in terms of these parameters, let us consider a system
in which there are na aperiodic tasks. (The term aperiodic task was introduced earlier in
Chapter 3; each aperiodic task consists of a stream of aperiodic jobs that execute in response to
a type of event.) The jobs in each aperiodic task have the same interarrival-time and execution-
time distributions and the same response-time requirement. Suppose that the average rate of
arrival of aperiodic jobs in the i th aperiodic task is λi jobs per unit of time. The sum λ of λi

over all i = 1, 2, . . . a is the total number of aperiodic job arrivals per unit of time. The mean
and the mean square values of the execution times of jobs in the i th aperiodic task are E[βi]

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 95

Section 5.5 Improving the Average Response Time of Aperiodic Jobs 95

and E[β2
i], respectively. (Here E[x] denotes the mean value of the random variable x . E[x] is

also called the expected value of x , hence the choice of the letter E .) Let ui denote the average
utilization of the i th task; it is the average fraction of processor time required by all the jobs
in the task. ui is equal to λi E[βi]. We call the sum UA of ui over all aperiodic tasks the total
average utilization of aperiodic tasks; it is the average fraction of processor time required by
all the aperiodic tasks in the system.

Let U be the total utilization of all the periodic tasks. 1−U is the fraction of time that is
available for the execution of aperiodic jobs. We call it the aperiodic (processor) bandwidth.
If the total average utilization of the aperiodic jobs is larger than or equal to the aperiodic
bandwidth of the system (i.e., UA ≥ 1 − U), the length of the aperiodic job queue and the
average response time will grow without bound. Hence we consider here only the case where
UA < 1 − U .

When the jobs in all aperiodic tasks are scheduled on the FIFO basis, we can estimate the
average response time W (also known as waiting time) of any aperiodic job by the following
expression [Klie]:

W =
na∑

i=1

λi E[βi]
λ(1 − U)

+ W0

(1 − U)2[1 − UA/(1 − U)] (5.4a)

where W0 is given by

W0 =
na∑

i=1

λi E[βi
2]

2
(5.4b)

The first term in Eq. (5.4a) gives the average amount of time required by an aperiodic job
to complete execution if it does not wait for any aperiodic job. The second term gives us the
average queueing time, which is the average amount of time a job waits in the queue.

Figure 5–9 shows the behavior of the average queueing time, normalized with respect to
the average execution time

∑na
i=1 λi E[βi]/λ of all the aperiodic jobs, as a function of the total

average utilization UA of aperiodic jobs for different values of aperiodic bandwidth (1 − U).
The average queueing time is inversely proportional to the square of the aperiodic bandwidth.
It remains small for a large range of UA but increases rapidly and approaches infinity when
UA approaches (1 − U).

We can improve the average response time of some aperiodic tasks at the expense of
some others by prioritizing the aperiodic tasks. Without loss of generality, suppose that we
index the aperiodic tasks so that the smaller the index, the higher the priority. Instead of one
FIFO queue, we put the jobs in each aperiodic task in a separate FIFO queue. The jobs in the
queue for the i th aperiodic task are executed only when the queues of all the higher priority
aperiodic tasks are empty. We let UH denote the sum

∑i−1
k=1 uk ; it is the average total utilization

of all aperiodic tasks with priority higher than the i th aperiodic task. The average response
time Wi of a job in the i th aperiodic task is given by

Wi = E[βi]
(1 − U)

+ W0

(1 − U)2[1 − UH/(1 − U)][1 − (UH + ui)/(1 − U)] (5.5)

approximately, where W0 is given by Eq. (5.4b).

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 96

96 Chapter 5 Clock-Driven Scheduling

0.2 0.4 0.6 0.8 1.00

N
or

m
al

iz
ed

 a
ve

ra
ge

 q
ue

ui
ng

 ti
m

e

Total average utilization UA

106W

105W

104W

103W

102W

101W

W

1-U = 0.2

1-U = 0.5
1-U = 0.8 1-U = 1.0

W =
W0λ

Σ λi E[βi]i = o

na

FIGURE 5–9 Average queueing time versus total average utilization.

5.6 SCHEDULING SPORADIC JOBS

Like jobs in periodic tasks, sporadic jobs have hard deadlines. On the other hand, their min-
imum release times and maximum execution times are unknown a priori. Consequently, it is
impossible to guarantee a priori that all sporadic jobs can complete in time.

5.6.1 Acceptance Test

A common way to deal with this situation is to have the scheduler perform an acceptance test
when each sporadic job is released. During an acceptance test, the scheduler checks whether
the newly released sporadic job can be feasibly scheduled with all the jobs in the system at the
time. Here, by a job in the system, we mean either a periodic job, for which time has already
been allocated in the precomputed cyclic schedule, or a sporadic job which has been scheduled
but not yet completed. If according to the existing schedule, there is a sufficient amount of
time in the frames before its deadline to complete the newly released sporadic job without

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 97

Section 5.6 Scheduling Sporadic Jobs 97

causing any job in the system to complete too late, the scheduler accepts and schedules the
job. Otherwise, the scheduler rejects the new sporadic job. By rejecting a sporadic job that
cannot be scheduled to complete in time immediately after the job is released, the scheduler
gives the application system as much time as there is to take any necessary recovery action.

To illustrate that this approach is a reasonable one, we consider a quality control system.
A sporadic job that activates a robotic arm is released when a defective part is detected. The
arm, when activated, removes the part from the conveyor belt. This job must complete before
the part moves beyond the reach of the arm. When the job cannot be scheduled to complete in
time, it is better for the system to have this information as soon as possible. The system can
slow down the belt, stop the belt, or alert an operator to manually remove the part. Otherwise,
if the sporadic job were scheduled but completed too late, its lateness would not be detected
until its deadline. By the time the system attempts a recovery action, the defective part may
already have been packed for shipment, too late for simple recovery actions to be effective.

We assume that the maximum execution time of each sporadic job becomes known upon
its release. It is impossible for the scheduler to determine which sporadic jobs to admit and
which to reject unless this information is available. Therefore, the scheduler must maintain
information on the maximum execution times of all types of sporadic jobs that the system
may execute in response to the events it is required to handle. We also assume that all sporadic
jobs are preemptable. Therefore, each sporadic job can execute in more than one frame if no
frame has a sufficient amount of time to accommodate the entire job.

Conceptually, it is quite simple to do an acceptance test. To explain, let us suppose that
at the beginning of frame t , an acceptance test is done on a sporadic job S(d, e), with deadline
d and (maximum) execution time e. (When it is not necessary to mention the deadline and
execution time of the job, we will simply refer to it as S without these parameters.) Suppose
that the deadline d of S is in frame l+1 (i.e., frame l ends before d but frame l+1 ends after d)
and l ≥ t . Clearly, the job must be scheduled in the lth or earlier frames. The job can complete
in time only if the current (total) amount of slack time σc(t, l) in frames t, t+1, . . . l is equal to
or greater than its execution time e. Therefore, the scheduler should reject S if e > σc(t, l). As
we will see shortly, the scheduler may let a new sporadic job execute ahead of some previously
accepted sporadic jobs. Therefore, the scheduler also checks whether accepting the new job
may cause some sporadic jobs in the system to complete late. The scheduler accepts the new
job S(d, e) only if e ≤ σc(t, l) and no sporadic jobs in system are adversely affected.

In general, more than one sporadic job may be waiting to be tested at the same time. A
good way to order them is on the Earliest-Deadline-First (EDF) basis. In other words, newly
released sporadic jobs are placed in a waiting queue ordered in nondecreasing order of their
deadlines: the earlier the deadline, the earlier in the queue. The scheduler always tests the job
at the head of the queue and removes the job from the waiting queue after scheduling it or
rejecting it.

5.6.2 EDF Scheduling of the Accepted Jobs

By virtue of its optimality, the EDF algorithm is a good way to schedule accepted sporadic
jobs. For this purpose, the scheduler maintains a queue of accepted sporadic jobs in nonde-
creasing order of their deadlines and inserts each newly accepted sporadic job into this queue
in this order. Whenever all the slices of periodic tasks scheduled in each frame are completed,
the cyclic executive lets the jobs in the sporadic job queue execute in the order they appear

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 98

98 Chapter 5 Clock-Driven Scheduling

Input: Stored schedule: L(k) for k = 0, 1, . . . F − 1;
Aperiodic job queue, sporadic-job waiting queue, and accepted-sporadic-job EDF queue;

Task CYCLIC EXECUTIVE:
the current time t = 0;
the current frame k = 0;
do forever

accept clock interrupt at time t f ;
currentBlock = L(k);
t = t + 1;
k = t mod F ;
if the last job is not completed, take appropriate action;
if any of the slices in the currentBlock is not released, take appropriate action;
while the sporadic-job waiting queue is not empty,

remove the job at the head of the sporadic job waiting queue;
do an acceptance test on the job;
if the job is acceptable,

insert the job into the accepted-sporadic-job queue in the EDF order;
else, delete the job and inform the application;

endwhile;
wake up the periodic task server to execute the slices in currentBlock;
sleep until the periodic task server completes;
while the accepted sporadic job queue is nonempty,

wake up the job at the head of the sporadic job queue;
sleep until the sporadic job completes;
remove the sporadic job from the queue;
endwhile;
while the aperiodic job queue is nonempty,
wake up the job at the head of the aperiodic job queue;
sleep until the aperiodic job completes;
remove the aperiodic job from the queue;

endwhile;
sleep until the next clock interrupt;

enddo;
end CYCLIC EXECUTIVE

FIGURE 5–10 A cyclic executive with sporadic and aperiodic job scheduling capability.

in the queue. Figure 5–10 gives a pseudocode description of the modified cyclic executive
that integrates the scheduling of sporadic jobs with that of aperiodic and periodic jobs. The
cyclic executive assumes that each newly released sporadic job is placed in a waiting queue
without the intervention of the scheduler. The scheduler allows aperiodic jobs to execute only
when the accepted sporadic job queue is empty. Again, whenever a server or job completes,
the cyclic executive wakes up to execute. Like the version in Figure 5–7, this version does not
steal slack but can easily be modified to do so.

Figure 5–11 gives an example. The frame size used here is 4. The shaded boxes show
where periodic tasks are scheduled.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 99

Section 5.6 Scheduling Sporadic Jobs 99

0 4 7 83.5 10 12 15 16 19 20

20 24 28 3632 40

40 44 48 52 56 60

S2

S2

S2

S1(17, 4.5) S2(29, 4) S3(22, 1.5) S4(44, 5.0)

S2

S3

S3

FIGURE 5–11 Example of scheduling sporadic jobs.

• Suppose that at time 3, a sporadic job S1(17, 4.5) with execution time 4.5 and deadline
17 is released. The acceptance test on this job is done at time 4, that is, the beginning of
frame 2. S1 must be scheduled in frames 2, 3, and 4. In these frames, the total amount
of slack time is only 4, which is smaller than the execution time of S1. Consequently,
the scheduler rejects the job.

• At time 5, S2(29, 4) is released. Frames 3 through 7 end before its deadline. During the
acceptance test at 8, the scheduler finds that the total amount of slack in these frames
is 5.5. Hence, it accepts S2. The first part of S2 with execution time 2 executes in the
current frame.

• At time 11, S3(22, 1.5) is released. At time 12, the scheduler finds 2 units of slack time
in frames 4 and 5, where S3 can be scheduled. Moreover, there still is enough slack to
complete S2 even though S3 executes ahead of S2. Consequently, the scheduler accepts
S3. This job executes in frame 4.

• Suppose that at time 14, S4(44, 5) is released. At time 16 when the acceptance test is
done, the scheduler finds only 4.5 units of time available in frames before the deadline
of S4, after it has accounted for the slack time that has already been committed to the
remaining portions of S2 and S3. Therefore, it rejects S4. When the remaining portion
of S3 completes in the current frame, S2 executes until the beginning of the next frame.

• The last portion of S2 executes in frames 6 and 7.

5.6.3 Implementation of the Acceptance Test

We now describe how to implement the acceptance test when accepted sporadic jobs are
scheduled on the EDF basis. Specifically, we focus on an acceptance test at the beginning of
frame t to decide whether a sporadic job S(d, e) should be accepted or rejected. The accep-
tance test consists of the following two steps:

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 100

100 Chapter 5 Clock-Driven Scheduling

1. The scheduler first determines whether the current total amount of slack in the frames
before the deadline of job S is at least equal to the execution time e of S. If the answer
is no, it rejects S. If the answer is yes, the second step is carried out.

2. In the second step, the scheduler determines whether any sporadic job in the system will
complete late if it accepts S. If the acceptance of S will not cause any sporadic job in
the system to complete too late, it accepts S; otherwise, it rejects S.

Again, a sporadic job in the system is one that was accepted earlier but is not yet complete
at the time. We note that there is no need to check whether any periodic job might miss its
deadline because sporadic jobs in the system never affect the execution of any periodic job
slice scheduled in any frame.

To do an acceptance test, the scheduler needs the current total amount of slack time
σc(i, k) in frames i through k for every pair of frames i and k. We can save computation
time during run time by precomputing the initial (total) amounts of slack σ(i, k), for i, k =
1, 2, . . . F and storing them in a slack table along with the precomputed cyclic schedule at
the cost of O(F2) in storage space. From the initial amounts of slack in the frames in the first
major cyclic, initial amounts of slack in any later frames can be computed as follows. For any
0 < j < j ′ and any i and k equal to 1, 2, . . . F , the initial amount of slack time in frames
from frame i in major cycle j through frame k in major cycle j ′ is given by

σ(i + (j − 1)F, k + (j ′ − 1)F) = σ(i, F)+ σ(1, k)+ (j − j ′ − 1)σ (1, F)

As an example, we look at Figure 5–11 again. For this system, F is 5. Only σ(i, k) for
i, k = 1, 2, . . . , 5 are stored. To compute the initial amount of slack time σ(3, 14) in frames
3 through 14, we note that frame 3 is in the first major cycle (i.e., j = 1), and frame 14
is the third major cycle (i.e., j ′ = 3). The term i in the above formula is equal to 3, and
σ(i, F) = σ(3, 5) = 4. Similarly, k = 4, and σ(1, 4) is 4.5. Since σ(1, F) is 5.5, we have
σ(3, 14) equal to 4 + 4.5 + (3 − 1 − 1)× 5.5 = 14.

Suppose that at the beginning of current frame t , there are ns sporadic jobs in the system.
We call these jobs S1, S2, . . . , Sns . Let dk and ek denote the deadline and execution time of Sk ,
respectively, and ξk denote the execution time of the portion of Sk that has been completed at
the beginning of the current frame. Suppose that the deadline d of the job S(d, e) being tested
is in frame l + 1. The current total amount of slack time σc(t, l) in frames t through l can be
computed from the initial amount of slack time in these frames according to

σc(t, l) = σ(t, l)−
∑

dk≤d

(ek − ξk) (5.6a)

The sum in this expression is over all sporadic jobs in the system that have deadlines equal to
or less than d. Because the slack time available in these frames must be used to execute the
remaining parts of these jobs first, only the amount leftover by them is available to S(d, e).

If S is accepted, the amount of slack σ before its deadline is equal to

σ = σc(t, l)− e (5.6b)

We say that the job has σ units of slack. Clearly, we can accept S only if its slack σ is no less
than zero. If S is accepted, its slack is stored for later use.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 101

Section 5.6 Scheduling Sporadic Jobs 101

Since the accepted jobs are scheduled on the EDF basis, the acceptance of S may cause
an existing sporadic job Sk whose deadline is after d to complete too late. Specifically, if S is
accepted, the slack σk of Sk is reduced by the execution time e of S. If the reduced amount
remains to be no less than zero, Sk will not miss its deadline. The scheduler must consider
every sporadic job that is still in the system and has a deadline after d. It accepts S only if the
reduced slack of every such job is no less than zero.

In summary, the data maintained by the scheduler for the sake of acceptance tests consist
of the following:

1. The precomputed slack table whose entry σ(i, k) gives the initial total amount of slack
time in frames i through k, for every pair of i, k = 1, 2, . . . , F ;

2. The execution time ξk of the completed portion of every sporadic job Sk in the system
at the beginning of the current frame t ; and

3. The current slack σk of every sporadic job Sk in the system.

Whenever a sporadic job Sk is executed in a frame, the scheduler updates ξk at end of the
frame. The slack time of a sporadic job S is given by Eq. (5.6b) when the job is accepted.
Later whenever a new sporadic job with an earlier deadline is accepted, the slack of S is
decremented by the execution time of the new sporadic job. The complexity of this update
operation, as well as the computation needed to accept or reject each sporadic job, is O(Ns)

where Ns is the maximum number of sporadic jobs in the system.
We conclude this section with the old example in Figure 5–11 and run through the

acceptance tests of the sporadic jobs, following the procedure described above.

1. At time 4 when the scheduler checks whether S1(17, 4.5) can be accepted, it finds that
the slack σ(2, 4) in frames before the deadline of S1 is only 4. Hence, it rejects the job.

2. At time 8, when the scheduler tests S2(29, 4), the current slack σc(3, 7) in frames 3
through 7 is equal to σ(3, 5)+ σ(1, 2) = 4 + 1.5 = 5.5. This amount is larger than the
execution time of S2. Since there is no other sporadic job in the system, the fact that S2

passes this step suffices, and the scheduler accepts S2. The slack σ2 of S2 is 1.5.
3. At time 12 when the scheduler tests S3(22, 1.5), the slack σ2 of S2 is still 1.5. There

is no sporadic job with deadline before 20, the end of the frame before 22. Hence, the
sum on the right-hand side of Eq. (5.6a) is 0, and the current slack σc(4, 5) before 22
is equal to σ(4, 5) = 2. Since 2 > 1.5, S3 passes the first step of its acceptance test.
The acceptance of S3 would reduce σ2 to 0. Therefore, S3 is acceptable. When S3 is
accepted, its slack σ3 is 0.5, and σ2 is 0.

4. At time 16, when the acceptance test on S4(44, 5.0) is performed, ξ2 is 2 and ξ3 is 1.0.
The current slack time σc(5, 11) in the frames before 44 is 7 − 2 − 0.5 = 4.5 according
to Eq. (5.6a). Since this slack is insufficient to complete S4 by time 44, the scheduler
rejects S4.

We call the scheme described above the cyclic EDF algorithm.

5.6.4 Optimality of Cyclic EDF Algorithm

We have claimed that the cyclic EDF algorithm is good. Now is the time to ask just how
good it is. To answer this question, we first compare it only with the class of algorithms that

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 102

102 Chapter 5 Clock-Driven Scheduling

perform acceptance tests at the beginnings of frames. The cyclic EDF algorithm is optimal
in the following sense: As long as the given string of sporadic jobs is schedulable (i.e., all
the jobs can be accepted and scheduled to complete by their deadlines) by any algorithm in
this class, the EDF algorithm can always find a feasible schedule of the jobs. This statement
follows directly from Theorem 4.1 on the optimality of the EDF algorithm.

However, the cyclic EDF algorithm is not optimal when compared with algorithms that
perform acceptance tests at arbitrary times. If we choose to use an interrupt-driven scheduler
which does an acceptance test upon the release of each sporadic job, we should be able to do
better. The example in Figure 5–11 illustrates this fact. Suppose that the scheduler were to
interrupt the execution of the job slices in frame 1 and do an acceptance test at time 3 when
S1(17, 4.5) is released. It would find an additional 0.5 units of slack in frame 1, making it
possible to accept S1. Because it waits until time 4 to do the acceptance test, the 0.5 unit of
slack time in frame 1 is wasted. Consequently, it cannot accept S1.

However, the advantage of the interrupt-driven alternative is outweighed by a serious
shortcoming: It increases the danger for periodic-job slices to complete late. Because the
release times of sporadic jobs are unpredictable, the execution of periodic job slices may be
delayed by an unpredictable number of the context switches and acceptance tests in the middle
of each frame. Because of this shortcoming, it is better to stay within the cyclic scheduling
framework and make scheduling decisions, including acceptance tests, only at the beginning
of the frames.

The cyclic EDF algorithm for scheduling sporadic jobs is an on-line algorithm. You
recall from our discussion in Section 4.8 that we measure the merit of an on-line algorithm
by the value (i.e., the total execution time of all the accepted jobs) of the schedule produced
by it: the higher the value, the better the algorithm. At any scheduling decision time, without
prior knowledge on when the future jobs will be released and what their parameters will be,
it is not always possible for the scheduler to make an optimal decision. Therefore, it is not
surprising that the cyclic EDF algorithm is not optimal in this sense when some job in the
given string of sporadic jobs must be rejected. In the example in Figure 5–11, because the
scheduler has already accepted and scheduled S3 at time 12, it must reject S4. The value of the
schedule of these four sporadic jobs is only 5.5, instead of the maximum possible value of 9
obtained by rejecting S3 and accepting S4. If we were to modify the scheduling algorithm so
that the scheduler rejects S3, the value of the resultant schedule is again less than the maximum
possible if S4 is not released later or if its execution time is less than 1.5.

5.7 PRACTICAL CONSIDERATIONS AND GENERALIZATIONS

Thus far, we have ignored many practical problems, such as how to handle frame overruns,
how to do mode changes, and how to schedule tasks on multiprocessor systems. We discuss
them now.

5.7.1 Handling Frame Overruns

A frame overrun can occur for many reasons. For example, when the execution time of a job
is input data dependent, it can become unexpectedly large for some rare combination of input
values which is not taken into account in the precomputed schedule. A transient hardware fault

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 103

Section 5.7 Practical Considerations and Generalizations 103

in the system may cause some job to execute longer than expected. A software flaw that was
undetected during debugging and testing can also cause this problem. There are many ways
to handle a frame overrun. Which one is the most appropriate depends on the application and
the reason for the overrun.

A way to handle overruns is to simply abort the overrun job at the beginning of the
next frame and log the premature termination of the job. Such a fault can then be handled by
some recovery mechanism later when necessary. This way seems attractive for applications
where late results are no longer useful. An example is the control-law computation of a robust
digital controller. When the computation completes late or terminates prematurely, the result
it produces is erroneous. On the other hand, as long as such errors occur infrequently, the
erroneous trajectory of the controlled system remains sufficiently close to its correct trajectory.
In this case, we might as well terminate the computation if it does not complete in time.

However, premature termination of overrun jobs may put the system in some inconsis-
tent state, and the actions required to recover from the state and maintain system integrity may
be costly. For this reason, in most real-life systems, a job that overruns its allocated time and
is found executing at the end of the frame is preempted immediately, if it is not in a critical
section at the time, or as soon as it exits the critical section, if it is. The unfinished portion exe-
cutes as an aperiodic job during the slack time in the subsequent frame(s) or in the background
whenever there is spare time.

Another way to handle an overrun is to continue to execute the offending job. The start
of the next frame and the execution of jobs scheduled in the next frame are then delayed.
Letting a late job postpone the execution and completion of jobs scheduled after it can in turn
cause these jobs to be late. This way is appropriate only if the late result produced by the job
is nevertheless useful, and an occasional late completion of a periodic job is acceptable.

5.7.2 Mode Changes

As stated earlier, the number n of periodic tasks in the system and their parameters remain
constant as long as the system stays in the same (operation) mode. During a mode change, the
system is reconfigured. Some periodic tasks are deleted from the system because they will not
execute in the new mode. Periodic tasks that execute in the new mode but not in the old mode
are created and added to the system. The periodic tasks that execute in both modes continue to
execute in a timely fashion. When the mode change completes, the new set of periodic tasks
are scheduled and executed.

We assume that the parameters of periodic tasks to be executed in the new mode are also
known. The schedule of the tasks executed in the new mode is also precomputed. However,
the new schedule table may not be in memory during the old mode. This table must be brought
into memory. Similarly, the code of the new tasks must be brought into memory and memory
space for data accessed by them must be allocated before their execution begins. The work
to configure the system is a mode-change job; the job is released in response to a mode-
change command. We need to consider two cases: The mode-change job has either a soft or
hard deadline. In both cases, we assume that periodic tasks are independent and hence can
be added and deleted independently. We will return in Section 8.11 to discuss how a mode
changer should work when this assumption is not true.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 104

104 Chapter 5 Clock-Driven Scheduling

Aperiodic Mode Change. A reasonable way to schedule a mode-change job that
has a soft deadline is to treat it just like an ordinary aperiodic job, except that it may be
given the highest priority and executed ahead of other aperiodic jobs. Once the job begins
to execute, however, it may modify the old schedule in order to speed up the mode change.
A periodic task that will not execute in the new mode can be deleted and its memory space
and processor time freed as soon as the current job in the task completes. This scheme can
be implemented by letting the scheduler or the mode-change job mark each periodic task that
is to be deleted. During mode change, the scheduler continues to use the old schedule table.
Before the periodic task server begins to execute a periodic job, however, it checks whether
the corresponding task is marked and returns immediately if the task is marked. In this way,
the schedule of the periodic tasks that execute in both modes remain unchanged during mode
change, but the time allocated to the deleted task can be used to execute the mode-change
job. Once the new schedule table and code of the new tasks are in memory, the scheduler can
switch to use the new table.

A question that remains to be answered is how aperiodic and sporadic jobs in the sys-
tem should be dealt with during mode changes. It may no longer be safe to execute some
of these jobs; they should be deleted as well. Since the deadlines of the remaining aperiodic
jobs are soft, their execution can be delayed until after the mode change. On the other hand,
the sporadic jobs should not be affected by the mode change, since their on-time completion
has been guaranteed. One way to ensure their on-time completion is to defer the switchover
from the old schedule table to the new schedule table until all the sporadic jobs in the system
complete. Clearly this option can lengthen the response time of the mode change. Another
option is have the mode-change job check whether the sporadic jobs in the system can com-
plete in time according to the new schedule. The schedule switchover is deferred only when
some sporadic job cannot complete in time according to the new schedule. In the case when
the delay thus introduced is unacceptably long, the scheduler may be forced to switchover to
the new schedule, let some sporadic jobs complete late, and leave the affected applications to
handle the timing faults.

As a summary of our discussion, Figure 5–12 describes a mode changer. It assumes that
in addition to the precomputed schedule of each mode, the lists of new tasks to be created
and old tasks to be deleted are available for every possible pair of old and new modes. The
scheduler is a cyclic executive which executes accepted sporadic jobs on the EDF basis and
the mode changer at the highest priority among all aperiodic jobs. When informed of a mode
change, the cyclic executive stops to perform acceptance tests. In addition, it checks for pe-
riodic tasks to be deleted and executes the mode changer during the times allocated to the
deleted periodic tasks. Finally, when the new schedule and all the new tasks are in memory,
it switches over to use the new schedule table at the beginning of the next major cycle and
resumes doing acceptance tests.

Sporadic Mode Change. A sporadic mode change has to be completed by a hard
deadline. There are two possible approaches to scheduling this job. We can treat it like an
ordinary sporadic job and schedule it as described in Section 5.6. This approach can be used
only if the application can handle the rejection of the job. Specifically, if the mode-change
job is not schedulable and is therefore rejected, the application can either postpone the mode
change or take some alternate action. In this case, we can use mode changer described in
Figure 5–12.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 105

Section 5.7 Practical Considerations and Generalizations 105

task MODE CHANGER (oldMode, newMode):
fetch the deleteList of periodic tasks to be deleted;
mark each periodic task in the deleteList;
inform the cyclic executive that a mode change has commenced;
fetch the newTaskList of periodic tasks to be executed in newMode;
allocate memory space for each task in newTaskList and create each of these task;
fetch the newSchedule;
perform acceptance test on each sporadic job in the system according to the newSchedule,
if every sporadic job in system can complete on time according to the newSchedule,

inform the cyclic executive to use the newSchedule;
else,

compute the latestCompletionTime of all sporadic jobs in system;
inform the cyclic executive to use the newSchedule at

max (latestCompletionTime, thresholdTime);
End Mode Changer

FIGURE 5–12 A mode changer.

As an example, when a computer-controlled bulldozer moves to the pile of hazardous
waste, the mode change to slow down its forward movement and carry out the digging action
should complete in time; otherwise the bulldozer will crash into the pile. If this mode change
cannot be made in time, an acceptable alternative action is for the bulldozer to stop completely.
The time required by the controller to generate the command for the stop action is usually
much shorter, and the sporadic job to stop the bulldozer is more likely to be acceptable.

On the other hand, the action to stop the bulldozer cannot be postponed. The scheduler
must admit and schedule the job to activate the brakes in time. In general, the mode changer
in Figure 5–12 cannot be used when a sporadic mode change cannot be rejected. The only
alternative is to schedule each sporadic mode-change job that cannot be rejected periodically,
with a period no greater than half the maximum allowed response time. The flight control
system in Figure 1–3 is an example. The mode selection task is polled at 30 Hz. In this
example, a mode change does not involve deletion and creation of tasks, only changes in the
input data. The time required by the mode selection task is very small and is allocated to
the task periodically. In general, the (maximum) execution time of a sporadic mode-change
job may be large. Setting aside a significant amount of processor bandwidth for it leads to
a reduction in the processing capacity available for periodic tasks. However, this is not a
problem as long as the other periodic tasks are schedulable. The cyclic executive described in
earlier sections reclaims the time allocated to but not used by the mode-change task and uses
the time to execute aperiodic jobs.

5.7.3 General Workloads and Multiprocessor Scheduling

It is probably obvious to you that the clock-driven approach is equally applicable to other
types of workload, not just those executed on a CPU. For example, a bus arbitrator can use a
scheduler similar to the one in Figure 5–7 to interleave the data transmissions from different
I/O devices on a system bus.

The clock-driven approach is applicable to workloads that are not characterizable by
the periodic task model. As long as the parameters of the jobs are known a priori, a static

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 106

106 Chapter 5 Clock-Driven Scheduling

schedule can be computed off-line. Precedence constraints and other types of dependencies
and contentions for resources among jobs constrain when the jobs may be scheduled relative
to each other. The algorithms used to search for a feasible schedule can take these constraints
into account. Once a feasible schedule is found and stored as a table, the static scheduler
described in Figure 5–2 can use the table in the same manner as schedule tables of periodic
tasks.

It is conceptually straightforward to schedule tasks on several processors whenever the
workload parameters are known a priori and there is a global clock. We can construct a global
schedule which specifies on what processor each job executes and when the job executes. As
long as the clock drifts on the processors are sufficiently small, we can use the uniprocessor
schedulers described in earlier sections on each processor to enforce the execution of the jobs
according to the global schedule.

Sometimes, a precomputed multiprocessor schedule can be found straightforwardly
from a precomputed uniprocessor schedule. As an example, Figure 5–13(a) shows a system
containing several CPUs connected by a system bus. Each task consists of a chain of jobs,
which executes on one of the CPUs and sends or receives data from one of the I/O devices
via the system bus. In a system with such an architecture, the system bus is sometimes the
bottleneck. By the bus being the bottleneck, we mean that if there is a feasible schedule of all
the data transfer activities on the bus, it is always possible to feasibly schedule the jobs that
send and receive the data on the respective CPUs. To illustrate, Figure 5–13(b) shows a cyclic
schedule of the data-transfer activities on the bus and the schedules of CPUs and I/O device
interfaces that produce and consume the data. The shaded boxes on the time lines of CPUS1
and CPUS2 show when the CPUs execute in order to produce and consume the data that oc-
cupy the bus in time intervals shown by shaded boxes on the time line of the bus. Similarly,
the CPUD is the producer of the data transferred to an I/O device during intervals shown as
dotted boxed on the bus time line. We can see that the schedules of the CPUs and I/O devices
can be derived directly from the schedule of the bus. Computing the schedule for the entire
system is simplified to computing the schedule of the system bus. This example is based on
the Boeing 777 Airplane Information Management System (AIMS) [DrHo]. The system uses
a table-driven system bus protocol. The protocol controls the timing of all data transfers. The
intervals when the bus interface unit of each CPU must execute (and hence when each CPU
must execute) are determined by the schedule of the system bus in a manner illustrated by this
example.

In general, searching for a feasible multiprocessor schedule is considerably more com-
plex than searching for a uniprocessor schedule. However, since the search is done off-line,
we can use exhaustive and complex heuristic algorithms for this purpose. The next section
presents a polynomial time hueristic algorithm for this purpose.

*5.8 ALGORITHM FOR CONSTRUCTING STATIC SCHEDULES

The general problem of choosing a minor frame length for a given set of periodic tasks, seg-
menting the tasks if necessary, and scheduling the tasks so that they meet all their deadlines is
NP-hard. Here, we first consider the special case where the periodic tasks contain no nonpre-
emptable section. After presenting a polynomial time solution for this case, we then discuss
how to take into account practical factors such as nonpreemptivity.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 107

Section 5.8 Algorithm for Constructing Static Schedules 107

I/O I/OI/O

system bus

…

CPUS2 CPUDCPUS1 …

CPUD

CPUS1

CPUS2

BUS

I/O
FIGURE 5–13 A simple clock-driven multiprocessor schedule.

5.8.1 Scheduling Independent Preemptable Tasks

We will prove later in Section 6.3 that a system of independent, preemptable periodic tasks
whose relative deadlines are equal to or greater than their respective periods is schedulable if
and only if the total utilization of the tasks is no greater than 1. Because some tasks may have
relative deadlines shorter than their periods and the cyclic schedule is constrained to have the
structure described earlier, a feasible schedule may not exist even when this condition is met.
The iterative algorithm described below enables us to find a feasible cyclic schedule if one
exists. The algorithm is called the iterative network-flow algorithm, or the INF algorithm for
short. Its key assumptions are that tasks can be preempted at any time and are independent.
(We note that the latter assumption imposes no restriction. Because we work with jobs’ ef-

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 108

108 Chapter 5 Clock-Driven Scheduling

fective release times and deadlines, which were defined in Section 4.5, we can temporarily
ignore all the precedence constraints.)

Before applying the INF algorithm on the given system of periodic tasks, we find all
the possible frame sizes of the system: These frame sizes met the constraints of Eqs. (5.2)
and (5.3) but not necessarily satisfy Eq. (5.1). [For example, the possible frame sizes of tasks
T1 = (4, 1), T2 = (5, 2, 7), and T3 = (20, 5) are 2 and 4. They satisfy Eqs. (5.2) and (5.3),
but not Eq. (5.1).] The INF algorithm iteratively tries to find a feasible cyclic schedule of
the system for a possible frame size at a time, starting from the largest possible frame size
in order of decreasing frame size. A feasible schedule thus found tells us how to decompose
some tasks into subtasks if their decomposition is necessary. If the algorithm fails to find a
feasible schedule after all the possible frame sizes have been tried, the given tasks do not
have a feasible cyclic schedule that satisfies the frame size constraints even when tasks can be
decomposed into subtasks.

Network-Flow Graph. The algorithm used during each iteration is based on the well-
known network-flow formulation [Blas] of the preemptive scheduling problem. In the descrip-
tion of this formulation, it is more convenient to ignore the tasks to which the jobs belong and
name the jobs to be scheduled in a major cycle of F frames J1, J2, . . . , JN . The constraints
on when the jobs can be scheduled are represented by the network-flow graph of the system.
This graph contains the following vertices and edges; the capacity of an edge is a nonnegative
number associated with the edge.

1. There is a job vertex Ji representing each job Ji , for i = 1, 2, . . . , N .

2. There is a frame vertex named j representing each frame j in the major cycle, for
j = 1, 2, . . . , F .

3. There are two special vertices named source and sink.

4. There is a directed edge (Ji , j) from a job vertex Ji to a frame vertex j if the job Ji can
be scheduled in the frame j , and the capacity of the edge is the frame size f .

5. There is a directed edge from the source vertex to every job vertex Ji , and the capacity
of this edge is the execution time ei of the job.

6. There is a directed edge from every frame vertex to the sink, and the capacity of this
edge is f .

A flow of an edge is a nonnegative number that satisfies the following constraints: (1) It
is no greater than the capacity of the edge and (2) with the exception of the source and sink,
the sum of the flows of all the edges into every vertex is equal to the sum of the flows of all
the edges out of the vertex.

Figure 5–14 shows part of a network-flow graph. For simplicity, only job vertices Ji and
Jk are shown. The label “(capacity), flow” of the each edge gives its capacity and flow. This
graph indicates that job Ji can be scheduled in frames x and y and the job Jk can be scheduled
in frames y and z.

A flow of a network-flow graph, or simply a flow, is the sum of the flows of all the
edges from the source; it should equal to the sum of the flows of all the edges into the sink.
There are many algorithms for finding the maximum flows of network-flow graphs. The time
complexity of straightforward ones is O((N + F)3). One of the fastest is by Goldberg [Gold].

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 109

Section 5.8 Algorithm for Constructing Static Schedules 109

Ji

(f)

(f), h

(f), h

x

ei-h

(f), ei+ek-hy

(f), ek

(f), 0
(f), 0

(f), 0

z

F

Jk

(ei), ei

source

Jobs Frames

sink

(ek), ek

…

FIGURE 5–14 Part of a network-flow graph.

Its worst-case run time complexity is pseudopolynomial in the length of the major cycle F ,
but on average, it can find a maximum flow in a much shorter time.

Maximum Flow and Feasible Preemptive Schedule. Clearly, the maximum flow of
a network-flow graph defined above is at most equal to the sum of the execution times of all
the jobs to be scheduled in a major cycle. The set of flows of edges from job vertices to frame
vertices that gives this maximum flow represents a feasible preemptive schedule of the jobs
in the frames. Specifically, the flow of an edge (Ji , j) from a job vertex Ji to a frame vertex
j gives the amount of time in frame j allocated to job Ji . (For example, the flows in Figure
5–14 indicate that the job Ji is allocated h units of time in frame x and ei − h units of time in
frame y and that it shares the frame y with Jk .) The total amount of time allocated to a job Ji

is represented by the total flow out of all the edges from the job vertex Ji . Since this amount is
equal to the flow into Ji , this amount is ei . Since the flow of the only edge out of every frame
vertex is at most f , the total amount of time in every frame allocated to all jobs is at most f .

As an example, we again look at the tasks T1 = (4, 1), T2 = (5, 2, 7), and T3 = (20, 5).
The possible frame sizes are 4 and 2. The network-flow graph used in the first iteration is
shown in Figure 5–15. The frame size is 4. We want every job slice to be scheduled in a frame
which begins no sooner than its release time and ends no later than its deadline. This is reason
for the edges from the job vertices to the frame vertices. The maximum flow of this graph is
18, which is the total execution time of all jobs in a hyperperiod. Hence the flows of edges
from the job vertices to the frame vertices represent a schedule of the tasks, in particular, the
schedule shown in Figure 5–7.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 110

110 Chapter 5 Clock-Driven Scheduling

(1), 1

(1), 1

(1), 1

(1), 1

(1), 1

(2), 2

(2), 2

(2), 2

(2), 2

(5), 5

(4), 1

(4), 2

(4), 0

(4), 2

(4), 0

(4), 2

(4), 1

(4), 1

(4), 3

(4), 1

(4), 2

(4), 1

(4), 4

(4), 4

(4), 1

(4), 3

(4), 3

(4), 4

source

Jobs Frames

sink

J3,1

J2,4

J2,3

J2,2

J2,1

J1,5

J1,4

J1,3

J1,2

J1,1

1

2

3

4

5

FIGURE 5–15 Example illustrating network-flow formulation.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 111

Section 5.9 Pros and Cons of Clock-Driven Scheduling 111

It is possible that the maximum flow of a network-flow graph is less than the sum of the
execution times of all N jobs. This fact indicates that the given tasks have no feasible schedule
with the frame size used to generate the graph. For example, the possible frame sizes of tasks
T1 = (4, 3) and T2 = (6, 1.5) are also 4 and 2. During the first iteration when we try to
find a schedule using frame size 4, we find that the maximum flow is only 11, while the total
execution time of all jobs in each hyperperiod is 12. (This is because both jobs in T2 cannot
be scheduled in the second frame.) Hence, there is no feasible schedule with frame size 4. We
must carry out the second iteration using frame size 2, making it necessary to segment every
job into two slices.

Generalization to Arbitrary Release Times and Deadlines. By the way, the
network-flow formulation of the preemptive scheduling problem can easily be generalized
to find schedules of independent jobs that have arbitrary known release times and deadlines.
In this case, the release times and deadlines of all N jobs to be scheduled partition the time
from the earliest release time to the latest deadline into at most 2N − 1 intervals. Rather
than frame vertices, the network-flow graph for this problem has a vertex representing each
of these intervals. The capacity of each edge into or out of an interval vertex is equal to the
length of the interval represented by the vertex. Again, a set of flows that gives the maximum
flow equal to the total execution times of all the jobs represents a preemptive schedule of the
job.

5.8.2 Postprocessing

The feasible schedule found by the INF algorithm may not meet some of the constraints that
are imposed on the cyclic schedule. Examples are precedence order of jobs and restrictions on
preemptions. Precedence constraints among jobs can easily be taken into account as follows.
You recall that we work with the effective release time and deadline of each job. The network-
flow graph for each possible frame size is generated based on the assumption that the jobs are
independent. Hence, the jobs may be scheduled in some wrong order according to a feasible
schedule found by the INF algorithm. We can always transform the schedule into one that
meets the precedence constraints of the jobs by swapping the time allocations of jobs that are
scheduled in the wrong order. In Section 4.5 we discussed why this swapping can always be
done.

We can try to transform a feasible preemptive schedule produced by the INF algorithm
into one that satisfies constraints on the number of preemptions and times of preemptions.
Unfortunately, there is no efficient optimal algorithm to do this transformation. This is not
surprising since the problem of finding a feasible nonpreemptive schedule of jobs with differ-
ent release times and deadlines is NP-hard, even on one processor.

5.9 PROS AND CONS OF CLOCK-DRIVEN SCHEDULING

The clock-driven approach to scheduling has many advantages. The most important one is its
conceptual simplicity. We can take into account complex dependencies, communication de-
lays, and resource contentions among jobs in the choice and construction of the static sched-
ule, making sure there will be no deadlock and unpredictable delays. A static schedule can
be represented by a table of start times and completion times that is interpreted by the sched-

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 112

112 Chapter 5 Clock-Driven Scheduling

uler at run time. By changing the table, jobs can be scheduled according to different static
schedules in different operation modes. There is no need for concurrency control. Precedence
constraints and other types of dependency can be taken care of by the choice of the schedule.
Hence, there is no need for any synchronization mechanism. Some applications have tight
completion-time jitter requirements. Again, such requirements can be taken into account in
the choice of the cyclic schedule.

When the workload is mostly periodic and the schedule is cyclic, timing constraints
can be checked and enforced at each frame boundary. Context switching and communication
overhead can be kept low by choosing as large a frame size as possible so as many jobs
as possible can execute from start to finish without interruption. This is a good scheduling
strategy for applications where variations in time and resource requirements are small. Many
traditional real-time applications (e.g., the patient care system and the flight control system
mentioned in Sections 1.1 and 1.2) are examples.

There are many ways to simplify clock-driven scheduling further from what we have
described. Here, we have allowed the periods of periodic tasks to be arbitrary. Moreover, we
have allowed the releases of the sporadic and aperiodic jobs to be event-triggered [Kope]. The
system invokes aperiodic and sporadic computations, communications, I/O operations, and so
on, in response to external events which can occur at any time. In practice, systems based on
the clock-driven scheduling paradigm are typically time-triggered. In a time-triggered system,
interrupts in response to external events are queued and polled periodically. The periods are
chosen to be integer multiples of the frame size. This design choice simplifies the construction
of the static schedules and eliminates the waste in slack time. The system and its static sched-
ule(s) can be simplified further if the periods of periodic tasks are chosen to be harmonic, as
exemplified by the flight controller in Figure 1–3.

Time-triggered systems based on the clock-driven scheduling approach are relatively
easy to validate, test, and certify. Because the times when jobs execute are deterministic, a
system scheduled in this manner will not exhibit the kind of anomalies described in Section
4.7. For this reason, it is possible to determine whether the system indeed meets all of its
timing requirements by exhaustive simulation and testing.

However, the clock-driven approach also has many disadvantages. The most obvious
one is that a system based on this approach is brittle: It is relatively difficult to modify and
maintain. For example, an enhancement that leads to changes in execution times of some tasks
or the addition of new tasks often requires that a new schedule be constructed. Consequently,
the approach is suited only for systems (e.g., small embedded controllers) which are rarely
modified once built.

Other disadvantages include the ones listed below.

1. The release times of all jobs must be fixed. In contrast, priority-driven algorithms do
not require fixed release times. We will see in Chapter 6 that we can guarantee the
timely completion of every job in a priority-driven system as long as the interrelease
times of all jobs in each periodic task are never less than the period of the task. This
relaxation of the release-time jitter requirement often eliminates the need for global
clock synchronization and permits more design choices.

2. In a clock-driven system, all combinations of periodic tasks that might execute at the
same time must be known a priori so a schedule for the combination can be precom-
puted. This restriction is clearly not acceptable for applications which must be recon-

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 113

Section 5.10 Summary 113

figurable on-line and the mix of periodic tasks cannot be predicted in advance. As we
will see in the next chapter, a priority-driven system does not have this restriction. We
can vary the number and parameters of periodic tasks in the system provided we subject
each new periodic task to an on-line acceptance test.

3. The pure clock-driven approach is not suitable for many systems that contain both hard
and soft real-time applications. You may have noticed that the methods for scheduling
aperiodic and sporadic tasks in the midst of periodic tasks described in earlier sections
in fact schedule the aperiodic and sporadic tasks in a priority-driven manner.

5.10 SUMMARY

This chapter described clock-driven schedulers that schedule periodic tasks according to some
cyclic schedule. To use this type of scheduler, the number of periodic tasks and the parameters
of the tasks in the system at all times must be known a priori. Each cyclic schedule used by
the scheduler is computed off-line based on this information and stored as a table for use by
the scheduler at run time.

It is desirable for cyclic schedules to satisfy the frame size constraints (5.1), (5.2), and
(5.3). According to such a schedule, scheduling decisions are made at the beginning of each
frame. The execution of every job starts in a frame which begins after the release time of the
job. Similarly, every job is scheduled to complete in a frame which ends before the deadline
of the job. Hence, at the beginning of each frame, the scheduler can verify that all jobs whose
deadlines are earlier than that time have indeed completed and that all jobs which are sched-
uled in the current frame have indeed been released. The scheduler takes appropriate recovery
action if any of these conditions are not satisfied.

Aperiodic jobs can be scheduled in the background after the periodic jobs scheduled
in each frame have completed. Alternatively, we can improve the average response time of
aperiodic jobs by scheduling them in the slack in each frame, that is, ahead of the periodic job
slices for as long as there is slack in the frame.

Similarly, sporadic jobs are also scheduled during the slack times not used by periodic
job slices in the frames. A sporadic job S is accepted only when (1) the total slack time not
used by periodic job slices and existing sporadic jobs in frames before its deadline is no less
than the execution time of the sporadic job S and (2) the slack of every existing sporadic job
which has a later deadline than S is no less than execution time of S. Once a sporadic job is
accepted, it is scheduled among all sporadic jobs in the EDF order during the time intervals
not used by periodic jobs slices.

EXERCISES

5.1 Each of the following systems of periodic tasks is scheduled and executed according to a cyclic
schedule. For each system, choose an appropriate frame size. Preemptions are allowed, but the
number of preemptions should be kept small.

(a) (6, 1), (10, 2), and (18, 2).
(b) (8, 1), (15, 3), (20, 4), and (22, 6).
(c) (4, 0.5), (5, 1.0), (10, 2), and (24, 9).

Integre Technical Publishing Co., Inc. Liu January 13, 2000 8:49 a.m. chap5 page 114

114 Chapter 5 Clock-Driven Scheduling

(d) (5, 0.1), (7, 1.0), (12, 6), and (45, 9).
(e) (9, 5.1, 1, 5.1), (8, 1), (13, 3), and (0.5, 22, 7, 22).
(f) (7, 5, 1, 5), (9, 1), (12, 3), and (0.5, 23, 7, 21).
(g) (10, 1, 12), (15, 1.5, 11), (21, 12, 15), and (32, 4, 24).

5.2 A system uses the cyclic EDF algorithm to schedule sporadic jobs. The cyclic schedule of peri-
odic tasks in the system uses a frame size of 5, and a major cycle contains 6 frames. Suppose that
the initial amounts of slack time in the frames are 1, 0.5, 0.5, 0.5, 1, and 1.

(a) Suppose that a sporadic job S1(23, 1) arrives in frame 1, sporadic jobs S2(16, 0.8) and
S3(20, 0.5) arrive in frame 2. In which frame are the accepted sporadic jobs scheduled?

(b) Suppose that an aperiodic job with execution time 3 arrives at time 1. When will it be com-
pleted, if the system does not do slack stealing?

5.3 Draw a network-flow graph that we can use to find a preemptive cyclic schedule of the periodic
tasks T1 = (3, 1, 7), T2 = (4, 1), and T3 = (6, 2.4, 8).

5.4 A system contains the following periodic tasks: T1 = (5, 1), T2 = (7, 1, 9), T3 = (10, 3), and
T4 = (35, 7).

(a) If the frame size constraint (5-1) is ignored, what are the possible frame sizes?
(b) Use the largest frame size you have found in part (a), draw the network-flow graph of the

system.
(c) Find a cyclic schedule by solving the network-flow problem in part (b) or show that the

system cannot be feasibly scheduled according to a cyclic schedule of the frame size used in
part (b).

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 115

C H A P T E R 6

Priority-Driven Scheduling
of Periodic Tasks

This chapter describes well-known priority-driven algorithms for scheduling periodic tasks
on a processor and examines the merits and limitations of these algorithms. It is the first of
three chapters devoted to priority-driven scheduling on one processor of applications charac-
terizable by the periodic task model. The simplifying assumptions made in this chapter are
that

1. the tasks are independent and

2. there are no aperiodic and sporadic tasks.

In the next chapter we will describe ways to integrate the scheduling of aperiodic and sporadic
tasks with periodic tasks. In Chapter 8, we will introduce other resources and discuss the ef-
fects of resource contention. We will also describe resource access-control protocols designed
to keep bounded the delay in job completion caused by resource contentions.

In most of this chapter, we will confine our attention to the case where every job is ready
for execution as soon as it is released, can be preempted at any time, and never suspends itself.
Scheduling decisions are made immediately upon job releases and completions. Moreover, the
context switch overhead is negligibly small compared with execution times of the tasks, and
the number of priority levels is unlimited. At the end of the chapter, we will remove these
restrictions and discuss the effects of these and other practical factors.

Since there will be no ambiguity in this chapter, we often refer to periodic tasks simply
as tasks. We now remove the restrictive assumption on fixed interrelease times which we made
in Chapter 5. Hereafter we again use the term period to mean the minimum interrelease time
of jobs in a task, as the term was defined in Chapter 3.

Most of our discussion is in terms of a fixed number of periodic tasks. The assumption
here is that some protocol is used to regulate changes in the number or parameters of periodic
tasks. In particular, when an application creates a new task, the application first requests the
scheduler to add the new task by providing the scheduler with relevant parameters of the
task, including its period, execution time, and relative deadline. Based on these parameters,
the scheduler does an acceptance test on the new periodic task. In this test, the scheduler
uses one of the methods described in this chapter to determine whether the new task can be

115

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 116

116 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

feasibly scheduled with all the other existing tasks in the system. It accepts and adds the new
task to the system only if the new task and all other existing tasks can be feasibly scheduled.
Otherwise, the scheduler rejects the new task. (We assume that the application system deals
with the rejections of new task requests and recovers in an application-dependent way.) When
tasks are independent, the scheduler can delete any task and add an acceptable task at any time
without causing any missed deadline. Later in Chapter 8 and 9, we will consider periodic tasks
that share resources and have precedence constraints. Such tasks cannot be added and deleted
at any time. We will describe a mode change protocol that tries to complete task additions and
deletions as soon as possible.

6.1 STATIC ASSUMPTION

Again, these three chapters focus on uniprocessor systems. You may question why we ex-
amine the problems of uniprocessor scheduling and synchronization in so much detail when
most real-time systems today and in the future contain more than one processor. To answer this
question, we recall that a multiprocessor priority-driven system is either dynamic or static. In
a static system, all the tasks are partitioned into subsystems. Each subsystem is assigned to a
processor, and tasks on each processor are scheduled by themselves. In contrast, in a dynamic
system, jobs ready for execution are placed in one common priority queue and dispatched to
processors for execution as the processors become available.

The dynamic approach should allow the processors to be more fully utilized on average
as the workload fluctuates. Indeed, it may perform well most of the time. However, in the
worst case, the performance of priority-driven algorithms can be unacceptably poor. A simple
example [DhLi] demonstrates this fact. The application system contains m + 1 independent
periodic tasks. The first m tasks Ti , for i = 1, 2, . . .m, are identical. Their periods are equal to
1, and their execution times are equal to 2ε, where ε is a small number. The period of the last
task Tm+1 is 1 + ε, and its execution time is 1. The tasks are in phase. Their relative deadlines
are equal to their periods. Suppose that the priorities of jobs in these tasks are assigned on
an EDF basis. The first job Jm+1,1 in Tm+1 has the lowest priority because it has the latest
deadline. Figure 6–1 shows an EDF schedule of these jobs if the jobs are dispatched and
scheduled dynamically on m processors. We see that Jm+1,1 does not complete until 1 + 2ε
and, hence, misses its deadline. The total utilization U of these m + 1 periodic tasks is 2mε+
1/(1 + ε). In the limit as ε approaches zero, U approaches 1, and yet the system remains
unschedulable. We would get the same infeasible schedule if we assigned the same priority to
all the jobs in each task according to the period of the task: the shorter the period, the higher
the priority. On the other hand, this system can be feasibly scheduled statically. As long as
the total utilization of the first m tasks, 2mε, is equal to or less than 1, this system can be
feasibly scheduled on two processors if we put Tm+1 on one processor and the other tasks on
the other processor and schedule the task(s) on each processor according to either of these
priority-driven algorithms.

It is arguable that the poor behavior of dynamic systems occurs only for some patholog-
ical system configurations, and some other algorithms may perform well even for the patho-
logical cases. In most cases, the performance of dynamic systems is superior to static systems.
The more troublesome problem with dynamic systems is the fact that we often do not know
how to determine their worst-case and best-case performance. The theories and algorithms

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 117

Section 6.2 Fixed-Priority versus Dynamic-Priority Algorithms 117

1+2ε2ε0

J1, 1

J2, 1

Jm+1, 1 Jm, 2P1

J1, 2 Jm+1, 2P2

2ε 1+2ε 21

J3, 1 J2, 2P3

Jm-1, 2Jm, 1Pm

…

FIGURE 6–1 A dynamic EDF schedule on m processors.

presented in this and subsequent chapters make it possible for us to validate efficiently, ro-
bustly, and accurately the timing constraints of static real-time systems characterizable by the
periodic task model. There are very few similar theories and algorithms for dynamic systems
to date, as we discussed in Section 4.8. Until they become available, the only way to validate a
dynamic system is by simulating and testing the system. This is prohibitively time consuming
if done exhaustively, or unreliable if the coverage of the test is incomplete.

For these reasons, most hard real-time systems built and in use to date and in the near
future are static. In the special case when tasks in a static system are independent, we can
consider the tasks on each processor independently of the tasks on the other processors. The
problem of scheduling in multiprocessor and distributed systems is reduced to that of unipro-
cessor scheduling. In general, tasks may have data and control dependencies and may share
resources on different processors. As you will see in Chapter 9, uniprocessor algorithms and
protocols can easily be extended to synchronize tasks and control their accesses to global
resources in multiprocessor and distributed environments.

6.2 FIXED-PRIORITY VERSUS DYNAMIC-PRIORITY ALGORITHMS

As stated in Section 4.9, a priority-driven scheduler (i.e., a scheduler which schedules jobs
according to some priority-driven algorithm) is an on-line scheduler. It does not precompute
a schedule of the tasks. Rather, it assigns priorities to jobs after they are released and places
the jobs in a ready job queue in priority order. When preemption is allowed at any time, a
scheduling decision is made whenever a job is released or completed. At each scheduling
decision time, the scheduler updates the ready job queue and then schedules and executes the
job at the head of the queue.

Priority-driven algorithms differ from each other in how priorities are assigned to jobs.
We classify algorithms for scheduling periodic tasks into two types: fixed priority and dynamic
priority. A fixed-priority algorithm assigns the same priority to all the jobs in each task. In

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 118

118 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

other words, the priority of each periodic task is fixed relative to other tasks. In contrast,
a dynamic-priority algorithm assigns different priorities to the individual jobs in each task.
Hence the priority of the task with respect to that of the other tasks changes as jobs are released
and completed. This is why this type of algorithm is said to be “dynamic.”

As you will see later, most real-time scheduling algorithms of practical interest assign
fixed priorities to individual jobs. The priority of each job is assigned upon its release when
it is inserted into the ready job queue. Once assigned, the priority of the job relative to other
jobs in the ready job queue does not change. In other words, at the level of individual jobs, the
priorities are fixed, even though the priorities at the task level are variable. Indeed, we have
three categories of algorithms: fixed-priority algorithms, task-level dynamic-priority (and job-
level fixed-priority) algorithms, and job-level (and task-level) dynamic algorithms. Except
where stated otherwise, by dynamic-priority algorithms, we mean task-level dynamic-priority
(and job-level fixed-priority) algorithms.

6.2.1 Rate-Monotonic and Deadline-Monotonic Algorithms

A well-known fixed-priority algorithm is the rate-monotonic algorithm [LiLa]. This algorithm
assigns priorities to tasks based on their periods: the shorter the period, the higher the priority.
The rate (of job releases) of a task is the inverse of its period. Hence, the higher its rate, the
higher its priority. We will refer to this algorithm as the RM algorithm for short and a schedule
produced by the algorithm as an RM schedule.

Figure 6–2 gives two examples. Figure 6–2(a) shows the RM schedule of the system
whose cyclic schedule is in Figure 5-8. This system contains three tasks: T1 = (4, 1), T2 =
(5, 2), and T3 = (20, 5). The priority of T1 is the highest because its rate is the highest (or
equivalently, its period is the shortest). Each job in this task is placed at the head of the priority

T1

(a)

(b)

0 2 4 6 8 10

T2

T1 T2 T3 T1 T2 T3 T1T1 T3 T2 T3 T2 T1 T2 T1

0 4 8 12 16 20

FIGURE 6–2 Examples of RM schedules. (a) RM schedule of T1 = (4, 1), T2 = (5, 2), and T3 = (20, 5). (b) RM
schedule of T1 = (2, 0.9) and T2 = (5, 2.3).

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 119

Section 6.2 Fixed-Priority versus Dynamic-Priority Algorithms 119

queue and is executed as soon as the job is released. T2 has the next highest priority. Its jobs
execute in the background of T1. For this reason, the execution of the first job in T2 is delayed
until the first job in T1 completes, and the third job in T2 is preempted at time 16 when the
fourth job in T1 is released. Similarly, T3 executes in the background of T1 and T2; the jobs
in T3 execute only when there is no job in the higher-priority tasks ready for execution. Since
there is always at least one job ready for execution until time 18, the processor never idles
until that time.

The schedule in Figure 6–2(b) is for the tasks T1 = (2, 0.9) and T2 = (5, 2.3). The
tasks are in phase. Here, we represent the schedule in a different form. Instead of using one
time line, sometimes called a Gantt chart, to represent a schedule on a processor as we have
done thus far, we use a time line for each task. Each time line is labeled at the left by the
name of a task; the time line shows the intervals during which the task executes. According to
the RM algorithm, task T1 has a higher-priority than task T2. Consequently, every job in T1 is
scheduled and executed as soon as it is released. The jobs in T2 are executed in the background
of T1.

Another well-known fixed-priority algorithm is the deadline-monotonic algorithm,
called the DM algorithm hereafter. This algorithm assigns priorities to tasks according their
relative deadlines: the shorter the relative deadline, the higher the priority. Figure 6–3
gives an example. The system consists of three tasks. They are T1 = (50, 50, 25, 100),
T2 = (0, 62.5, 10, 20), and T3 = (0, 125, 25, 50). Their utilizations are 0.5, 0.16, and 0.2,
respectively. The total utilization is 0.86. According to the DM algorithm, T2 has the highest
priority because its relative deadline 20 is the shortest among the tasks. T1, with a relative
deadline of 100, has the lowest priority. The resultant DM schedule is shown in Figure 6–3(a).
According to this schedule, all the tasks can meet their deadlines.

Clearly, when the relative deadline of every task is proportional to its period, the RM
and DM algorithms are identical. When the relative deadlines are arbitrary, the DM algo-
rithm performs better in the sense that it can sometimes produce a feasible schedule when
the RM algorithm fails, while the RM algorithm always fails when the DM algorithm fails.
The example above illustrates this fact. Figure 6–3(b) shows the RM schedule of the three
tasks which Figure 6–3(a) has shown to be feasible when scheduled deadline-monotonically.
According to the RM algorithm, T1 has the highest priority, and T3 has the lowest priority. We
see that because the priorities of the tasks with short relative deadlines are too low, these tasks
cannot meet all their deadlines.

6.2.2 Well-Known Dynamic Algorithms

The EDF algorithm assigns priorities to individual jobs in the tasks according to their absolute
deadlines; it is a dynamic-priority algorithm. Figure 6–4 shows the EDF schedule of the two
tasks T1 and T2 whose RM schedule is depicted in Figure 6–2(b).

• At time 0, the first jobs J1,1 and J2,1 of both tasks are ready. The (absolute) deadline
of J1,1 is 2 while the deadline of J2,1 is 5. Consequently, J1,1 has a higher priority and
executes. When J1,1 completes, J2,1 begins to execute.

• At time 2, J1,2 is released, and its deadline is 4, earlier than the deadline of J2,1. Hence,
J1,2 is placed ahead of J2,1 in the ready job queue. J1,2 preempts J2,1 and executes.

• At time 2.9, J1,2 completes. The processor then executes J2,1.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 120

120 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

(a)

T1

0 50 100 150 200 250

T2

0 62.5 125 187.5 250

T3

0 125 250

T1

0 50 100 150 200 250

T2

0 62.5 125 187.5 250

T3

0 125
missed

deadline

missed
deadline

250

(b)

FIGURE 6–3 Fixed-priority schedules of T1 = (50, 50, 25, 100), T2 = (0, 62.5, 10, 20) and T3 = (0, 125, 25, 50).

T1

0 2 4 6 8 10

T2

FIGURE 6–4 An earliest-deadline-first schedule of (2, 0.9) and (5, 2.3).

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 121

Section 6.2 Fixed-Priority versus Dynamic-Priority Algorithms 121

• At time 4, J1,3 is released; its deadline is 6, which is later than the deadline of J2,1.
Hence, the processor continues to execute J2,1.

• At time 4.1, J2,1 completes, the processor starts to execute J1,3, and so on.

We note that the priority of T1 is higher than the priority of T2 from time 0 until time 4.0. T2

starts to have a higher priority at time 4. When the job J2,2 is released, T2 again has a lower
priority. Hence, the EDF algorithm is a task-level dynamic-priority algorithm. On the other
hand, once a job is placed in the ready job queue according to the priority assigned to it, its
order with respect to other jobs in the queue remains fixed. In other words, the EDF algorithm
is a job-level fixed-priority algorithm. Later on in Chapter 8, we will make use of this property.

Another well-known dynamic-priority algorithm is the Least-Slack-Time-First (LST)
algorithm. You recall that at time t , the slack of a job whose remaining execution time (i.e.,
the execution of its remaining portion) is x and whose deadline is d is equal to d − t − x . The
scheduler checks the slacks of all the ready jobs each time a new job is released and orders
the new job and the existing jobs on the basis of their slacks: the smaller the slack, the higher
the priority.

Coincidentally, the schedule of T1 and T2 in the above example produced by the LST
algorithm happens to be identical to the EDF schedule in Figure 6–4. In general, however,
the LST schedule of a system may differ in a fundamental way from the EDF schedule. To
illustrate, we consider a more complicated system that consists of three tasks: T1 = (2, 0.8),
T2 = (5, 1.5), and T3 = (5.1, 1.5). When the first jobs J1,1, J2,1 and J3,1 are released at time
0, their slacks are 1.2, 3.5, and 3.6, respectively. J1,1 has the highest priority, and J3,1 has
the lowest. At time 0.8, J1,1 completes, and J2,1 executes. When J1,2 is released at time 2, its
slack is 1.2, while the slacks of J2,1 and J3,1 become 2.7 and 1.6, respectively. Hence, J1,2 has
the highest priority, but now J3,1 has a higher-priority than J2,1! From this example, we see
that the LST algorithm is a job-level dynamic-priority algorithm, while the EDF algorithm is
a job-level fixed-priority algorithm. As we will see in Chapter 8, this change in the relative
priorities of jobs makes resource access control much more costly.

Because scheduling decisions are made only at the times when jobs are released or com-
pleted, this version of the LST algorithm does not follow the LST rule of priority assignment
at all times. If we wish to be specific, we should call this version of the LST algorithm the
nonstrict LST algorithm. If the scheduler were to follow the LST rule strictly, it would have
to monitor the slacks of all ready jobs and compare them with the slack of the executing job.
It would reassign priorities to jobs whenever their slacks change relative to each other. As an
example, according to the schedule in Figure 6–4, the scheduler would find that at time 2.7,
the slack of J2,1 becomes (5 − 2.7 − 1.2) = 1.1, the same as that of J1,2. It would schedule
the two ready jobs in a round-robin manner until J1,2 completes. The run-time overhead of the
strict LST algorithm includes the time required to monitor and compare the slacks of all ready
jobs as time progresses. Moreover, by letting jobs with equal slacks execute in a round-robin
manner, these jobs suffer extra context switches. For this reason, the strictly LST algorithm is
an unattractive alternative, and we will not consider it further.

According to our classification, FIFO and Last-in-First-Out (LIFO) algorithms are
also dynamic-priority algorithms. As an example, suppose that we have three tasks: T1 =
(0, 3, 1, 3), T2 = (0.5, 4, 1, 1), and T3 = (0.75, 7.5, 2, 7.5). Suppose that the jobs in them

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 122

122 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

are scheduled on the FIFO basis. Clearly, J1,1 has a higher priority than J2,1, which in turn
has a higher priority than J3,1. In other words, T1 has the highest priority, and T3 has the
lowest priority initially. Later, J1,4, J2,3, and J3,2 are released at the times 9, 8.5, and 8.25,
respectively, and T3 has the highest priority while T1 has the lowest priority.

6.2.3 Relative Merits

Algorithms that do not take into account the urgencies of jobs in priority assignment usually
perform poorly. Dynamic-priority algorithms such as FIFO and LIFO are examples. (If the
two tasks in Figure 6–4 were scheduled on the FIFO basis, most of the jobs in T1 would miss
their deadlines.) An example of fixed-priority algorithms of this nature is one which assigns
priorities to tasks on the basis of their functional criticality: the more critical the task, the
higher the priority. (Suppose that T1 in this example is a video display task while T2 is a task
which monitors and controls a patient’s blood pressure. The latter is clearly more functionally
critical. If it were given the higher-priority, T1 would miss most of its deadlines. This sacrifice
of T1 for T2 is unnecessary since both tasks can be feasibly scheduled.) Hereafter, we con-
fine our attention to algorithms that assign priorities to jobs based on one or more temporal
parameters of jobs and have either optimal or reasonably good performance. The RM, DM,
EDF, and the LST algorithm are such algorithms.

A criterion we will use to measure the performance of algorithms used to schedule peri-
odic tasks is the schedulable utilization. The schedulable utilization of a scheduling algorithm
is defined as follows: A scheduling algorithm can feasibly schedule any set of periodic tasks
on a processor if the total utilization of the tasks is equal to or less than the schedulable
utilization of the algorithm.

Clearly, the higher the schedulable utilization of an algorithm, the better the algorithm.
Since no algorithm can feasibly schedule a set of tasks with a total utilization greater than
1, an algorithm whose schedulable utilization is equal to 1 is an optimal algorithm. In the
subsequent sections, we will show that the EDF algorithm is optimal in this sense as expected,
but the RM and DM algorithms are not.

While by the criterion of schedulable utilization, optimal dynamic-priority algorithms
outperform fixed-priority algorithms, an advantage of fixed-priority algorithms is predictabil-
ity. The timing behavior of a system scheduled according to a fixed-priority algorithm is more
predictable than that of a system scheduled according to a dynamic-priority algorithm. When
tasks have fixed priorities, overruns of jobs in a task can never affect higher-priority tasks. It
is possible to predict which tasks will miss their deadlines during an overload.

In contrast, when the tasks are scheduled according to a dynamic algorithm, it is difficult
to predict which tasks will miss their deadlines during overloads. This fact is illustrated by
the examples in Figure 6–5. The tasks shown in Figure 6–5(a) have a total utilization of 1.1.
According to their EDF schedule shown here, the job J1,5 in T1 = (2, 1) is not scheduled until
10 and misses its deadline at 10. Deadlines of all jobs in T2 are met in the schedule segment.
The tasks in Figure 6–5(b) also have a total utilization of 1.1. According to the EDF schedule
in Figure 6–5(b), J1,5 in T1 = (2, 0.8), as well as every job in T2, cannot complete on time.
There is no easy test, short of an exhaustive one, that allows us to determine which tasks will
miss their deadlines and which tasks will not.

The EDF algorithm has another serious disadvantage. We note that a late job which has
already missed its deadline has a higher-priority than a job whose deadline is still in the future.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 123

Section 6.2 Fixed-Priority versus Dynamic-Priority Algorithms 123

(a)

T1

0 2 4 6 8 10

2 4 6 8 10

T2

0

(b)

T1

0 2 4 6 8 10

2 4 6 8 10

T2

0

(c)

T1

0 2 4 6 8 10

2 4 6 8 10

T2

0

FIGURE 6–5 Unpredictability and instability of the EDF algorithm. (a) An EDF schedule of T1 = (2, 1) and
T2 = (5, 3) with U = 1.1. (b) An EDF schedule of T1 = (2, 0.8) and T2 = (5, 3.5) with U = 1.1. (c) An EDF
schedule of T1 = (2, 0.8) and T2 = (5, 4.0) with U = 1.2.

Consequently, if the execution of a late job is allowed to continue, it may cause some other
jobs to be late. As an example, we examine the schedule shown in Figure 6–5(c). When J2,1

becomes late at 5, it continues to execute because its priority is higher than the priority of J1,3.
As a consequence, J1,3 is late also. In fact, after J1,4, every job in both tasks will be late. This
unstable behavior of the EDF algorithm, that one job being late causes many other jobs to be
late, makes the algorithm unsuitable for systems where overload conditions are unavoidable.

A good overrun management strategy is crucial to prevent this kind of instability. An
overrun management strategy is to schedule each late job at a lower priority than the jobs that
are not late. An alternative is to complete the late job, but schedule some functional noncritical

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 124

124 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

jobs at the lowest priority until the system recovers from the overload condition. There are
many other alternatives. Invariably, the scheduler either lowers the priorities of some or all the
late jobs (or portions of jobs), or discards some jobs if they cannot complete by their deadlines
and logs this action. Clearly, what alternatives are suitable depends on the application.

6.3 MAXIMUM SCHEDULABLE UTILIZATION

Again, we say that a system is schedulable by an algorithm if the algorithm always produces
a feasible schedule of the system. A system is schedulable (and feasible) if it is schedulable
by some algorithm, that is, feasible schedules of the system exist. We now ask how large the
total utilization of a system can be in order for the system to be surely schedulable.

6.3.1 Schedulable Utilizations of the EDF Algorithm

We first focus on the case where the relative deadline of every task is equal to its period.
(This choice of the relative deadline arises naturally from throughput considerations. The
job in each period completes before the next period starts so there is no backlog of jobs.) The
following theorem tells us that any such system can be feasibly scheduled if its total utilization
is equal to or less than one, no matter how many tasks there are and what values the periods
and execution times of the tasks are. In the proof of this and later theorems, we will use the
following terms. At any time t , the current period of a task is the period that begins before t
and ends at or after t . We call the job that is released in the beginning of this period the current
job.

THEOREM 6.1. A system T of independent, preemptable tasks with relative dead-
lines equal to their respective periods can be feasibly scheduled on one processor if and
only if its total utilization is equal to or less than 1.

Proof. That the system is not feasible if its total utilization is larger than 1 is obvious
so we focus on the if part of the proof. As stated in Theorem 4.1, the EDF algorithm is
optimal in the sense that it can surely produce a feasible schedule of any feasible system.
Hence, it suffices for us to prove that the EDF algorithm can surely produce a feasible
schedule of any system with a total utilization equal to 1. We prove this statement by
showing that if according to an EDF schedule, the system fails to meet some deadlines,
then its total utilization is larger than 1. To do so, let us suppose that the system begins
to execute at time 0 and at time t , the job Ji,c of task Ti misses its deadline.

For the moment, we assume that prior to t the processor never idles. We will
remove this assumption at the end of the proof. There are two cases to consider: (1) The
current period of every task begins at or after ri,c, the release time of the job that misses
its deadline, and (2) the current periods of some tasks begin before ri,c. The two cases
are illustrated in Figure 6–6. In this figure, we see that the current jobs of all tasks Tk ,
for all k �= i , have equal or lower priorities than Ji,c because their deadlines are at or
after t .

Case (1): This case is illustrated by the time lines in Figure 6–6(a); each tick on
the time line of a task shows the release time of some job in the task. The fact that

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 125

Section 6.3 Maximum Schedulable Utilization 125

T1

T2

Tk

Tn

0

0

T1

T2

Tk

Tl

Tn

t-1
φn φn’

φk’

φ1’

φ1

φi φi + pi ri, c ri, c + pi

tφn

φ1

φi ri, c = φi’

φl

t

…
…

…
…

…

(a)

(b)

FIGURE 6–6 Infeasible EDF schedules.

Ji,c misses its deadline at t tells us that any current job whose deadline is after t is not
given any processor time to execute before t and that the total processor time required
to complete Ji,c and all the jobs with deadlines at or before t exceeds the total available
time t . In other words,

t <
(t − φi)ei

pi
+
∑

k �=i

⌊
t − φk

pk

⌋
ek (6.1)

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 126

126 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

(You recall that φk , pk and ek are the phase, period, and execution time of task Tk ,
respectively.) �x� (x ≥ 0) denotes the largest integer less than or equal to x . The first
term on the right-hand side of the inequality is the time required to complete all the
jobs in Ti with deadlines before t and the job Ji,c. Each term in the sum gives the total
amount of time before t required to complete jobs that are in a task Tk other than Ti and
have deadlines at or before t . Since φk ≥ 0 and ek/pk = uk for all k, and �x� ≤ x for
any x ≥ 0,

(t − φi)ei

pi
+
∑

k �=i

⌊
t − φk

pk

⌋
ek ≤ t

ei

pi
+ t

∑

k �=i

ek

pk
= t

n∑

k=1

uk = tU

Combining this inequality with the one in Eq. (6.1), we have U > 1.
Case (2): The time lines in of Figure 6–6(b) illustrate case (2). Let T′ denote the

subset of T containing all the tasks whose current jobs were released before ri,c and
have deadlines after t . It is possible that some processor time before ri,c was given to
the current jobs of some tasks in T′. In the figure, Tl is such a task.

Let t−1 be the end of the latest time interval I (shown as a black box in Figure
6–6(b)) that is used to execute some current job in T′. We now look at the segment of
the schedule starting from t−1. In this segment, none of the current jobs with deadlines
after t are given any processor time. Let φ′

k denote the release time of the first job of
task Tk in T − T′ in this segment. Because Ji,c misses its deadline at t , we must have

t − t−1 <
(t − t−1 − φ′

i)ei

pi
+

∑

Tk∈T−T′

⌊
t − t−1 − φ′

k

pk

⌋
ek

(Tasks in T′ are not included the sum; by definition of t−1, these tasks are not given any
processor time after t−1.) This inequality is the same as the one in Eq. (6.1) except that
t is replaced by t − t−1 and φk is replaced by φ′

k . We can used the same argument used
above to prove that

∑
Tk∈T−T′ uk > 1, which in turn implies that U > 1.

Now we consider the case where the processor idles for some time before t . Let
t−2 be the latest instant at which the processor idles. In other words, from t−2 to the
time t when Ji,c misses its deadline, the processor never idles. For the same reason that
Eq. (6.1) is true, the total time required to complete all the jobs that are released at and
after t−2 and must be completed by t exceeds the total available time t − t−2. In other
words, U > 1.

The following facts follow straightforwardly from this theorem.

1. A system of independent, preemptable periodic tasks with relative deadlines longer than
their periods can be feasibly scheduled on a processor as long as the total utilization is
equal to or less than 1.

2. The schedulable utilization UE DF (n) of the EDF algorithm for n independent, preempt-
able periodic tasks with relative deadlines equal to or larger than their periods is equal
to 1.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 127

Section 6.3 Maximum Schedulable Utilization 127

The EDF algorithm is not the only algorithm with this schedulable utilization. In partic-
ular, the schedulable utilization of the LST algorithm is also 1. This follows straightforwardly
from Theorem 4.3 which states that the LST algorithm is also optimal for scheduling inde-
pendent, preemptable jobs on one processor.

When the relative deadlines of some tasks are less than their respective periods, the
system may no longer be feasible, even when its total utilization is less than 1. As an example,
the task with period 5 and execution time 2.3 in Figure 6–4 would not be schedulable if its
relative deadline were 3 instead of 5.

We call the ratio of the execution time ek of a task Tk to the minimum of its relative
deadline Dk and period pk the density δk of the task. In other words, the density of Tk is
ek/min(Dk, pk). The sum of the densities of all tasks in a system is the density of the system
and is denoted by �. When Di < pi for some task Ti , � > U . If the density of a system
is larger than 1, the system may not be feasible. For example, this sum is larger than 1 for
(2, 0.9) and (5, 2.3, 3), and the tasks are not schedulable by any algorithm. On the other hand,
any system is feasible if its density is equal to or less than 1. We state this fact in the following
theorem which generalizes Theorem 6.1; its proof is similar to the proof of Theorem 6.1 and
is left to you as an exercise.

THEOREM 6.2. A system T of independent, preemptable tasks can be feasibly sched-
uled on one processor if its density is equal to or less than 1.

The condition given by this theorem is not necessary for a system to be feasible. A
system may nevertheless be feasible when its density is greater than 1. The system consisting
of (2, 0.6, 1) and (5, 2.3) is an example. Its density is larger than 1, but it is schedulable
according to the EDF algorithm.

6.3.2 Schedulability Test for the EDF Algorithm

Hereafter, we call a test for the purpose of validating that the given application system can in-
deed meet all its hard deadlines when scheduled according to the chosen scheduling algorithm
a schedulability test. If a schedulability test is efficient, it can be used as an on-line acceptance
test.

Checking whether a set of periodic tasks meet all their deadlines is a special case of the
validation problem that can be stated as follows: We are given

1. the period pi , execution time ei , and relative deadline Di of every task Ti in a system
T = {T1, T2, . . . Tn} of independent periodic tasks, and

2. a priority-driven algorithm used to schedule the tasks in T preemptively on one proces-
sor.

We are asked to determine whether all the deadlines of every task Ti , for every 1 ≤ i ≤ n,
are always met. We note that in the above statement, the phases of tasks are not given. If we
were also given the phases and if the values of all the given parameters would never vary, this
problem could be solved by simulation. We simply construct a segment of the schedule of
these tasks according to the given scheduling algorithm. A segment of length 2H +maxi pi +

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 128

128 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

maxi Di suffices [BaHR]. Ti meets all its deadlines if we observe no missed deadline in this
schedule segment. However, this method does not work whenever the parameters of the tasks
do vary; some of the reasons were discussed in Section 4.8.

When the scheduling algorithm is the EDF algorithm, Theorems 6.1 and 6.2 give us the
theoretical basis of a very simple schedulability test. To determine whether the given system
of n independent periodic tasks surely meets all the deadlines when scheduled according to
the preemptive EDF algorithm on one processor, we check whether the inequality

n∑

k=1

ek

min(Dk, pk)
≤ 1 (6.2)

is satisfied. We call this inequality the schedulability condition of the EDF algorithm. If it is
satisfied, the system is schedulable according to the EDF algorithm. When Eq. (6.2) is not
satisfied, the conclusion we may draw from this fact depends on the relative deadlines of the
tasks. If Dk ≥ pk for all k from 1 to n, then Eq. (6.2) reduces to U ≤ 1, which is both a
necessary and sufficient condition for a system to be feasible. On the other hand, if Dk < pk

for some k, Eq. (6.2) is only a sufficient condition; therefore we can only say that the system
may not be schedulable when the condition is not satisfied.

This schedulability test is not only simple but also robust. Theorem 4.4 states that the
execution of independent jobs on one processor according to a preemptive schedule is pre-
dictable. This theorem allows us to conclude that the system remains schedulable if some jobs
execute for less time than their respective (maximum) execution times. The proof of Theo-
rems 6.1 (and similarly the proof of Theorem 6.2) never makes use of the actual values of the
periods; it only makes use of the total demand for processor time by the jobs of each task Tk

in any interval of length t . If the actual interrelease times are sometimes longer than pk , the
total demand will in fact be smaller. Hence if according to Eq. (6.2) the system is schedulable
on the EDF basis, it remains schedulable when the interrelease times of jobs in some tasks are
sometimes longer than the respective periods of tasks. We will return to state this fact more
formally in Section 7.4 when we discuss sporadic tasks.

We can also use Eq. (6.2) as a rule to guide the choices of the periods and execution
times of the tasks while we design the system. As a simple example, we consider a digital
robot controller. Its control-law computation takes no more than 8 milliseconds on the cho-
sen processor to complete. The desired sampling rate is 100 Hz, that is, the control-law task
executes once every 10 milliseconds. Clearly the task is feasible if the control-law task is the
only task on the processor and its relative deadline is equal to the period. Suppose that we also
need to use the processor for a Built-In Self-Test (BIST) task. The maximum execution time
of this task is 50 milliseconds. We want to do this test as frequently as possible without caus-
ing the control-law task to miss any deadline, but never less frequently than once a second.
Equation (6.2) tells us that if we schedule the two tasks according to the EDF algorithm, we
can execute the BIST task as frequently as once every 250 milliseconds. Now suppose that
we need to add a telemetry task. Specifically, to send or receive each message, the telemetry
task must execute 15 milliseconds. Although the interarrival times of messages are very large,
we want the relative deadline of message processing jobs to be as small as feasible. Equation
(6.2) tells us that if we are willing to reduce the frequency of the BIST task to once a sec-
ond, we can make the relative deadline of the telemetry task as short as 100 milliseconds. If

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 129

Section 6.4 Optimality of the RM and DM Algorithms 129

this guaranteed maximum response time of the telemetry task is not acceptable and we must
redesign the three tasks, Eq. (6.2) can guide us in the process of trading off among the task
parameters in order to keep the entire system feasible.

6.4 OPTIMALITY OF THE RM AND DM ALGORITHMS

Hereafter in our discussion on fixed-priority scheduling, we index the tasks in decreasing or-
der of their priorities except where stated otherwise. In other words, the task Ti has a higher
priority than the task Tk if i < k. By indexing the tasks in this manner, our discussion implic-
itly takes into consideration the scheduling algorithm. Sometimes, we refer to the priority of
a task Ti as priority πi . πi ’s are positive integers 1, 2, . . . , n, 1 being the highest priority and
n being the lowest priority. We denote the subset of tasks with equal or higher priority than
Ti by Ti and its total utilization by Ui = ∑i

k=1 uk . You may have noticed that we implicitly
assume here that the tasks have distinct priorities. At the end of the chapter we will return to
remove this assumption, as well as to discuss the effects of a limited number of priority levels
when it is not possible to give tasks distinct priorities.

Because they assign fixed priorities to tasks, fixed-priority algorithms cannot be optimal:
Such an algorithm may fail to schedule some systems for which there are feasible schedules.
To demonstrate this fact, we consider a system which consists of two tasks: T1 = (2, 1) and
T2 = (5, 2.5). Since their total utilization is equal to 1, we know from Theorem 6.1 that
the tasks are feasible. J1,1 and J1,2 can complete in time only if they have a higher priority
than J2,1. In other words, in the time interval (0, 4], T1 must have a higher-priority than T2.
However, at time 4 when J1,3 is released, J2,1 can complete in time only if T2 (i.e., J2,1) has
a higher priority than T1 (i.e., J1,3). This change in the relative priorities of the tasks is not
allowed by any fixed priority algorithm.

While the RM algorithm is not optimal for tasks with arbitrary periods, it is optimal in
the special case when the periodic tasks in the system are simply periodic and the deadlines of
the tasks are no less than their respective periods. A system of periodic tasks is simply periodic
if for every pair of tasks Ti and Tk in the system and pi < pk , pk is an integer multiple of
pi . An example of a simply periodic task system is the flight control system in Figure 1-3.
In that system, the shortest period is 1/180 seconds. The other two periods are two times and
six times 1/180 seconds. The following theorem states that the RM algorithm is optimal for
scheduling such a system.

THEOREM 6.3. A system of simply periodic, independent, preemptable tasks whose
relative deadlines are equal to or larger than their periods is schedulable on one proces-
sor according to the RM algorithm if and only if its total utilization is equal to or less
than 1.

To see why this theorem is true, we suppose for now that the tasks are in phase (i.e., the
tasks have identical phases) and the processor never idles before the task Ti misses a deadline
for the first time at t . (In the next section we will justify why it suffices for us to consider
the case where the tasks are in phase and the processor never idles before t .) t is an integer
multiple of pi . Because the tasks are simply periodic, t is also an integer multiple of the period
pk of every higher-priority task Tk , for k = 1, 2, . . . , i − 1. Hence the total time required to

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 130

130 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

complete all the jobs with deadlines before and at t is equal to
∑i

k=1(ekt/pk), which is equal
to t times the total utilization Ui = ∑i

k=1 uk of the i highest priority tasks. That Ti misses a
deadline at t means that this demand for time exceeds t . In other words, Ui > 1.

Despite the fact that fixed-priority scheduling is not optimal in general, we may never-
theless choose to use this approach because it leads to a more predictable and stable system.
For this reason, we want to know among all the fixed-priority algorithms, which one(s) is
the best. The answer is that the DM algorithm is the optimal fixed-priority algorithm. The-
orem 6.4 states this fact more precisely. We will return shortly to clarify the sense in which
this theorem supports the claim that the DM algorithm is optimal even though the theorem is
stated for tasks with identical phase, that is, in phase.

THEOREM 6.4. A system T of independent, preemptable periodic tasks that are in
phase and have relative deadlines equal to or less than their respective periods can be
feasibly scheduled on one processor according to the DM algorithm whenever it can be
feasibly scheduled according to any fixed-priority algorithm.

This theorem is true because we can always transform a feasible fixed-priority schedule
that is not a DM schedule into one that is. Specifically, suppose that a system has a feasible
fixed-priority schedule that is not a DM schedule. We scan the tasks, starting from task T1

with the shortest relative deadline in order of increasing relative deadlines. When we find two
tasks Ti and Ti + 1 which are such that Di is less than Di+1 but Ti has a lower priority than
Ti+1 according to this schedule, we switch the priorities of these two tasks and modify the
schedule of the two tasks accordingly. After the switch, the priorities of the two tasks are
assigned on the DM basis relative to one another. By repeating this process, we can transform
the given schedule into a DM schedule. The step of showing that when the tasks are in phase,
it is always possible to switch the priorities of tasks Ti and Ti+1 and hence the time intervals
in which jobs in these tasks are scheduled without leading to any missed deadline is left to
you as an exercise.

In some systems, the relative deadline of every task Ti is equal to δpi for some constant
0 < δ. For such systems, the DM and RM algorithms are the same. As a corollary to the
above theorem, the RM algorithm is optimal among all fixed-priority algorithms whenever
the relative deadlines of the tasks are proportional to their periods.

6.5 A SCHEDULABILITY TEST FOR FIXED-PRIORITY TASKS
WITH SHORT RESPONSE TIMES

We now describe a pseudopolynomial time schedulability test developed by Lehoczky, et al.
[LeSD] and Audsley, et al. [ABTR] for tasks scheduled according to a fixed-priority algo-
rithm. In this section we confine our attention to the case where the response times of the
jobs are smaller than or equal to their respective periods. In other words, every job completes
before the next job in the same task is released. We will consider the general case where the
response times may be larger than the periods in the next section. Since no system with total
utilization greater than 1 is schedulable, we assume hereafter that the total utilization U is
equal to or less than 1.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 131

Section 6.5 A Schedulability Test for Fixed-Priority Tasks with Short Response Times 131

6.5.1 Critical Instants

The schedulability test uses as inputs the given sets {pi } and {ei } of periods and execution
times of the tasks in T and checks one task Ti at a time to determine whether the response
times of all its jobs are equal to or less than its relative deadline Di . Because we cannot count
on any relationship among the release times to hold, we must first identify the worst-case
combination of release times of any job Ji,c in Ti and all the jobs that have higher priorities
than Ji,c. This combination is the worst because the response time of a job Ji,c released under
this condition is the largest possible for all combinations of release times. For this purpose,
the notion of critical instant was first introduced in [LiLa] and subsequently refined by others
(e.g., [Bake] pointed out the need to consider case (2) below.) A critical instant of a task Ti is
a time instant which is such that

1. the job in Ti released at the instant has the maximum response time of all jobs in Ti , if
the response time of every job in Ti is equal to or less than the relative deadline Di of
Ti , and

2. the response time of the job released at the instant is greater than Di if the response time
of some jobs in Ti exceeds Di .

We call the response time of a job in Ti released at a critical instant the maximum
(possible) response time of the task and denote it by Wi . The following theorem gives us the
condition under which a critical instant of each task Ti occurs.

THEOREM 6.5. In a fixed-priority system where every job completes before the next
job in the same task is released, a critical instant of any task Ti occurs when one of
its job Ji,c is released at the same time with a job in every higher-priority task, that is,
ri,c = rk,lk for some lk for every k = 1, 2, . . . , i − 1.

*Proof. We first show that the response time of the first job Ji,1 is the largest when the
tasks in the subset Ti of i highest priority tasks are in phase, that is, when the condition
stated in the theorem is met. To do so, we take as the time origin the minimum of all the
phases of tasks in Ti . It suffices for us to consider the case where the processor remains
busy executing jobs with higher priorities than Ji,1 before Ji,1 is released at φi .1

Let Wi,1 denote the response time of Ji,1. From the release time φk of the first job
in Tk to the instant φi + Wi,1 when the first job Ji,1 in Ti completes, at most �(Wi,1 +
φi − φk)/pk� jobs in Tk become ready for execution. Each of these jobs demands ek

units of processor time. Hence the total amount of processor time demanded by Ji,1 and
all the jobs that must be completed before Ji,1 is given by

ei +
i−1∑

k=1

⌈
Wi,1 + φi − φk

pk

⌉
ek

1If during some intervals before φi the processor idles or executes lower priority jobs, we can ignore the
segment of the schedule before the end of the latest of such intervals, take this time instant as the time origin, and call
the first job in every higher-priority task released after this instant the first job of the task.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 132

132 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

0

Time Demand

t
Supply

(x, y)

(x-φi, y-φi)

φi

φi

Demand

FIGURE 6–7 Dependency of response time on phases.

At time Wi,1 + φi when Ji,1 completes, the supply of processor time becomes sufficient
to meet this total demand for the processor time for first time since time 0. In other
words, Wi,1 is equal to the smallest of all solutions of

Wi,1 = ei +
i−1∑

k=1

⌈
Wi,1 + φi − φk

pk

⌉
ek − φi (6.3)

if this equation has solutions in the range (0, pi]. If the equation does not have a solution
in this range, then Ji,1 cannot complete in time and misses its deadline.

To see how Wi,1 depends on the phase φk of each higher-priority task, we note
that the expression in the right-hand side of this equation is a staircase function of Wi,1.
It lies above the 45◦ straight line y(Wi,1) = Wi,1 until it intersects the straight line; the
value of Wi,1 at this intersection is the solution of Eq. (6.3). From Eq. (6.3), it is clear
that the staircase function has the largest value, and hence its intersection with the 45◦
straight line has the largest value, when φk is 0 for every k = 1, 2, . . . , i − 1. In other
words, the job Ji,1 has the largest response time when all the higher-priority tasks are in
phase.

We now let φk be 0 for all k < i . The time instant when the processor first com-
pletes all the ready jobs in higher-priority tasks released since time 0 is independent
when Ji,1 is released, and this is the first instant when Ji,1 can begin execution. There-
fore, the sooner Ji,1 is released, the longer it must wait to start execution and the larger

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 133

Section 6.5 A Schedulability Test for Fixed-Priority Tasks with Short Response Times 133

its response time. This observation leads us to conclude that the response time Wi,1 of
Ji,1 has the largest possible value when φi is also equal to zero.2

To show that an arbitrary job Ji,c in Ti has the maximum possible response time
whenever it is released at the same time with a job in every higher-priority task, we let
the release time of this job be φ′

i and the release time of the job in Tk that is current
at time φ′

i be φ′
k . Because every job completes in the period in which it is released,

there is no need for us to consider the jobs in each task Tk that are released before φ′
k .

Hence we can take the minimum among the release times φ′
k , for k = 1, 2, . . . , i , of

the current jobs as the time origin and consider the segment of the schedule starting
from this new origin independently from the earlier segment. The above argument can
be repeated and allows us to reach the conclusion that the response time of Ji,c has the
maximum value when the release times of all the current jobs in Ti are the same.

It follows from the above arguments that the maximum possible response time Wi

of all jobs in Ti is, therefore, equal to the smallest value of t that satisfies the equation

t = ei +
i−1∑

k=1

⌈
t

pk

⌉
ek (6.4)

It is easy to see that if Eq. (6.3) does not have a solution equal to or less than Di , neither
does this equation.

Figure 6–8 gives an illustrative example. Figure 6–8(a) shows an RM schedule of the
three jobs, (2, 0.6), (2.5, 0.2), and (3, 1.2) when they are in phase. Time 0 is a critical instant
of both lower-priority tasks. The response times of the jobs in (2.5, 0.2) are 0.8, 0.3, 0.2, 0.2,
0.8, and so on. These times never exceed the response time of the first job. Similarly, the
response times of the jobs in (3, 1.2) are 2, 1.8, 2, 2, and so on, which never exceed 2, the
response time of the first job in (3, 1.2). Figure 6–8(b) shows an RM schedule when the phase
of the task with period 2.5 is one, while the phases of the other tasks are 0. We see that 6 is a
critical instant of the two lower-priority tasks. The jobs of these tasks released at this instant
have the maximum possible response times of 0.8 and 2, respectively.

We are now ready to clarify a point that was left fuzzy at the end of the last section.
Although Theorem 6.4 is stated in terms of tasks that are in phase, we claimed that the DM
algorithm is an optimal fixed-priority algorithm. Theorem 6.5 gives us justification. When-
ever release-time jitters are not negligible, the information on release times cannot be used to
determine whether any algorithm can feasibly schedule the given system of tasks. Under this

2Rather than relying on this intuitive argument, we can arrive at this conclusion by examining how the solution
in Eq. (6.3) depends on φi when φk equal 0 for every k = 1, 2, . . . , i − 1. The solid graph in Figure 6–7 shows the
general behavior of the staircase function when φi is also equal to 0. Each rise occurs when Wi,1 is an integer multiple
of some pk . When φi is nonzero, the staircase function behaves as indicated by the dotted line. Each rise in the
dotted line occurs when Wi,1 + φi is an integer multiple of some period pk . Hence, corresponding to each rise in the
solid staircase function at some value z of Wi,1, there is a rise in the dotted function at z − φi . The step sizes at the
corresponding rises of both staircase functions are the same. However, every plateau in the dotted function is φi units
lower than the corresponding plateau in the solid function. In short, we can obtain the dotted staircase function by
shifting the solid staircase function to the right by φi units and down for φi units. From this, we can see that if the
solid staircase function intersects the 45◦ straight line for the first time at some point (x, y), as shown in Figure 6–7,
the dotted staircase function intersects the straight line at (x − φi , y − φi). Therefore, the response time of Ji,1 for an
arbitrary φi is equal to its response time for zero phase minus φi .

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 134

134 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

(a)

T1

0 2 4 6 8 10 12

T2

0 2.5 5 7.5 10

T3

T1

T2

T3

0 3 6 9 12

(b)

0 2 4 6 8 10 12

1 3.5 6 8.5 11

0 3 6 9 12

FIGURE 6–8 Example illustrating critical instants (T1 = (2, 0.6), T2 = (2.5, 0.2), T3 = (3, 1.2)).

circumstance, we have no choice but to judge a fixed-priority algorithm according to its per-
formance for tasks that are in phase because all fixed-priority algorithms have their worst-case
performance for this combination of phases.

6.5.2 Time-Demand Analysis

The schedulability test [LeSD, ABTR] described below makes use of the fact stated in The-
orem 6.5. To determine whether a task can meet all its deadlines, we first compute the total
demand for processor time by a job released at a critical instant of the task and by all the
higher-priority tasks as a function of time from the critical instant. We then check whether
this demand can be met before the deadline of the job. For this reason, we name this test a
time-demand analysis.

To carry out the time-demand analysis on T, we consider one task at a time, starting
from the task T1 with the highest priority in order of decreasing priority. To determine whether

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 135

Section 6.5 A Schedulability Test for Fixed-Priority Tasks with Short Response Times 135

a task Ti is schedulable after finding that all the tasks with higher priorities are schedulable,
we focus on a job in Ti , supposing that the release time t0 of the job is a critical instant of
Ti . At time t0 + t for t ≥ 0, the total (processor) time demand wi (t) of this job and all the
higher-priority jobs released in [t0, t] is given by

wi (t) = ei +
i−1∑

k=1

⌈
t

pk

⌉
ek, for 0 < t ≤ pi (6.5)

This job of Ti can meet its deadline t0 + Di if at some time t0 + t at or before its deadline, the
supply of processor time, which is equal to t , becomes equal to or greater than the demand
wi (t) for processor time. In other words, wi (t) ≤ t for some t ≤ Di , where Di is equal to
or less than pi . Because this job has the maximum possible response time of all jobs in Ti ,
we can conclude that all jobs in Ti can complete by their deadlines if this job can meet its
deadline.

If wi (t) > t for all 0 < t ≤ Di , this job cannot complete by its deadline; Ti , and hence
the given system of tasks, cannot be feasibly scheduled by the given fixed-priority algorithm.
More specifically, as long as the variations in the interrelease times of tasks are not negligibly
small, we have to make this conclusion because a critical instant of Ti can occur. However, if
the given tasks have known phases and periods and the jitters in release times are negligibly
small, it is possible to determine whether any job of Ti is ever released at the same time as
a job of every higher priority task. If this condition can never occur, a critical instant of Ti

can never occur; no job in Ti can ever have the maximum possible response time. Ti may
nevertheless be schedulable even though the time-demand analysis test indicates that it is not.

Because of Theorem 6.5, we can say that wi (t) given by the Eq. (6.5) is the maximum
time demanded by any job in Ti , plus all the jobs that must be completed before this job, at
any time t < pi since its release. We call wi (t) the time-demand function of the task Ti .

As an example, we consider a system containing four tasks: T1 = (φ1, 3, 1), T2 =
(φ2, 5, 1.5), T3 = (φ3, 7, 1.25), and T4 = (φ4, 9, 0.5), where the phases of the tasks are
arbitrary. Their total utilization is 0.87. The given scheduling algorithm is the RM algorithm.
In Figure 6–9, the solid lines show the time-demand functions of these four tasks. The dotted
lines show the total contributions of higher-priority tasks to the time-demand function of each
lower-priority task. For example, the job in T2 being considered is released at t equal to 0. In
the time interval (0, 5), it contributes 1.5 units of time to its time-demand function w2(t). T1

contributes a total of 1 unit from time 0 to 3 and 2 units from time 3 to 6, and so on. Because
at time t = 2.5 the total demand w2(t) of 2.5 units is met, the maximum possible response
time of jobs in T2 is 2.5. Since the relative deadline of T2 is 5, the task is schedulable. From
Figure 6–9, we can see that every task in this system is schedulable. In particular, the dot at
the intersection of wi (t) and the straight line y(t) = t marks the time instant from a critical
instant of Ti at which the job in Ti released at the critical instant completes. From this graph,
we can tell that the maximum possible response times of the tasks are 1, 2.5, 4.75, and 9,
respectively.

Suppose that in addition to these four tasks, there is a fifth task with period 10 and
execution time 1. It is easy to see that the time-demand function of this task lies entirely
above the supply function t from 0 to 10. For this reason, we can conclude that this task
cannot be feasibly scheduled by the given scheduling algorithm.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 136

136 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

w4(t)

 w3(t)

w2(t)

w1(t)

t

Time

Ti
m

e-
de

m
an

d
fu

nc
ti

on
s

0 1 2 3 4 5 6 7 9 108

1

2

3

4

5

6

7

8

9

10

FIGURE 6–9 Time-demand analysis (3,1), (5, 1.5), (7, 1.25), and (9, 0.5).

This example illustrates the fact that the time-demand function of any task Ti is a stair-
case function. The rises in the function occur at time instants which are integer multiples
of periods of higher-priority tasks. Immediately before each rise in each function wi (t), the
shortage wi (t)− t between the processor-time demand and the supply is the smallest for all t
in the interval from the previous rise. (In this example, in the range of t from 0 to 3, w2(t)− t
is the smallest at t equal to 3; in the range from 3 to 5, this difference is the smallest at t equal
to 5.) Hence, if we are not interested in the value of its maximum possible response time, only
whether a task is schedulable, it suffices for us to check whether the time-demand function of
the task is equal to or less than the supply at these instants.

In summary, to determine whether Ti can be feasibly scheduled by the given scheduling
algorithm using the time-demand analysis method proposed by Lehoczky, et al. [LeSD], we

1. compute the time-demand function wi (t) according to Eq. (6.5), and

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 137

Section 6.5 A Schedulability Test for Fixed-Priority Tasks with Short Response Times 137

2. check whether the inequality

wi (t) ≤ t (6.6a)

is satisfied for values of t that are equal to

t = j pk; k = 1, 2, . . . i; j = 1, 2, . . . , �min(pi , Di)/pk� (6.6b)

If this inequality is satisfied at any of these instants, Ti is schedulable.

Let qn,1 denote the period ratio of the system, that is, the ratio of the largest period pn to
the smallest period p1. The time complexity of the time-demand analysis for each task is
O(nqn,1).

For task T3 in this example, we need to check whether its time-demand function w3(t)
is equal to or less than t at t equal to 3, 5, 6, and 7. In doing so, we find that the inequality is
not satisfied at 3 but is satisfied at 5. Hence, we can conclude that the maximum response time
of T3 is between 3 and 5 and the task is schedulable. As a more complicated example, suppose
that we are given a set of tasks with periods 2, 3, 5, and 11 and we want to determine whether
the task with period 11 is schedulable. We check whether Eq. (6.6a) is satisfied at 2, 4, 6, 8,
and 10, which are integer multiples of 2 less than 11; 3, 6, and 9, which are integer multiples
of 3 less than 11; 5 and 10, which are integer multiples of 5 less than 11, and finally 11.

We now use the example in Figure 6–9 to explain intuitively why the time-demand
analysis method is robust: The conclusion that a task Ti is schedulable remains correct when
the execution times of jobs may be less than their maximum execution times and interrelease
times of jobs may be larger than their respective periods. We replotted the time-demand func-
tions for the two highest priority tasks in Figure 6–10(a). Suppose that the execution times
of jobs in T1 are in the range [0.9, 1] and those of jobs in T2 are in the range [1.25, 1.5].
w2(t), calculated according to Eq. (6.5), is the maximum time-demand function of T2. Its ac-
tual time-demand function can be anywhere in the shaded area. Clearly, the intersection of the
actual time-demand function with the time supply line t is a point at most equal to 2.5. Sim-
ilarly, the dotted lines in Figure 6–10(b) show the time-demand function w3(t) of T3, which
is calculated according to Eq. (6.5), as well as the contribution of T1 and T2 to the function.
The dashed lines show the contribution of T1 and T2 to the actual time-demand function of T3

when the actual interrelease times of the jobs in T1 and T2 are larger than their periods. We
see again that the actual time-demand function of T3, depicted by the solid line, lies below
the time-demand function depicted by the dotted line. T3 remains schedulable despite these
variations in release times.

6.5.3 Alternatives to Time-Demand Analysis

For the simple case considered here, Theorem 6.5 lets us identify the worst-case condition for
the schedulability of a fixed-priority system. Instead of carrying out a time-demand analysis,
we can also determine whether a system of independent preemptable tasks is schedulable by
simply simulating this condition and observing whether the system is then schedulable. In
other words, a way to test the schedulability of such a system is to construct a schedule of
it according to the given scheduling algorithm. In this construction, we assume that the tasks

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 138

138 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

are in phase and the actual execution times and interrelease times of jobs in each task Ti are
equal to ei and pi , respectively. As long as Theorem 6.5 holds, it suffices for us to construct
only the initial segment of length equal to the largest period of the tasks. If there is no missed
deadline in this segment, then all tasks are feasibly scheduled by the given algorithm. Figure
6–11 shows the worst-case initial segment of the RM schedule of the system in Figure 6–9.

t0 1 2 3 4 5 6

1

2

3

4

5

6

0 1 2 3 4 5 6 7

1

2

3

4

5

6

t

(a)

(b)

FIGURE 6–10 Actual time-demand functions.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 139

Section 6.5 A Schedulability Test for Fixed-Priority Tasks with Short Response Times 139

T1

0 1.0 3 6 9

T2

2.5 5

T3

4.75 7

T4

0 9

FIGURE 6–11 A worst-case schedule of (3, 1), (5, 1.5), (7, 1.25), and (9, 0.5).

This schedule allows us to draw the same conclusion about the maximum response times of
the four tasks. We refer to this alternative as the worst-case simulation method. It is easy to
see that the time complexity of this method is also O(nqn,1), where qn,1 is the ratio pn/p1.

For now, it appears that the more conceptually complex time-demand analysis method
has no advantage over the simulation method. Later in the chapter, it will become evident
that we can easily extend the time-demand analysis method to deal with other factors, such as
nonpreemptivity and self-suspension, that affect the schedulability of a system, but we cannot
easily extend the simulation method. When these factors must be taken into account, either
we no longer know the worst-case condition for each task or the worst-case conditions for
different tasks are different. In either case, the need to construct a large number of worst-case
conditions greatly increases the complexity of the simulation method and makes it impractical
for large systems.

If we want to know the maximum possible response time Wi of each task Ti , we must
solve Eq. (6.4). This can be done in an iterative manner [ABTR], starting from an initial guess
t (1) of Wi . (Since the response time of a job is at least equal to its execution time, we can
always use ei as the initial value.) During the lth iteration for l ≥ 1, we compute the value
t (l+1) on the right-hand side of Eq. (6.4) according to

t (l+1) = ei +
i−1∑

k=1

⌈
t (l)

pk

⌉
ek (6.7)

We terminate the iteration either when t (l+1) is equal to t (l) and t (l) ≤ pi for some l or when
t (l+1) becomes larger than pi , whichever occurs sooner. In the former case, Wi is equal to t (l),
and Ti is schedulable. In the latter case, we fail to find Wi , and Ti is not schedulable.

For example, we consider the task T3 = (7, 1.25) in Figure 6–9. Substituting the pa-
rameters of this task and the higher-priority tasks (3, 1) and (5, 1.5) into Eq. (6.4), we have

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 140

140 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

t = 1.25 + 1

⌈
t

3

⌉
+ 1.5

⌈
t

5

⌉

As an initial guess t (1) of W3, we use its execution time 1.25. Evaluating the right-hand side of
this equation, we find t (2) equal to 3.75. Substituting this value into the right-hand side again,
we find t (3) equal to 4.75. t (4) calculated from t (3) = 4.75 is equal to 4.75. Hence, W3 is 4.75.

6.6 SCHEDULABILITY TEST FOR FIXED-PRIORITY TASKS
WITH ARBITRARY RESPONSE TIMES

This section describes a general time-demand analysis method developed by Lehoczky [Leho]
to determine the schedulability of tasks whose relative deadlines are larger than their respec-
tive periods. Since the response time of a task may be larger than its period, it may have
more than one job ready for execution at any time. Ready jobs in the same task are usually
scheduled on the FIFO basis. We assume here that this policy is used.

6.6.1 Busy Intervals

We will use the term level-πi busy interval. A level-πi busy interval (t0, t] begins at an instant
t0 when (1) all jobs in Ti released before the instant have completed and (2) a job in Ti is
released. The interval ends at the first instant t after t0 when all the jobs in Ti released since t0
are complete. In other words, in the interval (t0, t], the processor is busy all the time executing
jobs with priorities πi or higher, all the jobs executed in the busy interval are released in the
interval, and at the end of the interval there is no backlog of jobs to be executed afterwards.
Hence, when computing the response times of jobs in Ti , we can consider every level-πi busy
interval independently from other level-πi busy intervals.

With a slight abuse of the term, we say that a level-πi busy interval is in phase if the first
jobs of all tasks that have priorities equal to or higher than priority πi and are executed in this
interval have the same release time. Otherwise, we say that the tasks have arbitrary phases in
the interval.

As an example, Figure 6–12 shows the schedule of three tasks T1 = (2, 1), T2 =
(3, 1.25), and T3 = (5, 0.25) in the first hyperperiod. The filled rectangles depict where jobs
in T1 are scheduled. The first busy intervals of all levels are in phase. The priorities of the
tasks are π1 = 1, π2 = 2, and π3 = 3, with 1 being the highest priority and 3 being the lowest
priority. As expected, every level-1 busy interval always ends 1 unit time after it begins. For
this system, all the level-2 busy intervals are in phase. They begin at times 0, 6, and so on
which are the least common multiples of the periods of tasks T1 and T2. The lengths of these
intervals are all equal to 5.5. Before time 5.5, there is at least one job of priority 1 or 2 ready
for execution, but immediately after 5.5, there are none. Hence at 5.5, the first job in T3 is
scheduled. When this job completes at 5.75, the second job in T3 is scheduled. At time 6,
all the jobs released before time 6 are completed; hence, the first level-3 busy interval ends
at this time. The second level-3 busy interval begins at time 6. This level-3 busy interval is
not in phase since the release times of the first higher-priority jobs in this interval are 6, but
the first job of T3 in this interval is not released until time 10. The length of this level-3 busy

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 141

Section 6.6 Schedulability Test for Fixed-Priority Tasks with Arbitrary Response Times 141

0 2 4 6 8 10 12

12 14 16 18 20 22 24

24 26 28 30 32 34 36

T1 = (2, 1), T2 = (3, 1.25), T3 = (5, 0.25)

J2,1 J2,3J2,2

J2,2 J3,2
J2,3

J2,4

J2,4 J3,3

J3,1
J2,1

J2,5 J2,7J2,6

J2,6 J3,4 J2,7

J2,8

J2,8 J3,5J2,5

J2,9

J2,10 J2,10 J3,6J2,9

FIGURE 6–12 Example illustrating busy intervals.

interval is only 5.75. Similarly, all the subsequent level-3 busy intervals in the hyperperiod
have arbitrary phases.

6.6.2 General Schedulability Test

The general schedulability test described below relies on the fact that when determining the
schedulability of a task Ti in a system in which the response times of jobs can be larger than
their respective periods, it still suffices to confine our attention to the special case where the
tasks are in phase. However, the first job Ji,1 may no longer have the largest response time
among all jobs in Ti . (This fact was illustrated by Lehoczky, et al. [LSST] by the example
of two tasks: T1 = (70, 26) and T2 = (100, 52). Seven jobs of T2 execute in the first level-2
busy interval. Their response times are 114, 102, 116, 104, 118, 106, and 94, respectively.
The response times of both the third and fifth jobs in T2 are larger than the response time of
the first job.) Consequently, we must examine all the jobs of Ti that are executed in the first
level-πi busy interval. (Obviously, this busy interval is in phase when the tasks are in phase.)
If the response times of all these jobs are no greater than the relative deadline of Ti , Ti is
schedulable; otherwise, Ti may not be schedulable.

Specifically, the following general schedulability test developed by Lehoczky [Leho]
for tasks with arbitrary relative deadlines works in this manner.

General Time-Demand Analysis Method

Test one task at a time starting from the highest priority task T1 in order of decreasing
priority. For the purpose of determining whether a task Ti is schedulable, assume that
all the tasks are in phase and the first level-πi busy interval begins at time 0.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 142

142 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

While testing whether all the jobs in Ti can meet their deadlines (i.e., whether Ti

is schedulable), consider the subset Ti of tasks with priorities πi or higher.

(i) If the first job of every task in Ti completes by the end of the first period
of the task, check whether the first job Ji,1 in Ti meets its deadline. Ti is
schedulable if Ji,1 completes in time. Otherwise, Ti is not schedulable.

(ii) If the first job of some task in Ti does not complete by the end of the first
period of the task, do the following:

(a) Compute the length of the in phase level-πi busy interval by solving
the equation t = ∑i

k=1� t
pk

�ek iteratively, starting from t (1) = ∑i
k=1 ek

until t (l+1) = t (l) for some l ≥ 1. The solution t (l) is the length of the
level-πi busy interval.

(b) Compute the maximum response times of all �t (l)/pi� jobs of Ti in
the in-phase level-πi busy interval in the manner described below and
determine whether they complete in time.

Ti is schedulable if all these jobs complete in time; otherwise Ti is not
schedulable.

It is easy to compute the response time of the first job Ji,1 of Ti in the first in-phase
level-πi busy interval. The time-demand function wi,1(t) is still given by the expression in the
right-hand side of Eq. (6.5). An important difference is that the expression remains valid for
all t > 0 before the end of the level-πi busy interval. For the sake of convenience, we copy
the expression here.

wi,1(t) = ei +
i−1∑

k=1

⌈
t

pk

⌉
ek, for 0 < t ≤ wi,1(t) (6.8)

The maximum possible response time Wi,1 of Ji,1 is equal to the smallest value of t that
satisfies the equation t = wi,1(t). To obtain Wi,1, we solve the equation iteratively and termi-
nate the iteration only when we find t (l+1) equal to t (l). Because Ui is no greater than 1, this
equation always has a finite solution, and the solution can be found after a finite number of
iterations.

Let Wi, j denote the maximum possible response time of the j th job in a level-πi busy
interval. The following lemma tells us how to compute Wi, j .

LEMMA 6.6. The maximum response time Wi, j of the j th job of Ti in an in-phase
level-πi busy period is equal to the smallest value of t that satisfies the equation

t = wi, j (t + (j − 1)pi)− (j − 1)pi (6.9a)

where wi, j () is given by

wi, j (t) = jei +
i−1∑

k=1

⌈
t

pk

⌉
ek, for (j − 1)pi < t ≤ wi, j (t) (6.9b)

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 143

Section 6.6 Schedulability Test for Fixed-Priority Tasks with Arbitrary Response Times 143

As an example, Figure 6–13(a) shows the time-demand functions w1,1(t), w2,1(t) and
w3,1(t) of the first jobs J1,1, J2,1 and J3,1 in the system in Figure 6–12. Since w2,1(t) lies
entirely above the supply t line from 0 to 3, J2,1 does not complete at 3. Solving for the
response time W2,1 of this job, we find that W2,1 equals 3.25. Similarly, the first intersection
of w3,1(t) with the supply line t is at 5.75; this is the response time of J3,1.

w2, 1(t)

w3, 1(t)

t

Ti
m

e-
de

m
an

d
fu

nc
ti

on
s

0 1 2 3 4 5 6 7

1

2

3

4

5

6

t

Ti
m

e-
de

m
an

d
fu

nc
ti

on
s

0 1 2 3 4 5 6 7

1

2

3

4

5

6

w2, 2(t)
w3, 2(t)

(b)

(a)

FIGURE 6–13 Time-demand functions of tasks T1 = (2, 1), T2 = (3, 1.25) and T3 = (5, 0.25).

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 144

144 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

Figure 6–13(b) shows the time-demand functions w2,2(t) and w3,2(t) of the second jobs
of T2 and T3 in the first busy intervals, respectively. We see that these functions are equal to
t when t is equal to 5.5 and 6, respectively. Therefore, J2,2 completes at t = 5.5, and J3,2

completes at t = 6. Subtracting their release times, we find that W2,2 is 2.5 and W3,2 is 1.
Computationally, it is more efficient to find Wi, j by solving Eq. (6.9) iteratively in a

manner similar to Eq. (6.7). For example, to find W2,2, we substitute the parameters of the
tasks into Eq. (6.9) to obtain

t = 2 × 1.25 + �(t + 3)/2� − 3

To solve this equation iteratively, we begin with the initial guess t (1) of 1.25, the execution
time of J2,2. Substituting t on the right-hand side of the equation by this value, we obtain
t (2) = 2.5. When we substitute t on the right-hand side by 2.5, we obtain t (3) = 2.5. This
allows us to terminate the iteration and conclude that W2,2 is 2.5. Similarly, W3,2 = 1 is the
minimum solution of the equation

t = 2 × 0.25 + �(t + 5)/2� + 1.25�(t + 5)/3� − 5

Again, an alternative is the worst-case simulation approach. To determine whether Ti is
schedulable, we generate the schedule of the tasks in Ti according to the given fixed-priority
algorithm, assuming that the tasks are in phase. (The schedule in Figure 6–12 is an example.)
If we do not observe any missed deadlines within the first level-πi busy interval, we can
conclude that all the tasks in Ti are schedulable. Otherwise, we cannot guarantee that all tasks
in Ti always meet their deadlines.

Finally, to determine whether the j th job in an in-phase level-πi busy interval completes
in time, we can check whether the inequality wi, j (t) ≤ t is ever satisfied for some instant t
in the range from (j − 1)pi to (j − 1)pi + Di . As with Eq. (6.6), we only need to check
for the satisfiability of this inequality at time instants which are integer multiples of pk , for
k = 1, 2, . . . , i , in this range of time.

*6.6.3 Correctness of the General Schedulability Test

The general schedulability test described above makes a key assumption: The maximum re-
sponse time of some job Ji, j in an in-phase level-πi busy interval is equal to the maximum
possible response time of all jobs in Ti . Therefore, to determine whether Ti is schedulable, we
only need to check whether the maximum response times of all jobs in this busy interval are
no greater than the relative deadline of Ti . This subsection presents several lemmas as proof
that this assumption is valid.

We begin by considering an arbitrary job Ji,c of Ti . When computing the maximum
possible response time of this job, we must consider the possibility that some jobs released
before the release time t0 of Ji,c may remain incomplete at the time. Since some of these jobs
are executed before Ji,c, their processor time demands must be included in the time-demand
function of Ji,c. As it turns out, because of Lemma 6.7, we need not be concerned with the
jobs released before t0 if Ji,c is released at the same time as a job in every higher-priority task.

LEMMA 6.7. Let t0 be a time instant at which a job of every task in Ti is released.
All the jobs in Ti released before t0 have been completed at t0.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 145

Section 6.6 Schedulability Test for Fixed-Priority Tasks with Arbitrary Response Times 145

Intuitively, we can see why this lemma is true by focusing on the latest level-πi busy
interval before t0. Suppose that this interval begins at t−1. We can use an argument similar to
the one used in the proof of Theorem 6.1 to show that the amount of processor time demanded
by all the jobs of priorities πi or higher that are released in the interval (t−1, t0) cannot exceed
t0 − t−1 since the total utilization Ui of Ti is no greater than 1. Consequently, at t0 there is no
backlog of jobs in Ti , that is, every job in Ti released before t0 is completed at t0.

Lemma 6.7 tells us that any instant which is the release time of a job from every task
in Ti is the beginning of an in-phase level-πi busy interval. As a consequence, Lemma 6.8 is
true.

LEMMA 6.8. When a system of independent, preemptive periodic tasks is scheduled
on a processor according to a fixed-priority algorithm, the time-demand functionwi,1(t)
of a job in Ti released at the same time as a job in every higher-priority task is given by
Eq. (6.8).

To see how the response time of an arbitrary job in a busy interval depends on the phases
of the tasks for the interval, we again look at the first busy interval, and this time, we assume
that each task Tk has an arbitrary phase φk . The response time of the j th job Ji, j in the first
level-πi busy period is the smallest value of t that satisfies the equation

t = jei +
i−1∑

k=1

⌈
t + φi − φk

pk

⌉
ek − φi − (j − 1)pi

Again, we take as the time origin the smallest of all the phases. The argument used in the proof
of Theorem 6.5 can be used again to show that the response time of this job is the largest when
all the tasks Ti have zero phase. This fact remains true for any arbitrary level-πi busy interval,
not just the first one. We restate this fact below.

LEMMA 6.9. The response time Wi, j of the j th job of Ti executed in an in-phase
level-πi busy interval is no less than the response time of the j th job of Ti executed in
any level-πi busy interval.

Finally, the correctness of the general schedulability test depends on the following
lemma

LEMMA 6.10. The number of jobs in Ti that are executed in an in-phase level-πi busy
interval is never less than the number of jobs in this task that are executed in a level-πi

busy interval of arbitrary phase.

Figure 6–12 illustrates this fact. Each of the later level-3 busy intervals is not in-phase. Only
one job of T3 executes in such an interval. In contrast, two jobs of T3 execute in the first
interval that is in phase. To see why this lemma is true in general, we note that during the
time when each job of Ti is waiting to complete, new jobs with priorities πi and higher are
released and become ready. The rates at which the new jobs are released are independent of
the response time of the waiting job. The longer this job of Ti waits, the more new jobs become
ready. Hence, this lemma follows directly from Lemma 6.9.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 146

146 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

In summary, Lemmas 6.7—6.10 tell us that the busy interval we examine according to
the general time-demand analysis method contains the most number of jobs in Ti that can
possibly execute in any level-πi busy interval. Moreover, the response time of each job in the
examined busy interval is larger than the response time of the corresponding job executed in
any level-πi busy interval. This is why if we find that none of the examined jobs completes
late, we know that no job in Ti will.

6.7 SUFFICIENT SCHEDULABILITY CONDITIONS FOR THE RM AND DM ALGORITHMS

When we know the periods and execution times of all the tasks in an application system, we
can use the schedulability test described in the last section to determine whether the system
is schedulable according to the given fixed-priority algorithm. However, before we have com-
pleted the design of the application system, some of these parameters may not be known. In
fact, the design process invariably involves the trading of these parameters against each other.
We may want to vary the periods and execution times of some tasks within some range of
values for which the system remains feasible in order to improve some aspects of the system.
For this purpose, it is desirable to have a schedulability condition similar to the ones given by
Theorems 6.1 and 6.2 for the EDF and the LST algorithms. These schedulability conditions
give us a flexible design guideline for the choices of the periods and execution times of tasks.
The schedulable utilizations presented in this section give us similar schedulability conditions
for systems scheduled according to the RM or DM algorithms. An acceptance test based on
such a schedulable utilization can decide whether to accept or reject a new periodic task in
constant time. In contrast, the more accurate time-demand analysis test takes O(nqn,1) time;
moreover, the accurate test is less robust because its result is sensitive to the values of periods
and execution times.

6.7.1 Schedulable Utilization of the RM Algorithm for Tasks with Di = pi

Specifically, the following theorem from [LiLa] gives us a schedulable utilization of the RM
algorithm. We again focus on the case when the relative deadline of every task is equal to its
period. For such systems, the RM and DM algorithms are identical.

THEOREM 6.11. A system of n independent, preemptable periodic tasks with rela-
tive deadlines equal to their respective periods can be feasibly scheduled on a processor
according to the RM algorithm if its total utilization U is less than or equal to

URM(n) = n(21/n − 1) (6.10)

URM(n) is the schedulable utilization of the RM algorithm when Di = pi for all 1 ≤ k ≤ n.
Figure 6–14 shows its value as a function of the number n of tasks in the set. When n is
equal to 2, Urm(n) is equal to 0.828. It approaches ln 2 (0.693), shown by the dashed line, for
large n.

Specifically, U (n) ≤ URM(n) is a sufficient schedulability condition for any system of n
independent, preemptable tasks that have relative deadlines equal to their respective periods to
be schedulable rate-monotonically. (We use the notation U (n) in place of U in our subsequent
discussion whenever we want to bring the number of tasks n to our attention.) As long as

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 147

Section 6.7 Sufficient Schedulability Conditions for the RM and DM Algorithms 147

2 4 6 8 10 12 14 16 18 20

n

URM(n)

0.6

0.7

0.8

0.9

1.0

FIGURE 6–14 URM (n) as a function n.

the total utilization of such a system satisfies this condition, it will never miss any deadline.
In particular, we can reach this conclusion without considering the individual values of the
phases, periods, and execution times.

As an example, we consider the system T of 5 tasks: (1.0, 0.25), (1.25, 0.1), (1.5, 0.3),
(1.75, 0.07), and (2.0, 0.1). Their utilizations are 0.25, 0.08, 0.2, 0.04, and 0.05. The total uti-
lization is 0.62, which is less than 0.743, the value of URM(5). Consequently, we can conclude
that we can feasibly schedule T rate-monotonically. Suppose that the system is later enhanced.
As a result, the tasks are modified, and the resultant tasks are (0.3, 1.3, 0.1), (1.0, 1.5, 0.3),
(1.75, 0.1), (2.0, 0.1), and (7.0, 2.45). Since their total utilization is 0.737, which is still less
than 0.743, we know for sure that the system remains schedulable. There is no need for us
to do the more complex time-demand analysis to verify this fact. On the other hand, suppose
that to make the above five-task system more modular, we divide the task with period 7.0 into
three smaller tasks with periods 5, 6, and 7, while keeping the total utilization of the system at
0.737. We can no longer use this condition to assure ourselves that the system is schedulable
because URM(7) is 0.724 and the total utilization of the system exceeds this bound.

Since U (n) ≤ URM(n) is not a necessary condition, a system of tasks may nevertheless
be schedulable even when its total utilization exceeds the schedulable bound. For example,
the total utilization of the system with the four tasks (3, 1), (5, 1.5), (7, 1.25), and (9, 0.5)
is 0.85, which is larger than URM(4) = 0.757. Earlier in Figure 6–9, we have shown by the
time-demand analysis method that this system is schedulable according to the RM algorithm.

*6.7.2 Proof of Theorem 6.11

While the schedulable utilization of the EDF algorithm given by Theorem 6.1 is intuitively
obvious, the schedulable utilization URM(n) given by Theorem 6.11 is not. We now present
an informal proof of this theorem in order to gain some insight into why it is so.

The proof first shows that the theorem is true for the special case where the longest
period pn is less than or equal to two times the shortest period p1. After the truth of the
theorem is established for this special case, we then show that the theorem remains true when

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 148

148 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

this restriction is removed. As before, we assume that the priorities of all tasks are distinct.
Here, this means that p1 < p2 < · · · < pn .

Proof for the Case of pn ≤ 2p1. The proof for the case where pn ≤ 2p1 consists
of the four steps that are described below. Their goal is to find the most difficult-to-schedule
system of n tasks among all possible combinations of n tasks that are difficult-to-schedule
rate-monotonically. We say that a system is difficult to schedule if it is schedulable according
to the RM algorithm, but it fully utilizes the processor for some interval of time so that any
increase in the execution time or decrease in the period of some task will make the system
unschedulable. The system sought here is the most difficult in the sense that its total utilization
is the smallest among all difficult-to-schedule n-task systems. The total utilization of this sys-
tem is the schedulable utilization of the RM algorithm, and any system with a total utilization
smaller than this value is surely schedulable. Each of the following steps leads us closer to
this system and the value of its total utilization.

Step 1: In the first step, we identify the phases of the tasks in the most difficult-to-
schedule system. For this we rely on Theorem 6.5. You recall that according to that theorem, a
job has its maximum possible response time if it is released at the same time as a job in every
higher-priority task. The most difficult-to-schedule system must have one or more in-phase
busy intervals. Therefore, in the search for this system, we only need to look for it among
in-phase systems.

Step 2: In the second step, we choose a relationship among the periods and execution
times and hypothesize that the parameters of the most difficult-to-schedule system of n tasks
are thus related. In the next step, we will verify that this hypothesis is true. Again from Theo-
rem 6.5, we know that in making this choice, we can confine our attention to the first period of
every task. To ensure that the system is schedulable, we only need to make sure that the first
job of every task completes by the end of the first period of the task. Moreover, the parameters
are such that the tasks keep the processor busy once some task begins execution, say at time
0, until at least pn , the end of the first period of the lowest priority task Tn .

The combination of n periods and execution times given by the pattern in Figure 6–15
meets these criteria. By construction, any system of n tasks whose execution times are related
to their periods in this way is schedulable. It is easy to see that any increase in execution time
of any task makes this system unschedulable. Hence systems whose parameters satisfy this
relationship are difficult to schedule. Expressing analytically the dependencies of execution
times on the periods of tasks that are given by Figure 6–15, we have

ek = pk+1 − pk for k = 1, 2, . . . , n − 1 (6.11a)

Since each of the other tasks execute twice from 0 to pn the execution time of the lowest
priority task Tn is

en = pn − 2
n−1∑

k=1

ek (6.11b)

Step 3: We now show that the total utilization of any difficult-to-schedule n-task sys-
tem whose execution times are not related to their periods according to Eq. (6.11) is larger
than or equal to the total utilization of any system whose periods and execution times are thus

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 149

Section 6.7 Sufficient Schedulability Conditions for the RM and DM Algorithms 149

p1

p1

p2

p3

pn-1

pn

2p1

T1

T2

T3

Tn-1

…

Tn

FIGURE 6–15 Relationship among parameters of difficult-to-schedule tasks.

related. Since we are looking for the difficult-to-schedule system with the least total utiliza-
tion, we need not consider any system whose parameters are not thus related.

To do so, we construct new systems, whose parameters do not satisfy Eq. (6.11), from an
original system whose parameters satisfy Eq. (6.11). There are two ways to do this. One way
is by increasing the execution time of a higher-priority task from the value given by Eq. (6.11)
by a small amount ε > 0. Without loss of generality, let this task be T1. In other words, in the
new system, the execution time e′

1 of T1 is equal to

e′
1 = p2 − p1 + ε = e1 + ε

For the new system to be schedulable, some other task must have a smaller execution
time. From Figure 6–15, we see that the first job in every task can complete in time if we
let the execution time of any other task be ε units less than the value given by Eq. (6.11a).
Suppose that we choose Tk , for some k �= 1, to be this task and make its new execution time
equal to

e′
k = ek − ε

The execution times of the tasks other than T1 and Tk are still given by Eq. (6.11). The new
system still keeps the processor busy in the interval (0, pn]. The difference between the total
utilization U ′ of the new system and the total utilization U of the original system is

U ′ − U = e′
1

p1
+ e′

k

pk
− e1

p1
− ek

pk
= ε

p1
− ε

pk

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 150

150 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

Since p1 < pk , this difference is positive, and the total utilization of the new system is larger.
(You may want to convince yourself that we would reach the same conclusion if in the con-
struction of the new system, we make the execution time of some task other than T1 larger by
ε units and make the execution times of one or more tasks with priorities lower than this task
smaller by a total of ε units.)

Another way to construct a new difficult-to-schedule system from the original one is
to let the execution time of a higher-priority task be ε units smaller than the value given by
Eq. (6.11). Again, suppose that we choose T1 to be this task, that is, its new execution time is

e′′
1 = p2 − p1 − ε

From Figure 6–15, we see that if we do not increase the execution time of some other task,
the processor will be idle for a total of 2ε units of time in (0, pn]. To keep the processor busy
throughout this interval and the system schedulable, we can increase the execution time of
any of the other tasks by 2ε units, that is,

e′′
k = ek + 2ε

for some k �= 1. It is easy to see that with this increase accompanying the decrease in the
execution time of T1, the first job of every task in the new system can still complete by its
deadline and the processor never idles from 0 to pn . Comparing the total utilization U ′′ of this
new system with that of the original system, we find that

U ′′ − U = 2ε

pk
− ε

p1

Since pk ≤ 2p1 for all k �= 1, this difference is never negative. (Again, we could also divide
the 2ε units of time arbitrarily among the n −1 lower-priority tasks and get a new system with
a total utilization larger than or equal to U .)

Step 4: As a result of step 3, we know that the parameters of the most difficult-to-
schedule system of tasks must be related according to Eq. (6.11). To express the total utiliza-
tion of a system whose parameters are given by Eq. (6.11) in terms of periods of the tasks in
it, we substitute Eq. (6.11) into the sum

∑n
k=1 ek/pk and thus obtain

U (n) = q2,1 + q3,2 + · · · + qn,(n−1) + 2

q2,1q3,2 . . . qn,(n−1)
− n (6.12)

where qk,i , for k > i , is the ratio of the larger period pk to the smaller period pi , that is,
qk,i = pk/pi . In particular, the total utilization of any n-task system whose parameters are
related according to Eq. (6.11) is a function of the n − 1 adjacent period ratios qk+1,k for
k = 1, 2, . . . , n − 1.

This equation shows that U (n) is a symmetrical convex function of the adjacent period
ratios. It has a unique minimum, and this minimum is the schedulable utilization URM(n) of
the RM algorithm. To find the minimum, we take the partial derivative of U (n)with respect to
each adjacent period ratio qk+1,k and set the derivative to 0. This gives us the following n − 1
equation:

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 151

Section 6.7 Sufficient Schedulability Conditions for the RM and DM Algorithms 151

1 − 2

q2,1q3,2 . . . q(k+1),k
2, . . . qn,(n−1)

= 0

for all k = 1, 2, . . . , n − 1.
Solving these equations for qk+1,k , we find that U (n) is at its minimum when all the

n − 1 adjacent period ratios qk+1,k are equal to 21/n . Their product q2,1q3,2 . . . qn,(n−1) is the
ratio qn,1 of the largest period pn to the smallest period p1. This ratio, being equal to 2(n−1)/n ,
satisfies the constraint that pn ≤ 2p1. Substituting qk+1,k = 21/n into the right-hand side of
Eq. (6.12), we get the expression of URM(n) given by Theorem 6.11.

For more insight, let us look at the special case where n is equal to 3. The total utilization
of any difficult-to-schedule system whose parameters are related according to Eq. (6.11) is
given by

U (3) = q2,1 + q3,2 + + 2

q3,2q2,1
− 3

U (3) is a convex function of q2,1 and q3,1. Its minimum value occurs at the point q2,1 = q3,2 ≥
21/3, which is equal to 1.26. In other words, the periods of the tasks in the most difficult-to-
schedule three-task system are such that p3 = 1.26p2 = 1.59p1.

Generalization to Arbitrary Period Ratios. The ratio qn,1 = pn/p1 is the period
ratio of the system. To complete the proof of Theorem 6.11, we must show that any n-task
system whose total utilization is no greater than URM(n) is schedulable rate-monotonically,
not just systems whose period ratios are less than or equal to 2. We do so by showing that the
following two facts are true.

1. Corresponding to every difficult-to-schedule n-task system whose period ratio is larger
than 2 there is a difficult-to-schedule n-task system whose period ratio is less than or
equal to 2.

2. The total utilization of the system with period ratio larger than 2 is larger than the total
utilization of the corresponding system whose period ratio is less than or equal to 2.

Therefore, the restriction of period ratio being equal to or less than 2, which we imposed
earlier in steps 1–4, leads to no loss of generality.

We show that fact 1 is true by construction. The construction starts with any difficult-
to-schedule n-task system {Ti = (pi , ei)} whose period ratio is larger than 2 and step-by-step
transforms it into a system with a period ratio less than or equal to 2. Specifically, in each step,
we find a task Tk whose period is such that lpk < pn ≤ (l +1)pk where l is an integer equal to
or larger than 2; the transformation completes when no such task can be found. In this step, we
modify only this task and the task Tn with the largest period pn . Tk is transformed into a new
task whose period is equal to lpk and whose execution time is equal to ek . The period of the
task with period pn is unchanged, but its execution time is increased by (l −1)ek . Figure 6–16
shows the original tasks and the transformed tasks. Clearly, the ratio of pn and the period
of the task transformed from Tk is less than or equal to 2, and the system thus obtained is
also a difficult-to-schedule system. By repeating this step until pn ≤ 2pk for all k �= n, we
systematically transform the given system into one in which the ratio of pn and the period of
every other task is less than or equal to 2.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 152

152 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

0

0

p 2pk

pn

pn' = pn

(l-1)pk lpk

Tk

ek

en

Tn

0

pk' = lpk

Tk'

ek' = ek

en' = en + (l-1)ek

Tn'

FIGURE 6–16 Transformation of two tasks.

To show fact 2 is true, we compute the difference between the total utilization of the
system before the transformation of each task and the total utilization of the system after the
transformation. This difference is

ek

pk
− ek

lpk
− (l − 1)ek

pn
=
(

1

lpk
− 1

pn

)
(l − 1)ek

which is larger than 0 because lpk < pn . This allows us to conclude that the system with
a period ratio less than 2 obtained when the transformation completes has a smaller total
utilization than the given system.

*6.7.3 Schedulable Utilization of RM Algorithm as Functions of Task Parameters

When some of the task parameters are known, this information allows us to improve the
schedulable utilization of the RM algorithm. We now give several schedulable utilizations that
are larger than URM(n) for independent, preemptive periodic tasks whose relative deadlines
are equal to their respective periods. These schedulable utilizations are expressed in terms of
known parameters of the tasks, for example, the utilizations of individual tasks, the number nh

of disjoint subsets each containing simply periodic tasks, and some functions of the periods
of the tasks. The general schedulable utilization URM(n) of the RM algorithm is the minimum
value of these specific schedulable utilizations. Because they are larger than URM(n), when
applicable, these schedulable utilizations are more accurate criteria of schedulability. They
are particularly suited for on-line acceptance tests. When checking whether a new periodic
task can be scheduled with existing tasks, many of the task parameters are already known,

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 153

Section 6.7 Sufficient Schedulability Conditions for the RM and DM Algorithms 153

and computing one of these schedulable utilizations takes a constant amount of time, much
less than the time required to do a time-demand analysis.

Schedulable Utilization URM(u1, u2, . . . un) as a Function of Task Utilizations.
Rather than replacing the individual periods in Eq. (6.11a) by adjacent period ratios as we did
earlier, we rewrite the equation as follows:

pk+1 = pk(1 + uk) for k = 1, 2, . . . , n − 1

Moreover, from Eq. (6.11b) and the fact that pn ≤ 2p1, we can conclude that

pn(1 + un) ≤ 2p1

Combining these two expressions, we have the following corollary.

COROLLARY 6.12. n independent, preemptable periodic tasks with relative dead-
lines equal to their respective periods are schedulable rate-monotonically if their uti-
lizations u1, u2, . . . , un satisfy the inequality

(1 + u1)(1 + u2) · · · (1 + un) ≤ 2 (6.13)

We denote the total utilization of the tasks whose utilizations satisfy the constraint Eq. (6.13)
by URM(u1, u2, . . . , un).

As an example, we consider a system of two tasks T1 and T2. The schedulable utilization
URM(u1, u2) of the system is equal to 0.957, 0.899, 0.861, and 0.828, respectively, when the
ratio u1/U of the utilization of T1 to the total utilization of both tasks is equal to 0.05, 0.1,
0.25, and 0.5. The minimum of U (u1, u2) is at the point u1 = 0.5U (i.e., when u1 = u2) and
is 0.828, the Liu and Layland bound for n equal to 2.

For arbitrary n, the inequality Eq. (6.13) becomes (1 + U (n)/n)n ≤ 2 when the utiliza-
tions of all the tasks are equal. For this combination of utilizations, the inequality Eq. (6.13)
becomes the same as the Liu and Layland bound U (n) ≤ n(21/n − 1).

Schedulable Utilization of Subsets of Simply Periodic Tasks. We now consider a
system of periodic tasks that are not simply periodic but can be partitioned into nh subsets of
simply periodic tasks. For example, we can partition the system T of tasks with periods 4, 7,
8, 14, 16, 28, 32, 56, and 64 into two subsets Z1 and Z2. Z1 contains the tasks with period 4,
8, 16, 32, and 64; and Z2 contains tasks with periods 7, 14, 28, and 56. Let U (Z1) and U (Z2)

denote the total utilization of the tasks in Z1 and Z2, respectively. Kuo, et al. [KuMo91] have
shown that if U (Z1) + U (Z2) ≤ 0.828 [i.e., URM(2)], all these tasks are schedulable rate-
monotonically. In contrast, if we were to treat the tasks separately, we would have to use the
bound URM(9), which is only 0.712.

The following theorem by Kuo, et al. [KuMo91] states this fact in general.

THEOREM 6.13. If a system T of independent, preemptable periodic tasks, whose
relative deadlines are equal to their respective periods, can be partitioned into nh disjoint

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 154

154 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

subsets, Z1,Z2, . . . ,Znh , each of which contains simply periodic tasks, then the system
is schedulable rate-monotonically if the total utilizations U (Zi), for i = 1, 2, . . . , nh ,
of the tasks in the subsets satisfy the inequality

(1 + U (Z1))(1 + U (Z2)) · · · (1 + U (Znh)) ≤ 2.

It follows that such a system T is schedulable rate-monotonically if its total utilization
is equal to or less than URM(nh).

To see intuitively why this theorem is true, we replace each subset Zi by a single peri-
odic task Ti

′. The period pi
′ of this task is equal to the shortest period all the tasks in Zi , and

its execution time is equal to p′
iU (Zi). Clearly, the set of nh new tasks Ti

′’s are schedulable
rate-monotonically if either one of the conditions in Theorem 6.13 is satisfied. The fact that
Ti

′ is schedulable means that within each interval of length pi
′, Ti

′ has p′
iU (Zi) units of pro-

cessor time. Because the tasks in Zi are simply periodic, the total amount of time demanded
by all the tasks during any period p (≥ pi

′) of any task in Zi is equal to pU (Zi) = k pi
′U (Zi)

for some integer k. Since this demand is met by any schedule in which all jobs in Ti
′ complete

in time, every job in any task in Zi can always complete in time. (This argument is not a proof
because it neglects the fact that tasks with longer periods are scheduled at lower priorities. A
complete proof of this theorem can be found in [KuMo91].)

The schedulable utilization given by Theorem 6.13 is particularly useful for any system
that contains a small number n of large application modules. If we can make the tasks in each
module simply periodic, we do not need to be concerned with the number of tasks in each
module. Provided that the total utilization of all the modules is no greater than URM(n), we are
assured of the schedulability of all the tasks in the system. For example, in a system containing
a large number of multirate controllers, n is the rate groups (i.e., the number of controllers).
We need not be concerned with how many control-law computations per controller the system
must perform when the rates in each group are related in a harmonic way.

Dependency of Schedulable Utilization on Periods of Tasks. The schedulable uti-
lization of the RM algorithm depends on the periods of tasks in two ways. First, it increases
with the minimum adjacent period ratio and, hence, the period ratio of the system, and second,
it increases as the tasks become closer to being simply periodic.

Dependency on Period Ratio. The fact that the schedulable utilization of the RM
algorithm increases with the period ratio of the system has been demonstrated statistically in
a study by Lehoczky, et al. [LeSD] who simulated systems in which task periods are uniformly
distributed over a wide range. We expect the schedulable utilization of the RM algorithm to
increase with the minimum adjacent period ratio for the following reason. During any period
of a task Ti , it is possible for a higher priority task Tk (k < i) to consume an extra ek units
of processor time beyond uk pi . This is why the schedulable utilization URM(i) is less than 1.
However, when the ratio pi/pk becomes larger, the extra amount ek becomes a smaller fraction
of uk pi . In the limit as the adjacent period ratios approach infinity, the amount of time in each
period of Ti used by higher-priority tasks approaches Ui−1 pi , the amount of time available to
Ti approaches 1 − Ui−1, and the schedulable utilization of the i tasks approaches 1.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 155

Section 6.7 Sufficient Schedulability Conditions for the RM and DM Algorithms 155

We can also observe from the proof of Theorem 6.11 that the period ratio of the most
difficult-to-schedule n-task system is 2(n−1)/n , which is equal to 1.414 when n is equal to 2
and is approximately equal to 2 when n is large. Moreover in this system, the ratios of all
n − 1 adjacent periods are equal to 21/n . The total utilization of a difficult-to-schedule system
increases as the minimum adjacent period ratio increases. Hence, the performance of the RM
algorithm in terms of its schedulable utilization is the worst when the minimum adjacent
period ratio of the system is 21/n and improves as the ratio increases.

Dependency on Values of Periods. Theorem 6.3 tells us that any number of sim-
ply periodic, independent, preemptable tasks can be feasibly scheduled rate-monotonically as
long as their total utilization is no more than 1. We, therefore, expect that the closer the tasks
are to being simply periodic, the larger the total schedulable utilization of the RM algorithm
is. The schedulable utilization found by Burchard, et al. [BLOS] quantifies this statement.

Specifically, Burchard, et al. [BLOS] expresses the schedulable utilization in terms a
parameter ζ which measures how far the tasks of a system deviate from being simply periodic.
ζ is defined as follows:

ζ = max
1≤i≤n

Xi − min
1≤i≤n

Xi (6.14a)

where

Xi = log2 pi − �log2 pi� (6.14b)

THEOREM 6.14. The schedulable utilization URM(ζ, n) of the RM algorithm as a
function of ζ and n is given by

URM(n, ζ) = (n − 1)(2ζ/(n−1) − 1)+ 21−ζ − 1 for ζ < 1 − 1/n (6.14c)

n(21/n − 1) for ζ ≥ 1 − 1/n

Theorem 6.11 follows straightforwardly from this theorem.
Before we examine the behavior of URM(n, ζ) as ζ varies, we first examine how ζ

depends on the periods of the tasks. To do so, we write pi as 2xi for some xi > 0. If xi is
an integer, the value Xi defined above is 0. Xi increases as xi increases and deviates more
from the integer value and becomes 0 again when it assumes the next larger integer value. For
example, Xi is 0 if pi = 23 = 8. It has the values 0.322, 0.585, and 0.807 when pi is equal
to 10, 12, and 14, respectively. Similarly, Xi is 0 when pi is equal to 24 = 16 (or 22 = 4)
and is equal to these values when pi is equal to 20, 24, and 28 (or 5, 6, and 7), respectively.
Hence, for a system of n tasks, ζ is equal to 0 when the period pi of every task Ti is equal
to y2xi for some y > 0 independent of i and some positive integer xi . (In other words, the
period of every task is divisible by some power of 2.) In the extreme when ζ approaches one,
there must be a task whose period is slightly larger than some power of 2 and some other task
whose period is slightly smaller than some power of 2 (i.e., the periods are relatively prime).

Figure 6–17 plots URM(n, ζ) as a function of ζ and n. In the region where ζ < 1−1/n,
URM(n, ζ) is larger than the general schedulable utilization URM(n) given by Eq. (6.10). In
particular, as ζ approaches zero, URM(n, ζ) approaches one for all n as expected.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 156

156 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

5
10

15

0
0.2

0.4
0.6

0.8

0.8

0.9

1

U(n, ζ)

5
10

15

n

0
0.2

0.4
0.6

0.8

0.8

0.9

1

1

1ζ

FIGURE 6–17 URM (n, ζ) as a function of n and ζ .

Yet Another Schedulability Test Making Use of Task Periods. For a given system T
of tasks, let T′ be a set of tasks which has the following property. There is a task T ′

i in T′ if
and only if there is task Ti in T. Moreover, the execution time of T ′

i is equal to the execution
time of Ti , and the period of T ′

i is shorter than the period of Ti . T′ is called an accelerated set
of T.

We now try to make use of the fact demonstrated by the example in Figure 6–9 at the
end of Section 6.5.2. It follows from the observation made there that any system T is schedu-
lable according to a fixed-priority algorithm if it has an accelerated set T′ that is schedulable
according to the algorithm. In particular, we have the following theorem regarding the RM
algorithm.

THEOREM 6.15. A system T of independent, preemptive periodic tasks whose rel-
ative deadlines are equal to their respective periods is schedulable according the RM
algorithm if it has an accelerated set T′ which is simply periodic and has a total utiliza-
tion equal to or less than 1.

The theorem follows from the above observation and Theorem 6.3. Han [Han99] gives
an O(n2 log n) algorithm and an O(n3) algorithm that apply Theorem 6.15 to determine the
schedulability of rate-monotonically scheduled systems. The more complex algorithm is more
accurate. Both are more accurate than the test based on the schedulable utilizations [Eqs. (6.10)
and (6.14)]. Section 10.2.3 will describe an algorithm that can be used for this purpose as well.

6.7.4 Schedulable Utilization of Fixed Priority Tasks with Arbitrary Relative Deadlines

Obviously, a system of n tasks with a total utilization URM(n) may not be schedulable rate-
monotonically when the relative deadlines of some tasks are shorter than their periods. On
the other hand, if the relative deadlines of the tasks are larger than the respective task periods,
we expect the schedulable utilization of the RM algorithm to be larger than URM(n). We now
consider the case where the relative deadline Di of every task is equal to δ times its period

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 157

Section 6.7 Sufficient Schedulability Conditions for the RM and DM Algorithms 157

pi for some 0 < δ. The following theorem proven by Lehoczky et al. [Leho, LeSh, LSST]
gives us a schedulable utilization URM(n, δ) as a function of δ and the number n of tasks. The
schedulable utilization URM(n) given by Theorem 6.11 is equal to this upper bound in the
special case where δ = 1.

THEOREM 6.16. A system of n independent, preemptable periodic tasks with rela-
tive deadlines Di = δpi for all 1 ≤ i ≤ n is schedulable rate-monotonically if its total
utilization is equal to or less than

URM(n, δ) = δ(n − 1)

[(
δ + 1

δ

)1/n−1

− 1

]
, for δ = 2, 3, . . . (6.15)

n((2δ)1/n − 1)+ 1 − δ, 0.5 ≤ δ ≤ 1

δ, 0 ≤ δ ≤ 0.5

Figure 6–18 lists the values of URM(n, δ) for several values of n and δ. For any n, this
schedulable utilization is larger than URM(n) when δ is an integer larger than 1. In the limit
when n is equal to infinity, this upper bound on the total utilization approaches δ ln((δ+1)/δ),
for δ = 1, 2, It approaches 1 as δ approaches infinity, as expected; since U (n) is no greater
than one, every job eventually completes.

Figure 6–18 also plots URM(n, δ) as a function of n and δ in the range 0 ≤ δ ≤ 1.
We see that in this range of δ, URM(n, δ) decreases from URM(n) given by Eq. (6.10) as δ
decreases.

As an example, let us consider the system consisting of tasks (3, 0.6), (4, 1.0) and (5, 1).
The total utilization of the tasks is 0.65. Since URM(3) is equal to 0.779, the tasks are schedu-
lable. Now, suppose that as a way to control completion-time jitters, we require that every job
completes in half the period; in other words, δ is equal to 0.5. Because URM(3, 0.5) is 0.5,
the schedulable utilization does not ensure us that the tasks are schedulable. In fact, the task
(5, 1) is not schedulable. However, if δ is equal to 0.69, URM(3, δ) is equal to 0.65 and hence,
it guarantees that the tasks are schedulable.

*6.7.5 Schedulable Utilization of the RM Algorithm for Multiframe Tasks

We know that the periodic task model is sometimes inaccurate, and the prediction on schedu-
lability based on the model can be unduly pessimistic. An example is a task that models the
transmission of an MPEG compressed video over a network link. Jobs in this task, modeling
the transmissions of individual video frames, are released periodically. Because the size of
I-frames can be very large compared with that of B- and P-frames, the execution times of the
jobs can vary widely. When modeled as a periodic task, the execution time of the task is equal
to the transmission time of an I-frame. Hence, if we were to determine whether a system of
such tasks is schedulable based on the schedulability tests described above, we would surely
underutilize the processor. The multiframe task model developed by Mok and Chen [MoCh]
is a more accurate model and leads to more accurate schedulability tests.

The example used by Mok and Chen to motivate the multiframe task model is a system
of two tasks: T1 and T2. T2 is a task with period 5 and execution time 1. The period of T1

is 3. The maximum execution time of J1,k is equal to 3, if k is odd and is equal to 1 if k is

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 158

158 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

5
10

15

n

0
0.2

0.4
0.6

0.8
1

0

0.25

0.5

0.75

1

U(n, δ)

δ

5
10

15

0
0.2

0.4
0.6

0.8
1

0

0.25

0.5

0.75

1

n

2

3

4

5

6

7

8

9

∝

0.944

0.926

0.917

0.912

0.909

0.906

0.905

0.903

0.892

0.928

0.906

0.894

0.888

0.884

0.881

0.878

0.876

0.863

0.898

0.868

0.853

0.844

0.838

0.834

0.831

0.829

0.810

0.828

0.779

0.756

0.743

0.734

0.728

0.724

0.720

0.693

0.783

0.749

0.733

0.723

0.717

0.713

0.709

0.707

0.687

0.729

0.708

0.698

0.692

0.688

0.686

0.684

0.682

0.670

0.666

0.656

0.651

0.648

0.646

0.644

0.643

0.642

0.636

0.590

0.588

0.586

0.585

0.585

0.584

0.584

0.584

0.582

0.500

0.500

0.500

0.500

0.500

0.500

0.500

0.500

0.500

δ = 4.0 δ = 3.0 δ = 2.0 δ = 1.0 δ = 0.9 δ = 0.8 δ = 0.7 δ = 0.6 δ = 0.5

FIGURE 6–18 URM (n, δ) as a function of n for 0 ≤ δ ≤ 1. (a) Values of URM (n, δ). (b) Behavior of URM (n, δ) in
the range of δ < 1.

even. The relative deadlines of the tasks are equal to their respective periods. We can treat
T1 as the periodic task (3, 3), but if we were to do so, we would conclude that the system
is not schedulable. This conclusion would be too pessimistic because the system is in fact
schedulable. Indeed, as we will see shortly, by modeling T1 more accurately as a multiframe
task, we can reach the correct conclusion.

Specifically, in the multiframe task model, each (multiframe) task Ti is characterized
by a 4-tuple (pi , ξi , ei

p, ei
n). In the 4-tuple, pi is the period of the task and has the same

meaning as the period of a periodic task. Jobs in Ti have either one of two possible maximum
execution times: ei

p and ei
n , where ei

p ≥ ei
n . The former is its peak execution time, and

the latter is its normal execution time. Each period which begins at the release time of a job
with the peak execution time is called a peak frame, and the other periods are called normal
frames. Each peak frame is followed by ξi − 1 normal frames, which in turn are followed by a

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 159

Section 6.8 Practical Factors 159

peak frame and so on. The utilization ui of the multiframe task Ti = (pi , ξi , ei
p, ei

n) is equal
to (ei

p + (ξi − 1)ei
n)/ξi pi when ξi is larger than 1. A periodic task (pi , ei) is the special

multiframe task (pi , 1, ei , ei).
According to the multiframe task model, the task T1 in the example above is (3, 2, 3, 1);

its period is 3, peak execution time is 3, normal execution time is 1, and each peak frame
is followed by one normal frame. It utilization is equal to (3 + 1)/6 = 0.667. The task
(33, 6, 1.0, 0.3) can model an MPEG video transmission task. The period of the task is 33
milliseconds. The execution time of the job in each peak frame, which models the transmission
of an I-frame in the video stream, is never more than one millisecond. It is followed by five
normal frames. The execution times of jobs released in normal frames are never more than
0.3. These jobs model the transmissions of B- and P-frames in the video. They are followed by
the transmission of an I-frame, that is, a peak frame, which is in turn followed by five normal
frames, and so on.

We observe that the response time of a job Ji,k in Ti has the maximum possible value if
the kth period, which begins when Ji,k is released, is a peak frame and this peak frame begins
at the same time as a peak frame in every high-priority task. In other words, a critical instant
of a multiframe task Ti occurs under this condition. (The proof of this claim is left to you as
an exercise.) Consequently, when the relative deadlines Di ’s are such that Dk ≤ pk for all
1 ≤ k ≤ n, a task Ti is schedulable if the job in the task released at a critical instant completes
in time.

Given a system of n multiframe tasks, the load variation, denoted by �, of the system
is min1≤i≤n(ei

p/ei
n). We expect that the schedulable utilization of the RM algorithm is an

increasing function of the load variation. Mok and Chen [MoCh] found that it depends on �
as stated below.

THEOREM 6.17. A system of n independent, preemptable multiframe tasks, whose
relative deadlines are equal to the respective periods, is schedulable according to the
RM algorithm if their total utilization is no greater than

URM(n, �) = �n

((
�+ 1

�

)1/n

− 1

)
(6.16)

Figure 6–19 shows this schedulable utilization as function of� and n. Indeed, as� increases,
this upper bound increases. However, we would still declare the tasks T1 = (3, 2, 3, 1) and
T2 = (5, 1, 1, 1)mentioned earlier unschedulable if we were to use this schedulable utilization
as the criterion of schedulability. The load variation of this system is 1. URM(n, � = 1) is
0.828, but the total utilization of this system is 0.867.

6.8 PRACTICAL FACTORS

Thus far, we have assumed that every job is preemptable at any time; once a job is released,
it never suspends itself and hence is ready for execution until it completes; scheduling and
context-switch overhead is negligible; the scheduler is event-driven and acts immediately
upon event occurrences; every task (or job) has a distinct priority; and every job in a fixed-

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 160

160 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

n

Ξ

URM(n, Ξ)

5

10

15

5

10

15

20

0.85

0.9

0.95

1

1

FIGURE 6–19 Schedulable utilization of the RM algorithm for n multiframe tasks.

priority system is scheduled at a constant priority. These assumptions are often not valid. We
now discuss how these factors affect the schedulability of fixed-priority and dynamic-priority
systems. In this discussion, we will need two new terms: blocking and priority inversion. A
(ready) job Ji is blocked when it is prevented from executing by a lower-priority job: The
lower-priority job executes while Ji waits. We say that a priority inversion occurs whenever a
lower-priority job executes while some ready higher-priority job waits.

6.8.1 Nonpreemptability

There are many reasons for a job, or a portion of it, to be nonpreemptable. When a job is using
a resource (e.g., a critical section) that must be used in a mutual exclusive manner, making the
job nonpreemptable while it has the resource is one way to ensure mutual exclusion. Some
system calls (or parts of the calls) are nonpreemptable for the same reason; consequently, a
job that makes such a call is nonpreemptable during the execution of the call. Sometimes,
preemption may be too costly. An example is disk scheduling. If reads and writes of files
on a disk were preemptable, it would take an additional seek to resume the read or write of
a file each time such an operation were preempted. Since seek and latency times are large
on average, a significant amount of bandwidth might be lost if preemption were allowed.
Consequently, disk scheduling is typically nonpreemptive.

Blocking Time Due to Nonpreemptivity. A higher-priority job that becomes ready
when a nonpreemptable lower-priority job is executing is blocked until the nonpreemptable
portion of the lower-priority job completes. The delay due to blocking may cause the higher-
priority job to miss its deadline. Consequently, when we want to determine whether a task can
meet all its deadlines, we must consider not only all the tasks that have higher priorities than
it, but also the nonpreemptable portions of lower-priority tasks.

As an example, we consider a system of three fixed-priority tasks: T1 = (ε, 4, 1),
T2 = (ε, 5, 1.5), and T3 = (9, 2), where ε > 0 is very small compared with the other tim-
ing parameters of the tasks. The total utilization is 0.77. The time-demand functions of the

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 161

Section 6.8 Practical Factors 161

three tasks are shown in Figure 6–20(a). If all the tasks are preemptable, they are schedulable
according to both the schedulable utilization URM(3) = 0.78 and the time-demand analysis.

Now, suppose that T3 is nonpreemptable. When the jobs J1,1 and J2,1 become ready at
ε, the first job J3,1 of T3 is executing. Because J3,1 cannot be preempted, the higher-priority
jobs are blocked until time 2 when J3,1 completes; there is a priority inversion during (ε, 2).
J2,1 is forced to wait for the lower-priority job J3,1 in addition to the higher-priority task T1.
As a consequence, it misses its deadline at time 5. Because both the schedulable utilization
URM(n) given by Eq. (6.10) and the time-demand functions given by Eq. (6.5) do not take
into account the delay suffered by T2 due to priority inversion, they would mislead us into
believing that T2 can meet all its deadlines.

From this example, we can see that one way to take into account the effect of priority
inversion is to add its duration into the time-demand functions of T1 and T2. The result is
shown in Figure 6–20(b). The time-demand function w2(t) that includes the 2 units of time
consumed by J3,1 lies entirely above the time supply function t . It leads us to a correct con-
clusion that T2 is not schedulable. Similarly, we can account for these 2 units of time in the
computation of the total utilization of T1 and T2. Because a job in T2 may be forced to wait
for 2 additional units of time, the total fraction of time required by T2 and the higher-priority
job T1 can be as high as 1/4 + (1.5 + 2)/5. This sum is 0.95, higher than URM(2).

In general, let bi (np) denote the longest time for which any job in the task Ti can be
blocked each time it is blocked due to nonpreemptive lower-priority tasks. We call bi (np) its
blocking time per blocking due to nonpreemptivity. A job Ji, j of Ti is blocked if when it is
released, a nonpreemptive lower-priority job is executing at the time. In the worst case, this
lower-priority job is the one that has the longest nonpreemptable portion among all lower-
priority jobs. In other words, for the sake of determining whether the system is schedulable,
we do not need to keep track of the execution times of all the nonpreemptable portions, only
the longest nonpreemptable portion of each job. We use θi (θi ≤ ei) to denote the maximum
execution time of the longest nonpreemptable portion of jobs in the task Ti . In a fixed-priority
system, bi (np) is given by

bi (np) = max
i+1≤k≤n

θk (6.17)

If the task Ti never suspends itself, once the job Ji, j or a ready higher-priority job begins
to execute, no lower-priority job can ever get the processor until Ji, j completes. So, when Ti

never self-suspends, bi (np) is the total blocking time of Ti due to nonpreemptivity.

Effect of Blocking on Schedulability. As will become evident later, a job may be
blocked for many reasons. bi (np) is only one of the factors that contribute to the blocking
time of Ti . The term blocking time, denoted by bi , refers to the maximum total duration for
which each job in task Ti may be delayed by both lower-priority tasks and deferred execution
of higher-priority tasks. (We will return shortly to explain the latter.)

To see how to take into account blocking times of fixed-priority tasks, let us suppose that
we have found the total blocking time bi of every task Ti . If a job Ji, j is to meet its deadline, the
total time demanded by itself-and all the higher-priority jobs that must be completed before
it, plus the time that may be taken by a nonpreemptable lower-priority job and other blocking
factors, must be met by the supply of time before its deadline. Therefore, the time-demand

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 162

162 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

w2(t)

w1(t)

w3(t)

t

(a)

(b)

(c)

Ti
m

e-
de

m
an

d
fu

nc
ti

on
s

w
it

ho
ut

 b
lo

ck
in

g

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

w2(t)

w1(t)

t

Ti
m

e-
de

m
an

d
fu

nc
ti

on
s

w
it

h
bl

oc
ki

ng

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

T3 T1 T2 T1 T2 T1

0 1 2 3 4 5 6 7 8 9 10

FIGURE 6–20 Example illustrating the effect of nonpreemptivity.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 163

Section 6.8 Practical Factors 163

function wi (t) of the task Ti , including its blocking time bi , is given by

wi (t) = ei + bi +
i−1∑

k=1

⌈
t

pk

⌉
ek, for 0 < t ≤ min(Di , pi) (6.18)

When we use this expression of the time-demand function, instead of the one given by
Eq. (6.5), in the time-demand analysis of a system where Di ≤ pi for all i , we correctly
take into account the effect of blocking. Similarly, we add bi in the expressions of wi, j (t) in
Eq. (6.9b) when the response times and relative deadlines of some tasks are larger than pi ,
that is,

wi, j (t) = jei + bi +
i−1∑

k=1

⌈
t

pk

⌉
ek, for (j − 1)pi < t ≤ wi, j (t) (6.19)

Clearly, if we want to use the schedulable utilizations such as those in Section 6.7 to
determine the schedulability of tasks that are sometimes blocked, we must also take into
account the effect of blocking. Because the jobs in different tasks may be blocked for different
amounts of time and blocking affects different tasks to different degrees, we need to do the
test one task at a time. In the worst case, every job in a task, say Ti , can be blocked; the
amount of time per period required by the job is ei + bi . bi/pi is the fraction of time that is
not accounted for by the utilization ui of the task. Hence, in a fixed-priority system, the task
Ti , for 1 ≤ i < n, is schedulable if

e1

p1
+ e2

p2
+ · · · + ei + bi

pi
= Ui + bi

pi
≤ UX (i) (6.20)

where Ui is the total utilization of the i highest priority tasks and UX (i) denotes the appropri-
ate schedulable utilization of the fixed-priority algorithm X used to schedule the tasks.

To compute the blocking time bi (np) of a task Ti in a deadline-driven system (i.e., when
tasks are scheduled on a EDF basis), we make use of the following theorem [Bake91].

THEOREM 6.18. In a system where jobs are scheduled on the EDF basis, a job Jk

with relative deadline Dk can block a job Ji with relative deadline Di only if Dk is
larger than Di .

Proof. The following observations allow us to conclude that the theorem is true.

1. In order for Jk to block Ji , Jk must have a lower priority than Ji . Since priorities
are assigned on the EDF basis, this implies that the deadline dk of Jk must be later
than the deadline di of Ji . In other words, dk > di .

2. In addition, when the higher-priority job Ji is released, the lower-priority job Jk

must be executing if Jk is to block Ji . This means that Jk must be released earlier
than Ji , or rk < ri .

Both inequalities can be true only when Dk > Di .

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 164

164 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

Suppose that we index all periodic tasks according to their relative deadlines; the smaller
the relative deadline, the smaller the index. Then, it follows from this theorem that in a
deadline-driven system, the blocking time of each periodic task Ti due to nonpreemptivity
is also given by Eq. (6.17). A task Ti with a total blocking time bi is schedulable with other
independent periodic tasks on a processor according to the EDF algorithm if

n∑

k=1

ek

min(Dk, pk)
+ bi

min(Di pi)
≤ 1 (6.21)

The system is schedulable if the condition is met for every i = 1, 2, . . . , n.

6.8.2 Self-Suspension

While executing, a job may invoke some external operation, for example, an I/O operation or
a remote procedure, that is executed on another processor. Self-blocking or self-suspension
occurs when the job is suspended and waits until such an operation completes before its
execution can continue. While it waits, the operating system removes it from the ready queue
and places it in a blocked queue. We assume that the maximum amount of time each external
operation takes to complete and, hence, the maximum duration of each self-suspension, is
known. (This time can be an upper bound on the maximum response time of the external
operation obtained by doing a time-demand analysis of all the tasks on the processor where
the operation executes.)

In a special case, every job in a task Ti self-suspends for x units of time immediately
after it is released (e.g., due to input data transmission). The job is ready for execution x time
units after it is released. Hence, the time from the instant when the job is ready to its deadline
is only Di − x , not Di . To determine whether the task Ti is schedulable, we use the shortened
deadline Di − x in the schedulability test; there is no need to modify any of the methods
otherwise.

A job may self-suspend after its execution has begun, and the amounts of time for
which jobs in a task self-suspend may differ. As a consequence, the task no longer behaves
as a periodic task. In particular, it may demand more time in some interval than a periodic
task. For example, we consider two tasks T1 = (4, 2.5) and T2 = (3, 7, 2.0). The tasks
are schedulable rate-monotonically if jobs in both tasks never self-suspend. The schedule in
Figure 6–21 shows what happens when the first job J1,1 in T1 self-suspends for 1.5 units
of time shortly after it begins execution. Because the execution of J1,1 is deferred, T1 now

3 10

0 4 8 12

T1

T2

FIGURE 6–21 Example illustrating the effect of self-suspension: T1 = (4, 2.5), T2 = (3, 7, 2.0).

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 165

Section 6.8 Practical Factors 165

demands 5.5 units of time in the interval (3, 10]. (In contrast, if the execution of J1,1 were not
deferred, T1 would demand only 4.5 units of time.) As a consequence, J2,1 misses its deadline.

From this example, we see that one way to account for the extra delay suffered by a
task Ti in a fixed-priority system due to its own self-suspension and the suspension of higher-
priority tasks is to treat this delay as a factor of the blocking time of Ti . We denote this factor
by bi (ss). At the risk of abusing the term blocking, we call bi (ss) the blocking time of Ti due
to self-suspension.

To determine bi (ss), we suppose that the maximum self-suspension time of any job in
each higher-priority task Tk (k < i) is x , that is, no job in Tk ever self-suspends for more
than x units of time. The difference between the total amounts of time demanded by Tk in the
feasible interval of any job in Ti when Tk never self-suspends and when Tk does self-suspend
is never more than x units and is never more than ek . Therefore, we can bound the blocking
time bi (ss) of Ti due to self-suspension in a fixed-priority system by

bi (ss) = maximum self-suspension time of Ti (6.22)

+
i−1∑

k=1

min(ek,maximum self-suspension time of Tk)

In the example in Figure 6–21, the maximum self-suspension time of T1 is 1.5, which is
smaller than its execution time of 2.5. Hence b2(ss) is equal to 1.5.

We must include bi (ss) in the total blocking time bi of each task Ti , of course. In a
system where some tasks are nonpreemptable, the effect of self-suspension is more severe
than this factor indicates, however. The reason is that every time a job suspends itself, it loses
the processor. It may be blocked again by a nonpreemptive lower-priority job when it resumes
after the suspension. Therefore, if each job in a task Ti can self-suspend for a maximum
number Ki times after it starts execution, its total blocking time bi is given by

bi = bi (ss)+ (Ki + 1)bi (np) (6.23)

6.8.3 Context Switches

We now confine our attention to job-level fixed-priority assignment, that is, each job is given
a fixed priority throughout its execution. In such a system, each job preempts at most one
job if there is no self-suspension. Hence, each job suffers at most one context switch when
it starts execution and another context switch when it completes. We can account for the
context-switch overhead in a schedulability test by including the time spent for the two context
switches at the start and completion of each job as part of the execution time of the job. If the
job is preempted and later resumed, the time spent for the two context switches is accounted
for in the same way: Include the context-switch time in the execution time of the preempting
job.

We let C S denote the context-switch time of the system, that is, the maximum amount
of time the system spends per context switch. C S includes the time required to maintain the
context of the jobs involved in the context switch, as well as the time spent by the scheduler
to service the event interrupt that triggers the context switch and to carry out the scheduling
action at the context switch. If no job ever self-suspends, we increase the execution time
of every task Ti to ei + 2C S, for i = 1, 2, . . . , n when the context-switch overhead is not
negligible. If some job self-suspends, the job incurs two more context switches each time it

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 166

166 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

self-suspends. Therefore, if each job in any task Ti can self-suspend a maximum of Ki times
after its execution starts, we add 2(Ki + 1)C S to the execution time ei .

In a job-level dynamic-priority system, for example, in a system scheduled according
to the LST algorithm described in Section 6.2.2, we can bound the effect of context-switch
overhead if we can find an upper bound to the number of times a job may preempt another job.
In addition to complications in resource access control, which we will discuss in Chapter 8,
and higher scheduling overhead, the difficulty in accounting for the effect of context switching
accurately in such systems is another disadvantage of job-level dynamic-priority algorithms.

6.8.4 Limited-Priority Levels

A real-life system can support only a limited number �s of priority levels. (For example, the
IEEE 802.5 token ring provides only 8 priority levels, and real-time operating systems provide
no more than 256 priority levels.) As a consequence, tasks (or jobs) may have nondistinct
priorities.

Time Demand Functions of Fixed-Priority Tasks with Nondistinct Priorities.
When tasks in a fixed-priority system have nondistinct priorities, a job Ji, j of Ti may be
delayed by a job of an equal priority task Tk . This is due to the fact that jobs of equal priorities
are scheduled either on a FIFO basis or on a round-robin basis. The delay suffered by Ji, j

due to equal priority tasks is the largest when a job from each of these tasks is released
immediately before Ji, j . Let TE (i) denote the subset of tasks, other than Ti , that have the
same priority as Ti . This delay is at most equal to the sum of the execution times of all the
tasks in TE (i).

Therefore, when the priorities of tasks are not distinct, the time-demand function wi (t)
of any task Ti in a system where Dk ≤ pk for all k is

wi (t) = ei + bi +
∑

Tk∈TE (i)

ek +
∑

Tk∈TH (i)

⌈
t

pk

⌉
ek, for 0 < t ≤ min(Di , pi) (6.24a)

where TH (i) denotes the subset of tasks that have higher priorities than Ti . Similarly, in a
system where the response times of some tasks are larger than their respective periods, we
compute the time-demand function of the j th-job of Ti in a level-i busy interval according to

wi, j (t) = jei + bi +
∑

Tk∈TE (i)

(⌈
(j − 1)pi

pk

⌉
+ 1

)
ek +

∑

Tk∈TH (i)

⌈
t

pk

⌉
ek (6.24b)

for (j − 1)pi < t ≤ wi, j (t).

Schedulability Loss of Fixed-Priority Systems. Whenever the number �n of prior-
ities assigned to tasks (called assigned priorities) by a fixed-priority scheduling algorithm is
larger than the number �s of priority levels supported by the system, the �n assigned priori-
ties must be mapped onto �s system priorities. The performance of the scheduling algorithm
critically depends on this mapping.

In the description of this mapping, we continue to use positive integers 1, 2, . . . , �n to
denote the assigned priorities, 1 being the highest priority and �n the lowest. We denote the

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 167

Section 6.8 Practical Factors 167

system priorities by π1, π2, . . . , π�s , where πk (1 ≤ k ≤ �s) is a positive integer in the range
[1, �n] and π j is less than πk if j < k. The set {π1, π2, . . . , π�s } is a priority grid. We map the
assigned priorities onto this grid so that all the assigned priorities equal to or higher than π1

are mapped to π1 and all assigned priorities in the range (πk−1, πk] are mapped to the system
priority πk for 1 < k ≤ �s .

A natural mapping is the uniform mapping. According to this method, the priority grid
is uniformly distributed in the range of the assigned priorities. Specifically, let Q denote the
integer ��n/�s�. πk = k Q for k = 1, 2, . . . , �s − 1 and π�s is equal to �n . Hence, the
highest Q assigned priorities 1, 2, . . . , Q are mapped to π1 = Q, the next Q highest assigned
priorities are mapped to π2 = 2Q, and so on. As an example, suppose that a system has 10
tasks whose assigned priorities are equal to 1, 2, . . . , 10. Suppose that the system can support
only three priority levels. According to uniform mapping, the system priorities are π1 = 3,
π2 = 6, and π3 = 10. The assigned priorities 1, 2, and 3 are mapped to the same system
priority π1 = 3, the assigned priorities 4, 5, and 6 are mapped to system priority π2 = 6,
and the assigned priorities 7, 8, 9, and 10 are mapped to the lowest system priority π3 = 10.
The scheduler then schedules the tasks according to their system priorities. Because jobs in
tasks with the same system priority are scheduled on a FIFO basis, with linear mapping, the
schedulable utilization can be very small.

A better method is the constant ratio mapping [LeSh]. This method keeps the ratios of
(πi−1 +1)/πi , for i = 2, 3, . . . , �s as equal as possible. Consequently, there are more system
priority levels at the higher-priority end of the assigned priority range than at the lower-priority
end. In the example above, we can let π1 = 1, π2 = 4, and π3 = 10. (π1 + 1)/π2 is 1/2, and
(π2 + 1)/π3 is also 1/2. With this grid, the assigned priority 1 is mapped to system priority 1;
the assigned priorities 2, 3, and 4 are mapped to system priority 4 and the five lowest assigned
priorities are mapped to system priority 10.

Let g denote the minimum of the grid ratios, that is, g = min2≤i≤�s (πi−1 + 1)/πi).
Lehoczky and Sha [LeSh] showed that when constant ratio mapping is used, the schedulable
utilization of the RM algorithm for large n and Di = pi for all i is equal to ln(2g)+ 1 − g,
if g > 1/2 and is equal to g, if g ≤ 1/2. The ratio of this schedulable utilization to ln 2 is the
relative schedulability; it measures the deterioration in schedulability due to an insufficient
number of system priorities. For a system containing 100,000 tasks (i.e., �n = 100,000), the
relative schedulability is equal to 0.9986 when �s is equal to 256. Hence, 256 system priority
levels are sufficient even for the most complex rate-monotonically scheduled systems.

Schedulability Loss of Deadline-Driven Systems. As we will see in Chapter 12,
one way to implement EDF algorithm is to put ready jobs with the same relative deadline in a
FIFO queue. These jobs are naturally ordered among themselves according to their deadlines.
Hence, the job with earliest deadline among the jobs at heads of all the nonempty FIFO queues
is the one with the earliest deadline among all ready jobs. In general, the number �s of FIFO
queues maintained by the scheduler may be fewer than the number �n of distinct relative
deadlines of all tasks in the system. Some scheme, such as the constant ratio mapping scheme
described above, is needed to map relative deadlines of jobs to the relative deadline grid
supported by the system. A question then is, what is the loss in schedulable utilization when
the system supports �s relative deadlines?

To answer this question, we suppose that according to some mapping rule, the scheduler
maps all relative deadlines in the range [Di,min, Di,max] to Di,min. In other words, the minimum

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 168

168 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

and maximum relative deadlines of all jobs in the i th FIFO queue are Di,min and Di,max,
respectively, and the absolute deadline of every job in the queue is equal to its release time
plus Di,min. The grid ratio g is the minimum of the ratios Di,min/Di,max among all �s distinct
relative deadline grid points. A sufficient schedulability condition for the on-time completion
of all jobs is that the total density of all periodic tasks be no greater than g. (This condition
follows directly from Theorem 7.4 discussed in Section 7.4.1.)

6.8.5 Tick Scheduling

An important assumption underlying all the schedulability tests described above is that the
scheduler is event-driven: Upon the occurrence of every scheduling event, the scheduler exe-
cutes immediately. Hence, every job is inserted into the ready job queue immediately after it
becomes ready. This assumption is sometimes not valid. A way to implement the scheduler is
to make it time-driven. By this we mean that the execution of the scheduler is triggered by a
timer which is set to expire periodically. Scheduling decisions are made at these time instants,
called clock interrupts. This method is called tick scheduling or time-based scheduling. We
now focus on the case when the scheduler executes only at clock interrupts.

Tick scheduling introduces two additional factors that must be accounted for in schedu-
lability analysis. First, the fact that a job is ready may not be noticed and acted upon by the
scheduler until the next clock interrupt. The delayed action of the scheduler may delay the
completion of the job. Second, a ready job that is yet to be noticed by the scheduler must be
held somewhere other than the ready job queue. Let us call this place the pending (job) queue;
it holds the jobs that have been released or unblocked since the last clock interrupt. When the
scheduler executes, it moves the jobs in the pending queue to the ready job queue and places
them there in order of their priorities. Once in the ready queue, the jobs execute in priority
order without intervention by the scheduler. The time the scheduler takes to move the jobs
introduces additional scheduling overhead.

Let p0 denote the tick size, that is, the length of time between consecutive clock inter-
rupts. We can model the scheduler as a periodic task T0 whose period is p0. This task has the
highest priority among all tasks in the system. Its execution time e0 is the amount of time the
scheduler takes to service the clock interrupt. This time is spent even when there is no job in
the pending job queue. Let C S0 denote the maximum amount of time that the scheduler takes
to move a job from the pending queue to the ready job queue. This overhead occurs each time
a job is placed into the ready queue.

As an example, we consider a fixed-priority system consisting of three tasks T1 =
(0.1, 4, 1), T2 = (0.1, 5, 1.8) and T3 = (20, 5). The first section of T3 is nonpreemptable,
and the execution time of this section is 1.1. The relative deadlines of the tasks are equal
to their respective periods. According to the time-demand analysis method described in Sec-
tion 6.5, the maximum response times of the tasks are equal to 2.1, 3.9, and 14.4, respectively.
They are correct upper bounds if the scheduler executes whenever a job is released, completes,
or leaves a nonpreemptable section.

Now suppose that the scheduler executes only at clock interrupts 0, 1, 2, . . . (i.e., p0 is
1). It takes 0.05 unit of time to service a clock interrupt (i.e., e0 is 0.05) and 0.06 unit of time
to move a job from the pending queue to the ready queue (i.e., C S0 is 0.06). (On a modern
processor, these times are a few microseconds.) We now have the schedule in Figure 6–22.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 169

Section 6.8 Practical Factors 169

Sch

0 1 2 3 4 5 6

2.17 3 3.22 4.1 5.11 6.22

.1

.1

3.22 4.05 5.1 6.29

1.11 2 3 4 5 6

T1

0

T2

0

T3

0

FIGURE 6–22 Example illustrating the effect of tick scheduling: (T1 = (0.1, 4, 1), T2 = (0.1, 5, 1.8), T3 = (20, 5);
p0 = 1, e0 = 0.05, and C S0 = 0.06).

1. At time 0.05 after the scheduler finishes serving the clock interrupt at time 0, it finds
only J3,1 in the pending queue and moves the job to ready queue. This job begins to
execute at time 0.11 and immediately enters its nonpreemptable section.

2. At time 1, both J1,1 and J2,1 have been released, but they are not ready for execution
because J3,1 is still in its nonpreemptable section. The scheduler does nothing. J3,1

executes, exits its nonpreemptable section, and continues to execute.

3. At time 2, the scheduler finds J1,1 and J2,1 unblocked and moves them to the ready
queue. The total time spent by the scheduler is 0.17. Hence, J1,1 begins to execute at
time 2.17.

4. At time 3, the scheduler finds no job in the pending queue. J1,1 continues to execute after
the scheduler completes servicing the clock interrupt. Upon the completion of J1,1, the
next job J2,1 in the ready queue executes.

5. At time 4, the scheduler again finds no job in the pending queue. J2,1 continues to
execute.

6. At time 5, J2,1 is still not complete. The scheduler finds J1,2 in the pending queue. (The
job was released at time 4.1.) It moves J1,2 to the ready queue and places it ahead of
J2,1. Consequently, when the scheduler completes at time 5.11, J1,2 begins to execute.

7. At time 6, the scheduler finds J2,2 in the pending queue, moves the job to the ready
queue, and places the job after J1,2 and J2,1. At time 6.11, J1,2 executes. The job com-
pletes at 6.22. J2,1 resumes and subsequently completes at time 6.29. Then, J2,1 begins
to execute and so on.

The response time of the first job in T2 is 6.19, larger than its relative deadline 5. Because the
time-demand analysis method in Sections 6.5 and 6.6 ignores the effect of tick scheduling, it
fails to predict the missed deadline at time 5.1.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 170

170 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

Fixed-Priority Systems. We can take into account the additional time demand in-
troduced by tick scheduling in a fixed-priority system by using the following modified task
parameters in the computation of the time-demand function of task Ti :

1. include the task T0 = (p0, e0) in the set of higher-priority tasks;
2. add (Kk + 1)C S0 to the execution time ek of every higher-priority task Tk (i.e., for

k = 1, 2, . . . , i), where Kk is the number times Tk may self-suspend;
3. for every lower-priority task Tk , k = i + 1, . . . , n, add a task (pk,C S0) in the set of

higher-priority tasks; and
4. make the blocking time bi (np) due to nonpreemptability of Ti equal to

(⌈
max

i+1≤k≤n
θk/p0

⌉
+ 1

)
p0,

where θk is the maximum execution time of nonpreemptable sections of the lower-
priority task Tk .

Rule 1 is obvious. It takes into account the clock interrupt service overhead of the sched-
uler. Each time a job in Ti or a task with a higher or equal priority than Ti becomes ready, the
scheduler spends C S0 units of time to move the job to the ready queue. This time is taken
care of by rule 2. Similarly, because of rule 3, the time the scheduler takes to move lower-
priority jobs from the pending queue to the ready queue is added to the time-demand function
of Ti . Because lower-priority jobs never execute in a level-πi busy interval, we need not be
concerned with whether they self-suspend.

To see the rationale behind rule 4, we note that a job in Ti may suffer up to p0 units of de-
lay waiting in the pending queue each time when it becomes ready, and we can treat this delay
as a factor of its blocking time. This is why the blocking term bi (np) is equal to p0 even when
lower-priority tasks do not have nonpreemptable sections (i.e., θk is 0 for all k > i .) If some
lower-priority tasks have nonpreemptable sections, a job may wait in the pending queue longer
than the maximum execution time of the nonpreemptable sections. In the worst case, a job may
be released shortly after the (x − 1)th clock interrupt for some x , a lower priority job enters
a nonpreemptable section shortly before the x th clock interrupt, and exits the section shortly
after the yth clock interrupt (y ≥ x). The job waits in the pending queue for approximately p0

units before the x th clock interrupt, (y − x)p0 units between clock interrupts x and y, and p0

units after the yth clock interrupt. This is the reason for the expression of the blocking time.
To apply the above rules to the example in Figure 6–22, we compute the time-demand

function of T2 as if it were in the system of the following five tasks: T0 = (1, 0.05), T0′ =
(20, 0.06), T1 = (4, 1.06), T2 = (5, 2.06), T3 = (20, 5). T0 and T0′ have higher priorities than
the other tasks. b2(np) is equal to (�1.1/1.0� + 1) × 1.0 = 3.0. Substituting the parameters
of these tasks into the expression in Eq. (6.18), we have

w2(t) = 2.06 + 3.0 + 0.05

⌈
t

1.0

⌉
+ 0.06

⌈
t

20.0

⌉
+ 1.06

⌈
t

4.0

⌉

Solving t = w2(t) iteratively, we find that the maximum possible response time of T2 is 7.64.
This bound would lead us to the correct conclusion that T2 is not schedulable. Using the same
method, we find that the maximum response times of T1 and T3 are 4.43 and 19.8, respectively.
So, only T3 is surely schedulable.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 171

Section 6.8 Practical Factors 171

You can see that the conclusion on the schedulability of T1 is pessimistic. For this
example, the major source of inaccuracy is the seemingly loose bound on the blocking time
b1(np). However, this bound cannot be tightened in general. The blocking time of T1 and T2

would be approximately 3 if J3,1 were to enter its nonpreemptable section shortly before time
1.0 and exit the section after 2. The value of p0 in this example was chosen to highlight the
effect of tick scheduling. Usually, the period between clock interrupts is in the order of mil-
liseconds, small compared with the periods of tasks. By choosing a smaller p0, we can reduce
the extra blocking time introduced by tick scheduling at the expense of a higher overhead for
servicing clock interrupts.

Tindell and Clark [TiCl] pointed out that the time required by the scheduler to move
each of the subsequent jobs from the pending queue to the ready queue is smaller than the
time it requires to move the first job in the pending queue. We can, therefore, improve the
accuracy of the time-demand function by keeping track of the number of moves within the
time interval (t0, t + t0] and counting the cost of moving jobs more accurately. In our example,
the scheduler moves two job at clock interrupt 2, and the time taken to do the moves would
be only 0.09 (not 0.12 as shown in Figure 6–22) if the scheduler takes only 0.03 unit of time
to move the second job. The improvement in the accuracy of the time-demand function can
be significant only when the number of tasks are large (and hence the number of jobs in the
pending queue at each clock interrupt can be large).

Dynamic-Priority Systems. We can take into account of the effect of tick scheduling
in a dynamic-priority system in a similar way. Specifically, when checking the schedulability
of a task Ti , we modify the task parameters as follows.

1. Add the task T0 = (p0, e0).
2. Add (Kk + 1)C S0 to the execution time ek of every task Tk for k = 1, 2, . . . , n.
3. Make the blocking time bi (np) due to nonpreemptability of Ti equal to

(� max
i+1≤k≤n

θk/p0� + 1)p0,

where θk is the maximum execution time of nonpreemptable sections of a task Tk whose
relative deadline is larger than the relative deadline of Ti .

6.8.6 Varying Priority in Fixed-Priority Systems

Thus far, we have confined our attention to fixed-priority systems in which every job has a
constant priority. In general, each job in a task Ti may have more than one segment and the
segments may have different priorities. There are many reasons for doing so. When tasks con-
tend for resources, we sometimes raise the priority of a job segment during which the job holds
some nonpreemptable resource in order to speed up the release of the resource. (In Chapter 8
we will discuss this matter in depth.) Sometimes, raising the priority of a job segment is a way
to make the job, and hence the task containing it, schedulable. As an example, the system of
two tasks T1 = (2, 1) and T2 = (5, 2.5) is not schedulable on a fixed-priority basis. However,
if each job in T2 is divided into two segments whose execution times are 2.0 and 0.5, respec-
tively, and if the first segment has a lower priority than T1 but the second segment has a higher
priority than T1, then both tasks would be schedulable. (This “fixed-priority assignment” in
fact emulates the EDF assignment.)

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 172

172 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

This subsection describes an extension of the time-demand analysis method developed
by Harbour, et al. [HaKL, KRPO] to determine the schedulability of fixed-priority systems
containing tasks that have subtasks of different priorities. The method described here assumes
that jobs do not suspend themselves, every job can be preempted at any time, and context-
switch overhead is negligible. Moreover, jobs in each task are scheduled on a FIFO basis.
Therefore, before a job completes, the subsequent jobs in the same task do not compete for
processor time with jobs in other tasks.

Subtasks, Canonical Form, and Interference Block. We let n(i) denote the number
of segments in each job of a periodic task Ti . These segments have different priorities. In a
fixed-priority system, the corresponding segments of all the jobs in the same task have the
same priority. It is convenient to think of each such task Ti as composed of n(i) subtasks
Ti,1, Ti,2, . . . , Ti,n(i). A job in Ti,k is the kth segment of a job in Ti .

The j th job in each subtask of Ti is released at the beginning of the j th period of Ti . The
job in Ti,1 is ready as soon as it is released. The subtask Ti,k−1 is the immediate predecessor
of Ti,k , and Ti,k is the immediate successor of Ti,k−1. By this we mean that the j th job in Ti,k

is ready when the j th job in Ti,k−1 completes, for all 1 < k ≤ n(i). The maximum execution
times of the subtasks are ei,1, ei,2, . . . , ei,n(i), respectively. The sum of these execution times
is ei .

The relative deadlines of the subtasks of Ti are Di,1, Di,2, . . . , Di,n(i), respectively.
Clearly, for the relative deadlines of the subtasks to be consistent with the precedence con-
straints among their jobs, we must have Di,1 ≤ Di,2 ≤ · · · ≤ Di,n(i), and Di,n(i) is equal to
Di . In practice, the relative deadline of every subtask Ti,k of Ti is usually equal to Di , that
is, it does not matter when the individual job segments complete, provided that each job as a
whole completes in time. We focus here on this special case.

The subtasks of each task Ti have fixed priorities πi,1, πi,2, . . . , πi,ni , respectively, and
πi,k−1 �= πi,k for all 1 < k ≤ n(i). Since we are concerned here with how to determine
whether a system of independent periodic tasks with varying priorities is schedulable, not
how priorities should be assigned to them, we assume that priorities of all subtasks of all tasks
are given.

A task is in canonical form if every later subtask has a higher priority than its immediate
predecessor subtask. A task that is not in canonical form can be transformed into canonical
form in the following manner. Starting with the last subtask, we examine the subtasks of the
task in turn in reverse precedence order. We lower the priority of each immediate predecessor
to the priority of the immediate successor if the given priority of the immediate predecessor is
higher; otherwise, we leave the priority of the immediate predecessor unchanged. We repeat
this process until the priority of the first subtask is thus determined. If in this process the
priorities of adjacent subtasks become the same, we combine these subtasks into one subtask
and decrement the number of subtasks accordingly.

As an example, suppose that the task Ti has four subtasks. It is not in canonical form
if the priorities of the subtasks are 4, 1, 3, and 2, respectively. To transform it into canonical
form for the sake of time-demand analysis, we leave the priorities of fourth and third subtasks
unchanged since the fourth subtask has a higher priority. We lower the priority of second
subtask to 3, the priority of the third subtask. Since the first subtask has a lower priority than
3, we leave its priority unchanged. After this step, the second and third subtasks have the same
priority. So, we concatenate them into one new subtask Ti,2. The execution time of this new

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 173

Section 6.8 Practical Factors 173

subtask is the sum of the execution times of the original second and third subtasks. The first
and third subtask of the transformed task are the original first and fourth subtasks, respectively.

An interference block of a subtask Ti,k is a chain of one or more contiguous subtasks
Tl,x , Tl,x+1, . . . , Tl,y in another task Tl , for some l �= i and y ≥ x , that have the following
properties. (1) All of these subtasks have equal or higher priorities than the priority πi,k of
Ti,k ; (2) either Tl,x has no predecessor or the priorities of its immediate predecessor are lower
than πi,k ; and (3) either Tl,y has no successor or the priority of its immediate successor is
lower than πi,k .

Extended General Time-Demand Analysis. We are now ready to describe the ex-
tended general time-demand analysis method [HaKL]. As in Section 6.6, we compute the
maximum possible response time of one task at a time. We call the task for which we are
doing the computation the target task. In our discussion here, the target task is Ti .

Transforming the Target Task. Rather than working with the given target task, we
first transform it into canonical form if the task is not already in the form. The maximum
response time of the transformed target task is no less than the maximum response time of
the given task. (The proof of this statement can be found in [HaKL].) Therefore, the extended
time-demand analysis method will never lead us to conclude that the target task is schedu-
lable when it is not. Hereafter, by subtasks Ti,1, Ti,2, . . . , Ti,n(i), we mean the subtasks of the
transformed target task. Therefore, Ti,1 has the lowest priority, and the later subtasks have
increasingly higher priorities.

Identifying the Interference Blocks. After making sure that the task is in canonical
form, the next step is to compute the maximum length of a level-πi,1 busy interval and the
maximum number of jobs in Ti released in the busy interval. In this computation, we focus
on the first subtask Ti,1 of the target task and examine every task Tl other than Ti (i.e., l �= i)
to identify the interference blocks of Ti,1. Let hl denote the number of interference blocks in
Tl and El,x denote the sum of the execution times of all the subtasks in the x th interference
block in Tl . (For simplicity, we omit in these notations any reference to the target subtask Ti,1.
It is important to keep in mind that the values of hl and El,x are different for different target
subtasks.) Rather than keeping track of individual subtasks in Tl when trying to account for
the processor time demand of Tl , we keep track the processor time demands of interference
blocks in Tl .

Computing the Length of Level-πi,1 Busy Interval. With respect to Ti,1, we parti-
tion the other tasks in the system into the following disjoint subsets according to the priorities
of their subtasks:

L(1): A task is in this subset if it contains no interference block of the target subtask
Ti,1.
H(1): A task is in this subset if all its subtasks form a single interference block of Ti,1.
H/L(1): A task is in this subset if it contains at least one interference block of Ti,1, and
either its first subtask or its last subtask or both are not in an interference block.
HLH(1): A task is in this subset if its first and last subtasks are in two different inter-
ference blocks.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 174

174 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

Let t0 denote the beginning of a level-πi,1 busy interval. Since no job of tasks in L(1)
can execute after t0, we can ignore this subset of tasks. Clearly, every task Tl in H(1) may
repeatedly preempt the subtask Ti,1 and may demand �t/pl�el units of processor time in the
interval (t0, t0 + t] for any t ≥ 0.

In contrast, at most one interference block of each task Tl in the subset H/L(1) can
execute in the interval (t0, t0 + t]. The reason is that when the interference block completes,
the subtasks following the interference block have lower priorities than Ti,1 (and subsequent
subtasks of Ti) and cannot start execution until the current job in Ti completes. Specifically,
the amount of processor time demanded by a task Tl in the subset H/L(1) is the largest
if the first subtask in the interference block with the largest total maximum execution time
among all the interference blocks in Tl becomes ready for execution at t0. Similarly, if the x th
(1 ≤ x ≤ hl −1) interference block in Tl in the subset HLH(1) is ready at time t0, the amount
of processor time demanded by the task in (t0, t0 + t] is no more than max1≤x≤hl−1 El, x . If the
last interference block is ready at time t0, however, the amount of processor time demanded
by Tl can be as large as El,hl + El,1. It follows that the maximum amount of processor time
demanded by all the tasks in the subsets H/L and HLH(1) is equal to

a(1) =
∑

Tl∈H/L(1)

max
1≤x≤hl

El,x +
∑

Tl∈HLH(1)

max

(
max

2≤x≤hl−1
El,x , El,1 + El,hl

)
(6.25a)

Let Bi denote the maximum length of a level-πi,1 busy interval. Bi is the minimum
solution of the equation

t = bi + a(1)+ �t/pi�ei +
∑

Tl∈H(1)

⌈
t

pl

⌉
el (6.25b)

where bi is the blocking time of Ti . We can solve this equation iterative starting from the
initial value bi + ei + a(1). Let Ni denote the number of jobs in each busy interval.

Ni = �Bi/pi� (6.25c)

Maximum Response Time of Ti,1. The time-demand functionwi,1; j (t) of the j th job
of Ti,1 in a level-πi,1 busy interval is given by

wi,1; j (t) = bi + ei,1 + (j − 1)ei + a(1)+
∑

Tl∈H(1)

⌈
t

pl

⌉
el (6.26a)

We use fi,k; j to denote the latest completion time of the j th job in the subtask Ti,k , for k =
1, 2, . . . , n(i), in a level-πi,1 busy interval. fi,1; j is the minimum solution of the equation

t = wi,1; j (t) (6.26b)

We can find the solution by solving the above equation iteratively starting from the initial
guess bi + ei,1 + (j − 1)ei + a(1).

Maximum Response Times of Later Subtasks. After finding the time-demand
function wi,k−1; j (t) and the latest completion time fi,k−1; j of the j th job in the subtask Ti,k−1

for each k > 1, we then find the time-demand function wi,k; j (t) and the latest completion

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 175

Section 6.8 Practical Factors 175

time fi,k; j of the j th job of Ti,k . (Now, Ti,k is the target subtask.) During the computation of
wi,k−1, j (t), we have identified the subset H(k − 1) of tasks that contain no subtasks with pri-
orities lower than Ti,k−1. Because Ti,k has a higher priority than Ti,k−1, some tasks in H(k −1)
may contain subtasks with lower priorities than the current target subtask Ti,k . These tasks
cannot repeatedly preempt Ti,k . We therefore further partition the subset H(k − 1) into the
following disjoint subsets according to the priorities of their subtasks when compared with
the priority πi,k of Ti,k .

H(k): A task is in this subset if all its subtasks form a single interference block of Ti,k .

H/L(k): A task is in this subset if it contains at least one interference block of Ti,k , and
either its first subtask or its last subtask or both are not in an interference block.

HLH(k): A task is in this subset if its first and last subtasks are in two different inter-
ference blocks of the subtask Ti,k .

L(k): A task is in this subset if all its subtasks have priorities lower than πi,k .

Again, each task in H(k) can repeatedly preempt the job Ji,k; j in the target subtask Ti,k .
For the same reason that leads us to Eq. (6.25a), the total processor time demanded by all the
tasks in the subsets H/L(k) and HLH(k) after the completion time fi,k−1; j of the intermediate
predecessor job Ji,k−1; j is given by

a(k) =
∑

Tl∈H/L(k)

max
1≤x≤hl

El,x +
∑

Tl∈HLH(k)

max

(
max

2≤x≤hl−1
El,x , El,1 + El,hl

)
(6.27a)

where hl and El,x are parameters of interference blocks of Ti,k . The time-demand function
wi,k; j (t) of the the j th job in the target subtask Ti, j is given by

wi,k; j (t) = bi + (j − 1)ei +
k∑

x=1

[
ei,x + a(x)+

∑

Tl∈H(x−1)−H(x)

⌈
fi,x−1; j

pl

⌉
el

]
+

∑

Tl∈H(k)

⌈
t

pl

⌉
el

(6.27b)

where the completion time fi,0; j of j th job of an nonexisting subtask Ti,0 is 0 and H(0) is T.
The latest completion time fi,k; j of the j th job of Ti,k in a level-πi,1 busy interval is equal to
the minimum solution of the equation

t = wi,k; j (t) (6.27c)

Maximum Response Time Wi. The maximum response time Wi of the target task is
given by

Wi = max
1≤ j≤Ni

(fi,n(i); j − (j − 1)pi) (6.28)

The Procedure. In summary, to determine the schedulability of a fixed-priority sys-
tem of periodic tasks that contain subtasks of different priorities we carry out the following
steps to compute the maximum response time Wi of a task Ti at a time.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 176

176 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

1. Transform the target task Ti into canonical form. After the transformation, its subtasks
Ti,k for k = 1, 2, . . . , n(i) have increasing priorities πi,1, πi,2, . . . , πi,n(i).

2. Compute the length Bi of the longest level-πi,1 busy interval and maximum number Ni

jobs of Ti in the busy interval according to Eq. (6.25).
3. For j = 1, 2, . . . , Ni , compute the latest completion time of fi,n(i); j of the j th job in

Ti . This is done by computing the latest completion time fi,k; j of the j th job in each
subtask Ti,k of Ti , for k = 1, 2, . . . , n(i), starting from the first subtask in precedence
order until the last subtask. The time-demand functions used for this computation are
given by Eqs. (6.26) and (6.27).

4. Compute an upper bound Wi of the maximum response time of Ti according to
Eq. (6.28).

An Example. As an example, we compute below the maximum response time W2 of
the task T2 in the fixed-priority system whose parameters are listed in Table 6-1. The blocking
time of all the tasks is 0. T2 has two subtasks, T2,1 and T2,2. The task is already in canonical
form, so we proceed to compute the maximum length B2 of a level-5 busy interval.

Comparing with π2,1 = 5, we divide the other three tasks into subsets. Both L(1) and
H/L(1) are empty. H(1) = {T1, T4}, and HLH = {T3}. T3 has three interference blocks of
T2,1 and their execution times are 0.6, 0.7, and 0.5. From Eq. (6.25a), a(1) = 0.6+0.5 = 1.1.

Substituting this value and the parameters of the tasks into Eq. (6.25b), we have

t = 1.1 + 2.5

⌈
t

7

⌉
+ 2.5

⌈
t

10

⌉
+ 3.0

⌈
t

15

⌉

The minimum solution of this equation is 19.6. Hence B2 = 19.6, and N2 = 2.
To find the maximum completion time f2,1;1 of the first job in T2, 1 in a level-5 busy

interval, we have from Eq. (6.26a)

w2,1; 1(t) = 0.9 + 1.1 + 2.5

⌈
t

7

⌉
+ 3.0

⌈
t

15

⌉

f2,1;1 = 10 because w2,1;1(t) becomes equal to t at t = 10.

TABLE 6–1 Tasks with Subtasks of Different Priorities

Subtask pi Di ei,k πi,k

T1,1 7 7 2.5 1
T2,1 10 15 0.9 5
T2,2 10 15 1.6 2
T3,1 12 20 0.6 2
T3,2 12 20 0.1 6
T3,3 12 20 0.7 2
T3,4 12 20 0.1 6
T3,5 12 20 0.5 3
T4,1 15 15 1.0 2
T4,2 15 15 0.5 1
T4,3 15 15 1.5 4

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 177

Section 6.8 Practical Factors 177

Now we examine the subset H(1) and partition it into subsets in the way as described
above. H(2) = {T1}, and H/L(2) = {T4}. Moreover the execution time of the interference
block of T2,2 in T4 is equal to the sum the execution times of T4,1 and T4,2; hence, a(2) is
equal to 1.5. From Eq. (6.27), we have

w2,2;1(t) = 2.5 + 1.1 + 1.5 + 3

⌈
10

15

⌉
+ 2.5

⌈
t

7

⌉

Solving the equation t = w2,2;1(t) iteratively, we have f2,2;1 = 13.1. In other words, the first
job of T2 in a level-5 busy interval completes by 13.1.

Similarly, the maximum completion time f2,1;2 of the second job in T2,1 is given by the
minimum solution of the equation

t = 2.5 + 0.9 + 1.1 + 2.5

⌈
t

7

⌉
+ 3.0

⌈
t

15

⌉

f2,1;2 is equal to 18. Finally, the solution of

t = w2,2;2(t) = 2.5 + 2.5 + 1.1 + 1.5 + 3

⌈
18

15

⌉
+ 2.5

⌈
t

7

⌉

is f2,2;2 = 23.6. The maximum response time W2 of the task T2 is max(13.1 − 0, 23.6 −
10.0) = 13.1. Since the relative deadline of the task is 15, this task is schedulable.

You may have noticed that the upper bound f2,2;2 = 23.6 is a loose one. Since the
first level-5 busy interval ends at time 19.6, f2,2;2 is surely no greater than 19.6. A careful
examination of the above expression of w2,2;2(t) tells us that the source of inaccuracy is the
inclusion of a(2) = 1.5, which is the execution time of the interference block {T4,1, T4,2}
in H/L(2). In this case, this time is already included in the term 3�18/15� and is therefore
counted twice. In general, when a task has a long chain of subtasks, the maximum completion
time of a job in a later subtask computed from the time-demand function in Eq. (6.27b) can
be rather loose for this reason. Unfortunately, we cannot tighten this bound in general. The
term a(x) must be included to ensure the correctness of the bound. In our example, if the
completion time of predecessor job J2,1;2 were 15, not 18, we would have to include the term
a(2).

6.8.7 Schedulability Test of Hierarchically Scheduled Periodic Tasks

Earlier in Chapter 3, we mentioned that the scheduling scheme may be hierarchical. The ap-
plication system consists of a number of disjoint subsets of periodic tasks. Each subset is a
major component, called a subsystem here. (As an example, a flight management system con-
tains flight control, avionics, and navigation modules as subsystems.) The scheduler may use
one approach to schedule individual subsystems on the processor and use another approach to
divide the time given to each subsystem among the tasks in the subsystem.

Two common hierarchical scheduling schemes are the priority-driven/round-robin
scheme and fixed-time partitioning scheme. In a priority-driven/round-robin system, the
scheduler schedules the subsystems in a priority-driven manner. The tasks in each subsystem
are scheduled in a round-robin manner in the intervals assigned to the subsystem. According
to the fixed-time partitioning scheme, the schedulers schedules the subsystems according

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 178

178 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

to a cyclic schedule. The tasks in each subsystem are scheduled according to the scheduling
algorithm chosen for the subsystem. We do not need any new method to determine the schedu-
lability of a priority-driven/round-robin system. For the sake of schedulability analysis, all
the tasks in each subsystem have the same priority, and their schedulability can be determined
using the method described in Section 6.8.4.

This section focuses on fixed-time partitioning systems and considers only the simplest
case: The subsystems are scheduled in a weighted round-robin manner. In particular, the cyclic
scheduler at the low level partitions the time into intervals of a fixed length RL . Each interval
is a round. The round length RL must be smaller than the minimum period and the minimum
relative deadline of all tasks in the system. We consider a subsystem that has n independent,
preemptable periodic tasks and is given a slot of length τ in each round by the cyclic scheduler.

As a specific example, suppose that the subsystem contains three periodic tasks: T1 =
(φ1, 8, 0.5), T2 = (φ2, 10, 1.2), and T2 = (φ3, 14, 0.8). Their phases are unknown. The total
utilization of the subsystem is 0.24. The subsystem is given a slot of length 1 every round of
length 3, and the tasks in it are scheduled rate-monotonically in its slots. Figure 6–23 shows a
segment of the worst-case schedule. (We take as the time origin a critical instant of the tasks;
in the worst case, this critical instant occurs immediately after the end of a slot assigned to
the subsystem.) According to this schedule, the maximum response times of the tasks are 2.5,
5.7, and 9.0, respectively.

Schedulability of Fixed-Priority Tasks. In general, the time-demand function of
any task Ti in a subsystem whose tasks are scheduled on a fixed-priority basis is still given
by Eq. (6.24). However, the amount supply(t) of time available to the subsystem in the time
interval (t0, t0 + t) following a critical instant t0 of Ti is no longer t . Rather,

5.7 10

0 2.5 8

T1

T2

0 63 9

9

T2

Assigned slots

FIGURE 6–23 Example illustrating the fixed-time partition scheme.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 179

Section 6.9 Summary 179

supply(t) ≤
⌊

t

RL

⌋
τ + max

(
0, τ − RL + t −

⌊
t

RL

⌋
RL

)
(6.29)

The first term in this expression gives the amount of time allocated to the subsystem in rounds
that lie entirely in the interval (t0, t0 + t). The second term gives the amount of time that
is allocated to the subsystem and is in the last of all the rounds which start before t0 + t .
The equality holds when the critical instant t0 is immediately after the end of a slot that is
allocated to the subsystem. We can use the general schedulability analysis method described
in Section 6.6 to determine whether Ti is schedulable, provided that we use this expression of
time supply.

To find the maximum possible response time of task T3 in Figure 6–23, we solve for the
minimum value of t satisfying the equation

0.8 + 0.5

⌈
t

8

⌉
+ 1.2

⌈
t

10

⌉
≤
⌊

t

3

⌋
+ max

(
0, 1 − 3 + t − 3

⌊
t

3

⌋)

Again, we can solve this equation iteratively. The initial guess t (1) (= 2.5) is the sum of
execution times of the three tasks. Substituting this value of t , we find the left-hand side is
equal to 2.5, but the right-hand side is only 0.5. For the second iteration, we try t (2) = 9.0,
which is �t (1)/(τ/RL)� and find that for this value of t , the two sides of the above expressions
have the same value. Hence, the maximum possible response time of the T3 is 9.0.

Schedulability of Deadline-Driven Tasks. A subsystem of n periodic tasks with rel-
ative deadlines no less than their respective periods is schedulable on the EDF basis when its
total utilization is no greater than

U (RL , τ) = τ

RL
− RL − τ

min1≤i≤n pi

The proof of this statement is to you as an exercise.

6.9 SUMMARY

This chapter focused on the performance of priority-driven algorithms for scheduling indepen-
dent, preemptive periodic tasks. Such algorithms are divided into two classes: fixed priority
and dynamic priority. Examples of fixed-priority algorithms are the Rate-Monotonic (RM) and
Deadline-Monotonic (DM) algorithms, which assign priorities to tasks on the basis of their
periods and relative deadlines, respectively; the shorter the period or relative deadline, the
higher the priority. Examples of dynamic-priority algorithms are the EDF (Earliest-Deadline-
First) and LST (Least-Slack-Time) algorithms. The former assigns priorities to individual jobs
on the basis of their absolute deadlines, while the latter does so on the basis of their slacks.
We further divide dynamic priority algorithms into two subclasses: job-level fixed-priority
and job-level dynamic-priority algorithms. The EDF algorithm is an example of the former
because the priority of each job once assigned remains fixed relative to priorities of existing
jobs. The LST algorithm is an example of the latter.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 180

180 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

6.9.1 Sufficient Schedulability Conditions

A criterion commonly used to measure the performance of an algorithm for scheduling peri-
odic tasks is the schedulable utilization of the algorithm. As long as the total utilization of a
system of periodic tasks is less than or equal to the schedulable utilization of an algorithm,
the system is schedulable according to the algorithm. Therefore, the higher the schedulable
utilization of an algorithm, the better the algorithm.

Schedulable Utilization or Density of Optimal Dynamic-Priority Algorithms.
The schedulable utilization of the EDF and LST algorithms is one when the periodic tasks
scheduled on one processor are independent and preemptable and have relative deadlines
equal to or larger than their respective periods. When the relative deadline Dk of some task Tk

is shorter than its period pi , a system of independent, preemptive periodic tasks is schedulable
according to the EDF algorithm if

n∑

k=1

ek

min(Dk, pk)
≤ 1

where ek is the execution time of task Tk and n is the number of periodic tasks in the system.

Schedulable Utilizations of Optimal Fixed-Priority Algorithms. No fixed-priority
algorithm is optimal, because there exist schedulable systems for which no fixed-priority al-
gorithm can find feasible schedules. Among fixed-priority algorithms, the DM algorithm is
optimal. It is identical to the RM algorithm when Dk = δpk , for k = 1, 2, . . . , n and some
constant δ. For such a system, the schedulable utilization of these algorithms is

URM(n, δ) = δ(n − 1)

[(
δ + 1

δ

)1/n−1

− 1

]
, for δ = 2, 3, . . .

n
(
(2δ)1/n − 1

)+ 1 − δ, 0.5 ≤ δ ≤ 1

δ, 0 ≤ δ ≤ 0.5

A sufficient schedulability condition for a system of n independent, preemptive periodic tasks
to be scheduled rate-monotonically is that its total utilization U (n) be equal to or less than
URM(n, δ).

There are several less robust but more accurate schedulable utilizations of the RM algo-
rithm. All of them rely on making use of some values of individual task parameters. Specifi-
cally, the following schedulable utilizations were presented earlier:

• URM(u1, u2, . . . un) given by Eq. (6.13) for systems with known task utilizations,
• the improved schedulable utilization given by Theorem 6.13 for tasks that can be parti-

tioned into disjoint subsets of simply periodic tasks,
• the schedulable utilization given by Eq. (6.14) for tasks with known periods,
• the sufficient condition given by Theorem 6.15 for tasks with known periods and ex-

ecution times based on the existence of a simply periodic, accelerated set with total
utilization equal to or less than one, and

• the schedulable utilization given by Eq. (6.16) for multiframe tasks.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 181

Section 6.9 Summary 181

6.9.2 Necessary and Sufficient Schedulability Test for Fixed-Priority Systems

The general time-demand analysis method presented in Section 6.6.2 is a pseudopolynomial
time schedulability test for fixed-priority systems that is both necessary and sufficient. This
test examines the execution times and periods of all tasks and hence can be used only when
you know the values of these parameters. The method works as follows:

1. To determine whether a system of independent, preemptable periodic tasks is schedu-
lable, we test one task at a time starting from the highest priority task T1 in order of
decreasing priority.

2. While checking whether Ti is schedulable, we consider the subset Ti of tasks with
priorities πi or higher, assume that the tasks in this subset are in phase, and examine the
jobs in the first level-πi busy interval.
a. If the first job of every task in Ti completes by the end of the first period of the task,

we check whether the first job of Ti meets its deadline. Ti is schedulable if the job
completes in time. Otherwise, Ti may not be schedulable.

b. If the first job of some task in Ti does not complete by the end of the first period
of the task, we examine every job of Ti that is executed in the busy interval. Ti is
schedulable if every examined job completes in time.

The length Bi of an in phase level-πi busy interval is equal to the minimum value of
t that satisfies the equation t = ∑i

k=1�t/pk�ek . There are no more than �Bi/pi� jobs of Ti

in this busy interval. The maximum possible response time Wi, j of the j th job of Ti in an
in-phase level-πi busy interval is equal to the minimum value of t that satisfies Eq. (6.9).

6.9.3 Effect of Practical Factors

Section 6.8 described ways to take into account the effect of practical factors such as nonpre-
emptability, self-suspension, and so on. These ways are summarized below.

Nondistinct Priorities. When tasks do not have distinct priorities, the time-demand
functionwi, j (t) of the j th job of Ti in an in-phase level-πi busy interval is given by Eq. (6.24),
that is,

wi, j (t) = jei + bi +
∑

Tk∈TE (i)

(⌈
(j − 1)pi

pk

⌉
+ 1

)
ek

+
∑

Tk∈TH (i)

⌈
t

pk

⌉
ek, for (j − 1)pi < t ≤ wi, j (t)

where TE (i) is the subset of tasks other than Ti that have the same priority as Ti and TH (i) is
the subset of tasks that have higher priorities than Ti .

Blocking Time. The term bi in the above equation gives the total amount time that a
job in Ti may be blocked. If the job may self-suspend Ki times after it starts execution, the
total blocking time bi it may suffer is equal to

bi = bi (ss)+ (Ki + 1)bi (np)

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 182

182 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

bi (ss) is the blocking time due to deferred execution of Ti and higher-priority tasks. Each
higher-priority task Tk (1 ≤ k ≤ i) contributes min(ek , maximum self-suspension time of Tk)

units of time to this term. bi (np) is the blocking time which a job in Ti may suffer due to
nonpreemptable lower-priority tasks. It is equal to maxi+1≤k≤n θk , where θk is the execution
time of the longest nonpreemptable section in Tk .

We must also include the blocking time bi of task Ti in the computation of the total
utilization of the tasks in Ti when we want to check whether Ti is schedulable using the
schedulable utilization of the algorithm. For example, a sufficient condition for a task Ti in a
rate-monotonically scheduled system to be schedulable is

e1

p1
+ e2

p2
+ · · · + ei + bi

pi
= Ui + bi

pi
≤ URM(i)

where Ui is the total utilization of the i highest priority tasks and URM(i) is schedulable
utilization of the RM algorithm.

Context Switch. In any job-level fixed-priority system, we can take into account the
context-switch overhead by adding 2(Ki + 1)C S to the execution time of each task Ti , where
C S is the maximum amount of time to do a context switch.

Tick Scheduling. When the scheduler makes scheduling decisions only at clock in-
terrupts that are p0 units of time apart, a newly released or unblocked job must wait in the
pending queue until the next clock interrupt. We need to consider the following two factors:
the delay suffered by each job waiting to be noticed by the scheduler and the time taken by
the scheduler to move each job from the pending queue to the ready queue. To determine the
schedulability of system, we modify the given task parameters following the rules given in
Section 6.8.5 and do the schedulability test using the modified task parameters.

Varying Priority. In some fixed-priority system, each job in a task Ti may have more
than one segment, the segments may have different priorities, and the corresponding segments
of all the jobs in the same task have the same priority. A general time-demand analysis proce-
dure for such tasks is given in Section 6.8.6.

Hierarchical Scheduling. Section 6.8.7 described how to determine the schedulabil-
ity of each subsystem when the subsystem is allocated a slot of τ time units in each round of
length RL and periodic tasks in the subsystem are scheduled on a priority-driven basis during
the time slots allocated to the subsystem.

EXERCISES

6.1 The static Least-Slack-Time (LST) algorithm [LeWh] is also called the Minimum Laxity (ML)
algorithm. This algorithm assigns priorities on the basis of laxity of tasks, where the laxity of
each task is equal to its relative deadline less its execution time.
(a) Show that the dynamic system in Figure 6–1 is schedulable according to this algorithm. For

this system, Tm has the highest priority, and the other n tasks have a lower priority.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 183

Exercises 183

(b) Is it true that ML algorithm can always make good use of all the processors in a dynamic
system, that is, the total utilization of all the periodic tasks that can be feasibly dispatched
and scheduled in an m processor system according to this algorithm is proportional to m?
Give an informal proof or a counterexample.

6.2 Prove that Theorem 6.2 is true.

6.3 Complete the proof of Theorem 6.4, by showing that it is always possible to swap Ti and Ti+1 in
a feasible, fixed-priority schedule so that after the swapping, Ti and Ti+1 are scheduled deadline-
monotonically. By swapping Ti and Ti+1, we mean move the task Ti to some of the intervals
where Ti+1 is scheduled and vice versa without affecting other tasks.

6.4 A system T contains four periodic tasks, (8, 1), (15, 3), (20, 4), and (22, 6). Its total utilization
is 0.87. Construct the initial segment in the time interval (0, 50) of a rate-monotonic schedule of
the system.

6.5 Which of the following systems of periodic tasks are schedulable by the rate-monotonic algo-
rithm? By the earliest-deadline-first algorithm? Explain your answer.
(a) T = {(8, 3), (9, 3), (15, 3)}
(b) T = {(8, 4), (12, 4), (20, 4)}
(c) T = {(8, 4), (10, 2), (12, 3)}

6.6 Give two different explanations of why the periodic tasks (2, 1), (4, 1), and (8, 2) are schedulable
by the rate-monotonic algorithm.

6.7 This problem is concerned with the performance and behavior of rate-monotonic and earliest-
deadline-first algorithms.
(a) Construct the initial segments in the time interval (0, 750) of a rate-monotonic schedule and

an earliest-deadline-first schedule of the periodic tasks (100, 20), (150, 50), and (250, 100),
whose total utilization is 0.93.

(b) Construct the initial segments in the time interval (0, 750) of a rate-monotonic schedule and
an earliest-deadline-first schedule of the periodic tasks (100, 20), (150, 50), and (250, 120),
whose total utilization is 1.1.

6.8 (a) Use the time-demand analysis method to show that the rate-monotonic algorithm will pro-
duce a feasible schedule of the tasks (6, 1), (8, 2), and (15, 6).

(b) Change the period of one of the tasks in part (a) to yield a set of tasks with the maximal total
utilization which is feasible when scheduled using the rate-monotonic algorithm. (Consider
only integer values for the period.)

(c) Change the execution time of one of the tasks in part (a) to yield a set of tasks with the max-
imal total utilization which is feasible when scheduled using the rate-monotonic algorithm.
(Consider only integer values for the execution time.)

6.9 The periodic tasks (3, 1), (4, 2), and (6, 1) are scheduled according to the rate-monotonic algo-
rithm.
(a) Draw the time-demand functions of the tasks.
(b) Are the tasks schedulable? Why or why not?
(c) Can this graph be used to determine whether the tasks are schedulable according to an arbi-

trary priority-driven algorithm? Explain your answer.

6.10 Which of the following fixed-priority tasks(s) is not schedulable? Explain your answer.

T1 = (5, 1), T2 = (3, 1), T3 = (7, 2.5), and T4 = (16, 1)

6.11 Find the maximum possible response time of task T4 in the following fixed-priority system by
solving the equation w4(t) = t iteratively.

T1 = (5, 1), T2 = (3, 1), T3 = (8, 1.6), and T4 = (18, 3.5)

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 184

184 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

6.12 (a) Show that the periodic tasks (10, 2), (15, 5), and (25, 9) are schedulable by the rate-
monotonic algorithm.

(b) Show that the periodic tasks (10, 2), (12, 5), and (15, 4) are not schedulable by the rate-
monotonic algorithm.

(c) Construct the initial segments in the time interval (0, 75) of a rate-monotonic schedule and a
earliest-deadline-first schedule of the periodic tasks (10, 2), (15, 5), and (25, 12).

6.13 Find the length of an in-phase level-3 busy interval of the following fixed-priority tasks:

T1 = (5, 1), T2 = (3, 1), T3 = (8, 1.6), and T4 = (18, 3.5)

6.14 A system T contains four periodic tasks: (9, 5.1, 1, 5.1), (8, 1), (13, 3), and (0.5, 22, 7, 22). The
total utilization of T is 0.87. Is this system scheduled according to the rate-monotonic algorithm?
Explain how you arrive at your conclusion.

6.15 A system consists of three periodic tasks: (3, 1), (5, 2), and (8, 3).
(a) What is the total utilization?
(b) Construct an earliest-deadline-first schedule of this system in the interval (0, 32). Label any

missed deadlines.
(c) Construct a rate-monotonic schedule for this system in the interval (0, 32). Label any missed

deadlines.
(d) Suppose we want to reduce the execution time of the task with period 3 in order to make

the task system schedulable according to the earliest-deadline-first algorithm. What is the
minimum amount of reduction necessary for the system to be schedulable by the earliest-
deadline-first algorithm?

6.16 (a) The total utilization of the periodic tasks {(7, 10, 1, 10), (12, 2,), (25, 9)} is 0.63. Is it
schedulable by the rate-monotonic algorithm? Explain how you arrive at your conclusion.

(b) The total utilization of the periodic tasks {(7, 10, 1, 10), (12, 6), (25, 9)} is 0.96. Is it schedu-
lable by the rate-monotonic algorithm? Explain how you arrive at your conclusion.

(c) Suppose that we increase the execution time of the task with period 10 by 1 [i.e., the pa-
rameters of the task become (7, 10, 2, 10) after the change] and reduce the relative dead-
line of the task with period 25 by 5 [i.e., the task become (25, 9, 20)]. We want to reduce
the execution time of the task with period 12 in order to make the task system schedula-
ble rate-monotonically. What is the minimum amount of reduction necessary? Write a brief
description of the method you used to find this amount.

6.17 A system contains five periodic tasks Ti , for i = 1, 2, . . . , 5. Their utilizations are u1 = 0.8
u2 = u3 = u4 = u5 = 0.01. Are these tasks schedulable rate-monotonically? Be sure to explain
your answer.

6.18 The following systems of periodic tasks are scheduled rate-monotonically on one processor. De-
termine whether each system is schedulable using a method that is fast and/or uses the least
amount of information on the tasks.
(a) T1 = (2, 0.5, 4), T2 = (3, 1.0, 10), T1 = (5, 1.0, 10), and T1 = (7, 0.45, 15).
(b) T1 = (2, 0.1), T2 = (3, 0.15), T3 = (4, 0.20), T4 = (5, 0.25), T5 = (7, 1.4), T6 = (9, 0.45),

T7 = (8, 0.4), T8 = (10, 0.5), T9 = (16, 0.8), T10 = (20, 1.0), T11 = (32, 1.6), T12 =
(40, 2.0)

(c) T1 = (10, 4.0), T2 = (12, 4.0), T3 = (20, 1.0), and T4 = (25, 0.5)
6.19 Many operating systems schedule tasks with the same priority on a round-robin basis. We must

modify the time-demand method used to determine whether a system of periodic tasks is schedu-
lable by the rate-monotonic (or deadline-monotonic) algorithm to handle this case.
(a) Suppose that the temporal parameters of the tasks are large compared with the length of the

time slices. How should the method be modified?
(b) What if the parameters have values that are comparable with the length of the time slices?

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 185

Exercises 185

6.20 A digital control loop can be implemented as a periodic task as follows:

Do forever
Waitfor(new sample);
GetSample(value);
Calculate control output;
Do D A conversion;
Update state;

EndDo

where a digital sample is generated periodically by the A D converter. A problem with this im-
plementation is that the length of the time interval between when a sample is taken and when
D A conversion is done may vary widely. Ideally, we want the length of this interval to be fixed.
One way to accomplish this objective is to split the task into two logically as follows:

Do forever
Waitfor(sample); First half of the task starts at t approx.
GetSample(value, t);
Calculate control output;
Waitfor(t + x) Second half of the task starts.
Do D A conversion;
Update state;

EndDo

where t is when time a sample is read and x is chosen so that by t + x the computation step is
surely completed.

Suppose that the following three periodic tasks are implemented in this manner.

T1: p1 = 100 e1,1 = 10 e1,2 = 15
T2: p2 = 75 e2,1 = 6 e2,2 = 9
T3: p3 = 130 e3,1 = 9 e3,1 = 10

For i = 1, 2, 3, ei,1 and ei,2 are the maximum execution times of the first half Ti,1 and second half
Ti,2 of task Ti , respectively. xi is the length of the delay between the release of a job in Ti,1 and
the release of the corresponding job in Ti,2 (i.e., when the second waitfor statement is executed).
Suppose that the tasks have fixed priorities: T1 has the highest priority and T3 has the lowest
priority. What are the minimum values of xi , for i = 1, 2, 3?

6.21 (a) Use the time-demand analysis method to show that the set of periodic tasks {(5, 1), (8, 2),
(14, 4)} is schedulable according to the rate-monotonic algorithm.

(b) Suppose that we want the make the first x units of each request in the task (8, 2) nonpre-
emptable. What is the maximum value of x so the system remains schedulable according to
the rate-monotonic algorithm?

6.22 Suppose that it is possible to shorten the nonpreemptable portion of T3 in the system whose time-
demand functions are shown in Figure 6–20. Using the time-demand functions in this figure,
determine how short the nonpreemptable portion of T3 must be so that all tasks are schedulable.

6.23 A system contains tasks T1 = (10, 3), T2 = (16, 4), T3 = (40, 10), and T1 = (50, 5). The total
blocking due to all factors of the tasks are b1 = 5, b2 = 1, b3 = 4, and b4 = 10, respectively.
These tasks are scheduled on the EDF basis. Which tasks (or task) are (or is) schedulable? Explain
your answer.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 186

186 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

6.24 A system contains three periodic tasks: T1 = (2, 0.5), b1 = 0.75; T2 = (3, 1); and T3 = (5, 1).
The tasks are scheduled by the rate-monotonic algorithms. Suppose that the lengths of interarrival
intervals of interrupts are never less than 50 time units, and each interrupt requires 2 time unit or
less to complete.
(a) Suppose that each interrupt is executed nonpreemptively at the lowest priority until it com-

pletes. Show that the periodic task system is not schedulable.
(b) Suppose that we allow the execution of each interrupt to be preempted a limited number of

times. Choose the length of time for which the interrupt service task is allowed to execute
nonpreemptively and the length of the time interval between consecutive times this task ex-
ecutes so that the interrupt service task is preempted a minimum number of times and all
periodic tasks meet their deadlines.

6.25 Section 6.8.1 states that to account for the effect of blocking, it suffices to add the blocking time
bi of the task Ti to the expression in the right-hand side of Eq. (6.9b) to obtain the time-demand
function wi, j (t) of the j th job of Ti in an in phase level-πi busy period. Explain why it is not
necessary to add more than one bi , that is, why not jbi .

6.26 Consider a fixed-priority system of three periodic tasks, T1 = (4, 1), T2 = (7, 2.1), and T3 =
(10, 2). T1 has the highest priority and T3 the lowest.
(a) Are the tasks schedulable? Why?
(b) Suppose that the context switch time is 0.2. To compensate for this additional demand for

processor time, we increase the relative deadline of T3 so it is schedulable. What is the mini-
mum increase?

(c) We again assume that the context switch overhead is negligible. However, T1 may suspend
itself for 3 units of time, and T3 is nonpreemptable. Identify the task (or tasks) that is (or are)
no larger schedulable.

6.27 The instantaneous utilization of a periodic task at any time t is equal to the ratio of the execution
time of the current job to the length of the current period. Consider a system of n independent,
preemptable periodic tasks. The relative deadline of every job is the equal to the length of the
period in which it is released. The periods and execution times of jobs in some tasks vary widely.
However, the instantaneous utilization of each task Tk never exceeds ûk .
(a) Show that the system is schedulable according to the EDF algorithm if total instantaneous

utilization
∑n

k=1 ûk is equal to or less than 1.
(b) In contrast, none of the fixed-priority algorithms can feasibly schedule such a system. Give

a simple example to prove this statement.

6.28 Prove the schedulable utilization in Theorem 6.16 for tasks whose relative deadlines are shorter
than the respective periods.

6.29 Consider a system of multiframe tasks defined in Section 6.7.5. The tasks are scheduled on a
fixed-priority basis.
(a) Suppose that every job completes by the time the next job in the same task is released, Show

that the response time of a job Ji,k in Ti has the maximum possible value if the period k, which
begins when Ji,k is released, is a peak frame and this peak frame begins at the same time as a
peak frame in every high-priority task. In other words, a critical instant of a multiframe task
Ti occurs under this condition.

(b) Suppose that the relative deadline of every task is equal to its period. Show that the RM
algorithm is an optimal algorithm among all fixed-priority algorithms.

(c) Modify Eq. (6.5) to express the time-demand function of the task Ti , that is, the amount of
processor time demanded by the job Ji,k since its release time t0 plus the total time demanded
by all jobs that have higher priorities than Ji , k and must be completed before Ji,k .

(d) Extend the time-demand analysis method described in Section 6.5 so it can be applied to
test for the schedulability of multiframe tasks whose relative deadlines are equal to their

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 187

Exercises 187

respective periods. Briefly describe your extension and apply it on multiframe tasks T1 =
(3, 4, 3, 1), T2 = (5, 3, 1, 0.5), and T3 = (11, 1). Are the tasks schedulable if their relative
deadlines are 3, 5, and 11, respectively? What are the maximum possible response times of
these tasks?

(e) Can the general time-demand analysis method described in Section 6.6 be similarly ex-
tended? If yes, briefly explain how. If no, briefly explain your reason.

6.30 A system uses the rate-monotonic algorithm to schedule three computation tasks T1 = (2.5, 0.5),
T2 = (90, 15), and T3 = (150, 24). In addition, the system processes messages from two sources.
The tasks that process the messages can be modeled as two periodic I/O tasks I1 = (20, 2), and
I2 = (360, 3). (In other words, the minimum interarrival times of messages from the sources
are 20 and 360, and the maximum amounts of time required to process each message from the
sources are 2 and 3, respectively.) Whenever a message arrives, the processor handles interrupt
immediately for 0.9 unit of time to identify the message source. Interrupt handling is executed
nonpreemptively. When interrupt handling completes, one of the I/O tasks is called to process the
message. Are the tasks schedulable? Explain your answer.

6.31 Interrupts typically arrive sporadically. When an interrupt arrives, interrupt handling is serviced
(i.e., executed on the processor) immediately and in a nonpreemptable fashion. The effect of
interrupt handling on the schedulability of periodic tasks can be accounted for in the same manner
as blocking time. To illustrate this, consider a system of four tasks: T1 = (2.5, 0.5), T2 = (4, 1),
T3 = (10, 1), and T4 = (30, 6). Suppose that there are two streams of interrupts. The interrelease
time of interrupts in one stream is never less than 9, and that of the other stream is never less than
25. Suppose that it takes at most 0.2 unit of time to service each interrupt. Like the periodic tasks,
interrupt handling tasks (i.e., the stream of interrupt handling jobs) are given fixed priorities.
They have higher priorities than the periodic tasks, and the one with a higher rate (i.e., shorter
minimum interrelease time) has a higher priority.
(a) What is the maximum amount of time each job in each periodic task may be delayed from

completion by interrupts?
(b) Let the maximum delay suffered by each job of Ti in part (a) be bi , for i = 1, 2, 3, and 4.

Compute the time-demand functions of the tasks and use the time-demand analysis method
to determine whether every periodic task Ti can meet all its deadlines if Di is equal to pi .

(c) In one or two sentences, explain why the answer you obtained in (b) about the schedulability
of the periodic tasks is correct and the method you use works not only for this system but
also for all independent preemptive periodic tasks.

6.32 Consider the following five fixed-priority tasks:

T1 = (10, 2.0), T2 = (14, 2), T3 = (15, 3), T4 = (50, 1) and T5 = (24, 3).

(a) Suppose that each context switch takes 0.1 unit of time. Write the time-demand function
w3(t) of T3.

(b) Modify your time-demand function in part (a) to take into account of the fact that T3 can
self-suspend for 1 unit of time and T5 contains a nonpreemptable section with execution time
0.5.

(c) Suppose that the scheduler makes a scheduling decision every 1 unit of time, that is, the tick
size is 1.0. Each time, it takes 0.1 unit of time regardless of whether there are jobs waiting to
be scheduled and 0.2 additional unit of time to schedule each waiting job. Modify your time
demand function in part (b). Is T3 schedulable?

6.33 Describe how to determine by simulation the schedulability of each task in a system of indepen-
dent periodic tasks which may be nonpreemptable and may suspend itself.

6.34 Consider a system of independent, preemptable periodic tasks whose relative deadlines are equal
to or larger than their respective periods. The tasks are scheduled rate-monotonically.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 188

188 Chapter 6 Priority-Driven Scheduling of Periodic Tasks

(a) Suppose that the utilizations u ji of k (j < n) tasks Tji for i = 1, 2, . . . , k are known and
(1 + u j1)(1 + u j2) · · · (1 + u jk) is less than 2. Show that the other n − k tasks are schedulable
provided their total utilization is equal to or less than

(n − k)

[(
2

(1 + u j1)(1 + u j2) · · · (1 + u jk)

)1/(n−k)

− 1

]

(b) Given that the utilizations of two tasks in a system of seven tasks are 0.01 and 0.02. How large
can the total utilization of the other five tasks be for the system to be guaranteed schedulable
rate-monotonically according to the criterion in part (a).

6.35 It is known that the periods of a system of independent, preemptable periodic tasks are 2, 3, 4, 5,
7, 8, 9, 11, 14, 16, 22, 25, 27, 28, 32, 33, 64, 81, 125, and 500. Moreover, the total utilization of
the system is equal to 0.725. Is the system schedulable rate-monotonically, if the relative deadline
of every task is equal to its period? Explain your answer.

6.36 Section 6.5.3. states that one way to determine whether a fixed-priority system of independent,
preemptable tasks which are never blocked is by simulation. The simulation assumes that all
tasks are in phase. If no task misses its first deadline in a schedule of the tasks according to their
priorities, the system is schedulable. Alternatively, one can compute the maximum response time
of each task by the iterative method described there.
(a) Explain briefly why the simulation approach no longer works when tasks may be blocked

by nonpreemptive lower-priority tasks and self-suspension of higher-priority tasks. Is there
a straightforward fix of the simulation method so we can take into account of these types of
blocking reliably? Explain your answer.

(b) We can solve the equation wi (t) = t iteratively to find an upper bound of the response time
of the task Ti . Explain briefly why, if we use the expression of wi (t) given by Eq. (6.18), the
upper bound thus obtained is not tight unless bi is 0.

6.37 Let URM(n; γ) denote the schedulable utilization of the RM algorithm when it is used to schedule
tasks whose adjacent period ratios are all larger than some integer γ ≥ 1. URM(n) is the schedu-
lable utilization of n tasks when no restriction is placed on their adjacent period ratios, that is,
γ = 1. Show the following corollary of Theorem 6.11 is true: Two independent, preemptable
periodic tasks whose relative deadlines are equal to their respective periods is schedulable if its
total utilization is no greater than

URM(2; γ) = 2[γ (γ + 1)]1/2 − 2γ

Moreover, this bound is tight. (Hint: Consider the tasks T1 and T2 whose execution times are
related to their periods according to e1 = p2 − γ p1 and e2 = p2 − (γ + 1)e1.)

6.38 Compute the maximum response times the tasks T3 and T4 in the system whose parameters are
listed Table 6-1.

6.39 Consider a system consisting of three fixed priority tasks: T1 = (100, 30), T2 = (150, 40), and
T3 = (190, 35).
(a) Compute the maximum response time of T3 ignoring all the practical factors discussed in

Section 6.8.
(b) Suppose that scheduler executes periodically. The tick size p0 is 10, e0 is 0.03, and it takes

0.05 unit of time to move a job from pending queue to the ready queue. Moreover, each
context switch takes 0.04 unit of time. What is the maximum response time of T3?

6.40 Intuitively, it seems that in a fixed-time partitioning system, a subsystem of n independent, pre-
emptable periodic tasks should be schedulable rate-monotonically if its total utilization is no
greater than URM(n)(τ/RL), when the subsystem is allocated a slot of length τ in every round of
length RL .

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:10 a.m. chap6 page 189

Exercises 189

(a) Show that this statement is wrong. (The example in Figure 6–23 gives a good starting point.)
(b) Find a schedulable utilization of such a subsystem as a function of n, τ , and RL .

6.41 Consider a fixed-priority system of three tasks: T1 = (10, 3), T2 = (25, 7), and T3 = (70, 15).
They are scheduled by a rate-monotonic scheduler which operates periodically. Specifically,
(a) The period p0 of clock interrupts is 1.0 and the scheduler tasks 0.05 unit of time to complete

when there are no ready jobs to be moved to the ready queue.
(b) The scheduler takes 0.02 unit of time to move a job from the waiting queue to the ready

queue.
(c) Each context switch takes 0.1 unit of time.
(d) T1 may self-suspend once during its execution.
Find the set of transformed tasks we should use to determine the schedulability of the periodic
tasks.

6.42 In Section 6.8.7, we found the maximum possible response time of a task in the fixed-time par-
titioning subsystem shown in Figure 6–23 by solving for the minimum solution of the equation
wi (t) = supply(t) where wi (t) and supply(t) are given by Eqs. (6.24) and (2.29), respectively.
The section gave an ad hoc way to seek the solution of this equation. Develop an algorithm that
will surely find the minimum solution.

6.43 Suppose that the tasks in Figure 6–11 are scheduled according to the EDF algorithm; what is the
blocking time of each task due to self-suspension? From the insight gained from this example,
derive a formula for blocking time due to self-suspension in a deadline-driven system.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 190

C H A P T E R 7

Scheduling Aperiodic
and Sporadic Jobs
in Priority-Driven Systems

This chapter describes algorithms for scheduling aperiodic and sporadic jobs among periodic
tasks in a priority-driven system. After discussing the assumptions made here on both types of
jobs, we first focus on algorithms for scheduling aperiodic jobs. We then describe algorithms
for scheduling sporadic jobs, while ignoring aperiodic jobs. We conclude the chapter by de-
scribing ways to integrate the scheduling of both aperiodic and sporadic jobs with periodic
tasks.

7.1 ASSUMPTIONS AND APPROACHES

As in Chapters 5 and 6, we assume that there is only one processor and the periodic tasks in
the system are independent. Aperiodic and sporadic jobs are also independent of each other
and of the periodic tasks. We assume that every job can be preempted at any time. The effects
of nonpreemptability and other practical factors can be taken into accounted in the manner
described in Section 6.8.

We do not make any assumptions on the interrelease-times and execution times of ape-
riodic jobs. Indeed, most algorithms used to schedule aperiodic jobs do not even require the
knowledge of their execution times after they are released. In contrast, throughout our discus-
sion, we assume that the parameters of each sporadic job become known after it is released.
Sporadic jobs may arrive at any instant, even immediately after each other. Moreover, their
execution times may vary widely, and their deadlines are arbitrary. As we discussed in Chap-
ter 5, in general, it is impossible for some sporadic jobs to meet their deadlines no matter
what algorithm we use to schedule them. The only alternatives are (1) to reject the sporadic
jobs that cannot complete in time or (2) to accept all sporadic jobs and allow some of them
to complete late. Which alternative is appropriate depends on the application. This chapter
focuses primarily on the first alternative. Only Section 7.8 discusses the second alternative.

190

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 191

Section 7.1 Assumptions and Approaches 191

7.1.1 Objectives, Correctness, and Optimality

Throughout this chapter, we assume that we are given the parameters {pi } and {ei } of all the
periodic tasks and a priority-driven algorithm used to schedule them. Moreover, when the
periodic tasks are scheduled according to the given algorithm and there are no aperiodic and
sporadic jobs, the periodic tasks meet all their deadlines.

For the sake of concreteness, we assume that the operating system maintains the priority
queues shown in Figure 7–1. The ready periodic jobs are placed in the periodic task queue,
ordered by their priorities that are assigned according to the given periodic task scheduling
algorithm. Similarly, each accepted sporadic job is assigned a priority and is placed in a prior-
ity queue, which may or may not be the same as the periodic task queue. Each newly arrived
aperiodic job is placed in the aperiodic job queue. Moreover, aperiodic jobs are inserted in the
aperiodic job queue and newly arrived sporadic jobs are inserted into a waiting queue to await
acceptance without the intervention of the scheduler.

The algorithms described in this chapter determine when aperiodic or sporadic jobs
are executed. We call them aperiodic job and sporadic job scheduling algorithms; they are
solutions to the following problems:

1. Based on the execution time and deadline of each newly arrived sporadic job, the sched-
uler decides whether to accept or reject the job. If it accepts the job, it schedules the job
so that the job completes in time without causing periodic tasks and previously accepted
sporadic jobs to miss their deadlines. The problems are how to do the acceptance test
and how to schedule the accepted sporadic jobs.

2. The scheduler tries to complete each aperiodic job as soon as possible. The problem is
how to do so without causing periodic tasks and accepted sporadic jobs to miss their
deadlines.

Aperiodic
Jobs

Periodic
Jobs

Sporadic
Jobs

rejection

Acceptance
Test

Processor

FIGURE 7–1 Priority queues maintained by the operating system.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 192

192 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

Hereafter, by algorithm, we mean specifically an aperiodic job or sporadic job schedul-
ing algorithm, except when it is stated otherwise. Such an algorithm is correct if it produces
only correct schedules of the system. By a correct schedule, we mean one according to which
periodic and accepted sporadic jobs never miss their deadlines. We consider only correct algo-
rithms. In our subsequent discussion, we will omit the reminder that the actions of the sched-
uler according to the algorithm being described must never cause any periodic or sporadic job
in the system to be late.

Finally, we assume that the queueing discipline used to order aperiodic jobs among
themselves is given. An aperiodic job scheduling algorithm is optimal if it minimizes either
the response time of the aperiodic job at the head of the aperiodic job queue or the average
response time of all the aperiodic jobs for the given queueing discipline. An algorithm for
(accepting and) scheduling sporadic jobs is optimal if it accepts each sporadic job newly
offered to the system and schedules the job to complete in time if and only if the new job can
be correctly scheduled to complete in time by some means. You recall from our discussion
in Chapters 4 and 5 that such an algorithm is an optimal on-line algorithm only when all the
sporadic jobs offered to the system are schedulable and is not optimal in general when some
sporadic jobs must be rejected.

7.1.2 Alternative Approaches

All the algorithms described in this chapter attempt to provide improved performance over the
three commonly used approaches. These approaches are background, polled, and interrupt-
driven executions. For the sake of simplicity and clarity, we ignore sporadic jobs for now.

Background and Interrupt-Driven Execution versus Slack Stealing. According
to the background approach, aperiodic jobs are scheduled and executed only at times when
there is no periodic or sporadic job ready for execution. Clearly this method always produces
correct schedules and is simple to implement. However, the execution of aperiodic jobs may
be delayed and their response times prolonged unnecessarily.

As an example, we consider the system of two periodic tasks T1 = (3, 1) and T1 =
(10, 4) shown in Figure 7–2. The tasks are scheduled rate monotonically. Suppose that an
aperiodic job A with execution time equal to 0.8 is released (i.e., arrives) at time 0.1. If this
job is executed in the background, its execution begins after J1,3 completes (i.e., at time 7) as
shown in Figure 7–2(a). Consequently, its response time is 7.7.

An obvious way to make the response times of aperiodic jobs as short as possible is
to make their execution interrupt-driven. Whenever an aperiodic job arrives, the execution of
periodic tasks are interrupted, and the aperiodic job is executed. In this example, A would
execute starting from 0.1 and have the shortest possible response time. The problem with this
scheme is equally obvious: If aperiodic jobs always execute as soon as possible, periodic tasks
may miss some deadlines. In our example, if the execution time of A were equal to 2.1, both
J1,1 and J2,1 would miss their deadlines.

The obvious solution is to postpone the execution of periodic tasks only when it is safe
to do so. From Figure 7–2(a), we see that the execution of J1,1 and J2,1 can be postponed by
2 units of time because they both have this much slack. (Again, at any time t , the slack of a
job with deadline d and remaining execution time e is equal to d − t − e.) By postponing the
execution of J1,1 and J2,1, the scheduler allows aperiodic job A to execute immediately after

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 193

Section 7.1 Assumptions and Approaches 193

0

0.8

0.1

3 6 9

7.8

T1

T2

0 5.32.5 7.5 10.0

0 3 6 9

0 5 10.0

Poller

T1

T2

Background
A

A

0.8

0.1

A

(a)

(b)

FIGURE 7–2 Commonly used methods for scheduling aperiodic jobs: T1 = (3, 1), T2 = (10, 4), poller = (2.5, 0.5).
(a) Background execution. (b) Polling.

its arrival. The response time of A is equal to 0.8, which is as short as possible. The periodic
job J1,1 completes at time 1.8, and J2,1 completes at 7.8. Both of them meet their deadlines.
On the other hand, if the execution time of A is 2.1, only the first two units of the job can
complete as soon as possible. After A has executed for 2 units of time, periodic tasks have
no more slack and must execute. The last 0.1 unit of A must wait until time 9.0 when both
periodic tasks have slack again. (We will return in Section 7.6 to explain this example further.)

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 194

194 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

Algorithms that make use of the available slack times of periodic and sporadic jobs
to complete aperiodic jobs early are called slack-stealing algorithms, which were first pro-
posed by Chetto, et al. [ChCh] and Lehoczky, et al. [LeRa]. In systems where slack-stealing
can be done with an acceptable amount of overhead, it allows us to realize the advantage of
interrupt-driven execution without its disadvantage. We saw in Chapter 5 that slack-stealing
is algorithmically simple in clock-driven systems (although it complicates the implementa-
tion of clock-driven scheduling considerably). As you will see in Sections 7.5 and 7.6 slack
stealing is significantly more complex in priority-driven systems.

Polled Executions versus Bandwidth-Preserving Servers. Polling is another com-
monly used way to execute aperiodic jobs. In our terminology, a poller or polling server
(ps, es) is a periodic task: ps is its polling period, and es is its execution time. The poller is
ready for execution periodically at integer multiples of ps and is scheduled together with the
periodic tasks in the system according to the given priority-driven algorithm. When it exe-
cutes, it examines the aperiodic job queue. If the queue is nonempty, the poller executes the
job at the head of the queue. The poller suspends its execution or is suspended by the sched-
uler either when it has executed for es units of time in the period or when the aperiodic job
queue becomes empty, whichever occurs sooner. It is ready for execution again at the begin-
ning of the next polling period. On the other hand, if at the beginning of a polling period the
poller finds the aperiodic job queue empty, it suspends immediately. It will not be ready for
execution and able to examine the queue again until the next polling period.

We now use the poller as an example to introduce a few terms and jargon which are
commonly used in real-time systems literature. We will use them to describe variations of
the poller in subsequent sections. We call a task that behaves more or less like a periodic
task and is created for the purpose of executing aperiodic jobs a periodic server. A periodic
server (ps, es) is defined partially by its period ps and execution time es . (Roughly speaking,
the server never executes for more than es units of time in any time interval of length ps .
However, this statement is not true for some kinds of servers.) The parameter es is called
the execution budget (or simply budget) of the server. The ratio us = es/ps is the size of
the server. A poller (ps, es) is a kind of periodic server. At the beginning of each period, the
budget of the poller is set to es . We say that its budget is replenished (by es units) and call a
time instant when the server budget is replenished a replenishment time.

We say that the periodic server is backlogged whenever the aperiodic job queue is
nonempty and, hence, there is at least an aperiodic job to be executed by the server. The
server is idle when the queue is empty. The server is eligible (i.e., ready) for execution
only when it is backlogged and has budget (i.e., its budget is nonzero). When the server is
eligible, the scheduler schedules it with the ready periodic tasks according to the algorithm
used for scheduling periodic tasks as if the server is the periodic task (ps, es). When the
server is scheduled and executes aperiodic jobs, it consumes its budget at the rate of one per
unit time. We say that the server budget becomes exhausted when the budget becomes zero.
Different kinds of periodic servers differ in how the server budget changes when the server
still has budget but the server is idle. As an example, the budget of a poller becomes exhausted
instantaneously whenever the poller finds the aperiodic job queue empty, that is, itself idle.

Figure 7–2(b) shows a poller in the midst of the two fixed-priority periodic tasks T1 =
(3, 1) and T2 = (10, 4). The poller has period 2.5 and execution budget 0.5. It is treated by
the scheduler as the periodic task (2.5, 0.5) and is given the highest priority among periodic

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 195

Section 7.2 Deferrable Servers 195

tasks. At the beginning of the first polling period, the poller’s budget is replenished, but when
it executes, it finds the aperiodic job queue empty. Its execution budget is consumed instan-
taneously, and its execution suspended immediately. The aperiodic job A arrives a short time
later and must wait in the queue until the beginning of the second polling period when the
poller’s budget is replenished. The poller finds A at head of the queue at time 2.5 and executes
the job until its execution budget is exhausted at time 3.0. Job A remains in the aperiodic job
queue and is again executed when the execution budget of the poller is replenished at 5.0. The
job completes at time 5.3, with a response time of 5.2. Since the aperiodic job queue is empty
at 5.3, the budget of the poller is exhausted and the poller suspends.

This example illustrates the shortcoming of the polling approach. An aperiodic job that
arrives after the aperiodic job queue is examined and found empty must wait for the poller
to return to examine the queue again a polling period later. If we can preserve the execution
budget of the poller when it finds an empty queue and allow it to execute later in the period
if any aperiodic job arrives, we may be able to shorten the response times of some aperiodic
jobs. In this example, if the poller were able to examine the queue again at time 0.1, then job
A would complete in the second polling period, making its response time significantly shorter.

Algorithms that improve the polling approach in this manner are called bandwidth-
preserving server algorithms. Bandwidth-preserving servers are periodic servers. Each type
of server is defined by a set of consumption and replenishment rules. The former give the
conditions under which its execution budget is preserved and consumed. The latter specify
when and by how much the budget is replenished. We will return in Chapters 11 and 12 to
discuss the implementation of such servers in networks and operating systems. For now, we
assume that they work as follows:

• A backlogged bandwidth-preserving server is ready for execution when it has budget.
The scheduler keeps track of the consumption of the server budget and suspends the
server when the server budget is exhausted or the server becomes idle. The scheduler
moves the server back to the ready queue once it replenishes the server budget if the
server is still backlogged at the time.

• The server suspends itself whenever it finds the aperiodic job queue empty, that is,
when it becomes idle. When the server becomes backlogged again upon of arrival of
an aperiodic job, the scheduler puts the server back to the ready queue if the server has
budget at the time.

The next three sections describe three types of bandwidth-preserving servers. They are
(1) deferrable servers [LeSS, StLS, GhBa], (2) sporadic servers [SpSL, GhBa], and (3) con-
stant utilization/total bandwidth servers [DeLS, SpBu] and weighted fair-queueing servers
[DeKS].

7.2 DEFERRABLE SERVERS

A deferrable server is the simplest of bandwidth-preserving servers. Like a poller, the exe-
cution budget of a deferrable server with period ps and execution budget es is replenished
periodically with period ps . Unlike a poller, however, when a deferrable server finds no ape-
riodic job ready for execution, it preserves its budget.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 196

196 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

7.2.1 Operations of Deferrable Servers

Specifically, the consumption and replenishment rules that define a deferrable server (ps, es)

are as follows.

Consumption Rule

The execution budget of the server is consumed at the rate of one per unit time whenever
the server executes.

Replenishment Rule

The execution budget of the server is set to es at time instants kpk , for k = 0, 1, 2,

We note that the server is not allowed to cumulate its budget from period to period. Stated
in another way, any budget held by the server immediately before each replenishment time is
lost.

As an example, let us look again at the system in Figure 7–2. Suppose that the task
(2.5, 0.5) is a deferrable server. When it finds the aperiodic job queue empty at time 0, it
suspends itself, with its execution budget preserved. When aperiodic job A arrives at 0.1, the
deferrable server resumes and executes A. At time 0.6, its budget completely consumed, the
server is suspended. It executes again at time 2.5 when its budget is replenished. When A
completes at time 2.8, the aperiodic job queue becomes empty. The server is suspended, but
it still has 0.2 unit of execution budget. If another aperiodic job arrives later, say at time 4.0,
the server resumes at that time.

Figure 7–3 gives another example. Figure 7–3(a) shows that the deferrable server TDS =
(3, 1) has the highest priority. The periodic tasks T1 = (2.0, 3.5, 1.5) and T2 = (6.5, 0.5) and
the server are scheduled rate-monotonically. Suppose that an aperiodic job A with execution
time 1.7 arrives at time 2.8.

1. At time 0, the server is given 1 unit of budget. The budget stays at 1 until time 2.8. When
A arrives, the deferrable server executes the job. Its budget decreases as it executes.

2. Immediately before the replenishment time 3.0, its budget is equal to 0.8. This 0.8 unit is
lost at time 3.0, but the server acquires a new unit of budget. Hence, the server continues
to execute.

3. At time 4.0, its budget is exhausted. The server is suspended, and the aperiodic job A
waits.

4. At time 6.0, its budget replenished, the server resumes to execute A.
5. At time 6.5, job A completes. The server still has 0.5 unit of budget. Since no aperiodic

job waits in the queue, the server suspends itself holding this budget.

Figure 7–3(b) shows the same periodic tasks and the deferrable server scheduled ac-
cording to the EDF algorithm. At any time, the deadline of the server is equal to the next
replenishment time.

1. At time 2.8, the deadline of the deferrable server is 3.0. Consequently, the deferrable
server executes at the highest-priority beginning at this time.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 197

Section 7.2 Deferrable Servers 197

TDS
0 3

2 5.5 9

64.7

0 6.5

9

3 6 9
t

1.7

2.8

T1

T2

A (b)

0

1.0

0.5

Budget

0

1.0

0.5

Budget

TDS= (3, 1)
0 3

2 5.5 9

6

0 6.5

9

3 6 9
t

1.7

2.8

T1= (2, 3.5, 1.5)

T2= (6.5, 0.5)

A

(a)

FIGURE 7–3 Example illustrating the operations of a deferrable server: (TDS = (3, 1), T1 = (2, 3.5, 1.5), and
T2 = (6.5, 0.5). (a) Rate-monotonic schedule. (b) EDF schedule.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 198

198 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

2. At time 3.0, when the budget of the deferrable server is replenished, its deadline for
consuming this new unit of budget is 6. Since the deadline of J1,1 is sooner, this job has
a higher priority. The deferrable server is preempted.

3. At time 3.7, J1,1 completes. The deferrable server executes until time 4.7 when its bud-
get is exhausted.

4. At time 6 when the server’s budget is replenished, its deadline is 9, which is the same
as the deadline of the job J1,2. Hence, J1,2 would have the same priority as the server.
The figure shows that the tie is broken in favor of the server.

Again, the scheduler treats a deferrable server as a periodic task. As you can see from
the rules of the deferrable server algorithm, the algorithm is simple. The scheduling overhead
of a deferrable server is no higher than that of a poller.

The responsiveness of the system can be further improved if we combine the use of a
deferrable server with background execution. In other words, we also use a background server.
This server is scheduled whenever the budget of the deferrable server has been exhausted and
none of the periodic tasks is ready for execution. When the background server is scheduled, it
also executes the aperiodic job at the head of the aperiodic job queue. With such a server, job
A in Figure 7–3(a) would be executed from time 4.7 and completed by time 5.2, rather than
6.5, as shown in the figure.

7.2.2 Schedulability of Fixed-Priority Systems Containing Deferrable Server(s)

You may question the need of a background server in the above example. The schedule in
Figure 7–3 may lead us to wonder whether we can get the same improved response by making
the execution budget of the server bigger, for example, let it be 1.5 instead of 1.0. As it turns
out, if we were to make the server budget bigger, the task (6.5, 0.5) would not be schedulable.
This fact is shown by Figure 7–4. Suppose that an aperiodic job with execution time 3.0 or
more arrives to an empty aperiodic job queue at time t0, 1 unit of time before the replenishment
time of the server (3, 1). At t0, the server has 1 unit of budget. The server begins to execute
from time t0. Its budget is replenished at t0 +1, and it continues to execute as shown. Suppose
that a job of each of the periodic tasks is released at time t0. For this combination of release

(3, 1)

(3.5, 1.5)

(6.5, 0.5)

t0 t0+1 t0+4 t0+7

FIGURE 7–4 The factor limiting the budget of a deferrable server.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 199

Section 7.2 Deferrable Servers 199

times, the task with period 3.5 would not complete in time if the budget of the server were
bigger than 1.0. Since we cannot be sure that this combination of release times can never
occur, the budget of the server must be chosen based the assumption that this combination can
occur. This consideration limits the size of the server.

This example illustrates the condition under which a critical instant of a periodic task
occurs in a system containing a deferrable server when all tasks have fixed priorities and
the deferrable server has the highest priority. Lemma 7.1 [LeSS, StLS] stated below follows
straightforwardly from Theorem 6.5.

LEMMA 7.1. In a fixed-priority system in which the relative deadline of every inde-
pendent, preemptable periodic task is no greater than its period and there is a deferrable
server (ps, es) with the highest priority among all tasks, a critical instant of every peri-
odic task Ti occurs at time t0 when all the following are true.

1. One of its jobs Ji,c is released at t0.

2. A job in every higher-priority task is released at the same time.

3. The budget of the server is es at t0, one or more aperiodic jobs are released at t0,
and they keep the server backlogged hereafter.

4. The next replenishment time of the server is t0 + es .

Figure 7–5 shows the segment of a fixed-priority schedule after a critical instant t0. Task TDS

is the deferrable server (ps, es). As always, the other tasks are indexed in decreasing order
of their priorities. As far as the job Ji,c that is released at t0 is concerned, the demand for
processor time by each of the higher-priority tasks in its feasible interval (ri,c, ri,c + Di] is
the largest when (1) and (2) are true. When (3) and (4) are true, the amount of processor
time consumed by the deferrable server in the feasible interval of Ji,c is equal to es + �(Di −
es)/ps	es , and this amount the largest possible.

to to+es

to to+pi

to+es+ps to+es+2ps

TDS

T1

T2

Ti

…
…

FIGURE 7–5 A segment of an arbitrary fixed-priority schedule after a critical instant of Ti .

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 200

200 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

Time-Demand Analysis Method. We can use the time-demand method to deter-
mine whether all the periodic tasks remain schedulable in the presence of a deferrable server
(ps, es). For a job Ji,c in Ti that is released at a critical instant t0, we add the maximum amount
es + �(t − es)/ps	es of processor time demanded by the server at time t units after t0 into the
right-hand side of Eq. (6.18). Hence, the time-demand function of the task Ti is given by

wi (t) = ei + bi + es +
⌈

t − es

ps

⌉
es +

i−1∑

k=1

⌈
t

pk

⌉
ek for 0 < t ≤ pi (7.1)

when the deferrable server (ps, es) has the highest priority.
To determine whether the response time of Ti ever exceeds its relative deadline Di in

the case of Dk ≤ pk for all k = 1, 2, . . . , i , we check whether wi (t) ≤ t is satisfied at any of
the values of t that are less than or equal to Di . Again, we only need to check at values of t
that are integer multiples of pk for k = 1, 2, . . . , i − 1 and at Di . In addition, since wi (t) also
increases at the replenishment times of the server at or before the deadline of Ji,c (i.e., at es ,
es + ps , es + 2ps , . . . es + �(Di − es)/ps�ps), we also need to check whether wi (t) ≤ t at
these values of t . The response time of Ti is always equal to or less than Di if the time supply
t ever becomes equal to or larger than the time demand wi (t) at any of these values of t .

It is also easy to modify the time-demand analysis method for periodic tasks whose
response times are longer than the respective periods to account for the effect of a deferrable
server. When the server has the highest priority, we add the time demand of the server (which
is equal to es + �(t − es)/ps	es) to the expression of wi, j (t) given by Eq. (6.19).

Figure 7–6 shows the time-demand functions of T1 and T2 in the system shown in Fig-
ure 7–3. To determine whether T2 is schedulable, we must check whether wi (t) ≤ t at 1 and

w1(t)

w2(t)

t

time

ti
m

e
de

m
an

d
fu

nc
ti

on
s

0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

FIGURE 7–6 The time demand functions of T1 = (2, 3.5, 1.5) and T2 = (6.5, 0.5) with a deferrable server (3, 1.0).

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 201

Section 7.2 Deferrable Servers 201

4, which are the replenishment times of the server before the deadline 6.5 of the first job in T2,
in addition to 3.5, which is the period of T1, and 6.5. As expected, both tasks are schedulable
according to this test.

Because of Lemma 7.1, we can also determine the schedulability of the fixed-priority
periodic tasks by examining a segment of the schedule immediately after a critical instant of
the periodic tasks. (The schedule in Figure 7–4 is an example.) Similarly, using the expression
of wi (t) given by Eq. (7.1), we can find the maximum response time of each periodic task
when scheduled together with a deferrable server by solving the equationwi (t) = t iteratively.

Schedulable Utilization. There is no known schedulable utilization that assures the
schedulability of a fixed-priority system in which a deferrable server is scheduled at an arbi-
trary priority. The only exception is the special case when the period ps of the deferrable server
is shorter than the periods of all periodic tasks and the system is scheduled rate-monotonically.
In particular, the following theorem gives the schedulable utilization of a special class of sys-
tems [LeSS, StLS].

THEOREM 7.2. Consider a system of n independent, preemptable periodic tasks
whose periods satisfy the inequalities ps < p1 < p2 < · · · < pn < 2ps and pn >

ps +es and whose relative deadlines are equal to their respective periods. This system is
schedulable rate-monotonically with a deferrable server (ps, es) if their total utilization
is less than or equal to

URM/DS(n) = (n − 1)

[(
us + 2

us + 1

)1/(n−1)

− 1

]

where us is the utilization es/ps of the server.

The proof is similar to that of Theorem 6.5 and is left to you as an exercise (Problem 7.7).
When the server’s period is arbitrary, we can use the schedulable utilization URM(n)

given by Eq. (6.10) to determine whether each periodic task Ti is schedulable if the periodic
tasks and the server are scheduled rate-monotonically and the relative deadlines of the peri-
odic tasks are equal to their respective periods. To see how, we focus on the feasible interval
(ri,c, ri,c + Di] of a job Ji,c in any periodic task Ti that has a lower priority than the server.
As far as this job is concerned, the server behaves just like a periodic task (ps, es), except that
the server may execute for an additional es units of time in the feasible interval of the job.
We can treat these es units of time as additional “blocking time” of the task Ti : Ti is surely
schedulable if

Ui + us + es + bi

pi
≤ URM(i + 1)

where Ui is the total utilization of the i highest-priority tasks in the system.
As an example, consider a deferrable server with period 4 and execution budget 0.8. It

is scheduled rate-monotonically with three preemptable periodic tasks T1 = (3, 0.6), T2 =
(5.0, 0.5), and T3 = (7, 1.4). T1 has a higher priority than the server and is not affected by the
server. To determine whether T2 is schedulable, we compute U2 + us + es/p2. The value of
this expression is 0.66. Since it is less than URM(3) = 0.757, we know that T2 is schedulable.
To check whether T3 is schedulable in the same manner, we find that U + us + es/p3 = 0.814

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 202

202 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

exceeds the schedulable utilization of the RM algorithm for four tasks. This sufficient but not
necessary test says that the task T3 may not be schedulable. However, if we use the right-hand
side of Eq. (7.1) as the time-demand function of T3 and do a time-demand analysis, we will
find that T3 is in fact schedulable.

Deferrable Server with Arbitrary Fixed Priority. You recall that any budget of a
deferrable server that remains unconsumed at the end of each server period is lost. For this
reason, when the server is not scheduled at the highest priority, the maximum amount of
processor time it can consume (and hence is demanded) depends not only on the release times
of all the periodic jobs relative to replenishment times of the server, but also on the execution
times of all the tasks. For some combinations of task and server parameters, the time demand
of the server in a time interval of length t may never be as large as es + �(t − es)/ps	es ,
the terms we included in the right-hand side of Eq. (7.1). However, these terms do give us an
upper bound to the amount of time demanded by the server and allows us to account for the
effect of the server on the schedulability of lower-priority tasks correctly if not accurately.

From this observation, we can conclude that in a system where the deferrable server is
scheduled at an arbitrary priority, the time-demand function of a task Ti with a lower-priority
than the server is bounded from above by the expression of wi (t) in Eq. (7.1). Using this
upper bound, we make the time-demand analysis method a sufficient schedulability test for
any fixed-priority system containing one deferrable server.

A system may contain several aperiodic tasks. We may want to use different servers to
execute different aperiodic tasks. By adjusting the parameters and priorities of the servers, the
response times of jobs in an aperiodic task may be improved at the expense of the response
times of jobs in other aperiodic tasks. It is easy to see that when there is more than one
deferrable server, we can take the effect of each server into account by including its processor-
time demand in the computation of the time-demand function of each lower-priority periodic
task in the same manner. Specifically, the time-demand function wi (t) of a periodic task Ti

with a lower priority than m deferrable servers, each of which has period ps,k and execution
budget es,k , is given by

wi (t) ≤ ei + bi +
m∑

k=1

(
1 +

⌈
t − es,k

ps,k

⌉)
es,k +

i−1∑

k=1

⌈
t

pk

⌉
ek for 0 < t ≤ pi (7.2)

7.2.3 Schedulability of Deadline-Driven Systems in the Presence of Deferrable Server

We now derive the schedulable utilization of a system of n independent periodic tasks that
is scheduled according to the EDF algorithm together with a deferrable server of period ps

and execution budget es . Let t be the deadline of a job Ji,c in some periodic task Ti and t−1

(< t) be the latest time instant at which the processor is either idle or is executing a job whose
deadline is after t . We observe that if Ji,c does not complete by t , the total amountwDS(t−t−1)

of processor time consumed by the deferrable server in the interval (t−1, t] is at most equal to

es +
⌊

t − t−1 − es

ps

⌋
es (7.3)

Figure 7–7 shows the condition under which the server consumes this amount of time.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 203

Section 7.2 Deferrable Servers 203

es

pst-1

t-1+es t

es es es…

FIGURE 7–7 the condition under which the deferrable server consumes the most time.

1. At time t−1, its budget is equal to es and the deadline for consuming the budget is (and
hence the budget is to be replenished at) t−1 + es .

2. One or more aperiodic jobs arrive at t−1, and the aperiodic job queue is never empty
hereafter, at least until t .

3. The server’s deadline t−1 + es is earlier than the deadlines of all the periodic jobs that
are ready for execution in the interval (t−1, t−1 + es].

Under this condition, the server executes continuously in (t−1, t−1 + es]. If the current period
(i.e., the period which begins before t and ends at or after t) of the server also ends at t , the
argument of the floor function in Eq. (7.3) is an integer; the floor function is equal to this
integer. Otherwise, if the current period of the server ends after t , the server has a lower-
priority than Ji,c and is not given any time during this period. In either case, the total amount
of the time consumed by the server after t−1 + es is given by the second term in Eq. (7.3).

Since �x� ≤ x for all x ≥ 0 and us = es/ps , wDS(t − t−1) must satisfy the following
inequality if the job Ji,c does not complete by its deadline at t :

wDS(t − t−1) ≤ es + t − t−1 − es

ps
es = us(t − t−1 + ps − es) (7.4)

This observation leads to Theorem 7.3 [GhBa]. This theorem allows us to determine whether
any periodic task Ti is schedulable when the periodic tasks are scheduled together with a
deferrable server according to the EDF algorithm.

THEOREM 7.3. A periodic task Ti in a system of n independent, preemptive periodic
tasks is schedulable with a deferrable server with period ps , execution budget es , and
utilization us , according to the EDF algorithm if

n∑

k=1

ek

min(Dk, pk)
+ us

(
1 + ps − es

Di

)
≤ 1 (7.5)

Proof. We suppose that a job misses its deadline at t and consider the interval (t−1, t].
The interval begins at the latest time instant t−1 at which time the processor is either idle
or is executing a job whose deadline is after t . The total amount of processor time used
by each periodic task Tk in the time interval is bounded from above by ek(t − t−1)/pk .
The fact that a job misses its deadline at t tells us that the total amount of time in this
time interval used by all the periodic jobs with deadlines at or before t and the deferrable
server exceeds the length of this interval. In other words,

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 204

204 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

t − t−1 ≤
n∑

k=1

ek

pk
(t − t−1)+ us(t − t−1 + ps − es)

Dividing both sides of this inequality by t−t−1, we get Eq. (7.5) for the case of Dk ≥ pk .

As an example, let us consider again the system of three periodic tasks T1 = (3, 0.6),
T2 = (5.0, 0.5), and T3 = (7, 1.4), which we studied earlier. The total utilization of the tasks
is 0.5. If they are scheduled with a deferrable server whose period is 4 and execution time is
0.8, the values of the expression on the left-hand side of Eq. (7.5) for the three tasks are 0.913,
0.828 and 0.792, respectively. Hence, all three tasks are schedulable.

From Eq. (7.5), we see that just as in a fixed-priority system, a deferrable server in a
deadline-driven system behaves like a periodic task (ps, es) except that it may execute an extra
amount of time in the feasible interval of any job. We treat this extra amount as the blocking
time suffered by the job. In a fixed-priority system, the blocking time can be as large as es . In
contrast, Theorem 7.3 says that the blocking caused by a deferrable server in a deadline-driven
system is only (ps − es)us . (The latter is always less than the former. In our earlier example,
es is 0.8, while (ps − es)us is only 0.64.)

We can take into account the effect of any number of deferrable servers in this way.
(This corollary is stated as an exercise at the end of the chapter.) To illustrate, suppose that
in addition to the server (4, 0.8) in the previous example, we have another deferrable server
(2, 0.1)with utilization 0.05. The blocking time contributed by this server is 0.095. Adding the
contribution of the second server to the left-hand side of (7.5) (i.e., adding 0.05 + 0.095/3.0
to 0.913), we get 0.995 for T1. Hence we can conclude that T1 remains to be schedulable.
Similarly, T2 and T3 are schedulable.

7.3 SPORADIC SERVERS

We have just seen that a deferrable server may delay lower-priority tasks for more time than
a period task with the same period and execution time. This section describes a class of
bandwidth-preserving servers, called sporadic servers [SpSL, GhBa], that are designed to
improve over a deferrable server in this respect. The consumption and replenishment rules
of sporadic server algorithms ensure that each sporadic server with period ps and budget es

never demands more processor time than the periodic task (ps, es) in any time interval. Con-
sequently, we can treat the sporadic server exactly like the periodic task (ps, es) when we
check for the schedulability of the system. A system of periodic tasks containing a sporadic
server may be schedulable while the same system containing a deferrable server with the same
parameters is not.

For example, we mentioned earlier that it is not possible to make the execution time
of the deferrable server in Figure 7–3 larger than 1.0 when the system is scheduled rate-
monotonically. In contrast, if we replace the deferrable server by a sporadic server, we can
increase the server execution time to 1.25, while keeping its period at 3.0, or decrease its
period to 2.5, while keeping its execution time at 1.0. You may want to convince yourself that
a sporadic server with these sets of parameters will be able to complete the aperiodic job at
6.25 and 6.0, respectively, instead of 6.5 accomplished by the deferrable server in Figure 7–3.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 205

Section 7.3 Sporadic Servers 205

With slight abuse of the notation, we will sometimes refer to a sporadic server with pe-
riod ps and budget es as the periodic task Ts = (ps, es) and say that a server job is released
when the server becomes eligible. Different kinds of sporadic servers differ in their consump-
tion and replenishment rules. More complicated rules allow a server to preserve its budget
for a longer time, replenish the budget more aggressively, and, in a deadline-driven system,
execute at a higher priority. By using different rules, you can trade off the responsiveness of
the server for the overhead in its implementation.

7.3.1 Sporadic Server in Fixed-Priority Systems

We first confine our attention to fixed-priority systems. For the moment, we assume that there
is only one sporadic server in a fixed-priority system T of n independent, preemptable peri-
odic tasks. The server has an arbitrary priority πs . (If the server has the same priority as some
periodic task, the tie is always broken in favor of the server.) We use TH to denote the subset
of periodic tasks that have higher priorities than the server. We say that the system T of peri-
odic tasks (or the higher-priority subsystem TH) idles when no job in T (or TH) is ready for
execution; T (or TH) is busy otherwise. By definition, the higher-priority subsystem remains
busy in any busy interval of TH . Finally, a server busy interval is a time interval which be-
gins when an aperiodic job arrives at an empty aperiodic job queue and ends when the queue
becomes empty again.

Since our focus here is on the consumption and replenishment rules of the server, we
assume that we have chosen the parameters ps and es and have validated that the periodic
task (ps, es) and the system T are schedulable according to the fixed-priority algorithm used
by the system. When doing the schedulability test, we assume that the relative deadline for
consuming the server budget is finite but arbitrary. In particular, we allow this deadline to be
larger than ps . During an interval when the aperiodic job queue is never empty, the server
behaves like the periodic task (ps, es) in which some jobs may take longer than one period to
complete.

We state below the consumption and replenishment rules that define a simple sporadic
server. In the statement, we use the following notations. (Their names may not make sense for
now. We will return shortly to explain why they are called by these names and to discuss the
rationales behind the consumption and replenishment rules.)

• tr denotes the latest (actual) replenishment time.
• t f denotes the first instant after tr at which the server begins to execute.
• te denotes the latest effective replenishment time.
• At any time t , BEGIN is the beginning instant of the earliest busy interval among the

latest contiguous sequence of busy intervals of the higher-priority subsystem TH that
started before t . (Two busy intervals are contiguous if the later one begins immediately
after the earlier one ends.)

• END is the end of the latest busy interval in the above defined sequence if this interval
ends before t and equal to infinity if the interval ends after t .

The scheduler sets tr to the current time each time it replenishes the server’s execution budget.
When the server first begins to execute after a replenishment, the scheduler determines the
latest effective replenishment time te based on the history of the system and sets the next

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 206

206 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

replenishment time to te + ps . (In other words, the next replenishment time is ps units away
from te, as if the budget was last replenished at te and hence the name effective replenishment
time.)

Simple Sporadic Server. In its simpliest form, a sporadic server is governed by the
following consumption and replenishment rules. We call such a server a simple sporadic
server. A way to implement the server is to have the scheduler monitor the busy intervals
of TH and maintain information on BEGIN and END.

• Consumption Rules of Simple Fixed-Priority Sporadic Server: At any time t after tr ,
the server’s execution budget is consumed at the rate of 1 per unit time until the bud-
get is exhausted when either one of the following two conditions is true. When these
conditions are not true, the server holds its budget.

C1 The server is executing.

C2 The server has executed since tr and END < t .

• Replenishment Rules of Simple Fixed-Priority Sporadic Server:

R1 Initially when the system begins execution and each time when the budget is
replenished, the execution budget = es , and tr = the current time.

R2 At time t f , if END = t f , te = max(tr ,BEGIN). If END < t f , te = t f . The next
replenishment time is set at te + ps .

R3 The next replenishment occurs at the next replenishment time, except under the
following conditions. Under these conditions, replenishment is done at times
stated below.

(a) If the next replenishment time te + ps is earlier than t f , the budget is replen-
ished as soon as it is exhausted.

(b) If the system T becomes idle before the next replenishment time te + ps and
becomes busy again at tb, the budget is replenished at min(te + ps, tb).

Rules C1 and R1 are self-explanatory. Equivalently, rule C2 says that the server con-
sumes its budget at any time t if it has executed since tr but at t , it is suspended and the
higher-priority subsystem TH is idle. Rule R2 says that the next replenishment time is ps

units after tr (i.e., the effective replenishment time te is tr) only if the higher-priority subsys-
tem TH has been busy throughout the interval (tr , t f). Otherwise, te is later; it is the latest
instant at which an equal or lower-priority task executes (or the system is idle) in (tr , t f).

Figure 7–8 gives an illustrative example. Initially the budget of the server (5, 1.5) is 1.5.
It is scheduled rate-monotonically with three periodic tasks: T1 = (3, 0.5), T2 = (4, 1.0), and
T3 = (19, 4.5). They are schedulable even when the aperiodic job queue is busy all the time.

1. From time 0 to 3, the aperiodic job queue is empty and the server is suspended. Since it
has not executed, its budget stays at 1.5. At time 3, the aperiodic job A1 with execution
time 1.0 arrives; the server becomes ready. Since the higher-priority task (3, 0.5) has a
job ready for execution, the server and the aperiodic job wait.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 207

Section 7.3 Sporadic Servers 207

0

0.5

1.0

1.5

Budget

3 8 9.5 13 15 18 24
t

T1

0 3 6 9 12 15 18 21 24

0 3

1.0 2.0 2.0

3 7 15.5

A1 A2 A3

6 9 12 15 18 21 24

T2

TS

T3

FIGURE 7–8 Example illustrating the operations of a simple sporadic server: T1 = (3, 0.5), T2 = (4, 1.0), T3 =
(19, 4.5), Ts = (5, 1.5).

2. The server does not begin to execute until time 3.5. At the time, tr is 0, BEGIN is equal
to 3, and END is equal to 3.5. According to rule R2, the effective replenishment time te
is equal to max(0, 3.0) = 3, and the next replenishment time is set at 8.

3. The server executes until time 4; while it executes, its budget decreases with time.

4. At time 4, the server is preempted by T2. While it is preempted, it holds on to its budget.

5. After the server resumes execution at 5, its budget is consumed until exhaustion be-
cause first it executes (C1) and then, when it is suspended again, T1 and T2 are idle (or
equivalently, END, which is 5.0, is less than the current time) (C2).

6. When the aperiodic job A2 arrives at time 7, the budget of the server is exhausted; the
job waits in the queue.

7. At time 8, its budget replenished (R3), the server is ready for execution again.

8. At time 9.5, the server begins to execute for the first time since 8. te is equal to the latest
replenishment time 8. Hence the next replenishment time is 13. The server executes

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 208

208 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

until its budget is exhausted at 11; it is suspended and waits for the next replenishment
time. In the meantime, A2 waits in the queue.

9. Its budget replenished at time 13, the server is again scheduled and begins to execute
at time 13.5. This time, the next replenishment time is set at 18. However at 13.5, the
periodic task system T becomes idle. Rather than 18, the budget is replenished at 15,
when a new busy interval of T begins, according to rule R3b.

10. The behavior of the later segment also obeys the above stated rules. In particular, rule
R3b allows the server budget to be replenished at 19.

This example does not give us an opportunity to illustrate rule R3a. To illustrate this
rule, we consider the situation shown in Figure 7–9. Before tr some lower-priority task Tl

executed, but after tr only higher-priority tasks (i.e., tasks in TH) execute until t f . At t f the
server is finally scheduled. The next replenishment time te + ps computed based on rule R2
is earlier than t f . The figure shows that as soon as the budget is exhausted, it is replenished,
allowing the server to continue until it is preempted.

*Informal Proof of Correctness of the Simple Sporadic Server. We now explain
why a server following the above stated rules emulates the periodic task Ts = (ps, es); there-
fore, when checking for the schedulability of the periodic tasks, we can simply treat the server
as the periodic task Ts . (The actual interrelease-times of jobs in Ts are sometimes larger than
ps , and their execution times are sometimes smaller than es . We saw in Chapter 6 that the
schedulability of lower-priority tasks are not adversely affected by these variations.) In this

Budget

server

Tl

TH

te
t

te+ps tf

FIGURE 7–9 A situation where rule R3a applies.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 209

Section 7.3 Sporadic Servers 209

sense, the rules and, hence, the sporadic server are correct. The only exception is when rule
R3b is applied; we will show that despite this exception, the server is correct.

For the moment, let us confine our attention to an interval when the periodic task system
T has not been idle and hence the rule R3b has never been applied. It is convenient to view
each replenishment time as the nominal “release time” of a server job. The actual release-time
of the server job is at te, which may be later than its nominal release time. The term current
job refers to the “server job” which was “released” at the latest replenishment time tr or the
latest effective replenishment time te.

The consumption rule C1 ensures that each server job never executes for more time than
its execution budget es . C2 applies when the server becomes idle while it still has budget. This
rule says that unlike a deferrable server, the budget of an idle simple sporadic server continues
to decrease with time as if server were executing. Because of these two rules, each server job
never executes at times when the corresponding job of the periodic task Ts does not.

C2 also means that the server holds on to its budget at any time t after its budget is
replenished at tr when (a) some higher-priority job is executing or (b) the server has not
executed since tr . When condition (a) occurs, the server waits for higher-priority tasks; its
budget does not decrease because the server is not scheduled independent of whether the
server is ready or suspended. To see that condition (b) will not cause the server to demand for
more processor time than the periodic task Ts , we note that tr is the nominal release time of
the current server job. Its actual release-time can be as late as t f when it first starts to execute
since tr . This emulates the situation when the current job of the periodic task Ts is released
late.

To show the correctness of the replenishment rules R2 and R3a, we note that the next
replenishment time is always set at the ps time units after the effective release-time te of the
current server job and the next release-time is never earlier than the next replenishment time.
Hence according to these two rules, consecutive replenishments occurs at least ps units apart.

Specifically, rule R2 is designed to make the effective replenishment time as soon as
possible (so that the next replenishment time can be as soon as possible) without making the
server behave differently from a periodic task. At time t f when the server executes for the
first time after tr , the effective replenishment time te is set at tr if higher-priority tasks have
executed throughout the interval (tr , t f); this emulates a job in Ts released at tr but has to wait
for higher-priority tasks to become idle before it can execute. On the other hand, if lower-
priority tasks executed in this interval, te is set to the latest time instant when a lower-priority
task executes. This emulates a job in Ts that is released at te and waits for higher-priority tasks
to become idle and then begins execution.

Rule R3a applies when the current server job has to wait for more than ps units of time
before its execution can begin. This rule allows the budget to be replenished as soon as it is
exhausted. When this rule applies, the server emulates the situation when a job in Ts takes
more than one server period to complete. In fact, it starts to execute after the subsequent job
of Ts is released. This rule works correctly if at the time when the server parameters were
chosen and schedulability of the periodic tasks were determined, the fact that the response
time of the server can be larger than the server period was taken into consideration.

When rule R3b applies, the server may behave differently from the periodic task Ts . This
rule is applicable only when a busy interval of the periodic task system T ends. As a result
of this rule, the server budget is replenished when the next busy interval of T begins. In other
words, a server job is “released” at the same time as the job in T which begins the new busy

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 210

210 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

interval. This condition was taken into account in the schedulability test that found T to be
schedulable together with the periodic task Ts , and the behavior of the system in the new busy
interval is independent of that in the previous busy interval. Hence, the early replenishment of
the server budget will not adversely affect the schedulability of lower-priority tasks.

7.3.2 Enhancements of Fixed-Priority Sporadic Server

We now discuss several enhancements as an exercise in server design. If we are willing to
make sporadic servers somewhat more complex and pay for slightly higher scheduling over-
head, there are many ways to replenish the execution budget more aggressively and preserve
it longer. One point to keep in mind in this discussion is the relationship between the replen-
ishment and consumption rules. If we change one rule, we may need to change some other
rule(s) in order for the entire set of rules to remain correct.

Sporadic/Background Server. The example in Figure 7–8 tells us that rule R3b of
the simple fixed-priority sporadic server is overly conservative. At time 18.5, the periodic
system becomes idle. The aperiodic job A3 remains incomplete, but the server budget is ex-
hausted. According to this rule, the budget is not replenished until the job J3,2 is released
at 19. While A3 waits, the processor idles. It is clear that the schedulability of the periodic
system will not be adversely affected if we replenish the server budget at 18.5 and let the
server execute until 19 with its budget undiminished. In this way, the server claims all the
background time that is not used by the periodic task system. For this example, A3 would
complete by time 19 if the server were allowed to claim the background time.

We call a sporadic server that claims the background time a sporadic/background
server; in essence, it is a combination of a sporadic server and a background server and is
defined by the following rules.

• Consumption rules of simple sporadic/background servers are the same as the rules
of simple sporadic servers except when the period task system is idle. As long as the
periodic task system is idle, the execution budget of the server stays at es .

• Replenishment rules of simple sporadic/background servers are same as those of the
simple sporadic server except R3b. The budget of a sporadic/background server is re-
plenished at the beginning of each idle interval of the periodic task system. tr is set at
the end of the idle interval.

When there is only one server in the system, there is no reason not to make it a sporadic/
background server. When there is more than one sporadic/background server, the highest pri-
ority server gets the background time whenever it can execute at the time. This may or may
not be desirable. For this reason, we may want to keep some servers simple and give the back-
ground time to some other servers, or even make all sporadic servers simple servers and use a
separate background server to execute in the background of the periodic task system and the
servers.

As an example, suppose that a system has two aperiodic tasks. The jobs in one task are
released whenever the operator issues a command, and their execution times are small. We use
a sporadic server to execute these jobs. In order to make the system responsive to the operator,
we choose to make the server period 100 milliseconds and execution budget sufficiently large

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 211

Section 7.3 Sporadic Servers 211

to complete a job (at least most of time). Each job of the other aperiodic task is released to
process a message. The messages arrive infrequently, say one a minute on the average. The
execution times of jobs in this task vary widely because the messages have widely differing
lengths. To execute these jobs, we use a sporadic server with a much longer period. Suppose
that the system is scheduled rate-monotonically. We may want to give all the background time
to the message-processing server. This can be done by making the command-processing server
a simple sporadic server and the message-processing server a sporadic/background server.

Cumulative Replenishment. A reason for the simplicity of simple sporadic servers
is that all the budget a server has at any time was replenished at the same time. In particular,
a simple server is not allowed to cumulate its execution budget from replenishment to replen-
ishment. This simplifies the consumption and replenishment rules. A way to give the server
more budget is to let the server keep any budget that remains unconsumed. In other words,
rather than setting the budget to es , we increment its budget by es units at each replenishment
time. Hence the budget of a server may exceed es . As a result of this change in replenishment
rule R1, the server emulates a periodic task in which some jobs do not complete before the
subsequent jobs in the task are released. Of course, as stated in the beginning of this section,
we must take into account the fact that the response times of some server jobs may be longer
than the server period when we check for the schedulability of the periodic tasks and choose
the server parameters ps and es accordingly.

Figure 7–10 gives an example. The server with period 15 and execution budget 6 cannot
consume its budget at time 15 when its budget is replenished. This example illustrates that
it is safe to increment its budget by 6 units. By doing so, the server emulates the periodic
task (15, 6) whose first job cannot complete within one period. As a consequence of this
enhancement, the server completes the aperiodic job A2 by time 27. In contrast, a simple
sporadic server cannot complete the job until time 36.

Let us now examine an enhanced sporadic server which increments its budget by es

units at each replenishment and see what its consumption rules should be. Clearly, the budget
still should be consumed at the rate of 1 per time unit whenever the server is executing; rule
C1 of simple sporadic servers always applies. However, we need to modify rule C2 of simple
sporadic servers to make it work for an enhanced sporadic server. In particular, it is necessary
to treat the es-unit chunk of new budget replenished at the latest replenishment time differently
from the chunk of old budget left unconsumed at the time. Whenever the server has both new
budget and old budget, it always consumes the old budget first; this emulates the behavior that
jobs in a periodic task are executed in the FIFO order whenever more than one job of the task
is ready for execution at the same time.

At any time t after the latest replenishment time tr , it is still safe to consume the new
budget according to C1 and C2. However, we cannot use rule C2 to govern the consumption
of the old budget. To see why, we note that because of the way tr was determined, the server
must have executed in the interval between the replenishment time of the old budget and tr .
Hence after tr , the old budget should be consumed at the rate of 1 per unit time when the
server is suspended and the higher-priority subsystem TH is idle independent of whether the
server has executed since tr . To illustrate this point, we look at the example in Figure 7–10
again and suppose that job A2 is released at time 17 instead. From time 15 to 17 while the
lower-priority task (59, 5) is executing, the server holds on to its new budget replenished at
time 15 according to rule C2. However, the 1-unit chunk of old budget should be consumed by

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 212

212 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

0

1

6

Budget

t
15 20 25 3027

T1

0 10 20 30 40

5 7

0 5

6

A1 A2

Ts

T2

FIGURE 7–10 A more aggressive replenishment rule. T1 = (10, 5), T2 = (59, 5), Ts = (15.6).

time 16, leaving the server with only its new budget at 16. You may want to convince yourself
that if the server were to consume the old budget according to rule C2 (i.e., holding on the
budget as long as its has not executed since tr), it would in essence defer the use of the old
budget, and this deference might affect the schedulability of some lower-priority task.

It is easy to see that we can further improve the replenishment rule R3a as follows:
Replenish the budget at time tr + ps whenever the higher-priority subsystem TH has been
busy throughout the interval (tr , tr + ps]. This additional change in replenishment rules in
turn makes it necessary to treat the budget that is not consumed in this interval with care. As
an exercise in server design, you may want to write up consumption and replenishment rules
of enhanced sporadic servers. You can find the statement of this exercise in Problem 7.11.

SpSL Sporadic Servers. If you look up the reference [SpSL] and read the description
of the sporadic servers, you will find that their rules allow a server to consume and replenish
its budget in chunks rather than as a whole as we have done thus far. Specifically, a Sprunt,
Sha, and Lehoczky (SpSL) sporadic server preserves unconsumed chunks of budget whenever
possible and replenishes the consumed chunks as soon as possible. By doing so, a SpSL server
with period ps and execution budget es emulates several periodic tasks with the same period
and total execution time equal to es .

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 213

Section 7.3 Sporadic Servers 213

To explain, we return to the example in Figure 7–8. The figure shows that at time 5.5
when the simple sporadic server is suspended, the server has already consumed a 1-unit chunk
of budget. Its remaining 0.5-unit chunk of budget is consumed as the lower-priority task T3

executes. If an aperiodic job A4 with 0.5 unit of execution time were to arrive at 6.5, the server
would have to wait until time 9.5 to execute the job. In contrast, a SpSL server holds on to the
remaining chunk of 0.5 unit of budget as T3 executes. Figure 7–11 illustrates the operations
of a SpSL server.

1. Suppose that at time 6.5, A4 indeed arrives. The SpSL server can execute the job imme-
diately, and in the process, consumes its remaining chunk of budget.

2. At time 8, rather than the entire budget of 1.5 units, the SpSL server replenishes only the
chunk of 1.0 unit which was consumed from time 3.5 to 5.5. This 1.0 unit is treated as
one chunk because the execution of the server was interrupted only by a higher-priority
task during the time interval when this chunk was consumed.

0

0.5

1.0

1.5

Budget

3 8 11.0 13 15 19 24

T1

0 3 6 9 12 15 18 21

3.5 6.5 9.5 11.0 13.5 15.5 19

19

24

0

1.0 2.0 2.0

3 7 15.5

A1 A4 A2 A3

T2

TS

T3

t

FIGURE 7–11 Example illustrating SpSL sporadic servers: T1 = (3, 0.5), T2 = (4, 1.0), T3 = (19, 4.5), Ts =
(5, 1.5).

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 214

214 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

3. At time 11.0, 5 units of time from the effective replenishment time of the second chunk,
the 0.5 unit of budget is replenished. [The effective replenishment time of the second
chunk is 6.0 because at time t f (= 6.5), the first execution time of this chunk, BEGIN
is 6.0, the time instant when T1 begins to execute.]

4. Similarly, at time 13, only the first chunk is replenished.
5. Later at 13.5, when the higher-priority tasks are no longer busy, the server executes and

completes A2. At this time, it still has 0.5 units of budget, and this chunk is preserved.
By now, the server has three different chunks of budget: the chunk that was replenished
at time 11.0 and consumed at 11.5, the chunk that was replenished at 13 and consumed
by 14.0, and the leftover chunk at 14.0.

6. As it is, the periodic task system becomes idle at 14.0. All the chunks can be replenished
at time 15 following rule R3b of the simple sporadic server, and the server has only one
1.5-unit chunk of budget again.

This example illustrates the advantage of SpSL servers over simple sporadic servers.
During time intervals when the aperiodic job queue is continuously nonempty or empty for
a larger number of server periods, these two types of servers behave in the same manner.
However, when the queue frequently alternates from being nonempty to empty and vice versa,
a SpSL server oftentimes can respond sooner to new arrivals of aperiodic jobs than a simple
sporadic server.

Conceptually, a SpSL server emulates several periodic tasks, one per chunk. As time
progresses and its budget breaks off into more and more chunks, the original periodic task
(ps, es) breaks up into more and more periodic tasks whose total execution time is es . The
additional cost of SpSL servers over simple servers arises due to the need of keeping track of
the consumption and replenishment of different chunks of budget. In particular, it is necessary
to keep track when each chunk was replenished so as to ensure that individual chunks are not
replenished too soon. This requires more complicated replenishment rules than those given
in [SpSL]. (Problem 7.12 gives the statement of the consumption and replenishment rules in
[SpSL] and an example to illustrate the problem which can arise because these rules do not
deal with different chunks separately when they should. As a consequence, the server is not
correct because it may cause some lower-priority periodic tasks to miss their deadlines.)

The consumption and replenishment rules below define an enhanced fixed-priority spo-
radic server that holds onto its execution budget except when it is actually executing. We also
call this server the SpSL server. It differs from the original version in that it works correctly
and it does not claim the background time when the periodic task system becomes idle.

Rules of SpSL Server

• Breaking of Execution Budget into Chunks

B1 Initially, the budget = es and tr = 0. There is only one chunk of budget.
B2 Whenever the server is suspended, the last chunk of budget being consumed just

before suspension, if not exhausted, is broken up into two chunks: The first chunk
is the portion that was consumed during the last server busy interval, and the sec-
ond chunk is the remaining portion. The first chunk inherits the next replenish-
ment time of the original chunk. The second chunk inherits the last replenishment
time of the original chunk.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 215

Section 7.3 Sporadic Servers 215

• Consumption Rules

C1 The server consumes the chunks of budget in order of their last replenishment
times.

C2 The server consumes its budget only when it executes.

• Replenishment Rules: The next replenishment time of each chunk of budget is set ac-
cording to rules R2 and R3 of the simple sporadic server. The chunks are consolidated
into one whenever they are replenished at the same time.

The overhead of the SpSL server over the simple version consists of the time and space
required to maintain the last and the next replenishment times of individual chunks of the
server budget. In the worst case, this can be as high as O(N), where N is the number of jobs
in a hyperperiod of the periodic tasks.

However, as we will see in Section 12.2.2, it is relatively simple for the operating system
to monitor the budget consumption of a SpSL server, because its budget is consumed only
when it executes. In contrast, the budget of a simple sporadic server may also be consumed
during the execution of lower-priority tasks. Consequently, it is more complex to monitor the
budget consumption of a simple sporadic server accurately.

*Priority Exchanges. In addition to allowing the budget to be divided up into chunks
as a SpSL server does, there is another way to preserve the server budget. To see how, we
begin by reexamining rule C2 of the simple sporadic server. (For simplicity, we consider only
the option where there is only one chunk of budget.) According to this rule, once the server
has executed since a replenishment, it consumes its budget except during the time interval(s)
when it is preempted. In particular, its budget decreases when the server is idle and some
lower-priority task executes. We can stop the consumption under this condition by allowing
the server to trade time with the executing lower-priority task.

The schedule segments in Figure 7–12 illustrate what we mean. Tl is a lower-priority
task. The schedule in part (a) illustrates the situation when the aperiodic job queue remains
nonempty after the server begins to execute at time t f . The server continues to execute until
its budget is exhausted at time t f + es . The lower-priority task Tl must wait until this time
to execute and completes later at time tl . The schedule in part (b) illustrates the situation that
the server busy interval ends and the server becomes idle and, therefore, suspended at time
t f + ε before its budget is exhausted. A job in the lower priority task Tl begins to execute at
this time. Because Tl is able to use the es − ε units of time which would be given to the server
if it were not suspended, Tl can complete sooner. This means that es − ε units of time before
tl is no longer needed by the lower-priority task; they can be given to the server as budget. In
order to ensure that the other lower-priority tasks are not affected by this exchange, the chunk
of budget the server gets from the lower-priority task should be scheduled at the priority of
the task, not at the priority of the server. Figure 7–12(b) shows that an aperiodic job arrives
later at time t0, and it can be executed by the server if the server has the traded budget, while
a simple sporadic server has no budget at this time.

In general, we may have the situation where (1) the server becomes idle and is therefore
suspended while it still has budget and (2) some lower priority tasks Tl, Tl+1, . . . , Tl+k execute
in the time interval where the server would be scheduled if it were not suspended. We say that

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 216

216 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

TH

tr tf tf +es

tl

tf

t0 tl

tf +e
es - ε

es - ε

Ts

Tl

TH

Ts

Tl

(a)

(b)
FIGURE 7–12 Priority exchange between the server and a lower-priority task.

these lower-priority tasks execute at the server’s priority in this interval. Let x j denote the
amount of time the lower-priority task Tl+ j executes in this interval. The server is allowed to
keep x j units of budget. When the server later uses this budget, it will be scheduled at the
priority of the task Tl+ j .

Trading time and priorities among the server and the lower-priority tasks in this man-
ner is exactly what a priority-exchange server [LeSS, SpSL] does. Intuitively, we can see
that priority exchange is particularly advantageous when the aperiodic job queue becomes
empty frequently. However, without special hardware to support priority exchange, the run
time overhead of a priority-exchange server is significantly higher than that of a simple spo-
radic server or an SpSL server. The high overhead of priority exchange makes this type of
servers impractical.

7.3.3 Simple Sporadic Servers in Deadline-Driven Systems

When the periodic tasks are scheduled on the EDF basis, the priorities of the tasks vary as
their jobs are released and completed. Consequently, the membership of the subset of tasks

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 217

Section 7.3 Sporadic Servers 217

with higher priorities than the server varies with time. Some of the rules of simple sporadic
servers stated earlier for fixed-priority systems must be modified for this reason. The rationales
behind the modified rules remain the same: a simple sporadic server of period ps and budget
es following the rules behave like a periodic task (ps, es).

The consumption and replenishment rules of simple sporadic servers in a system where
all tasks are scheduled according to the EDF algorithm are stated below. We again use tr to
denote the latest replenishment time. However the notation te, the effective latest replenish-
ment time, has a different meaning from that of a fixed-priority sporadic server. Specifically,
rule R2 below governs how the value of te is determined. The server is ready for execution
only when it is backlogged (i.e., the aperiodic job queue is nonempty) and its deadline d (and
hence its priority) is set. The server is suspended whenever its deadline is undefined or when
the server is idle (i.e., the aperiodic job queue becomes empty).

• Consumption Rules of Simple Deadline-Driven Sporadic Server: The server’s execution
budget is consumed at the rate of one per unit time until the budget is exhausted when
either one of the following two conditions is true. When these conditions are not true,
the server holds its budget.

C1 The server is executing.

C2 The server deadline d is defined, the server is idle, and there is no job with a
deadline before d ready for execution.

• Replenishment Rules of Simple Deadline-Driven Sporadic Server:

R1 Initially and at each replenishment time, tr is the current time, and the budget =
es . Initially, te and the server deadline d are undefined.

R2 Whenever te is defined, d = te + ps , and the next replenishment time is te + ps .
Otherwise, when te is undefined, d remains undefined. te is determined (defined)
as follows:

(a) At time t when an aperiodic job arrives at an empty aperiodic job queue,
the value of te is determined based on the history of the system before t as
follows:

i. If only jobs with deadlines earlier than tr + ps have executed throughout
the interval (tr , t), te = tr .

ii. If some job with deadline after tr + ps has executed in the interval (tr , t),
te = t .

(b) At replenishment time tr ,

i. if the server is backlogged, te = tr , and

ii. if the server is idle, te and d become undefined.

R3 The next replenishment occurs at the next replenishment time, except under the
following conditions. Under these conditions, the next replenishment is done at
times stated below.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 218

218 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

(a) If the next replenishment time te + ps is earlier than the time t when the server
first becomes backlogged since tr , the budget is replenished as soon as it is
exhausted.

(b) The budget is replenished at the end of each idle interval of the periodic task
system T.

As you can see, the differences in rules of simple sporadic servers in deadline-driven
and fixed-priority systems are small. It just so happens that if we schedule the periodic tasks
in Figure 7–8 according to the EDF algorithm and make the sporadic server follow the rules of
deadline-driven simple sporadic servers, the schedule segment we get is essentially the same
as the one shown in the figure. The possible differences may arise if when the server has the
same priority as the periodic tasks, we alway break the tie in favor of the server.

Like SpSL servers, a deadline-driven sporadic server proposed by Ghazalie and Baker
[GhBa], which we call a GhBa server, also consumes and replenishes its budget in chunks.
The consumption and replenishment rules of GhBa servers are given in Problem 7.13. Unlike
the rules of SpSL servers given in [SpSL], these rules do ensure that each chunk is never
replenished sooner than one server period since its last replenishment. Consequently, lower-
priority jobs never miss their deadlines because the server takes too much time. The rules of
GhBa servers are somewhat more complex than the rules of simple deadline-driven sporadic
servers. Both kinds of servers are considerably more complex than the constant utilization,
total bandwidth, and weighted fair-queueing servers described in the next section.

7.4 CONSTANT UTILIZATION, TOTAL BANDWIDTH, AND WEIGHTED
FAIR-QUEUEING SERVERS

We now describe three bandwidth preserving server algorithms that offer a simple way to
schedule aperiodic jobs in deadline-driven systems. They are constant utilization [DeLS], total
bandwidth [SpBu], and weighted fair-queueing [DeKS] algorithms. These algorithms belong
to a class of algorithms that more or less emulate the Generalized Processor Sharing (GPS) al-
gorithm. GPS, sometimes called fluid-flow processor sharing, is an idealized weighted round-
robin algorithm; it gives each backlogged server in each round an infinitesmally small time
slice of length proportional to the server size.1

Clearly, infinitesmally fine-grain time slicing cannot be implemented in practice. The
algorithms which we are about to describe behave like the GPS algorithm to different degrees.
In particular, each server maintained and scheduled according to any of these algorithms offers
timing isolation to the task(s) executed by it; by this statement, we mean that the worst-
case response times of jobs in the task are independent the processor-time demands of tasks
executed by other servers. While such a server works in a way that is similar to sporadic
servers, its correctness relies on a different principle. Before we describe the rules governing
the operations of such a server, we digress briefly to describe a schedulability condition of
sporadic jobs scheduled on the EDF basis. The correctness of these algorithms follows from
the condition.

1The GPS algorithm is sometimes called a bit-by-bit or instruction-by-instruction round-robin algorithm be-
cause the lengths of time slices are equal to the time to transmit a few bits in a packet or to execute a few instructions
or processor cycles in a program. It is a generalization of the processor sharing model first used by Klienrock [Klie].

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 219

Section 7.4 Constant Utilization, Total Bandwidth, andWeighted Fair-Queueing Servers 219

7.4.1 Schedulability of Sporadic Jobs in Deadline-Driven Systems

In Chapter 6, we showed that a system of independent, preemptable periodic tasks whose
relative deadlines are equal to or larger than their respective periods is schedulable according
to the EDF algorithm if the total utilization of the tasks is equal to or less than 1. We also
argued that if the execution times of some jobs in some task are smaller than the execution
time of the task and the interrelease times between some jobs are larger than its period, the
system is schedulable if it is schedulable according to this criterion. We now carry this point
further to a more general sufficient schedulability condition for independent, preemptable
sporadic jobs. This schedulability condition is in terms of densities of sporadic jobs. The
density of a sporadic job Ji that has release time ri , maximum execution time ei and deadline
di is the ratio ei/(di − ri). A sporadic job is said to be active in its feasible interval (ri , di]; it
is not active outside of this interval.

THEOREM 7.4. A system of independent, preemptable sporadic jobs is schedulable
according to the EDF algorithm if the total density of all active jobs in the system is no
greater than 1 at all times.

Proof. We prove the theorem by contradiction. Suppose that a job misses its deadline
at time t , and there is no missed deadline before t . Let t−1 be the latest time instant
before t at which either the system idles or some job with a deadline after t executes.
Suppose that k jobs execute in the time interval (t−1, t]. We call these jobs J1, J2, . . . , Jk

and order them in increasing order of their deadlines. (Ties in deadlines are broken
arbitrarily.) Jk is the job that misses its deadline at t . Because the processor remains
busy in (t−1, t] executing jobs of equal or higher priorities than Jk and Jk misses its
deadline at time t , we must have

∑k
i=1 ei > t − t−1.

We let the number of job releases and completions during the time interval (t−1, t)
be l, and ti be the time instant when the i th such event occurs. In terms of this notation,
t−1 = t1 and, for the sake of convenience, we also use tl+1 to denote t . These time
instants partition the interval (t−1, t] into l disjoint subintervals, (t1, t2], (t3, t3], . . . ,
(tl, tl+1]. The active jobs in the system and their total density remain unchanged in each
of these subintervals. Let Xi denote the subset containing all the jobs that are active
during the subinterval (ti , ti+1] for 1 ≤ i ≤ l and �i denote the total density of the jobs
in Xi .

The total time demanded by all the jobs that execute in the time interval (t−1, t] is∑k
i=1 ei . We can rewrite the sum as

k∑

i=1

ei

di − ri
(di − ri) =

l∑

j=1

(t j+1 − t j)
∑

Jk∈X j

ek

dk − rk
=

l∑

j=1

� j (t j+1 − t j)

Since � j ≤ 1 for all j = 1, 2, . . . , l − 1, we have

k∑

i=1

ei ≤
l∑

j=1

(t j+1 − t j) = tl+1 − t1 = t − t−1

This leads to a contradiction.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 220

220 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

The condition stated in Theorem 7.4 is not necessary: Sporadic jobs may be schedulable
on the EDF basis when this condition is not satisfied. As an example, we consider three
sporadic jobs each of which has a relative deadline of 2 and execution time of 1. They are
released at time instants 0, 0.5, and 1.0. The total density of jobs is 1.5 in (1, 2], yet they are
schedulable on the EDF basis.

You recall that a sporadic task Si is a stream of sporadic jobs. Let Si, j denote the j th job
in the task Si (i.e., the release time of Si, j is later than the release times of Si,1, Si,2, . . . , Si, j−1).
Let ei, j denote the execution time of Si, j , and pi, j denote the length of time between the re-
lease times of Si, j and Si, j+1. At the risk of abusing the term, we call pi, j the period of the
sporadic job Si, j and the ratio ei, j/pi, j the instantaneous utilization of the job. The instan-
taneous utilization ũi of a sporadic task is the maximum of the instantaneous utilizations of
all the jobs in this task (i.e., ũi = max j (ei, j/pi, j)). As with execution times and periods of
periodic tasks, we assume that the instantaneous utilization of a sporadic task is a known
parameter of the task.

In a system of n sporadic tasks whose total instantaneous utilization is equal to or less
than one, the total density of all active jobs is equal to or less than 1 at all times. Consequently,
the following sufficient schedulability condition of sporadic tasks scheduled according to the
EDF algorithm follows straightforwardly from Theorem 7.4.

COROLLARY 7.5. A system of n independent, preemptable sporadic tasks, which
is such that the relative deadline of every job is equal to its period, is schedulable on
a processor according to the EDF algorithm if the total instantaneous utilization (i.e.,∑n

i=1 ũi), is equal to or less than 1.

Because the utilization ui = max j (ei, j)/min j (pi, j) of any task Si is always larger than its
instantaneous utilization ũi = max j (ei, j/pi, j), we have the following corollary.

COROLLARY 7.6. A system of independent, preemptable periodic and sporadic
tasks, which is such that the relative deadline of every job is equal to its period, is
schedulable on a processor according to the EDF algorithm if the sum of the total
utilization of the periodic tasks and the total instantaneous utilization of the sporadic
tasks is equal to or less than 1.

This corollary gives us theoretical basis of the constant utilization server algorithm described
below.

7.4.2 Constant Utilization Server Algorithm

We now return our attention to the problem of scheduling aperiodic jobs amid periodic tasks
in a deadline-driven system. For the purpose of executing aperiodic jobs, there is a basic con-
stant utilization server. The server is defined by its size, which is its instantaneous utilization
ũs ; this fraction of processor time is reserved for the execution of aperiodic jobs. As with
deferrable servers, the deadline d of a constant utilization server is always defined. It also
has an execution budget which is replenished according to the replenishment rules described
below. The server is eligible and ready for execution only when its budget is nonzero. When
the server is ready, it is scheduled with the periodic tasks on the EDF basis. While a sporadic
server emulates a periodic task, a constant utilization server emulates a sporadic task with a
constant instantaneous utilization, and hence its name.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 221

Section 7.4 Constant Utilization, Total Bandwidth, andWeighted Fair-Queueing Servers 221

Consumption and Replenishment Rules. The consumption rule of a constant uti-
lization server, as well as that of a total bandwidth or weighted fair-queueing server, is quite
simple. A server consumes its budget only when it executes. You will see shortly that such a
server never has any budget when there is no aperiodic job ready for execution. Hence the
problem of dealing with chunks of budget never arises.

The budget of a basic constant utilization server is replenished and its deadline set ac-
cording to the following rules. In the description of the rules, ũs is the size of the server, es is
its budget, and d is its deadline. t denotes the current time, and e denotes the execution time
of the job at the head the aperiodic job queue. The job at the head of the queue is removed
when it completes. The rules assume that the execution time e of each aperiodic job becomes
known when the job arrives. We will return later to discuss how to remove this restriction.

Replenishment Rules of a Constant Utilization Server of Size ũs

R1 Initially, es = 0, and d = 0.
R2 When an aperiodic job with execution time e arrives at time t to an empty aperiodic job

queue,
(a) if t < d, do nothing;
(b) if t ≥ d, d = t + e/ũs , and es = e.

R3 At the deadline d of the server,
(a) if the server is backlogged, set the server deadline to d + e/ũs and es = e;
(b) if the server is idle, do nothing.

In short, a constant utilization server is always given enough budget to complete the
job at the head of its queue each time its budget is replenished. Its deadline is set so that its
instantaneous utilization is equal to ũs .

Figure 7–13 illustrates how a constant utilization server works. This system of periodic
tasks and aperiodic jobs is essentially the same as the system in Figure 7–8. (For this system,
the simple fixed-priority and deadline-driven sporadic servers happen to behave the same.)
The only difference between them is that in Figure 7–13, aperiodic job A2 arrives at time 6.9
instead of 7.0. The size of the constant utilization server is 0.25, slightly smaller than the size
of the sporadic server in Figure 7–8.

1. Before time 3.0, the budget of the server is 0. Its deadline is 0. The server does not affect
other tasks because it is suspended.

2. At time 3, A1 arrives. The budget of the server is set to 1.0, the execution time of A1,
and its deadline is 3+1.0/0.25 = 7 according to R2b. The server is ready for execution.
It completes A1 at time 4.5.

3. When A2 arrives at time 6.9, the deadline of the server is later than the current time.
According to R2a, nothing is done except putting A2 in the aperiodic job queue.

4. At the next deadline of the server at 7, the aperiodic job queue is checked and A2 is
found waiting. The budget of the server is replenished to 2.0, the execution time of A2,
and its deadline is 7 + 2.0/0.25 = 15. The server is scheduled and executes at time 7,
is preempted by T2 at time 8, resumes execution at 9.5 and completes A2 at time 10.5.

5. At time 15, the aperiodic job queue is found empty. Nothing is done.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 222

222 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

0

1

2

Budget

3 8 11 13 15 19 24
t

T1

0 3 6 9 12 15

15

18 21

7 23.5

24

0

1.0 2.0 2.0

3 6.9 15.5

A1 A2 A3

T2

T3

Server
u~s = 0.25

FIGURE 7–13 Example illustrating the operations of constant utilization server: T1 = (4, 0.5), T2 = (4, 1.0),
T3 = (19, 4.5).

6. At time 15.5, A3 arrives. At the time, the deadline of the server is 15. Hence according
to rule R2b, its deadline is set at 23.5, and the server budget is set to 2.0. This allows
the server to execute A3 to completion at time 19.

We see that the constant utilization server completes each of the aperiodic jobs earlier than a
simple sporadic server.

From Theorem 7.4 and its corollaries, we see that for a given system of periodic tasks
with total density�, we can divide the leftover processor bandwidth among an arbitrary num-
ber of constant utilization servers. [You recall that the density of a periodic task (pi , ei , Di)

is ei/min(Di , pi).] We are sure that no deadlines will be missed as long as the total size (i.e.,
the total instantaneous utilization) of all the servers is equal to or less than 1 −�.

Scheduling Aperiodic Jobs with Unknown Execution Times. In the description of
the constant utilization server algorithm, we assume that the execution times of aperiodic jobs

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 223

Section 7.4 Constant Utilization, Total Bandwidth, andWeighted Fair-Queueing Servers 223

become known upon their arrival. This restrictive assumption can be removed by modifying
the replenishment rules of constant utilization (or total bandwidth) servers. One way is to
give the server a fixed size budget es and fixed period es/ũs just like sporadic and deferrable
servers. Since the execution time of each aperiodic job can be determined after it is completed
with little overhead, we can adjust the server deadline based on this knowledge upon the com-
pletion of the job. Specifically, when an aperiodic job with execution time e shorter than es

completes, we reduce the current deadline of the server by (es − e)/ũs units before replen-
ishing the next es units of budget and setting the deadline accordingly. This action clearly can
improve the performance of the server and does not make the instantaneous utilization of the
server larger than ũs .

An aperiodic job with execution time larger than es is executed in more than one server
period. We can treat the last chunk of such a job in the manner described above if the execution
time of this chunk is less than es .

7.4.3 Total Bandwidth Server Algorithm

To motivate the total bandwidth server algorithm [SpBu], let us return to the example in Fig-
ure 7–13. Suppose that A3 were to arrive at time 14 instead. Since 14 is before the current
server deadline 15, the scheduler must wait until time 15 to replenish the budget of the con-
stant utilization server. A3 waits in the interval from 14 to 15, while the processor idles!
Clearly, one way to improve the responsiveness of the server is to replenish its budget at time
14. This is exactly what the total bandwidth server algorithm does.

Specifically, the total bandwidth server algorithm improves the responsiveness of a con-
stant utilization server by allowing the server to claim the background time not used by pe-
riodic tasks. This is done by having the scheduler replenish the server budget as soon as the
budget is exhausted if the server is backlogged at the time or as soon as the server becomes
backlogged. We now show that a constant utilization server works correctly if its budget is
replenished in this aggressive manner. In particular, we can change the replenishment rules
as follows and get a total bandwidth server. You can see that the rules of a total bandwidth
server are even simpler than the rules of a constant utilization server.

Replenishment Rules of a Total Bandwidth Server of size ũs

R1 Initially, es = 0 and d = 0.

R2 When an aperiodic job with execution time e arrives at time t to an empty aperiodic job
queue, set d to max(d, t)+ e/ũs and es = e.

R3 When the server completes the current aperiodic job, the job is removed from its queue.

(a) If the server is backlogged, the server deadline is set to d + e/ũs , and es = e.

(b) If the server is idle, do nothing.

Comparing a total bandwidth server with a constant utilization server, we see that for a
given set of aperiodic jobs and server size, both kinds of servers have the same sequence of
deadlines, but the budget of a total bandwidth server may be replenished earlier than that of
a constant utilization server. As long as a total bandwidth server is backlogged, it is always
ready for execution. In the above example, this means that the server’s budget is replenished
at 6.9 and, if A3 were to arrive at 14, at 14, and the deadline of the server is 15 and 23.5,

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 224

224 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

respectively, A3 would be completed at time 17.5 if it were executed by a total bandwidth
server but would be completed at 19 by a constant bandwidth server.

Clearly, a total bandwidth server does not behave like a sporadic task with a constant
instantaneous utilization. To see why it works correctly, let us examine how the server affects
periodic jobs and other servers when its budget is set to e at a time t before the current server
deadline d and its deadline is postponed to the new deadline d ′ = d + e/ũs . In particular,
we compare the amount of processor time demanded by the server with the amount of time
demanded by a constant utilization server of the same size ũs before the deadline di,k of a
periodic job Ji,k whose deadline is later than the server’s new deadline d ′. (We do not need to
consider periodic jobs with deadlines earlier than d ′ because they have higher priorities than
the server.) If the job Ji,k is ready at t , then the amounts of time consumed by both servers are
the same in the interval from t to di,k . If Ji,k is not yet released at t , then the time demanded
by the total bandwidth server in the interval (ri,k, d ′] is less than the time demanded by the
constant utilization server because the total bandwidth server may have executed before ri,k

and has less budget in this interval. In any case, the total bandwidth server will not cause a
job such as Ji,k to miss its deadline if the constant utilization server will not. By a similar
argument, we can show that a total bandwidth server will not cause another server to become
unschedulable if a constant utilization server of the same size will not.

We state the correctness of constant utilization and total bandwidth server algorithms
in the following corollaries so we can refer to them later. In the statement of the corollaries,
we use the expression “a server meets its deadline” (or “a server is schedulable,” as we said
in the last paragraph). By this, we mean that the budget of the server is always consumed by
the deadline set at the time when the budget was replenished. If we think of the server as a
sporadic task and each replenishment of the budget of e units as the release of a sporadic job
that has this execution time and the corresponding deadline, then every job in this sporadic
task completes in time.

COROLLARY 7.7. When a system of independent, preemptable periodic tasks is
scheduled with one or more total bandwidth and constant utilization servers on the EDF
basis, every periodic task and every server meets its deadlines if the sum of the total
density of periodic tasks and the total size of all servers is no greater than 1.

When some periodic tasks and sporadic jobs have nonpreemptable portions, the effect of
nonpreemptability is a reduction in the schedulable utilization. Alternatively, the schedulable
utilization can be maintained at the expense of a bounded amount of tardiness. These facts are
stated in the following corollaries. In the statement of these corollaries, bmax(np) denotes the
maximum execution time of nonpreemptable portions of all periodic tasks and jobs executed
by servers. Dmin denotes the minimum of the relative deadlines of all periodic tasks and the
effective execution times of jobs executed by all servers in the system. By the effective exe-
cution time of a job executed by a server, we mean the ratio of the job execution time and the
server size. These corollaries give the theoretical foundation of delay bounds of nonpreemp-
tive versions of these algorithms. (The nonpreemptive version of the total bandwidth server
algorithm is called the virtual clock algorithm [Zhan]. It is one of the well-known algorithms
for scheduling packets in switched networks.)

COROLLARY 7.8. When a system of periodic tasks is scheduled with one or more
total bandwidth and constant utilization servers on the EDF basis, every periodic task

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 225

Section 7.4 Constant Utilization, Total Bandwidth, andWeighted Fair-Queueing Servers 225

and every server meets its deadlines if the sum of the total density of the periodic tasks
and the total size of all servers is no greater than 1 − bmax(np)/Dmin.

COROLLARY 7.9. If the sum of the total density of all the periodic tasks and the total
size of total bandwidth and constant utilization servers that are scheduled on the EDF
basis is no greater than 1, the tardiness of every periodic task or server is no greater than
bmax(np).

7.4.4 Fairness and Starvation

Thus far, we have ignored fairness [DeKS, PaGa93] of our algorithms.2 By a scheduling
algorithm being fair within a time interval, we mean that the fraction time of processor time in
the interval attained by each server that is backlogged throughout the interval is proportional to
the server size. For many applications (e.g., data transmission in switched networks), fairness
is important.

It is well known in communication literature that the virtual clock algorithm (i.e., non-
preemptive total bandwidth server algorithm) is unfair. To illustrate that this is also true for
the total bandwidth server algorithm, let us consider a system consisting solely of two total
bandwidth servers, TB1 and TB2, each of size 0.5. Each server executes an aperiodic task; jobs
in the task are queued in the server’s own queue. It is easy to see that if both servers are never
idle, during any time interval of length large compared to the execution times of their jobs,
the total amount of time each server executes is approximately equal to half the length of the
interval. In other words, each server executes for its allocated fraction of time approximately.

Now suppose that in the interval (0, t), for some t > 0, server TB1 remains backlogged,
but server TB2 remains idle. By time t , TB1 have executed for t units of time and its deadline
is at least equal to 2t . If at time t , a stream of jobs, each with execution time small compared
with t , arrives and keeps TB2 backlogged after t . In the interval (t, 2t), the deadline of TB2 is
earlier than the deadline of TB1. Hence, TB2 continues to execute, and TB1 is starved during
this interval. While processor time is allocated fairly during (0, 2t), the allocation is unfair
during (t, 2t). Since t is arbitrary, the duration of unfairness is arbitrary. As a consequence, the
response time of jobs executed by TB1 can arbitrarily be large after t . This is not acceptable for
many applications. (An example is an aperiodic task that is executed in response to keyboard
entries of a video game. The player will not happy if the system becomes sluggish for a
considerable length of time, no matter how responsive it was in the past.)

In the remainder of this section, we first formally define fairness and then present two
solutions. We will discuss this issue further in Chapter 11 which is on real-time communica-
tion. That chapter will present other solutions found in communication literature.

Definition of Fairness. Since fairness is not an important issue for periodic tasks, we
confine our attention here to systems containing only aperiodic and sporadic jobs. Specifically,
we consider a system consisting solely of n (> 1) servers. Each server executes an aperiodic
or sporadic task. For i = 1, 2, . . . , n, the size of the i th server is ũi .

∑n
i=1 ũi is no greater

than 1, and hence every server is schedulable. w̃i (t1, t2), for 0 < t1 < t2, denotes the total

2At the risk of a bad pun, it is fair to say that when the total utilization of periodic tasks is significant and there
is only one server, fairness is not an issue. Moreover, bandwidth-preserving algorithms described in earlier sections
do not have any serious problem in starvation and fairness.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 226

226 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

attained processor time of the i th server in the time interval (t1, t2), that is, the server executes
for w̃i (t1, t2) units of time during this interval.

The ratio w̃i (t1, t2)/ũi is called the normalized service attained by the i th server
[StVa98a]. A scheduler (or the scheduling algorithm used by the scheduler) is fair in the
interval (t1, t2) if the normalized services attained by all servers that are backlogged during
the interval differ by no more than the fairness threshold FR ≥ 0.

In the ideal case, FR is equal to zero, and

w̃i (t1, t2)

w̃ j (t1, t2)
= ũi

ũ j

for any t2 > t1 and i th and j th servers that are backlogged throughout the time interval (t1, t2).
Equivalently,

w̃i (t1, t2) = ũi (t2 − t1)

It should not be a surprise that only an algorithm that infinitesmally fine-grain time
slices among ready servers can achieve ideal fairness. Hence, ideal fairness is not realizable
in practice. For a given scheduling algorithm, the difference in the values of the two sides of
the above expression depends on the length t2 − t2 of the time interval over which fairness is
measured. In general, FR is a design parameter. By allowing processor time allocation to be
somewhat unfair (i.e., for some acceptable FR > 0) over some time interval length, we admit
simple and practical schemes to keep scheduling fair.

Elimination of Starvation. Let us examine again the previous example of two total
bandwidth servers. The starvation problem is due to the way in which the total bandwidth
server algorithm makes background time available to TB1; in general, the deadline of a back-
logged total bandwidth server is allowed to be arbitrarily far in the future when there is spare
processor time. The simple scheme presented below, as well as the weighted fair-queueing al-
gorithm presented in the next subsection, eliminates starvation and improve fairness by keep-
ing the deadlines of backlogged servers sufficiently close to the current time.

A simple solution is to use only constant utilization servers. Since the budget of such
a server is never replenished before the current server deadline, the current deadline of a
backlogged constant utilization server CUi of size ũi is never more than ei,max/ũi units of time
from the current time. (ei,max is the maximum execution time of all the jobs executed by the
server.) Hence the length of starvation suffered by any server is bounded by maxi (ei,max/ũi).
To allow these servers to use background time, we add rule R4 to the constant utilization
server budget replenishment rules given in Section 7.4.2.

Replenishment Rules of a Starvation-Free Constant Utilization/Background Server

R1 –R3 Within any busy interval of the system, replenish the budget of each backlogged
server following rules of a constant utilization server.

R4 Whenever a busy interval of the system ends, replenish the budgets of all backlogged
servers.

To illustrate, we look at the example in Figure 7–14. The system contains four aperiodic
tasks A1, A2, A3, and A4, each a stream of jobs with identical execution times. Specifically,

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 227

Section 7.4 Constant Utilization, Total Bandwidth, andWeighted Fair-Queueing Servers 227

0 4 8 12 16 20 24 28 32 36 40 44
t

TB1

0 8 16 24 32 40
t

TB2

0 12 24 36
t

TB3

t
TB4

18 26 34 42

(a) Behavior of total bandwidth servers.
FIGURE 7–14 Example illustrating starvation and fairness: ũ1 = 1

4
, ũ2 = 1

8
, ũ3 = 1

4
, ũ4 = 3

8
. A1 ≡ jobs with

execution times = 1 arriving from t = 0; A2 ≡ jobs with execution times = 1 arriving from t = 0; A3 ≡ jobs with
executiong times = 3 arriving from t = 0; A4 ≡ jobs with executiong times = 3 arriving from t = 18.

the execution times of jobs in these tasks are 1, 1, 3, and 3, respectively. Each aperiodic task
is executed by a server. The sizes of the servers for the tasks are 1/4, 1/8, 1/4, and 3/8,
respectively. Starting from time 0, the jobs in A1, A2, and A3 arrive and keep their respective
servers backlogged continuously. The first job in A4 arrives at time 18, and afterwards, the
server for A4 also remains backlogged.

Figure 7–14(a) shows their schedules when the servers are total bandwidth servers.
Server TBi executes Ai , for i = 1, 2, 3, 4. The numbers under each time line labeled by a
server name give the deadlines of the server as time progresses. (You recall that the budget
of a backlogged server is replenished and its deadline set each time it completes a job.) In
particular, when the first job in A4 arrives at time 18, the deadlines of servers TB1, TB2,
and TB3 are 36, 40, and 36, respectively. Since the deadline of TB4 is first set to 26 and,
upon the completion of the first job in A4, to 34, TB4 executes until 24, starving the other
servers in (18, 24). Before time 18, the amounts of time allocated to the servers according
to their sizes are 4.5, 2.25, and 4.5 respectively, but because TB4 is idle and the time left
unused by it is shared by backlogged servers, the servers have executed for 8, 4, and 6 units of
time, respectively. In contrast, their fair shares of processor time should be 7.2, 3.6, and 7.2,
respectively. (The fair fractional share of a backlogged server in a time interval is equal to its
size divided by the sum of sizes of all servers backlogged during the interval. So the fair shares
of the three servers are 2/5, 1/5, and 2/5 of 18.) This example supports our intuition: The
closer the consecutive deadlines (i.e., the larger the server size and the smaller the execution
times of jobs), the larger share of background time a server attains at the expense of other
backlogged servers.

Now suppose that each aperiodic task Ai is executed by a starvation-free constant
utilization/background server CUi , for i = 1, 2, 3, 4. We have the schedule shown in Figure
7–14(b). At time 6, the budgets of all three backlogged servers are exhausted, and the system

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 228

228 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

0 4 10 14 16 20 22 26 30 34 38 42 48
t

CU1

0 8 14 20 26 34 42
t

CU2

0 6 12 18 24 30 42
t

CU3

0 18 26 34 42
t

CU4

(b) Behavior of starvation-free constant utilization/background.
FIGURE 7–14 (continued)

becomes idle. According to rule R4, all three servers gets their new budgets and deadlines.
Similarly, their budgets are replenished at time 12. Starting from time 18, all four servers are
backlogged, and hence the schedule shown here. It is evident that none of the servers suffers
starvation. After time 18, the normalized services of all servers are identical in time intervals
of length 24 or more. Before 18, the background time left unused by the idle server is not
distributed to backlogged servers in proportion to their sizes, however. In this example, the
servers have executed for 6, 3, and 9 units of time before 18. This illustrates that although
the enhanced constant utilization server algorithm eliminates starvation, it does not ensure
fairness. Moreover, it is difficult to determine how the background processor time will be
distributed among backlogged server in general.

7.4.5 Preemptive Weighted Fair-Queueing Algorithm

The well-known Weighted Fair-Queueing (WFQ) algorithm [DeKS] is also called the PGPS
(packet-by-packet GPS algorithm). It is a nonpreemptive algorithm for scheduling packet
transmissions in switched networks. Here, we consider the preemptive version of the weighted
fair-queueing algorithm for CPU scheduling and leave the nonpreemptive, original version, to
Chapter 11. Hereafter, by the WFQ algorithm, we mean the preemptive version.

The WFQ algorithm is designed to ensure fairness [DeKS] among multiple servers. As
you will see shortly, the algorithm closely resembles the total bandwidth server algorithm.
Both are greedy, that is, work conserving. Both provide the same schedulability guarantee,
and hence, the same worst-case response time. At a quick glance, the replenishment rules of
a WFQ server appear to be the same as those of a total bandwidth server, except for how
the deadline is computed at each replenishment time. This difference, however, leads to a
significant difference in their behavior: The total bandwidth server algorithm is unfair, but the
WFQ algorithm gives bounded fairness.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 229

Section 7.4 Constant Utilization, Total Bandwidth, andWeighted Fair-Queueing Servers 229

Emulation of GPS Algorithm. Again, a WFQ server consumes its budget only when
it executes. Its budget is replenished when it first becomes backlogged after being idle. As
long as it is backlogged, its budget is replenished each time it completes a job. At each re-
plenishment time, the server budget is set to the execution time of the job at the head of its
queue.

In short, the replenishment rules of the WFQ algorithm are such that a WFQ server
emulates a GPS server of the same size; the deadline of the WFQ server is the time at which
a GPS server would complete the job at the head of the server queue. To illustrate, we look at
the example in Figure 7–14 again. Figure 7–14(c) shows the schedule of the four tasks Ai , for
i = 1, 2, 3, 4, when they are scheduled according to the GPS algorithm. Specifically, the figure
shows that they are executed by GPS servers G P S1, G P S2, G P S3, and G P S4, respectively,
and the sizes of these servers are 1/4, 1/8, 1/4, and 3/8, respectively. The scheduler schedules
backlogged servers on a weighted round-robin basis, with an infinitesmally small round length
and the time per round given to each server is proportional to the server size.

The numbers below each time line in Figure 7–14(c) give the completion times of jobs
executed by the respective server.

• Before time 18, server G P S4 being idle, the backlogged servers share the processor
proportionally. In other words, the servers attain 2/5, 1/5, and 2/5 of available time,
and each of their jobs completes in 2.5, 5, and 7.5 units of time, respectively.

• By time 18, the eighth, fourth, and third jobs of A1, A2 and A3 are at the heads of the
queues of the backlogged servers, and their remaining execution times are 0.8, 0.4, and
1.8 respectively.

• Starting from 18, all four servers being backlogged, each server now attains 1/4, 1/8,
1/4, and 3/8 of available time, respectively. This is why the first three servers take
an additional 3.2, 3.2, and 7.2 units of time to complete the jobs at the heads of their
respective queues. (These jobs are completed at 21.2, 21.2, and 25.2, respectively.) Af-
terwards, each server G P Si completes each job in Ai in 4, 8, 12, and 8, units of time,
for i = 1, 2, 3, 4, respectively.

0 5 10 15 21.2 25.2 29.2 33.2 37.2 41.2 45.2
t

GPS1

25.2

5 10 15 21.2 29.2 37.2 45.2

157.5 37.2

0
t

GPS2

0
t

GPS3

t
GPS4

18 26 34 42

(c) Behavior of generalized processor sharing servers.
FIGURE 7–14 (continued)

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 230

230 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

0 5 10 15 20 25.2 29.2 33.2 37.2 41.2 45.2
t

FQ1

25.2

5 10 15 20 29.2 37.2 45.2

157.5 37.2

0
t

FQ2

0
t

FQ3

t
FQ4

18 26 34 42

(d) Behavior of weighted fair-queuing servers with deadlines given in real time.
FIGURE 7–14 (continued)

Figure 7–14(d) gives the corresponding WFQ schedule. The budget of each WFQ server
(called FQi in the figure) is replenished in the same manner as the corresponding total band-
width server, except for the way the server deadline is computed. Specifically, we note the
following.

• Before time 18, the backlogged WFQ servers behave just like total bandwidth servers,
except each of the backlogged servers gets 2/5, 1/5, and 2/5 of processor time, respec-
tively. Hence whenever a WFQ server FQi completes a job, the scheduler gives the
server 1, 1, or 3 units of budget and sets its deadline at its current deadline plus 2.5 (i.e.,
1 × 5/2), 5 (i.e., 1 × 5/1), or 7.5 (i.e., 3 × 5/2) for i = 1, 2, 3, respectively.

• Immediately before time 18, the three backlogged servers have completed 8, 4, and 2
jobs and their deadlines are at 22.5, 25, and 22.5, respectively.

• At time 18 when FQ4 also becomes backlogged, the scheduler recomputes the deadlines
of FQ1, FQ2 and FQ3 and make them equal to the completion times of the ninth job,
fifth job and third job of corresponding tasks according to the GPS schedule. Their
completion times are 25.2, 29.2, and 25.2, respectively. These are the new deadlines
of servers FQ1, FQ2, and FQ3. Also, at this time, the scheduler gives FQ4 3 units of
budget and sets its deadline at 26. The scheduler then queues the servers according to
their new deadlines.

• After time 18, the WFQ servers behave just like total bandwidth servers again.

Virtual Time versus Real-Time. We note that if the scheduler were to replenish
server budget in the manner illustrated by the above example, it would have to recompute the
deadlines of all backlogged servers whenever some server changes from idle to backlogged
and vice versa. While this recomputation may be acceptable for CPU scheduling, it is not for
scheduling packet transmissions. A “budget replenishment” in a packet switch corresponds

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 231

Section 7.4 Constant Utilization, Total Bandwidth, andWeighted Fair-Queueing Servers 231

to the scheduler giving a ready packet a time stamp (i.e., a deadline) and inserting the packet
in the outgoing queue sorted in order of packet time stamps. To compute a new deadline and
time stamp again of an already queued packet would be unacceptable, from the standpoint
of both scheduling overhead and switch complexity. Fortunately, this recomputation of server
deadlines is not necessary if instead of giving servers deadlines measured in real time, as we
have done in this example, the scheduler gives servers virtual-time deadlines, called finish
numbers. The finish number of a server gives the number of the round in which the server
budget would be exhausted if the backlogged servers were scheduled according to the GPS
algorithm.

Figure 7–14(e) shows how finish numbers are related to time for our example. Before
time 18, the total size of backlogged servers is only 5/8. If the tasks were executed according
to the GPS algorithm, the length of each round would be only 5/8 of what the round length
would be when the total size of backlogged servers is 1. In other words, the finish number of
the system increases at the rate of 8/5 per unit time. So, at time 2.5, the system just finishes
round 8 (= 2.5×8/5); at time 5, the system just finishes round 8, and at time 18, the system is
in round 28.8 (= 18 × 8/5). After 18, the total size of backlogged servers is 1. Consequently,
the finish number of the system increases at the rate of 1 per unit time.

0 5

8

16

24

28.8

36

40

10 15 18 25.2 29.2
t

FN

(e) mapping from real-time finish number (virtual time).
FIGURE 7–14 (continued)

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 232

232 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

From this argument, we can see that an alternative is for the scheduler to give each server
a finish number each time it replenishes the server budget. It then schedules eligible servers
according to their finish numbers; the smaller the finish number, the higher the priority. If the
scheduler were to use this alternative in our example, the finish numbers of the servers FQi ,
for i = 1, 2, 3, would be the numbers under the time lines of TBi , respectively, in Figure
7–14(a). At time 18, the system is in round 28.8, and it takes 8 rounds to complete each job
in A4. Hence, at time 18, the scheduler sets the finish number of FQ4 to 36.8. At this time,
the finish numbers of FQ1, FQ2 and FQ3 are 36, 40, 36, respectively. If we were construct a
schedule according to these finish numbers, we would get the schedule in Figure 7–14(d).

Rules of Preemptive Weighted Fair-Queueing Algorithm. We are now ready to
state the rules that define the WFQ algorithm. The scheduling and budget consumption rules
of a WFQ server are esentially the same as those of a total bandwidth server.

Scheduling Rule: A WFQ server is ready for execution when it has budget and a finish
time. The scheduler assigns priorities to ready WFQ servers based their finish numbers:
the smaller the finish number, the higher the priority.
Consumption Rule: A WFQ server consumes its budget only when it executes.

In addition to these rules, the weighted fair-queueing algorithm is defined by rules governing
the update of the total size of backlogged servers and the finish number of the system and the
replenishment of server budget. In the statement of these rules, we use the following notations:

• t denotes the current time, except now we measure this time from the start of the current
system busy interval. (In other words, t is the length of time interval from the beginning
of the current system busy interval to the current time.)

• f ni denotes the finish number of the server FQi , ei its budget, and ũi its size. e denotes
the execution time of the job at the head of the server queue.

• Ub denotes the total size of all backlogged servers at t , and F N denotes the finish
number of system at time t . t−1 denotes the previous time when F N and Ub were
updated.

Finally, the system contains n servers whose total size is no greater than one.

Initialization Rules

I1 For as long as all servers (and hence the system) are idle, F N = 0, Ub = 0, and
t−1 = 0. The budget and finish numbers of every server are 0.

I2 When the first job with execution time e arrives at the queue of some server FQk and
starts a busy interval of the system,
(a) t−1 = t , and increment Ub by ũk , and
(b) set the budget ek of FQk to e and its finish number f nk to e/ũk .

Rules for Updating F N and Replenishing Budget of FQi during a System Busy Interval

R1 When a job arrives at the queue of FQi , if FQi was idle immediately prior to this arrival,
(a) increment system finish number F N by (t − t−1)/Ub,

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 233

Section 7.5 Slack Stealing in Deadline-Driven Systems 233

(b) t−1 = t , and increment Ub by ũi , and
(c) set budget ei of FQi to e and its finish number f ni to F N + e/ũi and place the

server in the ready server queue in order of nonincreasing finish numbers.
R2 Whenever FQi completes a job, remove the job from the queue of FQi ,

(a) if the server remains backlogged, set server budget ei to e and increment its finish
number by e/ũi .

(b) if the server becomes idle, update Ub and F N as follows:
i. Increment the system finish number F N by (t − t−1)/Ub,

ii. t−1 = t and decrement Ub by ũi .

In summary, the scheduler updates the finish number F N of the system and the total
size Ub of all backlogged servers each time an idle server becomes backlogged or a back-
logged server becomes idle. So, suppose that in our example in Figure 7–14(d), server FQ1

were to become idle at time 37 and later at time 55 become backlogged again.

• At time 37, t−1 is 18, the value of F N computed at 18 is 28.8, and the Ub in the time
interval (18, 37] is 1. Following rule R2b, F N is incremented by 37 − 18 = 19 and
hence becomes 47.8. Ub becomes 3/4 starting from 37, and t−1 = 37.

• At time 55 when FQ1 becomes backlogged again, the new values of F N , Ub and t−1

computed according to rule R1 are 47.8+(55−37)/0.75 = 71.8, 1, and 55, respectively.

Once the system finish number is found when an idle server becomes backlogged, the finish
numbers of the server are computed in the same way as the deadlines of a backlogged total
bandwidth server.

We conclude by observing that the response time bound achieved by a WFQ server is
the same as that achieved by a total bandwidth server. The completion time of every job in
a stream of jobs executed by such a server of size ũ is never later than the completion time
of the job when the job stream is executed by a virtual processor of speed ũ times the speed
of the physical processor. Corollary 7.7 substantiates this claim. In particular, this real-time
performance of the server is guaranteed regardless of the characteristics of aperiodic tasks
executed by other servers, as long as the total size of all servers is no greater than 1 and the
execution of every job is preemptable.

*7.5 SLACK STEALING IN DEADLINE-DRIVEN SYSTEMS

We now describe how to do slack-stealing in priority-driven systems. As you will see shortly
that slack-stealing algorithms for deadline-driven systems are conceptually simpler than slack-
stealing algorithms for fixed-priority systems. For this reason, we first focus on systems where
periodic tasks are scheduled according to the EDF algorithm.

In this section, it is convenient for us to think that aperiodic jobs are executed by a slack
stealer. The slack stealer is ready for execution whenever the aperiodic job queue is nonempty
and is suspended when the queue is empty. The scheduler monitors the periodic tasks in order
to keep track of the amount of available slack. It gives the slack stealer the highest priority
whenever there is slack and the lowest priority whenever there is no slack. When the slack
stealer executes, it executes the aperiodic job at the head of the aperiodic job queue. This kind

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 234

234 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

of slack-stealing algorithm is said to be greedy: The available slack is always used if there is
an aperiodic job ready to be executed.

As an example, we consider again the system of two periodic tasks, T1 = (2.0, 3.5, 1.5)
and T2 = (6.5, 0.5), which we studied earlier in Figure 7–3. Suppose that in addition to
the aperiodic job that has execution time 1.7 and is released at 2.8, another aperiodic job
with execution time 2.5 is released at time 5.5. We call these jobs A1 and A2, respectively.
Figure 7–15 shows the operation of a slack stealer.

1. Initially, the slack stealer is suspended because the aperiodic job queue is empty. When
A1 arrives at 2.8, the slack stealer resumes. Because the execution of the last 0.7 units of
J1,1 can be postponed until time 4.8 (i.e., 5.5 − 0.7) and T2 has no ready job at the time,
the system has 2 units of slack. The slack stealer is given the highest priority. It preempts
J1,1 and starts to execute A1. As it executes, the slack of the system is consumed at the
rate of 1 per unit time.

2. At time 4.5, A1 completes. The slack stealer is suspended. The job J1,1 resumes and
executes to completion on time.

3. At time 5.5, A2 arrives, and the slack stealer becomes ready again. At this time, the
execution of the second job J1,2 of T1 can be postponed until time 7.5, and the second
job J2,2 of T2 can be postponed until 12.5. Hence, the system as a whole has 2.0 units of
slack. The slack stealer has the highest priority starting from this time. It executes A2.

4. At time 7.5, all the slack consumed, the slack stealer is given the lowest priority. J1,2

preempts the slack stealer and starts to execute.

5. At time 9, J1,2 completes, and the system again has slack. The slack stealer now has the
highest priority. It continues to execute A2.

6. When A2 completes, the slack stealer is suspended again. For as long as there is no job
in the aperiodic job queue, the periodic tasks execute on the EDF basis.

0

2 4 6 8 10

T1

A1 A2

A1 A2

A2

T2

slack
stealer

1.7

2.8

2.5

5.5

FIGURE 7–15 Example ilustrating a slack stealer in a deadline-driven system: T1 = (2.0, 3.5, 1.5) and T2 =
(6.5, 0.5).

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 235

Section 7.5 Slack Stealing in Deadline-Driven Systems 235

This example shows that in principle slack stealing in a priority-driven system is al-
most as straightforward as in a clock-driven system. The key step in slack stealing is the
computation to determine whether the system has any slack. While this is a simple step in a
clock-driven system, it is considerably more complex in a priority-driven system. The remain-
der of this section and most of the following section are devoted to algorithms for computing
the amount of available slack. We call these algorithms slack computation algorithms.

A slack computation algorithm is correct if it never says that the system has slack when
the system does not, since doing so may cause a periodic job to complete too late. An optimal
slack computation algorithm gives the exact amount of slack the system has at the time of the
computation; hence, it is correct. A correct slack computation algorithm that is not optimal
gives a lower bound to the available slack.

There are two approaches to slack computation: static and dynamic. The method used
to compute slack in a clock-driven system exemplifies the static approach. According to this
approach, the initial slacks of all periodic jobs are computed off-line based on the given pa-
rameters of the periodic tasks. The scheduler only needs to update the slack information dur-
ing run time to keep the information current, rather than having to generate the information
from scratch. Consequently, the run-time overhead of the static approach is lower. A serious
limitation of this approach is that the jitters in the release times of the periodic jobs must be
negligibly small. We will show later that the slack computed based on the precomputed infor-
mation may become incorrect when the actual release-times of periodic jobs differ from the
release times used to generate the information.

According to the dynamic approach, the scheduler computes the amount of available
slack during run time. When the interrelease times of periodic jobs vary widely, dynamic-slack
computation is the only choice. The obvious disadvantage of the dynamic-slack computation
is its high run-time overhead. However, it has many advantages. For example, the scheduler
can integrate dynamic-slack computation with the reclaiming of processor time not used by
periodic tasks and the handling of task overruns. This can be done by keeping track of the
cumulative unused processor time and overrun time and taking these factors into account in
slack computation.

7.5.1 Static-Slack Computation

To give us some insight into the complexity of slack computation, let us look at the system
containing two periodic tasks: T1 = (4, 2) and T2 = (6, 2.75). There is an aperiodic job
with execution time 1.0 waiting to be executed at time 0. The previous example gives us the
impression that we may be able to determine the available slack at time 0 by examining only
the slacks of the two current jobs J1,1 and J2,1. Since we can postpone the execution of J1,1

until time 2, this job has 2 units of slack. Similarly, since only 4.75 units of time before the
deadline of J2,1 are required to complete J2,1 and J1,1, J2,1 has 1.25 units of slack. If we
were to conclude from these numbers that the system has 1.25 units of slack and execute the
aperiodic job to completion, we would cause the later job J1,3 to miss its deadline. The reason
is that J1,3 has only 0.5 unit of slack. Consequently, the system as a whole has only 0.5 unit
of slack. In general, to find the correct amount of slack, we must find the minimum among
the slacks of all N jobs in the current hyperperiod. If this computation is done in a brute force
manner, its time complexity is O(N) (i.e., the computation is pseudopolynomial in time).
Indeed, this is the complexity of some slack computation algorithms (e.g., [ChCh]).

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 236

236 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

We now describe an optimal static-slack computation algorithm proposed by Tia [Tia].
The complexity of this algorithm is O(n). The number n of periodic tasks is usually signif-
icantly smaller than N . To achieve its low run-time overhead, the algorithm makes use of a
precomputed slack table that is O(N 2) in size. The key assumption of the algorithm is that the
jobs in each periodic task are indeed released periodically.

To describe this algorithm, it is more convenient for us to ignore the periodic task to
which each job belongs. The individual periodic jobs in a hyperperiod are called Ji for i =
1, 2, . . . , N . The deadline of Ji is di . In particular, we index the periodic jobs modulo N in
nonincreasing priority order. Hence, the deadline di of the job Ji is equal to or earlier than the
deadline dk of Jk if i < k. The i th jobs in all the hyperperiods are named Ji .

We use tc to denote the time of a slack computation and σi (tc) to denote the slack of
the periodic job Ji computed at time tc. σi (tc) is equal to the difference between the total
available time in (tc, di] and the total amount of time required to complete Ji and all the jobs
that are ready in this interval and have the same or earlier deadlines than Ji . [As far as this
job is concerned, σi (tc) units of time can be used to execute aperiodic jobs at time tc without
causing it to miss its deadline.] The slack of the system σ(tc) at time tc is the minimum of the
slacks of all the jobs with deadlines after tc. In the following, we first describe the precomputed
slack table and then the way to compute the slack of the system during run time based on the
information provided by this table and the history of the system.

Precomputed Slack Table. We take as the time origin the instant when the system
begins to execute. For now, we assume that in the absence of aperiodic jobs, the beginning
of every hyperperiod coincides with the beginning of a busy interval of the periodic tasks.
(We will return to discuss when this condition may not be true and what additional slack in-
formation other than the information described here is required.) Before the system begins to
execute, we compute the initial slack of the N periodic jobs J1, J2, . . . , JN in each hyperpe-
riod of the periodic tasks. Specifically, the initial slack σi (0) of the job Ji is given by

σi (0) = di −
∑

dk≤di

ek (7.6)

Let ω(j; k) denote the minimum of all σi (0) for i = j, j + 1, . . . , k − 1, k. ω(j; k) is
the minimum slack of the periodic jobs whose deadlines are in the range [d j , dk]. Expressed
in terms of this notation, the initial slack of the system is ω(1; N). The initial slack σi (0) of
the job Ji is ω(i; i). Rather than storing the σi (0)’s, the precomputed slack table stores the N 2

initial minimum slacks ω(j; k) for 1 ≤ j, k ≤ N .
Figure 7–16 gives an example. The system contains three periodic tasks T1 = (2, 0.5),

T2 = (0.5, 3, 1), and T3 = (1, 6, 1.2). The relative deadline of every task is equal to its period.
An aperiodic job with execution time 1.0 arrives at time 5.5. The figure shows the schedule of
the system during the first two hyperperiods, as well as the slack table which gives the initial
minimum slacks ω(j; k) for j, k = 1, 2, . . . , 6.

Dependency of the Current Slack on Past History. Once the system starts to exe-
cute, the slack of each individual job changes with time. In particular, the precomputed initial
slack of each job Ji does not take into account the events that the processor idles, lower-
priority jobs execute, and the slack stealer executes. When any of these events occurs before

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 237

Section 7.5 Slack Stealing in Deadline-Driven Systems 237

0 2 4

4

6 8 10 12

0.5

T1

J1

J2 J5 J2 J5

J6

A

J6

J3 J4 J1 J3 J4

T2

T3

slack
stealer

1

1

2

3

4

5

6

1.5 1.5

2

1.5

2

2

1.5

2

2

3.5

1.5

2

2

3

3

1.5

2

2

2.3

2.3

2.3

2 3 4 5 6
j

i

W
(i; j)

FIGURE 7–16 Slack table of T1 = (2, 0.5), T2 = (0.5, 3, 1.0), and T3 = (1, 6, 1.2).

di and takes away some available time from Ji , the slack of the job becomes smaller than the
precomputed value.

For example, J6 in Figure 7–16 executes for 0.5 unit of time before time 2. The pre-
computed initial slack of J3 does not take into account this 0.5 unit of time. At time 2, the
slack of J3 is not equal to the precomputed value 2; rather it is equal to 1.5. At time 6.5, the
slack stealer has executed since the beginning of the second hyperperiod for 0.5 unit of time.
For this reason, the slacks of all the jobs in the hyperperiod is reduced by 0.5 unit from their
respective precomputed values.

In general, to facilitate slack computation, the scheduler maintains the following infor-
mation on the history of the system:

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 238

238 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

1. the total idle time I , which is the total length of time the processor idles since the
beginning of the current hyperperiod.

2. the total stolen time ST , which is the time consumed by the slack stealer since the
beginning of the current hyperperiod, and

3. the execution time ξk of the completed portion of each periodic job Jk in the current
hyperperiod.

At time tc of a slack computation, the slack of a job Ji that is in the current hyperperiod and
has a deadline after tc is equal to

σi (tc) = σi (0)− I − ST −
∑

di<dk

ξk (7.7)

Since the initial slacks of jobs in each subsequent hyperperiod are computed assuming that
time starts at the beginning the hyperperiod, the slacks of those jobs are not affected by the
events in the current hyperperiod. We need to consider only the jobs in the current hyperperiod
when we compute the current slack of the system, provided that we recompute the slack of
the system at the beginning of each hyperperiod.

In the previous example, at time 2, ξ6 is 0.5, I and ST are 0. Hence, the slacks of J3, J4

and J5 are reduced by 0.5 unit from their initial values 2.0, 3.5, and 3, respectively. At time
3.5, ξ6 is 1.2, I is 0.3, and ST is equal to 0. The slacks of J4 and J5 are reduced to 2.0 and
1.5, respectively. If we want to compute the slack of the system at this time, we need to find
only the minimum slack of the jobs J4, J5, and J6. When the second hyperperiod begins, the
values of I , ST and ξi ’s are all 0, and the slack of the system is given by ω(1; 6), which is
1.5. At time 6.5, ST becomes 0.5; the slack of every job in the second hyperperiod is reduced
by 0.5 unit, and the slack of the system is reduced to 1.0.

Computing the Current Slack of the System. Again, if we were to compute the
slack of the system by updating the slacks of all the jobs according to Eq. (7.7) and searching
for the minimum among them, it would take O(N) time to do so. Fortunately, we can speed
up the slack computation by first partitioning all the jobs into n disjoint subsets. It suffices for
us to compute and examine the slack of a job in each set. By doing so, we can compute the
slack of the system in O(n) time.

To see why this speedup is possible, we remind ourselves that at tc, only one job per
periodic task is current, and only current jobs could have executed before tc. To distinguish
current jobs from the other jobs in the hyperperiod, we call the current job of Ti Jci , for
i = 1, 2, . . . , n. The deadline of Jci is dci . The current jobs are sorted by the scheduler in
nondecreasing order of their deadlines in the priority queue of ready periodic jobs. Without
loss of generality, suppose that dc1 < dc2 < · · · < dcn . We now partition all the periodic jobs
that are in the hyperperiod and have deadlines after tc into n subsets Zi for i = 1, 2, . . . , n as
follows. A job is in the subset Zi if its deadline is in the range [dci , dci+1) for i = 1, 2, . . . ,
n − 1. Hence, Zi is {Jci , Jci +1, . . . , Jci+1−1}. The subset Zn contains all the jobs in the current
hyperperiod whose deadlines are equal to or larger than dcn . This partition is illustrated by
Figure 7–17. The tick marks show the deadlines of the current jobs and of the jobs in each
of the subsets. The job that has the latest deadline among all the jobs in Zi is Jci+1−1. This
partition can be done in O(n) time since the jobs are presorted and we know the index of
every job.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 239

Section 7.5 Slack Stealing in Deadline-Driven Systems 239

dc1 dc2 dc3 dcndcn-1

Z2

t

deadline
of jobs in

Z1

Z
n

FIGURE 7–17 Partitioning of all jobs into n subsets.

The values of ξk’s are nonzero only for current jobs. From this observation and Eq. (7.7),
we can conclude that in the computation of the current slacks of all the jobs in each of the sub-
set Zi , the amounts subtracted from their respective initial slacks are the same. In particular,
for every job in Zi , the sum in the right-hand side of Eq. (7.7) includes the execution times of
the completed portions of current jobs Jci+1 , Jci+2 , . . . , Jcn because their deadlines are larger
than its own. (This sum does not include the execution times of the completed portions of
Jc1 , Jc2 , . . . , Jci , because the execution time of these current jobs have already been taken
into account in the computation of the initial slacks.)

To illustrate, let us suppose that we want to compute the slack of the system in Figure
7–16 at time 1.75. Both total idle time I and stolen time ST are zero. The current jobs at the
time are J1, J2, and J6, and the execution times of their completed portions are 0.5, 1.0, and
0.25, respectively. The deadlines of these three jobs partition the six jobs in this hyperperiod
into three subsets: Z1 = {J1}, Z2 = {J2, J3, J4, J5}, and Z3 = {J6}. We need not be concerned
with J1 and J2 since they are already completed at time 1.75. The slacks of the other jobs in
Z2 are equal to their respective initial slacks minus 0.25, the execution time of the completed
portion of the current job J6, because d6 is later than their own deadlines. On the other hand,
the slack of the J6, the only job in Z3, is equal to its initial slack because there is no current
job whose deadline is later than d6.

Since the slack of every job in each subset Zi is equal to its initial slack minus the same
amount as all the jobs in the subset, the job that has the smallest initial slack also has the
smallest current slack. In other words, the minimum slack of all the jobs in Zi is

ωi (tc) = ω(ci ; ci+1 − 1)− I − ST −
n∑

k=i+1

ξck (7.8a)

for i = 1, 2, . . . , n − 1, and

ωn(tc) = ω(cn; N)− I − ST (7.8b)

The slack σ(tc) of the system is given by

σ(tc) = min
1≤i≤n

ωi (tc) (7.8c)

The scheduler can keep the values of I , ST and ξci ’s up to date by using n + 2 registers,
one for each of these variables, together with a counter. These variables are set to 0 at the
beginning of each hyperperiod. The counter is loaded with the current value of total idle time

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 240

240 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

Precomputed Slack Table: ω(i; k) gives the minimum slack of all periodic jobs with deadlines in the
range [di , dk] for i, k = 1, 2, . . . , N .

Slack Computation at time t

1. Obtain from the ready periodic job queue the sorted list of current jobs Jci for i = 1, 2, . . . , n.

2. Partition the periodic jobs that are in the current hyperperiod and have deadlines after t into n
subsets such that the subset Zi contains all the jobs with deadlines equal to or larger than dci but
less than dci+1 .

3. Compute the slack σ(t) of the system according to Eq. (7.8).

Operations of the Scheduler

• Initialization:

– Create a slack stealer and suspend it.

– Set I , ST , and ξi for i = 1, 2, . . . , N to 0 at the beginning of each hyperperiod.
• Schedule periodic jobs in the EDF order as follows: Whenever a job is released or complete or

when the slack is exhausted do the following:

– Update I , ST , or ξi for i = 1, 2, . . . , N .

– If the aperiodic job queue is nonempty,

∗ Do slack computation to find σ(t).

∗ If σ(t) > 0, then schedule the slack stealer.

Else, schedule the highest priority periodic job.

Else, schedule the highest priority periodic job.

FIGURE 7–18 Operations of an EDF scheduler to accommodate a slack stealer.

whenever the processor becomes idle and is incremented as long as the processor idles. The
content of the counter replaces the old value of I when the processor starts to execute again.
Similarly, the counter keeps tracks of the amount of time spent executing the slack stealer or
a periodic job each time it executes. The value of ST is updated at each time instant when the
aperiodic job queue becomes empty (and the slack stealer becomes suspended) or when the
slack stealer is preempted. The execution time ξci of the completed portion of each current
job Jci is updated whenever the job completes or is preempted, as well as when the slack of
the system needs to be computed.

The pseudocode description in Figure 7–18 summarizes the operation of a scheduler in
a deadline-driven system where aperiodic jobs are executed by a slack stealer. The description
does not include the actions to place ready jobs in the appropriate queues in priority order.
We can see from this description that even when slack computation can be done in O(n) time,
the scheduling overhead is considerably higher than that of bandwidth-preserving servers de-
scribed in earlier sections.

7.5.2 Practical Considerations

We now consider two complicating factors of differing significance. The first can be taken
care of easily. The second one points to the limitation of static-slack computation and the
need for dynamic-slack computation.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 241

Section 7.5 Slack Stealing in Deadline-Driven Systems 241

Effect of Phases. When the phases of periodic tasks are arbitrary, the end of the
first hyperperiod may not be the end of a busy interval. In this case, even in the absence of
aperiodic jobs, the schedule of the second hyperperiod may not be the same as that of the
first hyperperiod. As an example, we consider a system of two tasks, T1 = (2, 1) and T2 =
(1, 3, 1.5). The length of a hyperperiod is 6 and the number N of jobs in each hyperperiod is
five. If we were to compute the slack of the system based on the precomputed slacks of the
first five jobs, we would conclude that the system has 0.5 unit of slack in each hyperperiod.
This information is not correct, however; the total utilization of the system is 1 and, hence,
the system has no slack after time 4. The 0.5 unit of slack is available initially because the
periodic tasks have different phases.

In general, when the periodic tasks are not in phase, we need to determine whether the
end of the first hyperperiod (i.e., at time H since the execution of the periodic task system
begins) is also the end of a busy interval of the periodic tasks in the absence of aperiodic jobs.
If it is, as exemplified by the system in Figure 7–16, the schedule of the periodic task system
in the absence of aperiodic jobs and release-time jitters is cyclic with period H from the start.
It suffices for us to precompute the slacks of the first N jobs and use them to compute the
slack of the system for all times. On the other hand, if the end of the first hyperperiod is in
the midst of a busy interval, the schedule of the periodic tasks has an initial transient segment
which ends when the first busy interval ends and then is cyclic with period H . Therefore, we
need to precompute the slacks of periodic jobs that execute in the first busy interval and then
the slacks of the N jobs in the hyperperiod that begins when the second busy interval begins.
The slack of the system should be computed based on the latter N entries once the second
busy interval begins. In the previous example, the first busy intervals ends at 3.5. Jobs J1 and
J3 of T1 and J2 of T2 execute in the first busy interval. After time 4.0, we compute the system
slack based on the precomputed slacks of jobs J4, . . . , J8.

Effect of Release-Time Jitters. Release-time jitters are often unavoidable and the
periodic task model and priority-driven scheduling algorithms allow for the jitters. A critical
question is, therefore, whether the results of a static-slack computation based on the assump-
tion that the jobs in each task are released periodically remain correct when the interrelease
times of jobs in each task may be larger than the period of the task. An examination of the
example in Figure 7–16 can give us some insight into this question.

Suppose that the release times of J3 and J4 are delayed to 2.1 and 4.3, respectively,
while the other jobs in this hyperperiod are released at their nominal release times. The initial
slacks of the jobs J1, J3, and J4 given by the precomputed slack table are 1.5, 2.0, and 3.5.
Since the actual deadline of the J1 remains to be 2.0, its initial slack is still 1.5. However,
the actual deadlines of J3 and J4 are 4.1 and 6.3, respectively. Therefore, their actual initial
slacks are 2.1 and 3.8, respectively. Similarly, if the release time of J5 is delayed by a small
amount, say by 0.1 unit, the actual initial slack of this job is 0.1 unit more than is given by the
precomputed slack table. The precomputed initial slacks of other jobs remain accurate despite
these late releases. In this case, the precomputed initial slacks give us lower bounds to the
actual initial slacks.

In general, as long as the jitters in the release times are so small that priorities of all
the jobs are not changed as a consequence (i.e., the order of the jobs sorted by their deadlines
remains the same), Eq. (7.8) continues to be correct. However, when the release-time jitters
are large compared to the separations between deadlines, the actual order and the priorities of
the jobs may differ from their precomputed values. Take J4 in Figure 7–16 for instance. If this

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 242

242 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

job is released at time 5.5 instead, its deadline becomes later than that of J6. The computation
given by Eq. (7.8) uses the presorted list (J1, J2, . . . , J6) to partition the jobs into subsets Zi .
This partition is no longer correct, and the result of the slack computation may no longer be
correct.

7.5.3 Dynamic-Slack Computation

In the presence of release-time jitters, the slack of a system may have to be computed dy-
namically during run time. We focus here on an algorithm that computes a lower bound on
the slack of the system at time tc when the scheduler needs the bound, without relying on
any precomputed slack information. So, the adjectives “current” and “next” are relative with
respect to the slack computation time tc.

You recall that schedule segments during different busy intervals of the periodic tasks
are independent of each other. Therefore, when computing the slack σ(tc), it is safe to consider
only the periodic jobs that execute in the current busy interval, provided that any available
slack in subsequent busy intervals is not included in σ(tc). This is the basis of the algorithm
described below.

Information Maintained by the Scheduler. We let ξci denote the execution time of
the completed portion of the current job Jci of the periodic task Ti . To support dynamic slack
computation, the scheduler keeps up to date the value of ξci for each periodic task Ti .

Let φ̃i denote the earliest possible release time of the next job in Ti . The scheduler can
keep the value of φ̃i up-to-date by adding pi to the actual release time of the current job in Ti

when the job is released.

Estimated Busy Interval Length. The slack computation is done in two steps. In
the first step, the scheduler computes an upper bound on the length X of time to the end of
the current busy interval of the periodic tasks. The length X is the longest when the jobs
in each task Ti are released periodically with period pi . Under this condition, the maximum
processor-time demand w(x) of all periodic jobs during the interval (tc, tc + x) is given by

w(x) =
n∑

i=1

(ei − ξi)+
n∑

i=1

⌈
(tc + x − φ̃i)u−1(tc + x − φ̃i)

pi

⌉
ei

where u−1(t) denotes a unit step function which is equal to zero for t < 0 and is equal to one
when t ≥ 0. The first sum on the right-hand side of this equation gives the total remaining
execution time of all the current periodic jobs at time tc. The second sum gives the total
maximum execution time of all the jobs that are released in (tc, tc + x). The length X is equal
to the minimum of the solutions of w(x) = x and can be found by solving this equation
iteratively in the manner described in Section 6.5.

The current busy interval ends at time END = tc + X . Let BEGIN be the earliest
possible instant at which the next busy interval can begin. Since �(END − φ̃i)/pi� jobs of Ti

are released after φ̃i and before END for all i , the earliest possible time BEGIN at which next
busy interval can begin is given by

BEGIN = min
1≤i≤n

(
φ̃i +

⌈
(END − φ̃i)u−1(END − φ̃i)

pi

⌉
pi

)

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 243

Section 7.5 Slack Stealing in Deadline-Driven Systems 243

Slack Computation. We can save some time in slack computation by considering
only jobs in the current busy interval. Let Jc denote the subset of all the periodic jobs that
execute in the interval (tc,END). In the second step, the scheduler considers only the jobs in
Jc, computes a lower bound on the slack of each of these jobs, and takes as the slack of the
system the minimum of the lower bounds.

Specifically, a lower bound on the slack of any job Ji in the set Jc is the difference
between min(di ,BEGIN) and the total execution time of all the jobs that are in Jc and have
deadlines equal to or before di . (This difference is a lower bound because if di is after BEGIN,
we may be able to postpone the execution of Ji to sometime after BEGIN, making the slack
of the job larger than the difference.) By using this lower bound, the scheduler eliminates
the need to examine jobs that are released in the next busy interval. Again, the slack of the
system is equal to the minimum of such lower bounds on slacks of all the jobs in Jc. This
computation can be done in O(Nb) time where Nb is the maximum number of jobs in a busy
interval. In the special case where the relative deadline of every periodic task is equal to its
period, BEGIN − END is a lower bound to the slack of the system.

As an example, we consider a system of three periodic tasks, T1 = (4, 1), T2 = (5, 2),
and T3 = (11, 2.1). The length of their hyperperiod is 220 and N is 119. Suppose that the
scheduler computes the slack of the system at time t = 2.0. At that time, ξc1 is 1.0, ξc2 is
1.0, and ξc3 is 0. The execution time of the remaining portion of the current jobs are 0, 1.0,
and 2.1. The earliest release times of the next jobs in the three periodic tasks are 4, 5, and 11,
respectively. According to the above expression of the processor-time demand w(x), we have

w(x) = 0 + 1.0 + 2.1 +
⌈

x − 2

4

⌉
+ 2

⌈
x − 3

5

⌉

for 3 ≤ x < 9. The solution X of w(x) = x is 7.1. Hence END is equal to 2 + 7.1 = 9.1.
BEGIN is equal to

min

(
4 + 4

⌈
9.1 − 4

4

⌉
, 5 + 5

⌈
9.1 − 5

5

⌉
, 11

)
= min(12, 10, 11) = 10

Since the relative deadline of every periodic task is equal to its period, the slack of the system
at time 2.0 is 10 − 9.1 = 0.9. On the other hand, suppose that the actual release-time of first
job in T2 is 1. BEGIN becomes 11, because φ̃2 is 6, and the slack is 1.9.

The lower bound of the system slack thus computed can be extremely pessimistic. For
example, suppose that the execution time of T3 in the above system were 2.0 instead. The
scheduler would find that the current busy interval ends at 8 and the next busy interval begins
at time 8. It would then conclude that the system has no slack. In fact, the system has 1 unit
of slack at time 2, and the scheduler would find this slack if it were to consider not only the
current busy interval but also the next busy interval, which ends at 9. Often, we can obtain
more accurate information on the available slack by examining more periodic jobs. In the
limit, if we are willing to compute the slacks of all N jobs in a hyperperiod and incur an
overhead of O(N), we can obtain the tightest lower bound on the amount of slack.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 244

244 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

*7.6 SLACK STEALING IN FIXED-PRIORITY SYSTEMS

In principle, slack stealing in a fixed-priority system works in the same way as slack stealing
in a deadline-driven system. However, both the computation and the usage of the slack are
more complicated in fixed-priority systems.

7.6.1 Optimality Criterion and Design Consideration

To illustrate the issues, Tia [Tia] provided the example in Figure 7–19. The system contains
three periodic tasks: T1 = (3, 1), T2 = (4, 1), and T3 = (6, 1). They are scheduled rate-
monotonically. If the system were deadline-driven, it would have 2 units of slack in the interval
(0, 3], but this system has only 1 unit. The reason is that once J1,2 becomes ready, J2,1 must
wait for it to complete. As a consequence, J2,1 must complete by time 3, although its deadline
is 4. In essence, 3 is the effective deadline of J2,1, and its slack is determined by the effective
deadline.

Figure 7–19(a) shows the schedule for the case when the 1 unit of slack is not used
before time 3. At time 3, J3,1 has already completed. J1,2 and J2,2 can start as late as time 5
and 7, respectively, and still complete in time. Therefore, the system has two units of slack
at time 3. Figure 7–19(b) shows the schedule for the other case: The 1 unit of slack is used
before time 3. J3,1 is not yet complete at time 3. Consequently, J1,2 and J2,2 must execute
immediately after they are released, even though their deadlines are 6 and 8; otherwise, J3,1

cannot complete in time. Under this condition, the system has no more slack until time 6.
Now suppose that aperiodic jobs A1 and A2 arrive at times 2 and 3, respectively, and

their execution times are equal to 1. If the slack stealer executes A1 immediately upon arrival,
the job can be completed at 3 and have the minimum response time of 1. Since the system has
no more slack until time 6, A2 cannot be completed until time 7 (i.e., its response time is 4).
On the other hand, if the scheduler waits until time 3 and then schedules the slack stealer, the
aperiodic jobs are completed at times 4 and 5, respectively. A2 now has the minimum response
time of 2. This reduction is achieved at the expense of A1, whose response time is no longer
the minimum possible.

As a variation, suppose that A1 is the only aperiodic job. We have just seen that when
its execution time is 1, its response time is minimum if the job is executed immediately upon
its arrival. However, if the execution time of the job were larger than 1 but no greater than 2,
the scheduler would do better by waiting until time 3 to start its execution; the response time
of the job would be 3 or less but would be more than 4 if the job were executed starting from
time 2. If the execution time of A1 were between 2 and 3, the scheduler would again do better
by letting the job be executed immediately upon its arrival; the job would be completed by
time 8.

This example points out the following important facts. These facts provide the rationales
for the slack-stealing algorithm described below.

1. No slack-stealing algorithm can minimize the response time of every aperiodic job in
a fixed-priority system even when prior knowledge on the arrival times and execution
times of aperiodic jobs is available. (Using a similar argument, Tia [Tia] also showed
that no on-line slack-stealing algorithm can minimize the average response time of all
the aperiodic jobs; however a clairvoyant algorithm can.)

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 245

Section 7.6 Slack Stealing in Fixed-Priority Systems 245

0 3 6 9 12

T1

T2

T3

Available
slack

0 6

0

0 4 8

(a)

0 3 6 9 12

12

12

T1

T2

T3

Available
slack

0 6

0

0 4 8

(b)
FIGURE 7–19 Example illustrating slack stealing in fixed-priority systems containing T1 = (3, 1), T2 = (4, 1),
T3 = (6, 1).

2. The amount of slack a fixed-priority system has in a time interval may depend on when
the slack is used. To minimize the response time of an aperiodic job, the decision on
when to schedule the job must take into account the execution time of the job.

Because of (1), we use here a weaker optimality criterion: A slack-stealing algorithm
for fixed-priority systems is optimal in the weak sense if it is correct and it minimizes the
response time of the job at the head of the aperiodic job queue. Because of (2), an optimal

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 246

246 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

slack-stealing algorithm for fixed-priority systems does not use available slack greedily. The
remainder of this section describes a slack-stealing algorithm. The algorithm is defined by
a static-slack computation algorithm used to compute available slack and a scheduling algo-
rithm for deciding when the available slack is used. It is optimal in the weak sense. To achieve
optimality in the weak sense, it requires and uses the knowledge of the execution times of
aperiodic jobs after their arrivals.

7.6.2 Static Slack Computation in Fixed-Priority Systems

The previous example pointed out that the slack of each periodic job should be computed
based on its effective deadline, not its deadline. The effective deadline of every job in the
highest priority periodic task is equal to its deadline. For i > 1, the effective deadline de

i, j
of a job Ji, j is equal to the deadline di, j of the job if higher-priority periodic tasks have no
ready jobs immediately before di, j . Otherwise, if di, j is amid or at the end of a level-πi−1 busy
interval, de

i, j is equal to the beginning of this busy interval. (As always, we index fixed-priority
tasks in nondecreasing priority order. So, a level-πi−1 busy interval is a busy interval of the
subset Ti−1 of periodic tasks with priorities equal to or higher than Ti . Ti−1 does not include
Ti .)

Just as in deadline-driven systems, a static-slack computation at any time tc within a
hyperperiod begins with the precomputed initial slack σi, j (0) of every periodic job Ji, j in the
hyperperiod. The initial slack of Ji, j is given by

σi, j (0) = max

(
0, de

i, j −
i∑

k=1

ek

⌈
de

i, j

pk

⌉)
(7.9)

The effective deadlines of all N periodic jobs in a hyperperiod can be determined by con-
structing a schedule of the periodic tasks for the hyperperiod when σi, j (0)’s are computed.
The N effective deadlines and initial amounts of slack are stored for use at run time. The ef-
fective deadlines and initial slacks of jobs in subsequent hyperperiods can easily be computed
from the respective stored values of jobs in the first hyperperiod.

Slack Functions. Table 7–1 lists the notations used in the subsequent description of
the slack-stealing algorithm. The scheduler does a slack computation when it needs to decide
the priority of the slack stealer. Let t be a future time instant (i.e., t > tc) and Ji, j be the first
job in Ti whose effective deadline is after t . In other words, de

i, j−1 ≤ t < de
i, j .

σi (tc, t) =
{
σi, j (0)− I − ST −�i if Ji, j is not completed at t
σi, j+1(0)− I − ST −�i if Ji, j is completed at t

(7.10a)

gives the amount of time before xi (t) that is not needed by jobs in Hi (tc, xi (t)) for them to
complete before xi (t). We call σi (tc, t) the slack function of Ti . The minimum slack function
of the periodic tasks

σ ∗(tc, t) = min
1≤i≤n

σi (tc, t) (7.10b)

gives the minimum amount of available slack from tc to xi (t).
To support the computation of σi (tc, t), the scheduler keeps up-to-date the total idle time

I and stolen time ST . (We have already described in the previous section how the scheduler

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 247

Section 7.6 Slack Stealing in Fixed-Priority Systems 247

TABLE 7–1 Notations Used in the Description of the Slack-Stealing Algorithm

tc: the time at which a slack computation is carried out
t0: the beginning of the current hyperperiod, the beginning of the first

hyperperiod being 0
de

i, j : the effective deadline of the job Ji, j

σi, j (0): precomputed initial slack of the j th job Ji, j of Ti in the current hyperperiod
I : the total idle time, i.e., the cumulative amount of time since t0 during which

the processor idles
ST : the total stolen time, i.e., the cumulative amount of time since t0 during

which aperiodic jobs execute.
ξi , for i = 1, 2, . . . , n: the cumulative amount of processor time since t0 used to execute Ti

�i , for i = 1, 2, . . . , n: the cumulative amount of time since t0 used to execute periodic tasks with
priorities lower than Ti

xi (t), for a time instant xi (t) is equal to the effective deadline de
i, j of Ji, j if the job is not complete

t in the range [de
i, j−1, by time t , and is equal to de

i, j+1 if Ji, j is complete by t .
de

i, j):
Ti−1: the subset of tasks, other than Ti , with priorities equal to or higher than Ti .
Hi (tc, t), t > tc: the subset of periodic jobs that are in Ti or Ti−1 and are active at some time

during the interval (tc, t]—A job is active in the interval between its
release time and its effective deadline.

σi, j (tc, t): the slack function of Ti

σ ∗(tc, t): the slack function of the system
y1 < y2 < . . . , < yk : locations of steps of σ ∗(tc, t), i.e., the values of t at which σ ∗(tc, t) increases
σ ∗(yk): the amount of slack from tc to yk

zi : the next step of σi (tc, t) after tc and the latest known step of σ ∗(tc, t)
A: the aperiodic job at the head of the aperiodic job queue
eA: the remaining execution time of A

can do this.) In addition, for each periodic task Ti in the system, the scheduler updates the
cumulative amount ξi of time during which the processor executes Ti each time when a job in
the task completes or is preempted. Because �i = �i−1 + ξi−1, the scheduler can obtain the
values of �i ’s needed in Eq. (7.10a) by a single pass through the ξi ’s. This takes O(n) time.

To illustrate, we return to the previous example. The effective deadline of every job
except J2,1 is equal to its deadline. Because d2,1 is at the end of a busy interval of T1 that
begins at 3, de

2,1 is 3. At time 0, I , ST , and �i are equal to 0. Figure 7–20(a) shows the slack
functions σi (0, t) computed at time 0 for i = 1, 2, and 3 and t in the first hyperperiod (0,
12). The minimum slack function σ ∗(0, t) shows that the periodic tasks have 1 unit of slack
before 6 and 2 more units after 6. Figure 7–20(b) shows the slack functions computed at time
3 for the case where the slack is not used before 3. At the time, J2,1 is complete. According
to Eq. (7.10a), the slack function σ2(3, t) for t ≤ 8 is equal to the initial slack (= 3) of J2,2

minus �3 (= 1) and hence is 2. Similarly, J3,1 is completed. For t > 3, the slack function
σ3(3, t) is equal to initial slack σ3,2(0) = 3 of J3,2. The amount of slack available before 6
increases by 1 at time 3. This is what we observed earlier from Figure 7–19.

Computation Procedure. From Eq. (7.10) and Figure 7–20, we see that in general,
the slack function σi (tc, t) of each task Ti is a staircase function and it has a step (increase) at

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 248

248 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

σ1(0,12)

σ2(0,12)

σ3(0,12)

σ*(0,12)

σ1(3,12)

σ2(3,12)

σ3(3,12)

σ*(3,12)

0 1 2 3 4 5 6 7 8 9 10 11 12

+2
+2

+2
+2

+2
+2

+2

+2

+2
+2

+2

+3

+2

+2

+2

+1

+1

+1

+1

(a)

(b)

FIGURE 7–20 Slack functions.

the effective deadline of each job in Ti . Consequently, the minimum slack function σ ∗(tc, t)
is also a staircase function. Let y1 < y2 < · · · < yk . . . be the values of t at which σ ∗(tc, t)
increases. Each yk is the effective deadline of some periodic job. With a slight abuse of the
term, we call these time instants the steps of σ ∗(tc, t). A computation of σ ∗(tc, t) amounts to
finding the steps of the function and the increase in slack at each step.

According to the algorithm proposed by Tia [Tia], each slack computation finds the next
step of the minimum slack function and the value of the function until the step. The initial step
y0 occurs immediately after the beginning of the current hyperperiod, and the slack of each
task Ti at the initial step is equal to σi,1(0). Let yk−1 (k > 0) denote the step of the minimum
slack function found during the initial or the previous slack computation. zi denotes the next
step of σi (tc, t), that is, the earliest step of this function after max(tc, yk−1). zmin denotes the
step among zi for 1 ≤ i ≤ n that has the least slack. In other words, σmin(tc, z−

min) ≤ σi (tc, z−
i)

for all i . (υ− is an instant immediately before v.) If there is a tie, zmin is the latest among
the zi ’s that have the minimum slack. The next step yk is equal to zmin. The minimum slack
function σ ∗(tc, t) is equal to σmin(tc, z−

min) and is the slack of the system until yk . The job in
Tmin whose effective deadline is zmin is called the constraining job.

As an example, suppose that the scheduler does a slack computation at time 1. The
next step zi of σi (1, t) is equal to 3, 3, and 6 for i = 1, 2, and 3, respectively. Immediately
before their corresponding next steps, the slack functions of the tasks are equal to 2, 2, and 1,

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 249

Section 7.6 Slack Stealing in Fixed-Priority Systems 249

respectively. Hence, the next step y1 of the minimum slack function is z3 = 6. σ ∗(tc, y1) is 1.
The constraining job is J3,1.

If the scheduler keeps effective deadlines of each task Ti in a list sorted in increasing
order, it can find the next step zi in O(1) time from this list and the step found during the
previous slack computation. It takes O(n) time to update all the �i ’s; hence the complexity
of each slack computation is O(n).

7.6.3 Scheduling Aperiodic Jobs

In addition to maintaining I , ST and ξi for i = 1, 2, . . . , n as stated above, the scheduler also
updates the remaining execution time eA of the aperiodic job A at the head of the aperiodic
job queue if the job is preempted before it is completed. The scheduler controls when any
available slack is used by varying the priority of the slack stealer relative to the fixed priorities
of the periodic tasks. We have the following two observations about the constraining job J
found at the time tc of the kth slack computation.

1. There can be no more than σ ∗(tc, yk) units of slack before yk unless the constraining
job J is completed before yk .

2. Scheduling the constraining job J so that it completes as soon as possible will not lead
to a decrease in the amount of slack before yk .

If J completes at some time t before yk , we may be able to delay the execution of some
periodic jobs in Hi (tc, yk) until after yk and thus create more slack before yk .

Scheduler Operations. These observations are the rationales behind the slack-
stealing algorithm defined by the following rules.

R0 Maintain history information, that is, I , SI , and ξi , for i = 1, 2, . . . , n, and update eA

before A starts execution and when it is preempted.

R1 Slack Computation: Carry out a slack computation each time when

• an aperiodic job arrives if the aperiodic job queue is empty prior to the arrival,

• an aperiodic job completes and the aperiodic job queue remains nonempty, and

• a constraining job completes.

The next step and minimum slack found by the slack computation are y, y being the effective
deadline of a job in Tmin, the available slack until y is σ ∗(tc, y) = σmin(tc, y).

R2 Assigning Priority to Slack Stealer: Each time following a slack computation, assign the
slack stealer the highest priority if σ ∗(tc, y) ≥ eA. Otherwise, the priority of the slack
stealer is between that of Tmin and Tmin +1.

R2 Periodic jobs and slack stealers execute according to their priorities.

We again use the example in Figure 7–19 to illustrate. Suppose that shortly after time
0, an aperiodic job A with execution time equal to 1.5 arrives. The slack functions of all tasks

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 250

250 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

being as shown in Figure 7–20(a), the next step y is 6, the effective deadline of constraining
job J3,1. Since the σ ∗(0, 6) (= 1) is less than the remaining execution time eA (= 1.5), the
slack stealer is given a lower priority than J3,1. Upon the completion of J3,1 at 3, the slack is
computed again. This time the slack of the system is equal to 2. Therefore, the slack stealer is
given the highest priority. It starts to execute at 3 and completes A at 4.5.

On the other hand, suppose that the execution time of A is 2.5. At time 3, the slack
stealer is given a priority lower than the constraining job J2,2 but higher than J3,2. This allows
J2,2 to complete at 5. When the slack is completed again at 5, the system has 3 units of slack.
Consequently, the slack stealer is given the highest priority and it completes A at time 7.5.

Performance. Tia [Tia] showed that the slack-stealing algorithm described above is
optimal in the weak sense, that is, it minimizes the response time of the job at the head of
the aperiodic job queue. From his simulation study, Tia found that this algorithm performs
only slightly better when compared with slack-stealing algorithms [LeRa, DaTB] that use the
available slack greedily. The greedy algorithms have the advantage that they do not require
knowledge of execution times of aperiodic jobs.

The slack-stealing approach gives smaller response times when compared with the spo-
radic server scheme even when the sporadic server is allowed to use background time. This
is especially true when the total utilization of periodic tasks is higher than 75 percent. When
the total utilization of periodic tasks is this large, one is forced to give a sporadic server a
small size. As a consequence, the performance of a sporadic server becomes closer to that of
a background server. In contrast, by letting the slack stealer executes aperiodic jobs while the
periodic tasks have slack, one can reduce their response times significantly. Therefore, when
the release-time jitters of periodic tasks are negligible and when the O(n) slack computation
overhead is tolerable, slack stealing should be the preferred approach.

7.7 SCHEDULING OF SPORADIC JOBS

This and the next sections focus on algorithms for scheduling sporadic jobs. We ignore aperi-
odic jobs. After seeing how we can schedule sporadic jobs with hard deadlines in the midst of
periodic tasks, we will discuss the real-time performance that existing algorithms can provide
to sporadic jobs with soft deadlines.

Here we take the approach discussed in Chapter 5: The scheduler performs an accep-
tance test on each sporadic job upon its arrival. We now describe how to do acceptance tests
in priority-driven systems. As in Chapter 5, we assume that acceptance tests are performed on
sporadic jobs in the EDF order. Once accepted, sporadic jobs are ordered among themselves
in the EDF order. In a deadline-driven system, they are scheduled with periodic jobs on the
EDF basis. In a fixed-priority system, they are executed by a bandwidth preserving server. In
both cases, no new scheduling algorithm is needed.

In our subsequent discussion, we refer to each individual sporadic job as Si . When we
want to call attention to the fact that the job is released at time t and has maximum execution
time e and (absolute) deadline d, we call the job Si (t, d, e). We say that an acceptance test is
optimal if it accepts a sporadic job if and only if the sporadic job can be feasibly scheduled
without causing periodic jobs or sporadic jobs in the system to miss their deadlines.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 251

Section 7.7 Scheduling of Sporadic Jobs 251

7.7.1 A Simple Acceptance Test in Deadline-Driven Systems

Theorem 7.4 says that in a deadline-driven system where the total density of all the periodic
tasks is�, all the accepted sporadic jobs can meet their deadlines as long as the total density of
all the active sporadic jobs is no greater than 1−� at all times. This fact gives us a theoretical
basis of a very simple acceptance test in a system where both the periodic and sporadic jobs
are scheduled on the EDF basis.

Acceptance Test Procedure. The acceptance test on the first sporadic job S(t, d, e)
is simple indeed. The scheduler accepts S if its density e/(d − t) is no greater than 1 −�. If
the scheduler accepts the job, the (absolute) deadline d of S divides the time after t into two
disjoint time intervals: the interval I1 at and before d and the interval I2 after d. The job S is
active in the former but not in the latter. Consequently, the total densities �s,1 and �s,2 of the
active sporadic jobs in these two intervals are equal to e/(d − t) and 0, respectively.

We now consider the general case. At time t when the scheduler does an acceptance
test on S(t, d, e), there are ns active sporadic jobs in the system. For the purpose of schedul-
ing them and supporting the acceptance test, the scheduler maintains a nondecreasing list of
(absolute) deadlines of these sporadic jobs. These deadlines partition the time interval from
t to the infinity into ns + 1 disjoint intervals: I1, I2, . . . , Ins+1. I1 begins at t and ends at the
first (i.e., the earliest) deadline in the list. For 1 ≤ k ≤ ns , each subsequent interval Ik+1

begins when the previous interval Ik ends and ends at the next deadline in the list or, in the
case of Ins+1, at infinity. (Some of these intervals have zero length when the sporadic jobs
have nondistinct deadlines.) The scheduler also keeps up-to-date the total density �s,k of the
sporadic jobs that are active during each of these intervals.

Let Il be the time interval containing the deadline d of the new sporadic job S(t, d, e).
Based on Theorem 7.4, the scheduler accepts the job S if

e

d − t
+�s,k ≤ 1 −� (7.11)

for all k = 1, 2, . . . l.
If these conditions are satisfied and S is accepted, the scheduler divides the interval Il

into two intervals: The first half of Il ends at d, and the second half of Il begins immediately
after d. We now call the second half Il+1 and rename the subsequent intervals Il+2, . . . , Ins+2.
(Here, we rename the intervals for the sake of clarity. In the actual implementation of the
acceptance test, this step is not necessary provided some appropriate data structure is used to
allow efficient insertion and deletion of the intervals and update of the total densities associ-
ated with individual intervals.) The scheduler increments the total density �s,k of all active
sporadic jobs in each of the intervals I1, I2, . . . , Il by the density e/(d − t) of the new job.
Thus, the scheduler becomes ready again to carry out another acceptance test. The complexity
of this acceptance test is O(Ns) where Ns is the maximum number of sporadic jobs that can
possibly be in the system at the same time.

As an example, we consider a deadline-driven system in Figure 7–21. The system has
two periodic tasks T1 = (4, 1) and T2 = (6, 1.5). The relative deadline of each task is equal
to the period of the task. Their total density is 0.5, leaving a total density of 0.5 for sporadic
jobs.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 252

252 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

T1

T2

S2 S3 S3
Sporadic

jobs

0 6

0 2.5 4 8 9.5

0 4 8 12

12

12

d1
at 0+

0 8∆S, 1 = 0.25 ∆S, 2 = 0

S1(0
+, 8, 2)

d1
at 2

0 872 ∆S, 1 = 0.35 ∆S, 3 = 0

∆S, 2 = 0.25

d2
S2(2, 7, 0.5)

d1
at 4

at 9

84 14∆S, 1 = 0.35 ∆S, 2 = 0.1
∆S, 3 = 0

∆S, 3 = 0

d3
S3(4, 14,1)

d4

139 14∆S, 1 = 0.35

∆S, 2 = 0.1

d3
S4(9, 13, 2)

FIGURE 7–21 An acceptance test on T1 = (4, 1), and T2 = (6, 1.5).

1. Suppose that the first sporadic job S1(0+, 8, 2) is released shortly after time 0. Since
the density of S1 is only 0.25, the scheduler accepts it. The deadline 8 of S1 divides the
future time into two intervals: I1 = (0+, 8] and I2 = (8,∞). The scheduler updates the
total densities of active sporadic jobs in these intervals: �s,1 = 0.25 and �s,2 = 0. The
scheduler then inserts S1 into the queue of ready periodic and sporadic jobs in the EDF
order.

2. At time 2, the second sporadic job S2(2, 7, 0.5) with density 0.1 is released. Its deadline
7 is in I1. Since the condition 0.1 + 0.25 ≤ 0.5 defined by Eq. (7.11) is satisfied, the

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 253

Section 7.7 Scheduling of Sporadic Jobs 253

scheduler accepts and schedules S2. We now call the interval I2 I3. The interval I1 is
divided into I1 = (2, 7] and I2 = (7, 8]. The scheduler increments the total density�s,1

by the density of S2. Now, �s,1 = 0.35, �s,2 = 0.25, and �s,3 = 0.

3. At time 4, S3(4, 14, 1) is released. S2 has already completed. The only sporadic job in
the system is S1. �s,1 = 0.25 (for interval I1 before 8) and �s,2 = 0 (for interval I2

after 8). The deadline of S3 is in the interval I2. The conditions the scheduler checks are
whether 0.25 + 0.1 and 0.1 are equal to or less than 0.5. Since both are satisfied, the
scheduler accepts S3. The intervals maintained by the scheduler are now I1 = (4, 8],
I2 = (8, 14], and I3 = (14,∞]. Moreover, �s,i are 0.35, 0.1, and 0 for i = 1, 2, and 3,
respectively.

4. At time 9, S4(9, 13, 2) is released. Now, the only active sporadic job in the system
is S3. I1 is (9, 14] and I2 is (14,∞). Since for I1, the total density of existing active
sporadic jobs is 0.1 and the density of S4 is 0.5, their sum exceeds 0.5. Consequently,
the scheduler rejects S4.

Enhancements and Generalization. Two points are worthy of observing. First, the
acceptance test is not optimal, meaning that a sporadic job may be rejected while it is schedu-
lable. The reason is that the schedulability condition given by Theorem 7.4 is sufficient but
not necessary. In the example above, the system becomes idle at time 9.5 and does not be-
come busy again until time 12. So, S4 is acceptable. In fact, as we will see shortly, it would be
acceptable even if its execution time were 4.0, making its density 1.0!

An enhancement is to have the scheduler also compute the slack of the system. In this
example, suppose that the scheduler were to compute the slack of the system dynamically at
time 9. It would find that the current busy interval of the periodic tasks and accepted sporadic
jobs ends at time 9.5 and the next busy interval does not begin until time 12. This leaves the
system with 2.5 units of slack before time 13, the deadline of S4. Hence, S4 is acceptable. The
shortcoming of an acceptance test that makes use of dynamic-slack computation is its high
run-time overhead. The next subsection describes an optimal acceptance test algorithm that
makes use of static-slack computation. According to that test, S4 would be acceptable as long
as its execution time is no more than 4. However, that acceptance test can be used only when
periodic tasks have little or no release-time jitters.

The second point worth noting is that the acceptance test described above assumes that
every sporadic job is ready for execution upon its arrival. In general, its feasible interval may
begin some time after its acceptance test time. (As an example, suppose that that S3 in the
above example were offered to the scheduler for acceptance testing at time 3, but it is ready for
execution at time 4.) We can modify the simple acceptance test in a straightforward fashion
to accommodate arbitrary ready times of sporadic jobs. The ready times and deadlines of
sporadic jobs in the system partition the future time into disjoint time intervals. The scheduler
maintains information on these intervals and the total densities of active sporadic jobs in them
in a similar manner, but now it may have to maintain as many as 2Ns + 1 intervals, where Ns

is the maximum number of sporadic jobs in the system.

*7.7.2 An Acceptance Test Based on Slack Computation in Deadline-Driven Systems

We now describe an algorithm that uses static-slack computation and is for systems where
periodic and accepted sporadic jobs are scheduled on the EDF basis [Tia]. The time complex-
ity of the acceptance test based on this algorithm is O(n + Ns). Other existing algorithms

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 254

254 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

for an acceptance test based on static-slack computation in deadline-driven systems include
those described in [ChCh] and [SiCE]. These algorithms have pseudopolynomial complexity
O(N + Ns). Alternatives are to compute the available slack dynamically (e.g., in [McEl]) or
to subject periodic jobs to an acceptance test as well as sporadic jobs (e.g., in [ScZh]). Both
alternatives have their own shortcomings. Except when an extreme high run-time overhead
can be tolerated, we are forced to use dynamically computed lower bounds on the available
slack. These bounds tend to be loose. As a consequence, the acceptance test is no longer opti-
mal and may not have significant advantage over the simple acceptance test described earlier.
Subjecting periodic jobs to an acceptable test is not only time consuming, especially since the
acceptance test in [ScZh] is pseudopolynomial time in complexity, but may also result in the
rejection of some periodic jobs, which is incorrect according to the correctness criterion used
here.

Major Steps. As in Section 7.5, we call the i th periodic job in each hyperperiod Ji

for i = 1, 2, . . . , N . The N jobs are indexed so that the deadline di of Ji is equal to or less than
the deadline dk of Jk if i < k. Suppose that at the time t when an acceptance test is done on
a new sporadic job S, there are also ns sporadic jobs in the system. We call the sporadic jobs
S1, S2, . . . , Sns . Let es,k and ds,k denote the maximum execution time and absolute deadline
of Sk , respectively. We again assume that every sporadic job is ready for execution as soon
as it is released. We continue to use σk(t) to denote the slack of the periodic job Jk at time t
in the absence of any sporadic jobs. The notation for the slack of the sporadic job Sk at t is
σs,k(t).

Specifically, when a sporadic job Si (t, d, e) is released at time t , the scheduler carries
out the following steps to accept and schedule Si or to reject Si .

1. The scheduler computes the slack σs,i (t) of the tested job Si . If σs,i (t) is less than 0, it
rejects Si . Otherwise, it carries out the next step.

2. The scheduler accepts Si and carries out step 3 if the current slack of every job whose
deadline is at or after d is at least equal to the execution time e of Si ; otherwise, it rejects
Si .

3. When the scheduler accepts Si (t, e, d), it inserts the job into the EDF priority queue
of all ready jobs, allocates a register for the storage of the execution time ξs,i of the
completed portion of Si , stores the initial slack σs,i (t) of Si , and decrements the slack
of every existing sporadic job whose deadline is at or after d by e.

To support slack computation, the scheduler updates the total amount TE of time in
the current hyperperiod that is used to execute completed sporadic jobs whenever a sporadic
job completes. It also maintains the total amount I of time the system has been been idle
since the beginning of the current hyperperiod, as well as the execution time ξk (or ξs,k) of the
completed portion of each current periodic (or existing sporadic) job in the system.

As you can see, the acceptance test described here is the same as the test for clock-driven
systems (it was described in Section 5.6) in principle. The difference between the two tests
is the more complex slack computation in deadline-driven systems. The static computation
algorithm described in Section 7.5 can easily be extended for this purpose. In the description
of this extension, we first assume that the deadline of every sporadic job released in a hy-
perperiod is in the same hyperperiod period. After describing how slack computation is done

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 255

Section 7.7 Scheduling of Sporadic Jobs 255

when this simplifying assumption is true, we then show how a simple modification allows us
to remove this restrictive assumption.

Finally, in this description, by a sum over sporadic jobs, we mean sporadic jobs that
are still in the system; the completed sporadic jobs are not included. For a given sporadic job
Si (t, d, e) being tested, we let Jl denote the periodic job whose deadline dl is the latest among
all the periodic jobs whose deadlines are at or before d, if there are such jobs. This job is
called the leverage job of Si . If the deadline d of Si is earlier than the deadline of the first
periodic job in the hyperperiod, its leverage job is a nonexisting periodic job; for the sake of
convenience, we let the slack and deadline of this nonexisting periodic job be 0. Since the set
of candidates of Jl contains only one job per periodic task, the job Jl can be found in O(n)
time.

Acceptance Test for the First Sporadic Job. To compute the slack of the first spo-
radic job S1(t, d, e) tested in the current hyperperiod, the scheduler first finds its leverage job
Jl . In addition to the slack of Jl , which can be used to execute S1, the interval (dl, d] is also
available. Hence the slack of S1 is given by

σs,1(t) = σl(t)+ (d − dl)− e (7.12a)

(An implicit assumption here is that ties in deadlines, and hence priorities, are broken in
favor of sporadic jobs.) The slack of the job Jl in the absence of any sporadic job is given
by Eq. (7.7) if there are aperiodic jobs in the system and a slack stealer to execute them.
Otherwise, if there is no slack stealer, as we have assumed here,

σl(t) = ω(l; l)− I −
∑

dk>d

ξk (7.12b)

When the deadline of the first periodic job in the hyperperiod is later than d, σl(t) and dl are
zero by definition, and σs,1(t) is simply equal to d − e.

In the first step of the acceptance test, the scheduler computes σs,1(t) in this way. It
rejects the new sporadic job S1 if σs,1(t) is less than 0. Otherwise, it proceeds to check whether
the acceptance of the S1 may cause periodic jobs with deadlines after d to miss their deadlines.
For this purpose, it computes the minimum of the current slacks σk(t) of all the periodic jobs
Jk for k = l + 1, l + 2, . . . , N whose deadlines are after d. The minimum slack of these
jobs can be found using the static-slack computation method described in Section 7.5. This
computation and the subsequent actions of the scheduler during the acceptance test also take
O(n) time.

Acceptance Test for the Subsequent Sporadic Jobs. In general, when the accep-
tance of the sporadic job Si (t, d, e) is tested, there may be ns sporadic jobs in the system
waiting to complete. Similar to Eq. (7.12), the slack of Si at time t can be expressed in terms
of the slack σl(t) of its leverage job Jl as follows.

σs,i (t) = σl(t)+ (d − dl)− e − T E −
∑

ds,k≤d

es,k −
∑

ds,k>d

ξs,k (7.13)

To see why this equation is correct, we note that among the possible σl(t) + (d − dl) units
of time available to Si , TE units were used to complete sporadic jobs that have executed

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 256

256 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

and completed in the current hyperperiod. The first sum on the right-hand side of the equation
gives the total amount of time in the current hyperperiod committed to the yet-to-be-completed
sporadic jobs whose deadlines are at or before d. The second sum gives the total amount of
time in the current hyperperiod that was used to execute the completed portion of the sporadic
jobs whose deadlines are after d.

After computing the slack σs,i (t) available to Si in this manner, the scheduler proceeds
to the second step of the acceptance test if σs,i (t) ≥ 0. This time, the second step has two
substeps. First, the scheduler checks whether the acceptance of Si would cause any yet-to-be-
completed sporadic job Sk whose deadline is after d to be late. This can be done by comparing
the current slack σs,k(t) of Sk with the execution time e of the new job Si . Si is acceptable
only when the slack of every affected sporadic job in the system is no less than e.

If the new job Si (t, d, e) passes the first substep, the scheduler then checks whether the
minimum of current slacks of periodic jobs whose deadlines are at or after d is at least as
large as e. The method for computing this minimum is similar to the one based on Eq. (7.8).
Specifically, the periodic jobs are now partitioned into at most n+ns disjoint subsets according
to the deadlines of the current periodic jobs and the yet-to-be completed sporadic jobs in the
manner described in Section 7.5.1. Let Z j denote one of these subsets and Jx and Jy denote
the periodic jobs that have the earliest deadline dx and latest deadline dy , respectively, among
the jobs in this subset. The minimum slack of all periodic jobs in Z j is given by

ω j (t) = ω(x; y)− I − T E −
∑

ds,k≤dx

es,k −



∑

ds,k>dy

ξs,k +
∑

dk>dy

ξk



 (7.14)

Again, we have the expression on the right-hand side because the precomputed value ω(x; y)
of the minimum slack ω j (t) of the periodic jobs in Z j does not take into account the following
factors: (1) the total idle time I since the beginning of the current hyperperiod, (2) the total
time TE in the current hyperperiod used for the execution of completed sporadic jobs; (3) the
total time already committed to yet-to-be-completed sporadic jobs whose deadlines are before
or at the deadline of the first job Jx in Z j ; and (4) the total time already used to execute the
completed portion of yet-to-be-completed jobs whose deadlines are after the deadline dy of
the last job Jy in Z j . Therefore, these factors are subtracted from the precomputed minimum
initial slack ω(x, y).

Clearly, the minimum slack of all periodic jobs whose deadlines are after d is

min
1≤ j≤n+ns

ω j (t).

The scheduler accepts the new job Si (t, d, e) only if this minimum slack is no less than e. The
slack computation takes O(n + ns) time.

Acceptance Tests for Sporadic Jobs with Arbitrary Deadlines. Finally, let us con-
sider a sporadic job Si (t, d, e) that arrives in the current hyperperiod and its deadline d is in
some later hyperperiod. Without loss of generality, suppose that the current hyperperiod starts
at time 0 and the deadline d is in zth hyperperiod. In other words, 0 < t ≤ (z − 1)H <

d ≤ z H . For this sporadic job, the leverage job Jl is the last job among all the periodic jobs
that are in the zth hyperperiod and have deadlines at or before d, if there are such jobs, or a
nonexisting job whose slack is 0 and deadline is (z − 1)H , if there is no such periodic job.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 257

Section 7.7 Scheduling of Sporadic Jobs 257

In this case, the time available to the new job Si consists of three terms: the slack a1

in the current hyperperiod, the slack a2 in the second through (z − 1)th hyperperiods and the
slack a3 in the zth hyperperiod. a1 is given by

a1 = σN (0)− I − T E −
∑

ds,k≤dN

es,k −
∑

ds,k>dN

ξs,k (7.15a)

The total amount a2 of time during the second through the (z − 1)th hyperperiods that is
available to Si is equal the total initial slack in z − 2 hyperperiods minus the amount of time
already committed to sporadic jobs in system that have deadlines in these hyperperiods. In
other words,

a2 = (z − 2)σN (0)−
∑

dN<ds,k≤(z−1)dN

es,k (7.15b)

The time in the zth hyperperiod available to Si is equal to

a3 = σl(0)+ (d − dl)−
∑

(z−1)H<ds,k≤dl

es,k (7.15c)

In the first step, the scheduler computes the available slack of the new job Si (t, d, e)
according to

σs,i (t) = a1 + a2 + a3 − e (7.15d)

The scheduler proceeds to do step 2 of the acceptance test if σs,i (t) is no less than 0. In the
second step, the scheduler only needs to check whether the periodic jobs that are in the zth
hyperperiod and have deadlines at or after d may be adversely affected by the acceptance of
Si . This can be done in the manner described earlier.

We are now ready to look at the example in Figure 7–21 which we used earlier to
illustrate the simple acceptance test based on Theorem 7.4. The periodic tasks in the system
are T1 = (4, 1) and T2 = (6, 1.5). The length H of each hyperperiod is 12, and N is equal to
5. The initial slack σi (0) of the five periodic jobs are 3.0, 3.5, 4.5, 7.0, and 6.0, respectively,
for i equal to 1, 2, 3, 4, and 5.

1. At time 0+, S1(0+, 8, 2) is tested. For this sporadic job, the leverage job is J2 (i.e.,
J2,1 with deadline 6). In the first step, the scheduler finds σs,1(0+), which is equal to
σ2(0) + (8 − 6) − 2 = 3.5 according to Eq. (7.12a). In the second step, it finds the
minimum slack of periodic jobs J3, J4, and J5. This minimum is equal to 2.5 if S1

is accepted. Hence, the scheduler accepts S1, inserts it into the EDF queue of ready
periodic and sporadic jobs, stores σs,1(0+) = 3.5 for later use. It also creates a register
to store the current value of ξs,1 of S1.

2. At time 2, S2(2, 7, 0.5) is tested. Its leverage job Jl is also J2. Up until time 2, the system
has never been idle and no sporadic job has completed. Hence, I and TE are both 0.
ξs,1 is also equal to 0. No periodic job with deadline after 7 has executed. According
to Eq. (7.13), σs,2(2) is equal to 3.5 + 1 − 0.5 = 4.0. Since it is larger than 0.5, the
scheduler proceeds to step 2 of the acceptance test. Since none of the jobs with deadlines
after 7 will be adversely affected, the scheduler accepts S2. In addition to do all the
bookkeeping work on S2, the scheduler updates the slack of S1: σs,1(2) = 3.5 − 0.5 =
3.0.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 258

258 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

3. By time 4.0 when S3(4, 14, 1) is released and tested, S2 has completed. TE is there-
fore equal to 0.5. I is still zero. The deadline of S3 is in the second hyperperiod. The
scheduler first computes a1 according to Eq. (7.15a): a1 = 6 − 0.5 − 2 = 3.5. a2 is
equal to zero. Since no existing sporadic job has a deadline in the second hyperperiod,
according to Eq. (7.15c), a3 is equal to 2 (the difference between d and the beginning
of the second hyperperiod). Hence σs,3(4) = 3.5 + 2 − 1 = 4.5.

In the second step, the scheduler needs to check only whether the jobs with dead-
lines in the second hyperperiod would be late if S3 is accepted. Since all of their slacks
are larger than the execution time of S3, S3 is acceptable and is accepted.

4. When S4(9, 13, 2) is tested at time 9, I = 0, and TE = 2.5. There is only one sporadic
job S3 in the system, and ξs,3(9) = 0.5. The scheduler finds a1 equal to 6 − 0 − 2.5 −
0.5 = 3.0. a3 is equal to 1.0. Hence the slack σs,4(9) = 3 + 1 − 2 = 2.

Since the slack σs,3(9) is 4.5, S3 will not be late if S4 is accepted. Moreover,
none of the periodic jobs in the second hyperperiod will be late; S4 is acceptable and is
accepted in the second step.

We observe that if the execution time of S4 were 4.0, this test would accept the job, and the
action would be correct.

7.7.3 A Simple Acceptance Test in Fixed-Priority Systems

One way to schedule sporadic jobs in a fixed-priority system is to use a sporadic server to
execute them. Because the server (ps, es) has es units of processor time every ps units of
time, the scheduler can compute the least amount of time available to every sporadic job in
the system. This leads to a simple acceptance test.

As always, we assume that accepted sporadic jobs are ordered among themselves on
an EDF basis. When the first sporadic job S1(t, ds,1, es,1) arrives, the server has at least
�(ds,1 − t)/ps�es units of processor time before the deadline of the job. Therefore, the sched-
uler accepts S1 if the slack of the job

σs,1(t) = �(ds,1 − t)/ps�es − es,1

is larger than or equal to 0.
To decide whether a new job Si (t, ds,i , es,i) is acceptable when there are ns sporadic

jobs in the system, the scheduler computes the slack σs,i of Si according to

σs,i (t) = �(ds,i − t)/ps�es − es,i −
∑

ds,k<ds,i

(es,k − ξs,k)

where ξs,k is the execution time of the completed portion of the existing sporadic job Sk . The
new job Si cannot be accepted if its slack is less than 0.

If σs,i (t) is no less than 0, the scheduler then checks whether any existing sporadic job
Sk whose deadline is after ds,i may be adversely affected by the acceptance of Si . This can
easily be done by checking whether the slack σs,k(t) of Sk at the time is equal to or larger
than es,i . The scheduler accepts Si if σs,k(t)− es,i ≥ 0 for every existing sporadic job Sk with
deadline equal to or later than ds,i . If the scheduler accepts Si , it stores σs,i (t) for later use and
decrements the slack of every sporadic job with a deadline equal to or later than ds,i by the
execution time es,i of the new job.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 259

Section 7.8 Real-Time Performance for Jobs with Soft Timing Constraints 259

7.7.4 Integrated Scheduling of Periodic, Sporadic, and Aperiodic Tasks

In principle, we can schedule sporadic and aperiodic tasks together with periodic tasks ac-
cording to either the bandwidth-preserving server approach or the slack-stealing approach, or
both. However, it is considerably more complex to do slack stealing in a system that contains
both sporadic tasks with hard deadlines and aperiodic tasks. If we steal slack from sporadic
and periodic jobs in order to speed up the completion of aperiodic jobs, some sporadic jobs
may not be acceptable later while they may be acceptable if no slack is used. The presence
of sporadic jobs further increases the complexity of slack computation. In contrast, both the
implementation and validation of the system are straightforward when we use bandwidth-
preserving servers to execute aperiodic or sporadic jobs.

7.8 REAL-TIME PERFORMANCE FOR JOBS WITH SOFT TIMING CONSTRAINTS

For many applications, occasional missed deadlines are acceptable; their sporadic jobs have
soft deadlines. This section discusses the performance of the algorithms described in previous
sections when used to schedule this type of jobs. In the remainder of this section, except where
it is stated otherwise, by a sporadic job, we mean one whose deadline is soft.

7.8.1 Traffic Models

You recall that each sporadic task is a stream of sporadic jobs that have the same interrelease-
time and execution-time distributions and the same real-time performance requirements. The
real-time performance experienced by each sporadic task is typically measured in terms of
such criteria as the maximum tardiness and miss rate of jobs in it. (These terms were defined
in Section 3.8.) In a system that provides each sporadic task with some kind of performance
guarantee, the system subjects each new sporadic task to an acceptance test. Once a sporadic
task is admitted into the system, the scheduler accepts and schedules every job in it.

Specifically, when requesting admission into the system, each sporadic task presents to
the scheduler its traffic parameters. (These parameters are collectively called the flow spec-
ification of the task in communications literature.) These parameters define the constraints
on the interarrival times and execution times of jobs in the task. The performance guaran-
tee provided by the system to each task is conditional, meaning that the system delivers the
guaranteed performance conditioned on the fact that the task meets the constraints defined by
its traffic parameters. The flip side is that if the task misbehaves (i.e., its actual parameters
deviate from its traffic parameters), the performance experienced by it may deteriorate.

Different traffic models use different traffic parameters to specify the behavior of a
sporadic task. In addition the periodic task and sporadic task models, there are also the Ferrari
and Verma (FeVe) model [FeVe], the (λ, β) model [Cruz], and the leaky bucket model [Turn,
ClSZ]. These models are commonly used to characterize real-time traffic in communication
networks.

FeVe and (λ, β) Models. According to the FeVe model, each sporadic task is char-
acterized by a 4-tuple (e, p, p, I): e is the maximum execution time of all jobs in the task;
p is the minimum interarrival time of the jobs; p is their average interarrival time, and this
average is taken over a time interval of length I . Each job may model the transmission of a

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 260

260 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

message (or packet) and each sporadic task the transmission of a message stream. It is also a
good model of other types of sporadic tasks (e.g., computations) when the execution times of
jobs in each task are roughly the same but their interarrival times may vary widely.

The (λ, β) model, characterizes each sporadic task by a rate parameter λ and a burst
parameter β. The total execution time of all jobs that are released in any time interval of
length x is no more than β + λx .

Leaky Bucket Model. To define the leaky bucket model, we first introduce the notion
of a (�, E) leaky bucket filter. Such a filter is specified by its (input) rate � and size E : The
filter can hold at most E tokens at any time and it is being filled with tokens at a constant
rate of � tokens per unit time. A token is lost if it arrives at the filter when the filter already
contains E tokens.

We can think of a sporadic task that meets the (�, E) leaky bucket constraint as if its
jobs were generated by the filter in the following manner. The filter may release a job with
execution time e when it has at least e tokens. Upon the release of this job, e tokens are
removed from the filter. No job can be released when the filter has no token. Therefore, no job
in a sporadic task that satisfies the (�, E) leaky bucket constraint has execution time larger
than E . Indeed, the total execution time of all jobs that are released within any time interval
of length E/� is surely less than 2E . A periodic task with period equal to or larger than E/�
and execution time equal to or less than E satisfies the (�, E) leaky bucket constraint. A
sporadic task S = (1, p, p, I) that fits the FeVe model satisfies this constraint if p = 1/�
and E = (1 − p/p)I/p.

Figure 7–22 shows an example. The arrows above the time line indicate the release
times of jobs of a sporadic task in a time interval of length 70. The execution times of the jobs
are given by the numbers above the boxes symbolizing the jobs, and their relative deadlines
are all equal to 15.

• Of course, we can model the task as a periodic task (5, 2, 15) since the minimum inter-
release time is 5 and the maximum execution time of all instances is 2. However, this

0 10

1.9 2.0 1.5 1.2 1.1 1.9

25 50 7045

0

0.5

1.0

1.5

2.0

10 25 50 7045

FIGURE 7–22 Example illustrating the leaky bucket traffic model.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 261

Section 7.8 Real-Time Performance for Jobs with Soft Timing Constraints 261

is not an accurate characterization; the utilization of this periodic task is 0.4, which is
many times larger than its average utilization of 0.11.

• Following the sporadic task model, we can characterize the task by the sequence of
instantaneous utilizations of its jobs: 0.19, 0.133, 0.075, 0.24, 0.055, and so on. The
maximum instantaneous utilization of the stream is 0.24.

• This task satisfies the (0.2, 2.0)-leaky bucket constraint. The diagram at the bottom of
the figure shows the number of token remaining in a (0.2, 2.0)-leaky bucket filter as a
function of time. The bucket is full at time 0. In fact, the task satisfies this constraint
provided the size of the leaky bucket is no less than 2.0 and its rate is no less than 0.19.

7.8.2 Performance of Bandwidth-Preserving Server Algorithms

Because no job of any accepted sporadic task is rejected by the scheduler, it is possible for a
sporadic task to overload the processor. For this reason, the scheduler must provide firewall
protection not only to tasks and jobs that have hard deadlines, but also to each existing spo-
radic task so the performance guarantee of the task will not be violated when other sporadic
tasks misbehave. The bandwidth-preserving server algorithms described in earlier sections are
designed to provide such protection and, therefore, are ideally suited for scheduling sporadic
tasks with soft deadlines.

We focus here on systems which use a bandwidth-preserving server to execute each
sporadic task. During an acceptance test, the scheduler can use an appropriate schedulability
test to determine the maximum schedulable size of the server chosen to execute the new task.
Hence, whether a new sporadic task is acceptable is reduced to the question of whether its
required performance can be achieved when its server has the maximum schedulable size.
This question can be answered by analyzing the new sporadic task alone without regard to
other tasks.

We now ask what is the maximum response time of jobs in a sporadic task that is exe-
cuted by a constant utilization, total bandwidth, or WFQ server in a deadline-driven system.
Clearly, the size ũ of the server must at least be equal to the average utilization u (i.e., the
ratio of the average execution time to the average interarrival time) of the sporadic task S.
Queueing theory tells us that even when ũ = u, the average response time of the jobs in S is
unbounded if their execution times and interarrival times are not otherwise constrained.

(e, p, p, I)-Constrained Sporadic Tasks. Suppose that the sporadic task fits the
FeVe model: S = (e, p, p, I), and u = e/p. Specifically, we suppose that the number of jobs
in S released in any interval of length I is never more than I/p. (In the remainder of this
section, by jobs, we mean jobs in S and will omit this reminder most of the time.) Corollary
7.7 tells us that if the server size ũ is equal to u and the server is schedulable, the response
time of every job is never more than p if their interarrival times are at least p. Because
their interarrival times can be smaller than p, their response times can be larger than p. The
question we want to answer here is how large their response times can be when the jobs are
executed in FIFO order. Corollary 7.7 tells us as long as the total server size is no greater than
1, we can answer this question without regard to jobs executed by other servers.

To find the maximum possible response time W of all jobs in S, we look at a busy
interval of the server that begins at the arrival time t0 of the first of a bursty sequence of X
jobs. By their arrivals being bursty, we mean that the interarrival times of these X jobs are all

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 262

262 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

t0

X= —

t0+ — I t0+ I
time

No. of arrivals
and completions

I
–p

p
–p

FIGURE 7–23 Number of arrivals and completions.

equal to the minimum possible value p. Because S meets the (e, p, p, I) constraint, X ≤ I/p.
The solid line in Figure 7–23 shows the number of arrivals of jobs in S as a function of time
from t0, and the dotted line in the figure shows the number of completions of these jobs. The
vertical difference between the two lines at any time gives the number of jobs waiting to be
executed at the time. It is evident that the response time of the X th job in the busy interval is
larger than the response times of all other jobs executed in the busy interval.

To find the response time of the X th job (and hence the maximum response time of the
sporadic task S), we note that immediately before the release time of the X th job in S, there
are no more than (X − 1) − �(X − 1)p/p� jobs waiting to be completed. Since it may take
the server p units of time to complete each job, maximum response time of the X th job is
bounded from above by

W =






(
X − (X − 1)p

p

)
p + p = p + p + I

(
1 − p

p

)
if p < p

p if p = p

(7.16)

The upper bound W for the case of p < p is loose because we obtain the expression above by
replacing the floor function �x� by its lower bound x − 1. However, it differs from the tight
bound by no more than p because the maximum response time can be as large as p + I (1 −
p/p), which is obtained by replacing �x� by x .

(1/p, I/p)-Leaky Bucket Constrained Tasks. An important special case is when
the sporadic task S models the transmission of a packet stream over a network. In this case,
the maximum execution time of all jobs is the time required to transmit a maximum size
packet. For simplicity, we let this time be 1. Suppose that the task S = (1, p, p, I) also
satisfies the (1/p, I/p) leaky bucket constraint.

In this case, the largest response time occurs when the leaky bucket is full at the be-
ginning t0 of a busy interval of the server. Starting from t0, one job with execution time 1 is

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 263

Section 7.9 A Two-Level Scheme for Integrated Scheduling 263

removed from the bucket every p units of time, while it is being filled at the rate of one job
every p units of time. At the time the X th job is ready for transmission, the bucket is empty.
In other words,

X = I

p
+
⌊
(X − 1)p

p

⌋
≤ I + (X − 1)p

p

which gives us

X ≤ I − p

p − p

The above observations allow us to conclude that the maximum response time of all
jobs in S is bounded from above by

W =
(

X + 1 − (X − 1)p

p

)
p = I + p (7.17)

Again the above upper bound is not tight, but the tight bound is no less than I .
We observe that the maximum response time W of a leaky bucket constrained sporadic

task is independent of the minimum interarrival time p of jobs. In particular, the maximum
response time is bounded by the above expression if the leaky bucket is emptied at time t0,
that is, I/p jobs arrive at t0. W depends only on the length I of time required to fill the leaky
bucket. A smaller I means a smaller W , but also a more regular arrival time pattern.

The derivation of the bound in Eq. (7.16) relies only on the fact that the server can
complete each job within p units of time after the job reaches the head of the queue of the
sporadic task. A deferrable or sporadic server (p, e) in a fixed-priority system can also give
this performance guarantee if the server is schedulable (i.e., its budget is alway consumed by
the end of every period as long as the server is backlogged). Therefore, I + p is also an upper
bound on the response times of all jobs in a sporadic task S that meets the (1/p, I/p) leaky
bucket constraint and is executed by a schedulable deferrable or sporadic server server (p, e)
in a fixed-priority system.

7.9 A TWO-LEVEL SCHEME FOR INTEGRATED SCHEDULING

This section describes a two-level scheduling scheme [DeLS] that provides timing isolation
to individual applications executed on one processor. Each application contains an arbitrary
number and types of tasks. By design, the two-level scheme allows different applications to
use different scheduling algorithms (e.g., some may be scheduled in a clock-driven manner
while the others in a priority-driven manner). Hence, each application can be scheduled in a
way best for the application. More importantly, the schedulability and real-time performance
of each application can be determined independently of other applications executed on the
same processor. By emulating an infinitesmally fine-grain time slicing scheme, the two-level
scheme creates a slower virtual processor for each applications in the system.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 264

264 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

7.9.1 Overview and Terminology

According to the two-level scheme, each application is executed by a server. The scheduler at
the lower level is called the OS scheduler. It replenishes the budget and sets the deadline of
each server in the manners described below and schedules the ready servers on the EDF basis.
At the higher level, each server has a server scheduler; this scheduler schedules the jobs in
the application executed by the server according to the algorithm chosen for the application.

Required Capability. In the description below, we use Ti for i = 1, 2, . . . , n to
denote n real-time applications on a processor; each of these applications is executed by a
server. To determine the schedulability and performance of each application Ti , we examine
the tasks in it as if the application executes alone on a slower processor whose speed is a
fraction s of the speed of the physical processor. In other words, we multiple the execution
time of every job in the application by a factor 1/s > 1 and use the product in place of the
execution time in the schedulability test on the application. The minimum fraction of speed at
which the application is schedulable is called its required capacity si . The required capacity
of every application must be less than 1.

For example, the required capacity of an application that contains two periodic tasks
(2, 0.5) and (5, 1) is 0.5 if it is scheduled rate-monotonically. The reason is that we can multi-
ple the execution time of each task by 2 and the resultant tasks (2, 1.0) and (5, 2) are schedu-
lable, but if the multiplication factor were bigger, the resultant tasks would not be schedulable.
If these tasks are scheduled on the EDF basis, its required capacity is 0.45.

The system may also have one or more nonreal-time applications. All nonreal-time
applications are executed by a total bandwidth or WFQ server of size 0 < ũ0 < 1. The jobs
in these applications are scheduled by the server scheduler in a time-shared manner; so the
budget of the server is replenished periodically. In essence, the two-level scheduler creates for
all the nonreal-time applications a virtual time-shared processor of speed ũ0.

Predictable versus Nonpredictable Applications. As we will see shortly, in order
to correctly maintain the server of an application that is scheduled according to a preemptive
priority-driven algorithm, the OS scheduler needs an estimate of the occurrence time of every
event of the application that may trigger a context switch within the application. Such events
include the releases and completions of jobs and their requests and releases of resources. At
any time t , the next event of application Ti is the one that would have the earliest occurrence
time after t among all events of Ti if the application were to execute alone on a slow processor
with speed si equal to its required capacity. We call an application that is scheduled according
to a preemptive, priority-driven algorithm and contains aperiodic and sporadic tasks and/or
periodic tasks with release-time jitters an unpredictable application. The reason for this name
is that the OS scheduler needs an estimate of its next event (occurrence) time at each replen-
ishment time of its server, but its server scheduler cannot compute an accurate estimate.

All other types of applications are predictable. An application that contains only peri-
odic tasks with fixed release times and known resource request times is predictable because its
server scheduler can compute accurately the occurrence times of its future events. (In fact, for
such an application, the event occurrence times can be computed a priori before the applica-
tion requests to execute in the real-time mode and stored for use at run time.) All time-driven
applications are predictable because scheduling decisions are triggered by clock interrupts

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 265

Section 7.9 A Two-Level Scheme for Integrated Scheduling 265

which occur at known time instants. As we will see shortly, the OS scheduler does not need
to know the event occurrence times of a nonpreemptively scheduled application. We say that
nonpreemptively scheduled applications are predictable.

7.9.2 Scheduling Predictable Applications

An important property of all types of predictable applications is that such an application is
schedulable according to the two-level scheme if the size of its server is equal to its required
capability and its server is schedulable. In contrast, a nonpredictable application requires a
server of a size larger than than its required capability, as we will explain below.

Nonpreemptively Scheduled Applications. Specifically, according to the two-level
scheme, each nonpreemptively scheduled application Ti is executed by a constant utilization
server whose size ũi is equal to the required capacity si of the application. The server scheduler
orders jobs in Ti according to the algorithm used by Ti . Let B denote the maximum execution
time of nonpreemptable sections3 of all jobs in all applications in the system and Dmin denote
the minimum of relative deadlines of all jobs in these applications. Corollary 7.8 says that all
servers are schedulable if the total size of all servers is no greater than 1 − B/Dmin.

To show that every job in a nonpreemptively scheduled real-time application Ti com-
pletes in time when scheduled according to the two-level scheme, we consider a time instant at
which the OS scheduler replenishes the server budget and sets the server deadline to execute a
job in Ti . This time instant is the same as the scheduling decision time at which the job would
be scheduled if Ti were executed alone on a slow processor whose speed is si times the speed
of the physical processor. The job would complete on the slow processor at the deadline of the
server. Since the server is schedulable, it surely will execute for as long as the execution time
of the job (hence complete the job) by the server deadline according to the two-level scheme.4

Applications Scheduled according to a Cyclic Schedule. Each application Ti that
is scheduled according to a cyclic schedule is also executed by a constant utilization server of
size equal to si . The OS replenishes the budget of the server at the beginning of each frame. At
each replenishment, the budget is set to si f , where f is the length of the frames, and the server
deadline is the beginning of the next frame. The server scheduler schedules the application
according to its precomputed cyclic schedule.

Preemptively Scheduled Predictable Applications. As with other predictable ap-
plications, the size ũi of the server for a predictable application Ti that is scheduled in a
preemptive, priority-driven manner is equal to its required capacity. However, the OS sched-
uler cannot maintain the server according to the constant utilization/total bandwidth server

3By definition, jobs in a nonpreemptively scheduled application never preempt each other. However, because
the server of the application may be preempted by other servers, these jobs may be preempted by jobs in other
applications. In contrast, the server is never preempted, and hence the job it is executing is never preempted, when
the job is nonpreemptable.

4This discussion assumes that actual execution time of every job is equal to its maximum execution time. The
consumption rule of the server must be modified when the actual execution time can be smaller. The modification
is simple: The remaining budget provided to the server to execute a job is consumed immediately when the job
completes. In other words, the server does not reclaim the time allocated to the job. Rather, this time is made available
to nonreal-time applications.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 266

266 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

algorithms. Rather, it replenishes the server budget in the slightly different manner described
below.

To motivate the modified replenishment rule, we consider two jobs, J1 and J2. The
execution time of each is 0.25. Their feasible intervals are (0.5, 1.5] and (0, 2], respectively.
The jobs are scheduled preemptively in a priority-driven manner: J1 has the higher priority
and J2 the lower. These jobs would be schedulable if they were to execute by themselves
on a slow processor of speed 0.25. Now, suppose that they are executed by a server of size
0.25 according to the two-level scheme on a processor of speed one. Moreover, suppose that
the server is maintained according to the constant utilization server or total bandwidth server
algorithm: At time 0, the server is given 0.25 unit of budget, and its deadline is set at 1. The
server may execute for 0.25 unit of time and complete J2 by time 0.5 when J1 is released.
When the server budget is replenished again, the deadline for consuming the budget is 2. J1

may complete as late as time 2 and, hence, may miss its deadline.
Deng, et al. [DeSL] showed that if the server for a preemptive, priority-driven applica-

tion were maintained according to the constant utilization/total bandwidth server algorithms,
we could guarantee the schedulability of the application only if the size of its server is 1, even
when the required capacity of the application is much smaller than 1. This means that it can-
not share the processor with any other application! A look at the above example tells us why.
From time 0 to 0.5, the server is given (and is allowed to consume) 0.125 unit of budget more
than what is required to complete the portion of J2 that could be completed before time 0.5 if
J2 were executed on the slower processor. This 0.125 unit of budget should be saved to exe-
cute the higher-priority job J1 after 0.5. By giving the server a budget equal to the execution
time or the remaining execution time of the job at the head of the server’s ready queue, the
OS scheduler may introduce a form of priority inversion: A lower-priority job is able to make
more progress according to the two-level schedule at the expense of some higher-priority job.
We say that this priority inversion is due to the overreplenishment of the server budget.

A way to prevent this kind of priority inversion works as follows. At each replenishment
time of the server for a preemptively scheduled application Ti , let t be the current server
deadline or the current time, whichever is later. Let t ′ be the next release-time of Ti , that is,
t ′ is the earliest release time after t of all jobs in Ti (in general, the occurrence time of the
earliest possible context switch). t ′ is computed by the server scheduler; this is possible when
the release times of all jobs in Ti are known. Knowing that a preemption within Ti may occur
at t ′, the OS scheduler sets the server budget to min(er , (t ′ − t)ũi), where er is the execution
time of the remaining portion of the job at the head of the server queue, and sets the deadline of
the server at min(t + er/ũi , t ′). Therefore, if Ti were to execute alone on a slower processor
of speed ũi , it would not have any context switch between any replenishment time and the
corresponding server deadline. This condition, together with conditions that the server size is
equal to the required capacity and the total size of all servers is no greater than 1 − B/Dmin,
gives a sufficient condition for Ti to be schedulable when executed according to the two-level
scheme.

7.9.3 Scheduling Nonpredictable Applications

In general, the actual release-times of some jobs in a nonpredictable application Ti may be
unknown. It is impossible for its server scheduler to determine the next release-time t ′ of Ti

precisely. Therefore, some priority inversion due to overreplenishment of the server budget is

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 267

Section 7.10 Summary 267

unavoidable. Fortunately, the bad effect on the schedulability of Ti can be compensated by
making the size ũi of the server larger than the required capacity si of the application.

Budget Replenishment. Let t ′
e denote an estimate of the next release time t ′ of Ti .

The server scheduler computes this estimate at each replenishment time t of the server as
follows. If the earliest possible release time of every job in Ti is known, the server scheduler
uses as t ′

e the minimum of the future earliest release times plus an error factor ε > 0. When
the earliest release times of some jobs in Ti are unknown, t ′

e is equal to the t + ε, where t is
the current time. After obtaining the value t ′

e from the server scheduler, the OS scheduler sets
the server budget to min(er , (t ′

e − t)ũi) and the server deadline at min(t + er/ũi , t ′
e).

ε is a design parameter. It is called the quantum size of the two-level scheduler. In the
absence of any knowledge on the release-times of jobs in an application, the OS scheduler
replenishes the budget of its server every ε units of time. Hence, the smaller the quantum size,
the more frequent the server replenishments, and the higher the server maintenance overhead.
However, the size of the server required to execute the application grows with the quantum
size, as it will become evident below.

Required Server Size. It is easy to see that if Ti were to execute alone on a slower
processor, it would not have any context switch from the current replenishment time to ε time
units before the new server deadline. The extra budget that the OS scheduler may inadvertently
give to the server is no greater than εũi . Hence, the length of priority inversion due to the
overreplenishment of the server budget is at most εũi . We can treat this time as the blocking
time of any higher-priority job that may be released between the current replenishment time
and server deadline.

Let Di,min be the minimum relative deadline of all jobs in Ti . Section 6.8 tells us that if
the size of the server for Ti satisfies the inequality si +εũi/Di,min ≤ ũi , any higher-priority job
that may suffer this amount of blocking can still complete in time. Rewriting this inequality
and keeping the equality sign, we get

ũi = si
Di,min

Di,min − ε

In conclusion, a nonpredictable application Ti with required capacity si and minimum relative
deadline Di,min is schedulable according to the two-level scheme if the size of its server is
given by the expression above and the total size of all servers in the system is no greater than
1 − B/Dmin.

7.10 SUMMARY

This chapter describes algorithms for scheduling aperiodic and sporadic jobs in a system of
periodic tasks. Algorithms for scheduling aperiodic jobs try to complete these jobs as soon as
possible without causing any periodic or sporadic job to miss its deadline. A correct algorithm
for scheduling sporadic jobs accepts and schedules each sporadic job newly offered to the
system only if the new job, as well as all the periodic tasks and previously accepted sporadic
jobs, can be scheduled to complete in time.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 268

268 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

7.10.1 Algorithms for Scheduling Aperiodic Jobs

There are two types of aperiodic job scheduling algorithms. They are bandwidth-preserving
algorithms and slack-stealing algorithms.

Bandwidth-Preserving Algorithms. According to a bandwidth-preserving algo-
rithm, aperiodic jobs are executed by one or more servers; each bandwidth-preserving server
emulates one or more periodic tasks or a sporadic task. Bandwidth-preserving algorithms can
tolerate release-time jitters of periodic tasks. Many of them are simple to implement.

Deferrable Server. The budget of a deferrable server (ps, es) is set to es at time in-
stants kps , for k = 0, 1, 2, The server consumes its budget only when it executes. Such
a server emulates a periodic task whose execution may be suspended and deferred. Section
7.2.2 discussed how to take into account the presence of deferrable servers on the schedulabil-
ity of fixed-priority periodic tasks. The inequality Eq. (7.5) gives an upper bound to the size
of a deferrable server in a deadline-driven system.

Sporadic Server. A simple sporadic server (ps, es) described in Section 7.3.1 or 7.3.3
emulates a periodic task of period ps and execution time es . SpSL and GhBa servers described
in Sections 7.3.2 and 7.3.3 are enhanced sporadic servers. Such a server emulates several
periodic tasks when its budget is broken up into chunks to be replenished at different times. We
can account for the effect of a sporadic server on schedulability of periodic tasks by treating
the server as a periodic task or several periodic tasks with period ps and total execution time es .

Constant Utilization and Total Bandwidth Servers. A constant utilization server em-
ulates a sporadic task that has a constant instantaneous utilization. It can be used only in
deadline-driven systems. A total bandwidth server is an enhanced constant utilization server
that is allowed to claim the background time not used by periodic tasks. The total size of all
the constant utilization and total bandwidth servers in a system of independent, preemptable
periodic tasks whose total density is � must be no greater than 1 − �. When this condition
is satisfied, the worst-case response times of jobs executed by such a server depend only on
the size of the server and can be determined independent of the workload executed by other
servers in the system.

Weighted Fair-Queueing Server. For many applications, it is important that the
scheduling algorithm be fair. The total bandwidth server algorithm is not fair; a server can
be starved for an arbitrary amount of time. The weighted fair-queueing algorithm does not
have this problem and can achieve the same worst-case response time as the total bandwidth
server algorithm. The nonpreemptive version of this algorithm is also called packet-by-packet
generalized processor sharing algorithm and is for scheduling transmissions of packets in
switched networks.

Slack-Stealing Algorithms. In a system that does slack stealing, the scheduler sched-
ules aperiodic jobs whenever the periodic tasks and sporadic jobs in the system have slack,
that is, their execution can be safely postponed without causing them to miss their deadlines.
Sections 7.5 and 7.6 described slack-stealing algorithms for use in deadline-driven and fixed-
priority systems, respectively.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 269

Section 7.10 Summary 269

The scheduling overhead of slack-stealing is primarily the time spent to do slack com-
putations: the work that the scheduler must do to determine how much slack the system has at
each scheduling decision time. This overhead is O(N), where N is the number of periodic jobs
in a busy interval or hyperperiod, when the scheduler does slack computations dynamically
without making use of precomputed slack information. In a system of n periodic tasks, the
overhead can be reduced to O(n) if the scheduler uses static computation, that is, it computes
the current slack from the precomputed initial slack. The limitation of static slack-stealing
algorithms is that they can be used only when the release-time jitters of periodic tasks are
negligible. When they can be used, however, the slack-stealing algorithms typically offer bet-
ter performance than bandwidth-preserving algorithms, especially when the total utilization
of periodic tasks is large (e.g., 75% or larger).

7.10.2 Algorithms for Scheduling Sporadic Jobs

Section 7.7 described how to schedule sporadic jobs that have hard deadlines among periodic
tasks. The key assumptions are that (1) the scheduler subjects each new sporadic job to an
acceptance test and (2) the accepted sporadic jobs are ordered among themselves in the EDF
order.

Acceptance Tests for Deadline-Driven Systems. The simplest acceptance test algo-
rithm is based on Theorem 7.4, and it is applicable only when periodic tasks are scheduled
on a EDF basis. It works as follows. In a system where the total density of periodic tasks is
�, the scheduler accepts a new sporadic task S(t, d, e) at the time t of its arrival if the total
density of all the existing sporadic jobs whose deadlines are at or before the deadline d of the
new job is less than or equal to 1 −�− e/(d − t).

The simple acceptance test is not accurate. Its accuracy can be improved if the scheduler
also computes and makes use of the slack of the system at each acceptance test. The dynamic-
slack computation algorithm described in Section 7.5 can be used for this purpose. When the
periodic tasks have fixed release times, the acceptance test described in Section 7.7.2 can be
used. This test uses static-slack computation. Its time complexity is O(n + Ns), where n and
Ns are the number of periodic tasks and sporadic jobs, respectively, in the system.

Acceptance Tests for Fixed-Priority Systems. A simple and effective way to sched-
ule sporadic jobs is to use a bandwidth-preserving server (ps, es). The fact that the server is
guaranteed to have es units of processor time every ps units of time makes it possible for
the scheduler to compute the latest completion times of the new sporadic job and existing
sporadic jobs. The simple acceptance test described in Section 7.7.3 is based on this fact.

7.10.3 Scheduling Sporadic Jobs with Soft Deadlines

Section 7.8 described three well-known model of sporadic tasks that have soft deadlines. They
are the FeVe model [FeVe], the (λ, β)model [Cruz], and the leaky bucket model [Turn, ClSZ].

The scheduler performs an acceptance test on each such sporadic task based on the
traffic parameters of the task. If the scheduler accepts a task, it provides the task with a
bandwidth-preserving server of sufficiently large size to execute jobs in the task and here-
after accepts every job in the task. Eq. (7.17) gives the worst-case response time of jobs in a
task that meets the leaky bucket constraint in terms of parameters of the leaky bucket.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 270

270 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

7.10.4 Integrated Scheduling of Periodic, Sporadic, and Aperiodic Tasks

Finally, Section 7.9 describes a two-level priority-driven scheme for integrated scheduling
of all types of tasks on a single processor. This scheme emulates infinitesimally fine-grain
time slicing under a set of conditions that can be easily met. Under these conditions, the
schedulability of each application consisting a subset of all the tasks in the system can be
analyzed independently of the other applications in the system.

EXERCISES

7.1 A system contains three periodic tasks. They are (2.5, 1), (4, 0.5), (5, 0.75), and their total uti-
lization is 0.475.
(a) The system also contains a periodic server (2, 0.5). The server is scheduled with the periodic

tasks rate-monotonically.
i. Suppose that the periodic server is a basic sporadic server. What are the response times

of the following two aperiodic jobs: One arrives at 3 and has execution time 0.75, and
one arrives at 7.5 and has execution time 0.6.

ii. Suppose that the period server is a deferrable server. What are the response times of the
above two aperiodic jobs.

(b) Note that the utilization of the periodic server in part (a) is 0.25. We can give the server
different periods while keeping its utilization fixed at 0.25. Repeat (i) and (ii) in part (a) if
the period of the periodic server is 1.

(c) Can we improve the response times by increasing the period of the periodic server?
(d) Suppose that as a designer you were given (1) the characteristics of the periodic tasks, that

is, (p1, e1), (p2, e2), . . . , (pn, en), (2) the minimum interval pa between arrivals of aperiodic
jobs, and (3) the maximum execution time required to complete any aperiodic job. Suppose
that you are asked to choose the execution budget and period of a deferrable server. Suggest
a set of good design rules.

7.2 A system contains three periodic tasks. They are (3, 1), (4, 0.5), (5, 0.5).
(a) The task system also contains a sporadic server whose period is 2. The sporadic server is

scheduled with the periodic tasks rate-monotonically. Find the maximum utilization of the
server if all deadlines of periodic tasks are surely met.

i. Suppose that the server in part (a) is a pure polling server. What are the response times
of the following two aperiodic jobs: One arrives at 2.3 and has execution time 0.8, and
one arrives at 12.7 and has execution time 0.6?

ii. Suppose that the server in part (a) is a basic sporadic server. What are the response times
of the above two aperiodic jobs?

(b) We can give the server different periods while keeping its utilization fixed. Repeat (ii) in part
(a) if the period of the sporadic server whose utilization is given by your answer to (a) is 1
or 4.

7.3 Consider a system containing the following periodic tasks: T1 = (10, 2), T2 = (14, 3), and
T3 = (21, 4). A periodic server of period 8 is used to schedule aperiodic jobs.
(a) Suppose that the server and the tasks are scheduled rate-monotonically.

i. If the periodic server is a deferrable server, how large can its maximum execution budget
be?

ii. If the periodic server is a sporadic server, how large can its maximum execution budget
be?

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 271

Exercises 271

iii. Suppose that the sporadic server in (ii) is a simple sporadic server. If the aperiodic job
queue is rarely empty, which server you should use and why?

iv. Suppose that aperiodic jobs arrive more or less regularly every 7 units of time apart and
their execution times are around half of the execution budget of the server. Which server
is better and why?

v. Suppose that the sporadic server is a SpSL server. Which server is better and why for
aperiodic jobs in (iv)?

(b) Suppose that the server and the tasks are scheduled on the EDF basis.
i. Repeat (i) and (ii) in part (a).

ii. Suppose that the server is a total bandwidth server. How large can the size of the server
be? Will it perform at least as well as the deferrable server under the conditions in (ii)
and (iv) in part (a)?

7.4 Consider a system that contains two periodic tasks T1 = (7, 2) and T2 = (10, 3). There is a
bandwidth-preserving server whose period is 6. Suppose that the periodic tasks and the server are
scheduled rate-monotonically.
(a) Suppose that the server is a deferrable server.

i. What is the maximum server size?
ii. Consider two aperiodic jobs A1 and A2. The execution times of the jobs are equal to 1.0

and 2.0, respectively. Their arrival times are 2 and 5. What are their response times?
(b) Suppose that the server is a simple sporadic or SpSL sporadic server.

i. What is the maximum server size?
ii. Find the response times of jobs A1 and A2 in (ii) in part (a) if the server is a SpSL server.

7.5 Suppose that the periodic tasks in the previous problem are scheduled along with a server on the
earliest-deadline-first basis.
(a) What is the maximum server size if the server is a deferrable server? Is this size a function

of the period of the server? If not, why not? If yes, what is the best choice of server size?
(b) What is the maximum server size if the server is a total bandwidth server?
(c) Find the response times of A1 and A2 in Problem 7.4 for servers in parts (a) and (b).

7.6 A system contains three periodic tasks: (2.5, 0.5), (3, 1), and (5, 0.5).
(a) The system also contains a sporadic server whose period is 4. The server is scheduled with

the periodic tasks rate-monotonically. Find the maximum execution budget of the server so
the periodic tasks remain schedulable.

(b) We want improve the responsiveness of the system by increasing the size of the server ob-
tained in part (a). In particular, we want to reduce its period while keeping its execution
budget fixed. Find the minimum server period.

(c) Suppose that the server is a sporadic/background server whose parameters are (3.5, 0.75).
There are two aperiodic jobs. One arrives at 1.9, and the other arrives at 4.8. Each of these
jobs requires 1 unit of processor time to complete. Construct a schedule for this system in
the time interval [0, 15]. What are the response times of the jobs?

(d) Suppose that the aperiodic jobs in part (c) are executed by a slack stealer.
i. Compute the initial slack time in the interval [0, 10].

ii. What is the amount of slack time when the first aperiodic job arrives at 1.9?
iii. Find the response time of the aperiodic jobs.

7.7 You are ask to prove Theorem 7.2 using an argument similar to the one used in the proof of
Theorem 6.11.
(a) We begin by guessing that the execution times and periods of the periodic tasks and the server

in the most difficult-to-schedule system are related according to the following equations:

es = (p1 − ps)/2

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 272

272 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

ek = pk+1 − pk for k = 1, 2, . . . , n − 1

en = pn − 3es − 2
n−1∑

k=1

ek

Draw a segment of the schedule starting from a critical instant t0 of all the periodic tasks to
the time t0 + pn . Verify that the periodic tasks and the deferrable server with these parameters
are schedulable and that they keep the processor busy in this time interval. We call a system
whose parameters are thus related a difficult-to-schedule system.

(b) The total utilization of a system is equal to the total utilization of the periodic tasks plus the
utilization of the deferrable server. Show that the total utilization of any system whose param-
eters are not related according to the equations in part (a) is larger than the total utilization of
any difficult-to-schedule system.

(c) Express the total utilization of a difficult-to-schedule system in terms of the adjacent period
ratios q1,s, q2,1, . . . , qn,n−1.

(d) Show that the minimum value of the total utilization in part (c) is UDS(n) plus us given by
Theorem 7.2.

7.8 In Theorem 7.2, one of the conditions on the periods of the tasks is that ps + es ≤ pn < 2ps .
When ps + es > pn , URM/DS(n) given by the theorem is no longer the schedulable utilization
of the periodic tasks. This problem intends to show you that the schedulable utilization of the
periodic tasks may be very poor when ps + es > pn .
(a) Consider a system containing a periodic task with period 2 and execution time ε > 0 that

is scheduled rate-monotonically together with a deferrable server whose period is 1.9 and
execution budget is 1.0. Show that the periodic task is not schedulable for all values of ε > 0.

(b) Consider a system containing n independent periodic tasks and a deferrable server (ps, es)

that are scheduled rate-monotonically. The periods of the tasks and the parameters of the
server are such that ps + es > pn .

i. Show that when us is less than 0.5, the system is schedulable if the total utilization of the
periodic tasks is equal to or less than 1 − 2us . (Hint: It will be helpful if you first show
that the statement is true for n equal to 1 and then reduce the problem for arbitrary n to
the case of n equal to 1.)

ii. Show that when us is larger than 0.5, no periodic task with period larger than ps is
schedulable.

7.9 Show that a periodic task Ti = (pk, ek) in a system of n independent, preemptable periodic tasks
is schedulable according to the EDF algorithm, together with m deferrable servers, each of which
has period ps,k , execution budget es,k and utilization us,k , if

n∑

k=1

ek

min(Dk, pk)
+

m∑

k=1

us,k

(
1 + ps,k − es,k

Di

)
≤ 1

7.10 In a fixed-priority system of two periodic tasks T1 = (3, 1) and T3 = (9, 3), there is a sporadic
server (ps, es) = (8, 2). Suppose that two aperiodic jobs A1 and A2 arrive at time 0.5 and 5,
respectively. Their execution times are both equal to 1.
(a) What is the response time of A2 if the server is a simple sporadic server?
(b) What is the response time of A2 if the server is a SpSL server?

7.11 Section 7.3 described informally an enhanced sporadic server algorithm. The primary difference
between an enhanced sporadic server and a simple sporadic server with the same period ps and
execution budget es is that the former is allowed to keep its unconsumed budget at each replenish-
ment time, while the latter is not. Stated more precisely, at each replenishment time, the budget of
an enhanced sporadic server is incremented by es , and if the higher-priority subsystem TH is busy

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 273

Exercises 273

throughout the interval (tr , tr + ps] since the latest replenishment time, the budget is replenished
at tr + ps .
(a) Write the replenishment rules of such a server.
(b) Write the consumption rules of enhanced sporadic servers so that such a server emulates a

periodic task (ps, es) in which the response times of some jobs are longer than ps .

7.12 The consumption and replenishment rules of SpSL sporadic servers stated in [SpSL] are as fol-
lows. Let ps and es denote the server period and execution budget, respectively.

• Consumption rule: The budget is consumed at the rate of 1 per unit time only when the server is
executed.

• Replenishment rules
R1 The budget is initially set at es .
R2 The next replenishment time is set at t + ps when at time t the server or a task in the higher-

priority subsystem TH becomes ready for execution after the processor has been executing
tasks with priorities lower than the server. The amount of budget replenished at this replen-
ishment time is determined when the processor starts to execute a lower-priority task after
having executed the server or a task in TH : The amount to be replenished is equal to the time
consumed by the SpSL server since the last time the replenishment time was set.

R3 The execution budget is set at es when the processor becomes idle.

(Note that because of rule R3, the SpSL server is a sporadic/background server.)

(a) Show that the system containing two periodic tasks (3, 1) and (8, 3) is schedulable rate-
monotonically together with a SpSL server that has period 4 and execution budget 1.0 if the
server behaves just like the periodic task (4, 1).

(b) Apply the rules stated above to this system. There are two aperiodic jobs. A1 with execution
time 0.5 arrives at time 0, and A2 with execution time 4 arrives at time 4. List the time
instants in the interval (0, 10) at which the next replenishment time is set and the instants
when the amount to be replenished is determined, together with the corresponding amounts
to be replenished.

(c) If your answer in part (b) is correct, you should find that the lower-priority task (8, 3) fails to
meet its deadline at 8. In other words, the server does not behave like a periodic task. Discuss
briefly the reason why it fails to behave correctly.

(d) How should the rules stated above be modified to ensure the correctness of the server?
7.13 GhBa servers [GhBa] are sporadic servers that are designed to work in a deadline-driven system

where all the tasks are scheduled on the EDF basis. As stated in Section 7.3, a GhBa server
differs from a simple deadline-driven sporadic server in that its execution budget is consumed
and replenished in chunks. When the budget of the server is replenished for the first time, the
server has one chunk of budget of size es . As time goes on, chunks of budget are created and
deleted as described below. The server is eligible for execution when the server is backlogged
and has at least one chunk of budget. The server consumes its budget only when it executes. It
uses and consumes chunks of budget replenished at different times in order of their replenishment.
Whenever the server has exhausted a chunk of budget, the chunk is deleted. It is scheduled for
replenishment at the current deadline d of the server. When the server becomes idle after it has
consumed x units of a chunk of budget, a new chunk of size x is scheduled for replenishment at
the current deadline d . The size of the chunk being consumed is reduced by x .

The server has a deadline which is sometimes undefined. When the deadline is defined, it
is scheduled with the periodic tasks on the EDF basis based on its deadline. The deadline of the
server is determined according to the following rule.
(1) Initially the server deadline is undefined.

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 274

274 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

(2) If the deadline is undefined, it is set to t + ps when any of the following events occurs at t :
i. The server becomes eligible for execution.

ii. A task with deadline earlier than t + ps starts to execute.
(3) If the deadline ds of the server is defined, it is updated as described below whenever any of

the following events occurs at t :
i. A task with deadline d after the server deadline but at or before t + ps starts to execute,

set the server deadline to d .
ii. A task with deadline d after t + ps begins to execute, the deadline of the server becomes

undefined.
iii. The server begins to use a new chunk of budget whose replenishment time is after ds −

ps , set the deadline of the server to the replenishment time of just consumed chunk plus
ps .

Repeat parts (b) in Problem 7.12, using the GhBa server instead.

7.14 A priority-exchange server [LeSS, SpSL] with period ps and budget es is a periodic server whose
budget is set to es at time instants that are integer multiples of ps . Its budget is consumed at the
rate of 1 per unit time whenever it is executing. If when the server is suspended some lower
priority tasks Tl,1, Tl,2, . . . , Tl,k execute in the time interval where the server would be scheduled
if it were not suspended, we say that these lower-priority tasks execute at the server’s priority
in this interval. Let x j denote the amount of time the task Tl, j executes at the server’s priority
in a period of the server. The server is allowed to preserve x j units of its budget in the period.
However, these x j units the server gets by trading time with the lower-priority task Tl, j has the
priority of Tl, j ; when the server later wants to use this budget, it will be scheduled at the priority of
the task Tl, j . Suppose that there is no special hardware to support priority exchange. Describe in
pseudocode an implementation of a priority exchange server. Give an estimate of the scheduling
overhead and compare it with that of a simple sporadic server.

7.15 (a) Are deferrable server and simple sporadic server algorithms fair in fixed-priority systems? If
yes, give an informal proof; if no, give an example to illustrate.

(b) Repeat part (a) for the deferrable server algorithm and the simple sporadic server algorithm
in deadline-driven systems.

7.16 A system contains three weighted fair-queueing servers FQ1, FQ2, and FQ3. Their sizes are
ũ1 = 0.5, ũ2 = 0.2, and ũ3 = 0.3, respectively. Suppose that before time 0, all servers were idle.

• Starting from time 0, all servers become backlogged.
• At time 5, FQ3 becomes idle.
• At time 10, FQ1 also becomes idle.
• At time 20, FQ3 becomes backlogged again.
• At time 25, F Q2 becomes idle.
• At time 35, FQ1 becomes backlogged again.

What is the finish number of the system at time 35?

7.17 Stiliadis, et al. [StVa96] put total bandwidth and WFQ servers in a class of bandwidth-preserver
server algorithms which they call latency-rate server algorithms. The definition of a latency-rate
server makes use of the notion of a server busy interval. A busy interval of a server of size ũ starts
at time x if, immediately prior to x , the queue of the server is empty and, at x , a job joins the
queue. The busy interval ends at the first time instant x ′ after x when the total execution time of
all jobs that join the server queue at and after x becomes equal to ũ(x ′ − x). A server is a latency-
rate server if, and only if, at every time instant t in a server busy interval (x, x ′], the total attained

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 275

Exercises 275

time w̃(x, t) of the server (i.e., the total amount of time the server executes in this interval) is
such that

w̃(x, t) ≥ max(0, ũ(t − x − δ))

where δ is the minimum of all nonnegative, finite numbers that satisfy this inequality. δ is the
latency of the server because it is the additional delay a job may suffer over the time required to
complete the job when the job and all the jobs executed by the server before it were executed by
a processor whose speed is ũ. of the physical processor and there were no other servers in the
system.

Which one(s) of the bandwidth-preserving servers described in this chapter is(are) not
latency-rate servers? For each server that is not latency-rate, briefly explain why. For each server
that is a latency-rate server, compute its latency.

7.18 Consider a system of three periodic tasks T1 = (3, 1), T2 = (4, 1), and T3 = (6, 1.5). The
periodic tasks are scheduled according to the EDF algorithm
(a) Compute the initial slacks and the slack table of the jobs in the first hyperperiod of the tasks.

Assume that when jobs have the same deadline, the tie in priority is broken on the basis of
their periods. The job of the task with a shorter period has a higher priority.

(b) An aperiodic job with execution time 1.0 arrives at time 3.5, and we want to find the slack of
the system at the time. What are the elements of the three subsets Zi for i = 1, 2, 3?

(c) Find the minimum slack of the jobs in each of the subsets and the slack of the system.

7.19 Davis, et al. [DaWe] suggested a dual-priority scheme for scheduling aperiodic jobs in the midst
of periodic tasks. According to the dual-priority scheme, the system keeps three bands of prior-
ity, each containing one or more priority levels. The highest band contains real-time priorities;
they are for hard real-time tasks. Real-time priorities are assigned to hard real-time tasks accord-
ing to some fixed priority scheme. The middle priority band is for aperiodic jobs. The lowest
priority band is also for hard real-time tasks. Specifically, when a job Ji,k in a periodic task
Ti = (pi , ei , Di) is released, it has a priority in the lowest priority band until its priority pro-
motion time. At its priority promotion time, its priority is raised to its real-time priority. Let Wi

denote the maximum response time of all jobs in Ti when they execute at the real-time priority
of the task. The priority promotion time of each job is Yi = Di − Wi from its release time. Since
Wi can be computed off-line or at admission control time, the relative promotion time Yi for jobs
in each task Ti needs to be computed only once. By delaying as much as possible the scheduling
of every hard real-time job at its real-time priority, the scheduler automatically creates slacks for
aperiodic jobs.
(a) Give an inituitive argument to support the claim that this scheme will not cause any periodic

job to miss its deadline if the system of periodic tasks is schedulable.
(b) A system contains three periodic tasks: They are (2.5, 0.5), (3, 1), and (5, 0.5). Compute

the priority promotion times for jobs in each of the tasks if the tasks are scheduled rate-
monotonically.

(c) Suppose that there are two aperiodic jobs. One arrives at 1.9, and the other arrives at 4.8.
Compute the response times of these jobs in a dual-priority system in which there is only
one priority level in the middle priority band and one priority level in the lowest priority
band. How much improvement is gained over simply scheduling the aperiodic jobs in the
background of rate-monotonically scheduled periodic tasks?

(d) Can the dual-priority scheme be modified and used in a system where periodic tasks are
scheduled according to the EDF algorithm? If no, briefly explain why; if yes, briefly describe
the necessary modification.

7.20 A system of three periodic tasks T1 = (3, 1), T2 = (5, 1.5), and T3 = (8, 2) is scheduled on the
EDF basis. The precomputed amounts of slack of the six jobs in a hyperperiod are 2, 2.5, 2.5,

Integre Technical Publishing Co., Inc. Liu January 13, 2000 9:07 a.m. chap7 page 276

276 Chapter 7 Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

2.5, 2.5, and 2, respectively. Suppose that the first aperiodic job arrives at time 3.5. What are the
slacks of the jobs Ji for i = 3, 4, 5, 6, and 7. (The jobs are indexed in nondecreasing order of
their deadlines.)

7.21 The static slack computation algorithm based on Eq. (7.8) assumes that periodic jobs have dis-
tinct priorities. In other words, jobs that have the same deadlines are assigned distinct priorities.
Does the algorithm remain correct if these jobs are given the same priority and ties are broken
in a nondeterministic manner? If yes, explain why. If no, describe how the algorithm must be
modified.

7.22 Section 7.8.2 mentioned that a sporadic task S = (1, p, p, I) according the FeVe model satisfies
the (�, E) leaky bucket if p > 1/� and I (1 − p/p)/p. Show that this statement is true.

7.23 Suppose that the intervals between arrivals of sporadic jobs are known to be in the range (a, b).
The execution time of each sporadic job is at most e (≤ a) units.
(a) Suppose relative deadlines of sporadic jobs are equal to a. You are asked to design a periodic

server that will be scheduled rate-monotonically with other periodic tasks. Sporadic jobs
waiting to be completed are executed on the first-in-first-out basis in the time intervals where
the periodic server is scheduled. Choose the period and utilization of this server so that all
sporadic jobs will be completed by their deadlines and the utilization of the periodic server
is as small as possible.

(b) Repeat part (a) for the cases where the relative deadlines of sporadic jobs are equal to d:
d ≤ a and d ≥ a.

7.24 Suppose that the intervals between arrivals of sporadic jobs with hard deadlines are known to be
uniformly distributed in the range [1, 2].
(a) The execution times of the sporadic jobs are at most equal to 1 unit and are ready upon

arrival.
(i) Suppose that relative deadlines of sporadic jobs are equal to 1. You are asked to design

a sporadic/background server that will be scheduled rate-monotonically with periodic
tasks. Sporadic jobs waiting to be completed are executed on the FIFO basis in the time
intervals where the server is scheduled. (Note that since all sporadic jobs have the same
relative deadline, FIFO ordering is the same as EDF ordering.) Choose the period and
utilization of this server so that as long as the sporadic server is schedulable, all sporadic
jobs will be completed by their deadlines. Make the utilization of the server as small as
possible.

(ii) What should the server parameters be if the relative deadlines of the sporadic jobs are
0.75?

(b) Suppose that the execution time of a sporadic job is equal to 0.1K where K is a random
variable that assumes only integer values. The probability for K being k is 0.1(0.9)k for k =
1, 2, If the relative deadlines of the sporadic jobs are equal to 1, what is the probability
that a sporadic job will miss its deadline if your server in (i) in part (a) is used?

C H A P T E R 8

Resources and Resource
Access Control

In Section 3.1, we briefly mentioned the fact that in addition to a processor, each job may
require some other resource in order to execute, but thus far we have ignored this requirement
in order to focus on the problems in processor scheduling. We are now ready to take into
account the resource requirements.

This chapter first extends our workload model to include resources and introduces addi-
tional notations needed in later sections. It then discusses how resource contention affects the
execution behavior and schedulability of jobs, how various resource access-control protocols
work to reduce the undesirable effect of resource contention, and how well these protocols
succeed in achieving this goal. We focus on priority-driven systems. Clock-driven systems do
not have these problems as we can avoid resource contention among jobs by scheduling them
according to a cyclic schedule that keeps jobs’ resource accesses serialized.

8.1 ASSUMPTIONS ON RESOURCES AND THEIR USAGE

We continue to focus on the case where the system contains only one processor. In addition,
the system also contains ρ types of serially reusable resources named R1, R2, . . . , Rρ . There
are νi indistinguishable units of resource (of type) Ri , for 1 ≤ i ≤ ρ. Serially reusable
resources are typically granted (i.e., allocated) to jobs on a nonpreemptive basis and used in a
mutually exclusive manner. In other words, when a unit of a resource Ri is granted to a job, this
unit is no longer available to other jobs until the job frees the unit. Again, examples of such
resources are mutexes, reader/writer locks, connection sockets, printers, and remote servers.
A binary semaphore is a resource (type) that has only 1 unit while a counting semaphore has
many units. A system containing five printers has 5 units of the printer resource. There is only
1 unit of an exclusive write-lock.

A resource that has an infinite number of units has no effect on the timing behavior of
any job since every job can have the resource at any time; there is no need to include the
resource in our model. Therefore, we lose no generality by assuming that every resource Ri

has a finite number of units.
Some resources can be used by more than one job at the same time. We model such a

resource as a resource type that has many units, each used in a mutually exclusive manner. For

277

278 Chapter 8 Resources and Resource Access Control

example, a file that can be read by at most ν users at the same time is modeled as a resource
that has ν exclusive units. By modeling shared resources in this manner, we do not need to
treat them differently.

8.1.1 Enforcement of Mutual Exclusion and Critical Sections

For the most part of this chapter, we assume that a lock-based concurrency control mechanism
is used to enforce mutually exclusive accesses of jobs to resources. (We make this assumption
for the sake of clarity. As you will see later, commonly used resource access control proto-
cols can be implemented without locks.) When a job wants to use ηi units of resource Ri , it
executes a lock to request them. We denote this lock request by L(Ri , ηi). The job continues
its execution when it is granted the requested resource. When the job no longer needs the
resource, it releases the resource by executing an unlock, denoted by U (Ri , ηi). When a re-
source Ri has only 1 unit, we use the simpler notations L(Ri) and U (Ri) for lock and unlock,
respectively. When there are only a few resources and each has only 1 unit, we simply call
them by capital letters, such as X , Y , and Z , or by names, such as Black, Shaded, and so on.

Following the usual convention, we call a segment of a job that begins at a lock and
ends at a matching unlock a critical section. Furthermore, resources are released in the last-
in-first-out order. Hence overlapping critical sections are properly nested.

As an example, Figure 8–1 shows three jobs, J1, J2, and J3, and the time instants when
locks and unlocks are executed if each job executes alone starting from time 0. Resources R1,
R2, and R3 have only 1 unit each, while resources R4 and R5 have many units. Job J3 has three
overlapping critical sections that are properly nested. A critical section that is not included in
other critical sections is an outermost critical section; the critical section delimited by L(R1)

and U (R1) in J3 is an example. Other examples are the critical sections delimited by L(R2)

and U (R2) in J2, the second pair of L(R3) and U (R3) in J2 and L(R3) and U (R3) in J1.
When the execution times of the critical sections and the way they are nested are relevant

in our discussion, we denote each critical section by a square bracket [R, η; e]. The entries in
the bracket give the name R and the number of units η of the resource used by the job when
in the critical section and the (maximum) execution time e of the critical section. In the case
where R has only 1 unit, we omit the value of η and use the simpler notation [R; e] instead.
In the example in Figure 8–1, the critical section in J3 that begins at L(R5, 4) is [R5, 4; 3]
because in this critical section, the job uses 4 units of R5 and the execution time of this critical
section is 3. Concatenations and nestings of the brackets allow us to describe different com-

J1
L(R3)

L(R2) L(R3) U(R3) U(R2) L(R3) U(R3)

L(R1) L(R4 , 3) L(R5 , 4) U(R5 , 4) U(R4 , 3) U(R1)

L(R2) U(R2) U(R3)

0 2 4 6 8 10 12 14 16 18

J2

J3

……

… … …

…… … … … …

…

……………

FIGURE 8–1 Examples of critical sections

Section 8.1 Assumptions on Resources and Their Usage 279

binations of critical sections. Specifically, we denote nested critical sections by nested square
brackets. For example, the nested critical section in J3 is [R1; 14 [R4, 3; 9 [R5, 4; 3]]]. This
notation indicates that the critical section beginning from L(R1) includes the one beginning
from L(R4, 3), which in turn includes the one beginning from L(R5, 4). Similarly, critical sec-
tions in J2 are [R2; 7 [R3; 2]][R3; 3], indicating that there are two nonlapping critical sections
in this job.

8.1.2 Resource Conflicts and Blocking

Two jobs conflict with one another, or have a resource conflict, if some of the resources they
require are of the same type. The jobs contend for a resource when one job requests a resource
that the other job already has. We use these terms interchangeably as the distinction between
them is often not important. The scheduler always denies a request if there are not enough
free units of the resource to satisfy the request. Sometimes, as we will see later, a scheduler
may deny a request even when the requested resource units are free in order to prevent some
undesirable execution behavior.

When the scheduler does not grant ηi units of resource Ri to the job requesting them,
the lock request L(Ri , ηi) of the job fails (or is denied). When its lock request fails, the job is
blocked and loses the processor. A blocked job is removed from the ready job queue. It stays
blocked until the scheduler grants it ηi units of Ri for which the job is waiting. At that time,
the job becomes unblocked, is moved backed to the ready job queue, and executes when it is
scheduled.

The example in Figure 8–2 illustrates the effect of resource contentions. In this example,
there are three jobs, J1, J2, and J3, whose feasible intervals are (6, 14], (2, 17] and (0, 18],
respectively. The release time and deadline of each job are marked by the vertical bar on
each of the time lines. The jobs are scheduled on the processor on the earliest-deadline-first
basis. Hence, J1 has the highest priority and J3 the lowest. All three jobs require the resource
R, which has only 1 unit. In particular, the critical sections in these jobs are [R; 2], [R; 4],
and [R; 4], respectively. Below is a description of this schedule segment. The black boxes in
Figure 8–2 show when the jobs are in their critical sections.

1. At time 0, only J3 is ready. It executes.

2. At time 1, J3 is granted the resource R when it executes L(R).

J1

0 2 4 6 8 10 12 14 16 18

J2

J3

FIGURE 8–2 Example of job interaction due to resource contention.

280 Chapter 8 Resources and Resource Access Control

3. J2 is released at time 2, preempts J3, and begins to execute.
4. At time 4, J2 tries to lock R. Because R is in use by J3, this lock request fails. J2

becomes blocked, and J3 regains the processor and begins to execute.
5. At time 6, J1 becomes ready, preempts J3 and begins to execute.
6. J1 executes until time 8 when it executes a L(R) to request R. J3 still has the resource.

Consequently, J1 becomes blocked. Only J3 is ready for execution, and it again has the
processor and executes.

7. The critical section of J3 completes at time 9. The resource R becomes free when J3

executes U (R). Both J1 and J2 are waiting for it. The priority of the former is higher.
Therefore, the resource and the processor are allocated to J1, allowing it to resume
execution.

8. J1 releases the resource R at time 11. J2 is unblocked. Since J1 has the highest priority,
it continues to execute.

9. J1 completes at time 12. Since J2 is no longer blocked and has a higher priority than
J3, it has the processor, holds the resource, and begins to execute. When it completes at
time 17, J3 resumes and executes until completion at 18.

This example illustrates how resource contention can delay the completion of higher-priority
jobs. It is easy to see that if J1 and J2 do not require the resource, they can complete by times
11 and 14, respectively.

8.2 EFFECTS OF RESOURCE CONTENTION AND RESOURCE ACCESS CONTROL

A resource access-control protocol, or simply an access-control protocol, is a set of rules that
govern (1) when and under what conditions each request for resource is granted and (2) how
jobs requiring resources are scheduled. Before moving on to describe several well-known
resource access-control protocols and their performance, let us examine in more detail the
undesirable effects of resource contention. By looking more closely at what can happen when
jobs contend for resources, we should see more clearly the specific design objectives of such
a protocol.

8.2.1 Priority Inversion, Timing Anomalies, and Deadlock

In Section 6.8, we saw that priority inversion can occur when the execution of some jobs or
portions of jobs is nonpreemptable. Resource contentions among jobs can also cause priority
inversion. Because resources are allocated to jobs on a nonpreemptive basis, a higher-priority
job can be blocked by a lower-priority job if the jobs conflict, even when the execution of
both jobs is preemptable. In the example in Figure 8–2, the lowest priority job J3 first blocks
J2 and then blocks J1 while it holds the resource R. As a result, priority inversion occurs in
intervals (4, 6] and (8, 9].

When priority inversion occurs, timing anomalies invariably follow. Figure 8–3 gives
an example. The three jobs are the same as those shown in Figure 8–2, except that the critical
section in J3 is [R; 2.5]. In other words, the execution time of the critical section in J3 is
shortened by 1.5. If we were not warned earlier in Section 4.8 about timing anomalies, our
intuition might tell us that as a consequence of this reduction in J3’s execution time, all jobs

Section 8.2 Effects of Resource Contention and Resource Access Control 281

J1

0 2 4 6 8 10 12 14 16 18

J2

J3

FIGURE 8–3 Example illustrating timing anomaly.

should complete sooner. Indeed, this reduction does allow jobs J2 and J3 to complete sooner.
Unfortunately, rather than meeting its deadline at 14, J1 misses its deadline because it does
not complete until 14.5.

More seriously, without good resource access control, the duration of a priority inver-
sion can be unbounded. The example in Figure 8–4 illustrates this fact. Here, jobs J1 and J3

have the highest priority and lowest priority, respectively. At time 0, J3 becomes ready and
executes. It acquires the resource R shortly afterwards and continues to execute. After R is
allocated to J3, J1 becomes ready. It preempts J3 and executes until it requests resource R at
time 3. Because the resource is in use, J1 becomes blocked, and a priority inversion begins.
While J3 is holding the resource and executes, a job J2 with a priority higher than J3 but
lower than J1 is released. Moreover, J2 does not require the resource R. This job preempts J3

and executes to completion. Thus, J2 lengthens the duration of this priority inversion. In this
situation, the priority inversion is said to be uncontrolled [ShRL90]. There can be an arbitrary
number of jobs with priorities lower than J1 and higher than J3 released in the meantime. They
can further lengthen the duration of the priority inversion. Indeed, when priority inversion is
uncontrolled, a job can be blocked for an infinitely long time.

Nonpreemptivity of resource allocation can also lead to deadlocks. The classic example
is one where there are two jobs that both require resources X and Y . The jobs are in deadlock

J1

0 2 4 6 8 10 12 14 16 18

J2

J3

FIGURE 8–4 Uncontrolled priority inversion.

282 Chapter 8 Resources and Resource Access Control

when one of them holds X and requests for Y , while the other holds Y and requests for X .
The conditions that allow this circular wait of jobs for each other (i.e., a deadlock) to occur
are well-known [Crow, SiGa].

From these examples, we see that no resource access-control protocol can eliminate the
priority inversion and anomalous behavior caused by resource contention. A more realistic
goal of such a protocol is that it keeps the delays thus incurred as short as possible. For this
reason, a criterion we use to measure the performance of a resource access-control protocol is
the blocking time of each job. A good resource access-control protocol should control priority
inversion and prevent deadlock and, thus, keep the blocking time of every job bounded from
the above.

8.2.2 Additional Terms, Notations, and Assumptions

In most parts of this chapter, we ignore all the other factors that can cause a job to be blocked,
so, no job ever suspends itself and every job is preemptable on the processor. We will discuss
the effect of self-suspension and nonpreemptivity at the end of the chapter.

We sometimes use Jh and Jl to denote a higher-priority job and a lower-priority job,
respectively. The priorities of these jobs are denoted by πh and πl , respectively. In general,
the priority of a job Ji is πi . As in earlier chapters, we represent priorities by integers; the
smaller the integer, the higher the priority.

A higher-priority job Jh is said to be directly blocked by a lower-priority job Jl when Jl

holds some resource which Jh requests and is not allocated. In the example in Figure 8–2, J3

directly blocks J2 at time 5.
We describe the dynamic-blocking relationship among jobs using a wait-for graph. In

the wait-for graph of a system, every job that requires some resource is represented by a
vertex labeled by the name of the job. There is also a vertex for every resource in the system,
labeled by the name and the number of units of the resource. At any time, the wait-for graph
contains an (ownership) edge with label x from a resource vertex to a job vertex if x units
of the resource are allocated to the job at the time. There is a (wait-for) edge with label y
from a job vertex to a resource vertex if the job requested y units of the resource earlier and
the request was denied. In other words, the job is waiting for the resource. (Clearly, y plus
the sum of all the labels of edges from the resource vertex is larger than the number of units
of the resource.) Therefore, a path in a wait-for graph from a higher-priority job to a lower-
priority job represents the fact that the former is directly blocked by the latter. A cyclic path
in a wait-for graph indicates a deadlock.

The simple graph in Figure 8–5 is an example. It represents the state of the system in
Figure 8–2 at time 5: The resource R is allocated to J3 and J2 is waiting for the resource. The
path from J2 to J3 indicates that J2 is directly blocked by J3. Later, J1 will also be directly

J1

J2
1 1 J3

R, 1

FIGURE 8–5 A wait-for-graph of the system in Figure 8–2 at time 5.

Section 8.2 Effects of Resource Contention and Resource Access Control 283

blocked by J3 when it requests and is denied the resource, and the wait-for graph of the system
will have an additional edge from J1 to R. Since there is only one resource, deadlock can never
occur.

In a system of periodic tasks, we say that a periodic task Ti has a critical section
[R, x; y], or that the task requires x units of resource R for y units of time, if every job
in the task requires at most x units of R for at most y units of time. We sometimes denote the
periodic task by the tuple (φi , pi , ei , Di , [R, x; y]). In general, when jobs in the task require
more than one resource and hence have more than one critical section, we put all the critical
sections in the tuple. Hence if J2 in Figure 8–1 is a job in a periodic task of period 100, exe-
cution time 20, zero phase, and relative deadline 100, and if no job in the task has any longer
critical section, we call the task (100, 20; [R2; 7[R3; 2]][R3; 3]). When the parameters of the
critical sections are not relevant, we also denote the task Ti by a tuple (φi , pi , ei , Di ; ci); the
last element ci is the maximum execution time of the longest critical section of the jobs in the
periodic task. (The execution times of all the critical sections are included in the execution
time ei of the task.) In this simpler way, the task (100, 20; [R2; 7[R3; 2]][R3; 3]) is also called
(100, 20; 7).

We will specify resource requirements of a system by a bipartite graph in which there
is a vertex for every job (or periodic task) and every resource. Each vertex is named by the
name of the job (or task) or resource it represents. The integer next to each resource vertex
Ri gives the number νi of units of the resource. The fact that a job J (or task T) requires a
resource Ri is represented by an edge from the job (or task) vertex J (or T) to the resource
vertex Ri . We may label each edge by one or more 2-tuples or numbers, each for a critical
section of the job (or task) which uses the resource. The first element of each 2-tuple gives the
number of units used in the critical section. We usually omit this element when there is only
1 unit of the resource. The second element, which is always given, specifies the duration of
the critical section. Figure 8–6 gives two examples. The simple graph in Figure 8–6(a) gives

J1

J2

J3

2

4

4

R, 1

T1

T2

T3

T4

(2; 3)

2

(b)(a)

1

[R2; 8[R1, 4; 1][R1, 1; 5]]

R1, 5

R2, 1

FIGURE 8–6 Graphs that specify resource requirements.

284 Chapter 8 Resources and Resource Access Control

the resource requirements of the jobs in the system in Figure 8–2. The labels of the edges are
the durations of the critical sections of the respective jobs. The graph in Figure 8-6(b) uses
a combination of ways to specify resource requirements. The system has four periodic tasks.
The edges from T1 tells us that (each job in) this task requires 2 units of R1 for at most 3
units of time and it requires the resource R2 for at most 1 unit of time. Similarly, T4 requires
R2 for 2 units of time. Rather than specifying the resource requirement of T3 by complicated
labels of edges connecting vertex T3 to resource vertices, we simply provide the information
on critical sections of T3 next to the vertex T3. There is no edge from T2, meaning that this
task does not require any resource.

Finally, to avoid verboseness whenever there is no ambiguity, by a critical section, we
mean an outermost critical section. By a critical section of a periodic task, we mean a critical
section of each job in the periodic task.

8.3 NONPREEMPTIVE CRITICAL SECTIONS

The simplest way to control access of resources is to schedule all critical sections on the
processor nonpreemptively [Mok]. (In other words, when a job requests a resource, it is always
allocated the resource. When a job holds any resource, it executes at a priority higher than
the priorities of all jobs.) This protocol is called the Nonpreemptive Critical Section (NPCS)
protocol. Because no job is ever preempted when it holds any resource, deadlock can never
occur.

Take the jobs in Figure 8–4 for example. Figure 8–7(a) shows the schedule of these
jobs when their critical sections are scheduled nonpreemptively on the processor. According
to this schedule, J1 is forced to wait for J3 when J3 holds the resource. However, as soon as
J3 releases the resource, J1 becomes unblocked and executes to completion. Because J1 is not
delayed by J2, it completes at time 10, rather than 15 according to the schedule in Figure 8–4.

In general, uncontrolled priority inversion illustrated by Figure 8–4 can never occur. The
reason is that a job Jh can be blocked only if it is released when some lower-priority job is in a
critical section. If it is blocked, once the blocking critical section completes, all resources are
free. No lower-priority job can get the processor and acquire any resource until Jh completes.
Hence, Jh can be blocked only once, and its blocking time due to resource conflict is at most
equal to the maximum execution time of the critical sections of all lower-priority jobs.

Specifically, the blocking time bi (rc) due to resource conflict of a periodic task Ti in a
fixed-priority system of n periodic tasks is equal to

bi (rc) = max
i+1≤k≤n

(ck) (8.1)

when the tasks are indexed in order of nonincreasing priority. In a system where periodic tasks
are scheduled on the EDF basis, a job in task Ti with relative deadline Di can be blocked only
by jobs in tasks with relative deadlines longer than Di . This was stated in Theorem 6.18.
Therefore, the blocking time bi (rc) of Ti is again given by Eq. (8.1) if we index the periodic
tasks according to their relative deadlines so that i < j if Di < D j .

As an example, suppose that the tasks in the system in Figure 8–6(b) are scheduled
on a fixed-priority basis. The blocking time b1(rc) of the highest priority task T1 is 8, the
execution time of the (outermost) critical section of T3. Similarly, b2(rc) is 8, while b3(rc) is
2, the execution time of the critical section of T4. No task blocks T4 since it has the lowest

Section 8.3 Nonpreemptive Critical Sections 285

J1

0 2 4 6 8 10 12 14 16 18

J2

J3

J1

J2

J3

(a)

(b)
FIGURE 8–7 Example to illustrate two simple protocols. (a) Controlling priority inversion by disallowing preemp-
tion of critical section. (b) Controlling priority inversion by using priority inheritance.

priority. Suppose that the relative deadlines of the tasks are D1 < D2 < D3 < D4 and the
tasks are scheduled on an EDF basis. Then the blocking times bi (rc) for i = 1, 2, 3, and 4 are
also 8, 8, 2, and 0, respectively.

The most important advantage of the NPCS protocol is its simplicity, especially when
the numbers of resource units are arbitrary. The protocol does not need any prior knowl-
edge about resource requirements of jobs. It is simple to implement and can be used in both
fixed-priority and dynamic-priority systems. It is clearly a good protocol when all the critical
sections are short and when most of the jobs conflict with each other.

An obvious shortcoming of this protocol is that every job can be blocked by every
lower-priority job that requires some resource even when there is no resource conflict between
them. When the resource requirements of all jobs are known, an improvement is to let a
job holding any resource execute at the highest priority of all jobs requiring the resource.
This is indeed how the ceiling-priority protocol supported by the Real-Time Systems Annex
of Ada95 [Cohe96] works. We will discuss the ceiling-priority protocol and its worst-case
performance in detail in Section 8.6, after examining two other well-known protocols that
aim at improving upon the NPCS protocol.

286 Chapter 8 Resources and Resource Access Control

8.4 BASIC PRIORITY-INHERITANCE PROTOCOL

The priority-inheritance protocol proposed by Sha, et al. [ShRL90] is also a simple protocol.
It works with any preemptive, priority-driven scheduling algorithm. Like the NPCS protocol,
it does not require prior knowledge on resource requirements of jobs. The priority-inheritance
protocol does not prevent deadlock. When there is no deadlock (i.e., when some other method
is used to prevent deadlock), the protocol ensures that no job is ever blocked for an indefinitely
long time because uncontrolled priority inversion cannot occur.

In this and the next three sections, we confine our attention to the special case where
there is only 1 unit of each resource. (This is the reason for calling the version described here
the basic version.) By doing so, we relieve ourselves temporarily of the details that arise due
to multiple resource units, so we can focus on the essence of the protocols and the behavior
of the system under their control. We will return in Section 8.9 to remove this restrictive
assumption.

8.4.1 Definition of Basic Priority-Inheritance Protocol

In the definition of this protocol, as well as other protocols described later, we call the priority
that is assigned to a job according to the scheduling algorithm its assigned priority. As you
will see shortly, at any time t , each ready job Jl is scheduled and executes at its current priority
πl(t), which may differ from its assigned priority and may vary with time. In particular, the
current priority πl(t) of a job Jl may be raised to the higher priority πh(t) of another job Jh .
When this happens, we say that the lower-priority job Jl inherits the priority of the higher
priority job Jh and that Jl executes at its inherited priority πh(t). Hereafter, when there is no
need to be specific or there is no possible confusion, we will simply say priority when we
mean either current or assigned priority.

In its simplest form, the priority-inheritance protocol is defined by the following rules.
These rules govern the ways current priorities of jobs are set and jobs are scheduled when
some of them contend for resources. Again, this version assumes that every resource has only
1 unit.

Rules of the Basic Priority-Inheritance Protocol

1. Scheduling Rule: Ready jobs are scheduled on the processor preemptively in a priority-
driven manner according to their current priorities. At its release time t , the current
priority π(t) of every job J is equal to its assigned priority. The job remains at this
priority except under the condition stated in rule 3.

2. Allocation Rule: When a job J requests a resource R at time t ,

(a) if R is free, R is allocated to J until J releases the resource, and

(b) if R is not free, the request is denied and J is blocked.

3. Priority-Inheritance Rule: When the requesting job J becomes blocked, the job Jl

which blocks J inherits the current priority π(t) of J . The job Jl executes at its in-
herited priority π(t) until it releases R; at that time, the priority of Jl returns to its
priority πl(t ′) at the time t ′ when it acquires the resource R.

Section 8.4 Basic Priority-Inheritance Protocol 287

According to this protocol, a job J is denied a resource only when the resource re-
quested by it is held by another job. (You will see shortly that this is not true for some other
protocols.) At time t when it requests the resource, J has the highest priority among all ready
jobs. The current priority πl(t) of the job Jl directly blocking J is never higher than the pri-
ority π(t) of J . Rule 3 relies on this fact.

The simple example in Figure 8–7(b) illustrates how priority inheritance affects the
way jobs are scheduled and executed. The three jobs in this figure are the same as the ones
in Figure 8–7(a). When J1 requests resource R and becomes blocked by J3 at time 3, job J3

inherits the priority π1 of J1. When job J2 becomes ready at 5, it cannot preempt J3 because
its priority π2 is lower than the inherited priority π1 of J3. As a consequence, J3 completes
its critical section as soon as possible. In this way, the protocol ensures that the duration of
priority inversion is never longer than the duration of an outermost critical section each time
a job is blocked.

Figure 8–8 gives a more complex example. In this example, there are five jobs and two
resources Black and Shaded. The parameters of the jobs and their critical sections are listed
in part (a). As usual, jobs are indexed in decreasing order of their priorities: The priority πi

of Ji is i , and the smaller the integer, the higher the priority. In the schedule in part (b) of this
figure, black boxes show the critical sections when the jobs are holding Black. Shaded boxes
show the critical sections when the jobs are holding Shaded.

1. At time 0, job J5 becomes ready and executes at its assigned priority 5. At time 1, it is
granted the resource Black.

2. At time 2, J4 is released. It preempts J5 and starts to execute.
3. At time 3, J4 requests Shaded. Shaded, being free, is granted to the job. The job contin-

ues to execute.
4. At time 4, J3 is released and preempts J4. At time 5, J2 is released and preempts J3.
5. At time 6, J2 executes L(Black) to request Black; L(Black) fails because Black is in use

by J5. J2 is now directly blocked by J5. According to rule 3, J5 inherits the priority 2 of
J2. Because J5’s priority is now the highest among all ready jobs, J5 starts to execute.

6. J1 is released at time 7. Having the highest priority 1, it preempts J5 and starts to exe-
cute.

7. At time 8, J1 executes L(Shaded), which fails, and becomes blocked. Since J4 has
Shaded at the time, it directly blocks J1 and, consequently, inherits J1’s priority 1. J4

now has the highest priority among the ready jobs J3, J4, and J5. Therefore, it starts to
execute.

8. At time 9, J4 requests the resource Black and becomes directly blocked by J5. At this
time the current priority of J4 is 1, the priority it has inherited from J1 since time 8.
Therefore, J5 inherits priority 1 and begins to execute.

9. At time 11, J5 releases the resource Black. Its priority returns to 5, which was its priority
when it acquired Black. The job with the highest priority among all unblocked jobs is
J4. Consequently, J4 enters its inner critical section and proceeds to complete this and
the outer critical section.

10. At time 13, J4 releases Shaded. The job no longer holds any resource; its priority re-
turns to 4, its assigned priority. J1 becomes unblocked, acquires Shaded, and begins to
execute.

288 Chapter 8 Resources and Resource Access Control

J1

0 2 4 6 8 10 12 14 16 18

J2

J3

J4

J5

20

J1

J2

J3

J4

J5

(a)

(b)

Job ri ei πi Critical Sections

7 3 1 [Shaded; 1]
5 3 2 [Black; 1]
4 2 3
2 6 4 [Shaded; 4 [Black; 1.5]]
0 6 5 [Black; 4]

FIGURE 8–8 Example illustrating transitive inheritance of priority inheritance. (a) Parameters of jobs. (b) Schedule
under priority inheritance.

11. At time 15, J1 completes. J2 is granted the resource Black and is now the job with the
highest priority. Consequently, it begins to execute.

12. At time 17, J2 completes. Afterwards, jobs J3, J4, and J5 execute in turn to completion.

8.4.2 Properties of the Priority-Inheritance Protocol

This example illustrates that when resource accesses are controlled by the priority-inheritance
protocol, there are two types of blocking: direct blocking and priority-inheritance blocking (or
simply inheritance blocking). J2 is directly blocked by J5 in (6, 11] and by J4 in (11, 12.5],

Section 8.4 Basic Priority-Inheritance Protocol 289

and J1 is directly blocked by J4 in (8, 13]. In addition, J3 is blocked by J5 in (6, 7] because
the latter inherits a higher priority in this interval. Later at time 8, when J4 inherits priority 1
from J1, J3 becomes blocked by J4 as a consequence. Similarly, the job J2 in Figure 8–7(b)
suffers inheritance blocking by J3 in (5, 7]. This type of blocking suffered by jobs that are not
involved in resource contention is the cost for controlling the durations of priority inversion
suffered by jobs that are involved in resource contention.

The example in Figure 8–8 also illustrates the fact that jobs can transitively block each
other. At time 9, J5 blocks J4, and J4 blocks J1. So, priority inheritance is transitive. In the
time interval (9, 11), J5 inherits J4’s priority, which J4 inherited from J1. As a consequence,
J5 indirectly inherits the J1’s priority.

The priority-inheritance protocol does not prevent deadlock. To see why, let us suppose
that J5 in this example were to request the resource Shaded sometime after Shaded has been
granted to J4 (e.g., at time 6.5). These two jobs would be deadlocked.

In addition, the priority-inheritance protocol does not reduce the blocking times suffered
by jobs as small as possible. It is true that in the absence of a deadlock, a job can be blocked
directly by any lower-priority job for at most once for the duration of one outermost critical
section. However, in the worst case, a job that requires v resources and conflicts with k lower-
priority jobs can be blocked for min(v, k) times, each for the duration of an outermost critical
section. Figure 8–9 shows the worst-case scenario when v is equal to k. Here the job J1 has
the highest priority; it is blocked k times.

J1

L(R1) L(R2)

L(R1) U(R1)

L(R2)

L(Rk-1)

L(Rk)

U(Rk-1)

U(Rk)

U(R2)

L(R3) L(Rk) U

J2

J3

Jk

Jk+1

…

…

FIGURE 8–9 A worst-case blocking scenario for priority-inheritance protocol.

290 Chapter 8 Resources and Resource Access Control

8.5 BASIC PRIORITY-CEILING PROTOCOL

The priority-ceiling protocol [ShRL88, ShRL90] extends the priority-inheritance protocol to
prevent deadlocks and to further reduce the blocking time. This protocol makes two key as-
sumptions:

1. The assigned priorities of all jobs are fixed.

2. The resources required by all jobs are known a priori before the execution of any job
begins.

To define the protocol, we need two additional terms. The protocol makes use of a
parameter, called priority ceiling, of every resource. The priority ceiling of any resource Ri

is the highest priority of all the jobs that require Ri and is denoted by �(Ri). For example,
the priority ceiling �(Black) of the resource Black in the example in Figure 8–8 is 2 because
J2 is the highest priority job among the jobs requiring it. Similarly, �(Shaded) is 1. Because
of assumption 2, the priority ceilings of all resources are known a priori. We note that if the
resource access control protocol includes the priority-inheritance rule, then a job can inherit a
priority as high as x during its execution if it requires a resource with priority ceiling x .

At any time t , the current priority ceiling (or simply the ceiling) �̂(t) of the system
is equal to the highest priority ceiling of the resources that are in use at the time, if some
resources are in use. If all the resources are free at the time, the current ceiling �̂(t) is equal
to
, a nonexisting priority level that is lower than the lowest priority of all jobs. As an
example, we again look at the system in Figure 8–8. In the interval [0, 1) when both resources
in the system are free, the current ceiling of the system is equal to
, lower than 5, the priority
of the lowest priority job J5. In (1, 3], Black is held by J5; hence, the current ceiling of the
system is 2. In (3, 13] when Shaded is also in use, the current ceiling of the system is 1, and
so it is in (13, 14].

8.5.1 Definition of the Basic Priority-Ceiling Protocol

We now define the priority-ceiling protocol for the case when there is only 1 unit of every
resource.

Rules of Basic Priority-Ceiling Protocol

1. Scheduling Rule:

(a) At its release time t , the current priority π(t) of every job J is equal to its assigned
priority. The job remains at this priority except under the condition stated in rule 3.

(b) Every ready job J is scheduled preemptively and in a priority-driven manner at its
current priority π(t).

2. Allocation Rule: Whenever a job J requests a resource R at time t , one of the following
two conditions occurs:

(a) R is held by another job. J ’s request fails and J becomes blocked.

(b) R is free.

(i) If J ’s priority π(t) is higher than the current priority ceiling �̂(t), R is allo-
cated to J .

Section 8.5 Basic Priority-Ceiling Protocol 291

(ii) If J ’s priority π(t) is not higher than the ceiling �̂(t) of the system, R is
allocated to J only if J is the job holding the resource(s) whose priority ceiling
is equal to �̂(t); otherwise, J ’s request is denied, and J becomes blocked.

3. Priority-Inheritance Rule: When J becomes blocked, the job Jl which blocks J inherits
the current priority π(t) of J . Jl executes at its inherited priority until the time when
it releases every resource whose priority ceiling is equal to or higher than π(t); at that
time, the priority of Jl returns to its priority πl(t ′) at the time t ′ when it was granted the
resource(s).

We note that (ii) in rule 2 assumes that only one job holds all the resources with priority
ceiling equal to �̂(t). Similarly, rule 3 assumes that only one job is responsible for J ’s request
being denied, because it holds either the requested resource or a resource with priority ceiling
�̂(t). We will return shortly to show that these assumptions are true.

Figure 8–10 shows the schedule of the system of jobs whose parameters are listed in
Figure 8–8(a) when their accesses to resources are controlled by the priority-ceiling proto-

J1

0 2 4 6 8 10 12 14 16 18

J2

J3

J4

J5

20

4

3

1

(t)

5

Ω

Π

FIGURE 8–10 A schedule illustrating priority-ceiling protocol.

292 Chapter 8 Resources and Resource Access Control

col. As stated earlier, the priority ceilings of the resources Black and Shaded are 2 and 1,
respectively.

1. In the interval (0, 3], this schedule is the same as the schedule shown in Figure 8–8,
which is produced under the basic priority-inheritance protocol. In particular, the ceil-
ing of the system at time 1 is
. When J5 requests Black, it is allocated the resource
according to (i) in part (b) of rule 2. After Black is allocated, the ceiling of the system
is raised to 2, the priority ceiling of Black.

2. At time 3, J4 requests Shaded. Shaded is free; however, because the ceiling �̂(3) (= 2)
of the system is higher than the priority of J4, J4’s request is denied according to (ii) in
part (b) of rule 2. J4 is blocked, and J5 inherits J4’s priority and executes at priority 4.

3. At time 4, J3 preempts J5, and at time 5, J2 preempts J3. At time 6, J2 requests Black
and becomes directly blocked by J5. Consequently, J5 inherits the priority 2; it executes
until J1 becomes ready and preempts it. During all this time, the ceiling of the system
remains at 2.

4. When J1 requests Shaded at time 8, its priority is higher than the ceiling of the system.
Hence, its request is granted according to (i) in part (b) of rule 2, allowing it to enter its
critical section and complete by the time 10. At time 10, J3 and J5 are ready. The latter
has a higher priority (i.e., 2); it resumes.

5. At 11, when J5 releases Black, its priority returns to 5, and the ceiling of the system
drops to
. J2 becomes unblocked, is allocated Black [according to (i) in part (b) of
rule 2], and starts to execute.

6. At time 14, after J2 and J3 complete, J4 has the processor and is granted the resource
Shaded because its priority is higher than
, the ceiling of the system at the time. It
starts to execute. The ceiling of the system is raised to 1, the priority ceiling of Shaded.

7. At time 16, J4 requests Black, which is free. The priority of J4 is lower than �̂(16),
but J4 is the job holding the resource (i.e., Shaded) whose priority ceiling is equal to
�̂(16). Hence, according to (ii) of part (b) of rule 2, J4 is granted Black. It continues to
execute. The rest of the schedule is self-explanatory.

Comparing the schedules in Figures 8–8 and 8–10, we see that when priority-ceiling
protocol is used, J4 is blocked at time 3 according to (ii) of part (b) of rule 2. A consequence
is that the higher priority jobs J1, J2, and J3 all complete earlier at the expense of the lower
priority job J4. This is the desired effect of the protocol.

8.5.2 Differences between the Priority-Inheritance and Priority-Ceiling Protocols

A fundamental difference between the priority-inheritance and priority-ceiling protocols is
that the former is greedy while the latter is not. You recall that the allocation rule (i.e., rule
2) of the priority-inheritance protocol lets the requesting job have a resource whenever the
resource is free. In contrast, according to the allocation rule of the priority-ceiling protocol,
a job may be denied its requested resource even when the resource is free at the time. (This
is what happens to J4 at time 3 in the above example.) We will return shortly to discuss the
consequence of this action.

The priority-inheritance rules of these two protocols are essentially the same. In prin-
ciple, both rules say that whenever a lower priority job Jl blocks the job J whose request is
just denied, the priority of Jl is raised to J ’s priority π(t). The difference arises because of

Section 8.5 Basic Priority-Ceiling Protocol 293

J R

J R

Jl Jh R Jl

X Jl

(a) Direct blocking (b) Priority-inheritance blocking

(c) Avoidance blocking

Π(X) is equal to or higher than π(t)

FIGURE 8–11 Ways for a job to block another job. (a) Direct blocking. (b) Priority-inheritance blocking. (c) Avoid-
ance blocking.

the nongreedy nature of the priority-ceiling protocol. It is possible for J to be blocked by a
lower-priority job which does not hold the requested resource according to the priority-ceiling
protocol, while this is impossible according to the priority-inheritance protocol.

The wait-for graphs in Figure 8–11 illustrate the three ways in which a job J can be
blocked by a lower-priority job when resource accesses are controlled by the priority-ceiling
protocol. Of course, J can be directly blocked by a lower-priority job Jl , as shown by the wait-
for graph [Figure 8–11(a)]. As a consequence of the priority-inheritance rule, a job J can also
be blocked by a lower-priority job Jl which has inherited the priority of a higher-priority job
Jh . The wait-for graph in Figure 8–11(b) shows this situation. (For simplicity, we show only
the inheritance due to direct blocking.) As stated in Section 8.4, this is priority-inheritance
blocking.

The allocation rule may cause a job J to suffer priority-ceiling blocking, which is rep-
resented by the graph in Figure 8–11(c). The requesting job J is blocked by a lower-priority
job Jl when J requests a resource R that is free at the time. The reason is that Jl holds another
resource X whose priority ceiling is equal to or higher than J ’s priority π(t). Rule 3 says that
a lower-priority job directly blocking or priority-ceiling blocking the requesting job J inherits
J ’s priority π(t).

Priority-ceiling blocking is sometimes referred to as avoidance blocking. The reason
for this term is that the blocking caused by the priority-ceiling rule is the cost for avoidance
of deadlocks among jobs. Hereafter, we will use the terms avoidance blocking and priority-
ceiling blocking interchangeably.

8.5.3 Deadlock Avoidance by Priority-Ceiling Protocol

You recall from your study on principles of operating systems that one way to avoid deadlock
is to use the ordered-resource technique [Have]. The set of priority ceilings of resources im-
pose a linear order on all the resources. It may not surprise you that deadlock can never occur
under the priority-ceiling protocol.

In order to gain a deeper insight into how the protocol works to prevent deadlock, we
pause to look at a more complicated example. In the example in Figure 8–12, there are three
jobs: J1, J2, and J3 with priorities 1, 2, and 3, respectively. Their release times are 3.5, 1, and 0
and their critical sections are [Dotted; 1.5], [Black; 2 [Shaded; 0.7]], and [Shaded; 4.2 [Black;
2.3]], respectively. In this schedule, the intervals during which the jobs are in their critical
sections are shown as the dotted box (the critical section associated with resource Dotted),

294 Chapter 8 Resources and Resource Access Control

J1

0 2 4 6 8 10 12 14

J2

J3

Π(Dotted) = π1, Π(Black) = Π(Shaded) = π2

FIGURE 8–12 Example illustrating how priority-ceilling protocol prevents deadlock.

shaded boxes (critical sections associated with resource Shaded), and black boxes (critical
sections associated with resource Black).

1. When J3 requests Shaded at time 0.5, no resource is allocated at the time. J3’s request
is granted. When job J2 becomes ready at time 1, it preempts J3.

2. At time 2.5, J2 requests Black. Because Shaded is already allocated to J3 and has pri-
ority ceiling 2, the current ceiling of the system is 2. J2’s priority is 2. According to (ii)
of part (b) of rule 2, J2 is denied Black, even though the resource is free. Since J2 is
blocked, J3 inherits the priority 2 (rule 3), resumes, and starts to execute.

3. When J3 requests Black at time 3, it is holding the resource whose priority ceiling is the
current ceiling of the system. According to (ii) of part (b) of rule 2, J3 is granted the
resource Black, and it continues to execute.

4. J3 is preempted again at time 3.5 when J1 becomes ready. When J1 requests Dotted
at time 4.5, the resource is free and the priority of J1 is higher than the ceiling of the
system. (i) of part (b) of rule 2 applies, and Dotted is allocated to J1, allowing the job
to enter into its critical section and proceed to complete at 7.3. The description of the
segment after this time is left to you.

We now use this example to explain intuitively why priority-ceiling protocol prevents
deadlock. To see the rationale behind (ii) of part (b) of rule 2, which leads to the denial of J2’s
request for Black, we note that at the time Black is free but Shaded is already allocated to J3.
The fact that the priority ceiling of Shaded is 2 indicates that some job with priority 2 requires
this resource and this job may very well be J2, as is indeed the case in this example. If J2 were
allowed to have Black, it might later request Shaded and would be blocked by J3. J3 would
execute and might later request Black. Denying J2’s access to Black is one way to prevent
this deadlock. On the other hand, suppose that the priority ceiling of Shaded were lower than
the priority of J2. This fact would indicate that J2 does not require Shaded. Moreover, no job
with priority equal to or higher than J2 requires this resource. Consequently, it would not be
possible for the job holding Shaded to later inherit a higher priority than J2, preempt J2, and

Section 8.5 Basic Priority-Ceiling Protocol 295

request Black. This is the rationale of (i) of part (b) of rule 2. Indeed, this is the reason that J1

was granted Dotted.
Let us now state in general terms what was said above. At any time t , the priority π(t)

of a job J being higher than the current ceiling �̂(t) of the system means that (1) job J will
not require any of the resources in use at t and (2) jobs with priorities equal to or higher than
J will not require any of these resource. In other words, the priority ceiling �̂(t) of the system
tells us the subset of all jobs to which we can safely grant free resources at time t ; this subset
contains all the jobs that have higher priorities than �̂(t). Because of (1), J will not request
any resource that is in use at the time. Because of (2), no job holding any resource at the time
can inherit a higher priority than J , later preempt J , and request resources allocated to J after
t . For these reasons, (i) of part (b) of rule 2 will not lead to any deadlock.

(ii) in part (b) of rule 2 states an exception to the rule that J ’s request for any resource
is denied if its priority is not higher than the ceiling of the system. The exception applies
when J is the job holding the resource(s) whose priority ceiling(s) is equal to �̂(t); under this
condition, J is granted the resource it requests at t . (This exception is necessary in order to
ensure that a job can make progress as it acquires resources. Otherwise, the job would block
itself!) J ’s priority π(t) must be equal to �̂(t) when it is granted its requested resource under
this condition. Moreover, because of (i) and (ii) in part (b) of rule 2, no other job is holding
resources with priority ceiling equal to �̂(t). Consequently, (ii) in part (b) of rule 2 cannot
lead to any deadlock.

The following theorem summarizes this discussion. A formal proof of the theorem can
be found in [ShRL90].

THEOREM 8.1. When resource accesses of a system of preemptive, priority-driven
jobs on one processor are controlled by the priority-ceiling protocol, deadlock can never
occur.

8.5.4 Duration of Blocking

We saw earlier that under the priority-ceiling protocol, a job may be directly blocked, avoid-
ance blocked, and inheritance blocked by lower-priority jobs. A question is whether as a cost
of its ability to prevent deadlock, this protocol can cause a job to be blocked for a longer dura-
tion than the priority-inheritance protocol. In the worst case, the answer is no. You recall that
a job may be blocked for a multiple number of times under the basic priority-inheritance pro-
tocol when it conflicts with more than one job over more than one resource. In contrast, under
the priority-ceiling protocol, every job is blocked at most once for the duration of a critical
section, no matter how many jobs conflict with it. This is stated formally below [ShRL90].

THEOREM 8.2. When resource accesses of preemptive, priority-driven jobs on one
processor are controlled by the priority-ceiling protocol, a job can be blocked for at
most the duration of one critical section.

Informal Proof of Theorem 8.2. Rather than proving the theorem formally, we use
an intuitive argument to convince you that the theorem is true. There are two parts to this
argument: (1) When a job becomes blocked, it is blocked by only one job, and (2) a job which
blocks another job cannot be blocked in turn by some other job. State (2) in another way, there
can be no transitive blocking under the priority-ceiling protocol.

296 Chapter 8 Resources and Resource Access Control

time

ce
il

in
g

of
 th

e
sy

st
em

Π(t1)

Π(t4)

t1

Jl Jm Jh

R→Jl

t2 t3 t4

FIGURE 8–13 Scenario illustrating a property of basic priority-ceiling protocol.

We use the scenario in Figure 8–13 to to convince you that (1) is true. There are three
jobs, Jl , Jm and Jh . Their release times are indicated by the arrows below the graph, which
plots the ceiling of the system as a function of time. The priority πl of Jl is lower than the
priority πm of Jm , which is in turn lower than the priority πh of Jh . Suppose that at time t1,
Jl requests and is granted a resource R. As a consequence, the ceiling of the system rises to
�̂(t1), which is the priority ceiling of R. Later, Jm preempts Jl and acquires some resources
(say at and after t2) while it executes. Clearly this is possible only if its priority πm is higher
than �̂(t1). Suppose that at time t4, Jh becomes blocked. We note that it is not possible for
Jh to be directly blocked by Jl . Otherwise, the ceiling of the system would be at least as high
as πh when Jm requests resources, and Jm would not be able to acquire any resource. If all
the resources allocated since t2 are held by Jm at time t4, we have shown that Jm is the only
job blocking Jh . On the other hand, suppose that at some time t3 before t4, a resource R′ is
allocated to some other job Jk . Then, Jm cannot be blocking Jh for the same reason that Jl

cannot be blocking Jh .
This inductive argument allows us to conclude that Jh is either directly blocked or

priority-ceiling blocked by only one job, and this job holds the resource that has the high-
est priority ceiling among all the resources in use when Jh becomes blocked. For simplicity,
we have assumed in this scenario that all three jobs have their assigned priorities. It is easy to
see that above argument remains valid even when the jobs have inherited priorities, as long as
the priority of Jh is the highest and the priority of Jl is the lowest.

To show that (2) is true, let us suppose that the three jobs Jl , Jm and Jh are blocked
transitively. Because the jobs are scheduled according to their priorities, it must be that Jl is
preempted after having acquired some resource(s) and later at t , Jm is granted some other re-
source(s). This can happen only if Jm and all the jobs with higher priorities do not require any
of the resources held by Jl at t . Until Jm completes, Jl cannot execute and acquire some other
resources. Consequently, Jl cannot inherit a priority equal to or higher than πm(t) until Jm

Section 8.5 Basic Priority-Ceiling Protocol 297

completes. If transitive blocking were to occur, Jm would inherit πh(t), and Jl would inherit
a priority higher than πm(t) indirectly. This leads to a contradiction. Hence, the supposition
that the three jobs are transitively blocked must be false.

Computation of Blocking Time. Theorem 8.2 makes it easy for us to compute an
upper bound to the amount of time a job may be blocked due to resource conflicts. We call
this upper bound the blocking time (due to resource conflicts) of the job.

To illustrate how to do this computation, let us consider the system of jobs whose re-
source requirements are given by Figure 8–14. As always, the jobs are indexed in order of
decreasing priorities. We see that J1 can be directed blocked by J4 for 1 unit of time. The
blocking time b1(rc) of J1 is clearly one. Although J2 and J3 do not require the resource
Black, they can be priority-inheritance blocked by J4 since J4 can inherit priority π1. Hence,
the blocking times b2(rc) and b3(rc) are also one.

Figure 8–15(a) shows a slightly more complicated example. Even for this small system,
it is error prone if we compute the blocking times of all jobs by inspection, as we did earlier.
The tables in Figure 8–15(b) give us a systematic way. There is a row for each job that can
be blocked. (In these tables, there is a row for every job except J6.) The tables list only the
nonzero entries; all the other entries are zero. Since jobs are not blocked by higher-priority
jobs, the entries at and below “*” in each column are zero.

The leftmost part is the direct-blocking table. It lists for each job the duration for which
it can be directly blocked by each of the lower-priority jobs. The entries in this table come
directly from the resource requirement graph of the system. Indeed, for the purpose of calcu-
lating the blocking times of the jobs, this table gives a complete specification of the resource
requirements of the jobs.

The middle part of Figure 8–15(b) is the priority-inheritance blocking table. It lists the
maximum duration for which each job can be priority-inheritance blocked by each of the
lower-priority jobs. For example, J6 can inherit priority π1 of J1 for 2 units of time when it
directly blocks J1. Hence, it can block all the other jobs for 2 units for time. In the table, we
show 2 units of inheritance blocking time of J2 and J3 by J6. However, because J6 can also
inherit π3 for 4 units of time, it can block J4 and J5 for 4 units of time. This is the reason
that the entries in the fourth and fifth rows of column 6 are 4. In general, a systematic way
to get the entries in each column of this table from the entries in the corresponding column
of the direct-blocking table is as follows. The entry at column k and row i of the inheritance
blocking table is the maximum of all the entries in column k and rows 1, 2, . . . , i − 1 of the
direct-blocking table.

J2

J1

J3

J4

0.8

1

0.2

Black

Shaded

FIGURE 8–14 Example on duration of blocking.

298 Chapter 8 Resources and Resource Access Control

J2

J1

J6

Z

Y

X

J3

J4

J5

10

6

5

1

4

2

J1

J2

J3

J4

J5

Directly blocked by Priority-inher blocked by

J2 J3 J4 J5 J6

6 2

* 5 * 6 2 * 6 2

* 4

(b)

(a)

* 5 2 * 5 2

* * 4 * 4

* * 4 *

Priority-ceiling blocked by

J2 J3 J4 J5 J6 J2 J3 J4 J5 J6

FIGURE 8–15 Example illustrating the computation of blocking times.

The rightmost table in Figure 8–15(b) is the avoidance (priority-ceiling) blocking table.
It lists the maximum duration for which each job can be avoidance blocked by each lower-
priority job. Again, let us focus on column 6. When J6 holds resource X (whose priority
ceiling is the highest in the system), it avoidance blocks all the jobs which require any re-
source. Similarly, when it holds Z , it avoidance blocks J4. Therefore, except for the entry in
row 5, all entries in column 6 of the avoidance blocking table are the same as the correspond-
ing entries in column 6 of the inheritance blocking table. J5 does not require any resource
and is never directly or avoidance blocked. In general, when the priorities of all the jobs are
distinct, the entries in the avoidance blocking table are equal to corresponding entries in the
priority-inheritance blocking table, except for jobs which do not require any resources. Jobs
which do not require any resource are never avoidance blocked, just as they are never directly
blocked.

The blocking time bi (rc) of each job Ji is equal to the maximum value of all the entries
in the i th row of the three tables. From Figure 8–15(b), we have bi (rc) is equal to 6, 6, 5, 4,
4, and 0 for i = 1, 2, . . . , 6, respectively

For this example, every entry in the avoidance blocking table is either equal to or smaller
than the corresponding entries in the direct blocking or inheritance blocking tables. Since we

Section 8.5 Basic Priority-Ceiling Protocol 299

are taking the maximum value of the entries of each row, there is no need for us to compute the
avoidance blocking table. Indeed, we do not need this table whenever the priorities of all the
jobs are distinct. When the priorities of jobs are not distinct, a job may be avoidance blocked
by a job of equal priority. The avoidance blocking table gives this information. For example,
suppose that in addition to the jobs in Figure 8–15(a), there is a job J ′

1 whose priority is also
π1, and this job requires a resource V for 9 units of time. Then the blocking time of J ′

1 is
10, the amount of time J1 holds the resource X and priority-ceiling blocks J ′

1. Similarly, the
blocking time of J1 is 9, the duration for which it is priority-ceiling blocked by J ′

1. In this
case, we need the avoidance blocking table to give us these blocking times.

In Problem 8.14, you are asked to provide a pseudocode description of an algorithm that
computes the blocking time bi (rc) of all the jobs from the resource requirement graph of the
system. For the sake of efficiency, you may want to first identify for each job Ji the subset of
all the jobs that may block the job. This subset is called the blocking set of Ji . (In our simple
example, J5 is not included in the blocking set of any other job, since it cannot block any job.
The blocking set of Ji includes all the lower-priority jobs other than J5.)

8.5.5 Fixed-Priority Scheduling and Priority-Ceiling Protocol

The priority-ceiling protocol is an excellent algorithm for controlling the accesses to resources
of periodic tasks when the tasks are scheduled on a fixed-priority basis. It is reasonable to
assume that the resources required by every job of every task and the maximum execution
times of their critical sections are known a priori, just like the other task parameters. All the
jobs in each periodic task have the same priority. Hence, the priority ceiling of each resource
is the highest priority of all the tasks that require the resource. This makes it possible for us to
analyze and determine the potential of resource contentions among tasks statically. The effect
of resource contentions on the schedulability of the tasks can be taken care of by including
the blocking time bi (rc) in the schedulability test of the system.

For example, suppose that the jobs in Figure 8–14 belong to four periodic tasks. The
tasks are T1 = (ε, 2, 0.8; [Black; 0.8]), T2 = (ε, 2.2, 0.4), T3 = (ε, 5, 0.2; [Shaded; 0.2]), and
T4 = (10, 1.0; [Black; 1.0]), where ε is a small positive number. For all i , Ji in Figure 8–14 is
a job in Ti . Figure 8–16 shows the initial segment of the schedule of the tasks according to the
rate-monotonic algorithm and priority-ceiling protocol. We see that T2 misses it is deadline at
time 2.2 + ε. A schedulability test can predict this miss. The time-demand function of T2 is
equal to 2.2 (i.e., 0.8 + 0.4 + 1.0) in (0, 2.0 + ε] when the blocking time b2(rc) = 1.0 of T2 is
included and becomes 3.0 at 2.0+ε (i.e., the beginning of the second period of T1). Obviously,
the time supply by T2’s first deadline at 2.2+ε cannot meet this demand. Similarly, if the jobs
Ji , for i = 1, 2, . . . , 6, in Figure 8–15 are jobs in periodic tasks Ti , respectively, we can
take the effect of resource conflicts into account in our determination of whether the tasks are
schedulable by including the blocking time bi (rc) computed above in the schedulability test.

To summarize this section, we recall that two factors contribute to the time-demand
function of each task in addition to the execution times of its jobs and execution times of
equal and higher-priority jobs. They are blocking time and context-switching time. When the
system is scheduled on a fixed-priority basis and uses the priority-ceiling protocol, we can
compute the blocking time bi (rc) of each task Ti due to its resource conflicts with other tasks
in the way described above. After we have thus obtained bi (rc), we include this blocking
factor with the other types of blocking times (e.g., due to nonpreemptivity of lower-priority

300 Chapter 8 Resources and Resource Access Control

T1

0 ε 1 2 3 4 5 6

T2

T3

T4

FIGURE 8–16 Example on fixed-priority scheduling and priority-ceiling protocol. (T1 = (ε, 2, 0.8; [Black; 0.8]),
T2 = (ε, 2.2, 0.4), T3 = (ε, 5, 0.2; [Shaded; 0.2]), T4 = (10, 1; [Black; 1.0])).

jobs and self-suspension) which the task may suffer to obtain the total blocking time bi of the
task.

In Section 6.8, we showed that each job in a system of fixed-priority tasks suffers at most
two context switches when the tasks are independent. When the tasks contend for resources
under the control of the basic priority-ceiling protocol, each job can be blocked at most once.
In particular, a job that requires some resources may be blocked and lose the processor when
it requests some resource and, as a consequence, suffers two additional context switches. In
contrast, a job which does not require any resource suffers only two context switches: one
when it starts and one when it ends. (You recall that the context-switch time when a job
is preempted is attributed to the preempting job.) Hence, to account for the context switch
overhead in schedulability test, we add

1. two CS to the execution time of each task that does not require any resource and
2. four CS to the execution time of each task that requires one or more resource,

where C S is the maximum time to complete a context switch.1

8.6 STACK-BASED, PRIORITY-CEILING (CEILING-PRIORITY) PROTOCOL

In this section, we give two different definitions of a protocol that is simpler than the priority-
ceiling protocol but has the same worst-case performance as the priority-ceiling protocol. The
different definitions arise from two different motivations: to provide stack-sharing capability

1It is important to remember the assumption that no job ever suspends itself. We will discuss the effect of
self-suspension in Section 8.11.

Section 8.6 Stack-Based, Priority-Ceiling (Ceiling-Priority) Protocol 301

and to simplify the priority-ceiling protocol. They led to the two different names of the same
protocol.

8.6.1 Motivation and Definition of Stack-Sharing Priority-Ceiling Protocol

A resource in the system is the run-time stack. Thus far, we have assumed that each job
has its own run-time stack. Sometimes, especially in systems where the number of jobs is
large, it may be necessary for the jobs to share a common run-time stack, in order to reduce
overall memory demand. (According to Baker [Bake91], if there are 10 jobs at each of 10
priority levels, the storage saving is 90 percent.) Space in the (shared) stack is allocated to
jobs contiguously in the last-in-first-out manner. When a job J executes, its stack space is
on the top of the stack. The space is freed when the job completes. When J is preempted,
the preempting job has the stack space above J ’s. J can resume execution only after all the
jobs holding stack space above its space complete, free their stack spaces, and leave J ’s stack
space on the top of the stack again.

Clearly, if all the jobs share a common stack, schedules such as the one in Figure 8–10
should not be allowed. You can see that if the jobs were to execute according this schedule,
J5 would resume after J4 is blocked. Since J4 is not complete, it still holds the space on the
top of the stack at this time. The stack space of J5 would be noncontiguous after this time,
which is not allowed, or J5 would not be allowed to resume, which would result in a deadlock
between J5 and J4 (i.e., J5 holds Black and avoidance blocks J4 and J4 holds the “top of the
stack” and blocks J5).

From this example, we see that to ensure deadlock-free sharing of the run-time stack
among jobs, we must ensure that no job is ever blocked because it is denied some resource
once its execution begins. This observation leads to the following modified version of the
priority-ceiling protocol, called the stack-based, priority-ceiling protocol. It is essentially the
same as the stack-based protocol designed by Baker [Bake91], which we will describe in the
next section. Like Baker’s protocol, this protocol allows jobs to share the run-time stack if
they never self-suspend.

In the statement of the rules of the stack-based, priority-ceiling protocol, we again use
the term (current) ceiling �̂(t) of the system, which is the highest-priority ceiling of all the
resources that are in use at time t .
 is a nonexisting priority level that is lower than the lowest
priority of all jobs. The current ceiling is
 when all resources are free.

Rules Defining Basic Stack-Based, Priority-Ceiling Protocol

0. Update of the Current Ceiling: Whenever all the resources are free, the ceiling of the
system is
. The ceiling �̂(t) is updated each time a resource is allocated or freed.

1. Scheduling Rule: After a job is released, it is blocked from starting execution until its
assigned priority is higher than the current ceiling �̂(t) of the system. At all times,
jobs that are not blocked are scheduled on the processor in a priority-driven, preemptive
manner according to their assigned priorities.

2. Allocation Rule: Whenever a job requests a resource, it is allocated the resource.

We note that according to the scheduling rule, when a job begins to execute, all the
resources it will ever need during its execution are free. (Otherwise, if one of the resources it
will need is not free, the ceiling of the system is equal to or higher than its priority.) This is why

302 Chapter 8 Resources and Resource Access Control

the allocation rule is as simple as stated above. More importantly, no job is ever blocked once
its execution begins. Likewise, when a job J is preempted, all the resources the preempting job
will require are free, ensuring that the preempting job can always complete so J can resume.
Consequently, deadlock can never occur.

The schedule in Figure 8–17 shows how the system of jobs in Figure 8–10 would be
scheduled if the stack-based, priority-ceiling protocol were used instead of the basic priority-
ceiling protocol. To better illustrate the stack-based protocol, we let J2 be released at 4.8 and
the execution time of the critical section of J2 be 1.2. At time 2 when J4 is released, it is
blocked from starting because its priority is not higher than the ceiling of the system, which is
equal to 2 at the time. This allows J5 to continue execution. For the same reason, J3 does not
start execution when it is released. When J2 is released at time 4.8, it cannot start execution
because the ceiling of the system is 2. At time 5, the resource held by J5 becomes free and
the ceiling of the system is at
. Consequently, J2 starts to execute since it has the highest
priority among all the jobs ready at the time. As expected, when it requests the resource Black
at time 6, the resource is free. It acquires the resource and continues to execute. At time 7
when J1 is released, its priority is higher than the ceiling of the system, which is 2 at the time.
(Again, this fact indicates that the resource Shaded, which it will require later, is free.) J1,
therefore, preempts J2 and holds the space on the top of the stack until it completes at time
10. J2 then resumes and completes at 11. Afterwards, J3, J4, and J5 complete in the order of
their priorities.

From this example, we see that the scheduling rule of the stack-based priority-ceiling
protocol achieves the same objective as the more complicated priority-inheritance rule of the
basic priority-ceiling protocol. (As a consequence of this rule, J5 is not preempted by J4 and
J3 while it holds Black.) When we compare the schedule in Figure 8–17 with the schedule in
Figure 8–10, which is produced by the basic priority-ceiling protocol, we see that the higher-

J1

0 2 4 6 8 10 12 14 16 18

J2

J3

J4

J5

20

FIGURE 8–17 Schedule illustrating the stack-based, priority-ceiling protocol.

Section 8.6 Stack-Based, Priority-Ceiling (Ceiling-Priority) Protocol 303

priority jobs J1, J2 and J3 either complete earlier than or at the same time as when they are
scheduled according to the basic priority-ceiling protocol.

8.6.2 Definition of Ceiling-Priority Protocol

As we will see shortly, the worst-case performance of the stack-based and the basic priority-
ceiling protocols are the same. The former is considerably simpler and has a lower context
switching overhead. This is a good reason for using the stack-based version if jobs never
self-suspend even when the jobs have their own stacks. Indeed, the stack-based version is the
protocol supported by the Real-Time Systems Annex of Ada95 [Cohe96]. In Section 8.3, we
mentioned that it is called the ceiling-priority protocol. The following rules defines it more
formally.

Rules Defining the Ceiling-Priority Protocol

1. Scheduling Rule:

(a) Every job executes at its assigned priority when it does not hold any resource. Jobs
of the same priority are scheduled on the FIFO basis.

(b) The priority of each job holding any resource is equal to the highest of the priority
ceilings of all resources held by the job.

2. Allocation Rule: Whenever a job requests a resource, it is allocated the resource.

We note that when jobs never self-suspend, the stack-based priority-ceiling and ceiling-
priority protocols are the same. By saying these protocols are the same we mean that they will
produce the same schedule for all jobs. (If you are not convinced, you may want to apply this
set of rules on the example given by Figure 8–8(a). The schedule you will produce should
be same as one in Figure 8–17.) The two sets of rules give two implementations of the same
protocol.

Sometimes, jobs of equal priority are scheduled on the round-robin basis. We must
modify the definition of the ceiling-priority protocol to make it work for these jobs. This
modification is left as an exercise to you in Problem 8.5.

8.6.3 Blocking Time and Context-Switching Overhead

Because of the following theorem [Bake91], we can use the same method to find the blocking
time bi (rc) of every job Ji for both versions of the priority-ceiling protocol.

THEOREM 8.3. The longest blocking time suffered by every job is the same for the
stack-based and basic priority-ceiling protocols.

To see why this theorem is true, we observe first that a higher-priority job Jh can be
blocked only by the currently executing job Jl under the stack-based priority-ceiling protocol.
The reason is that if a job Jl can start to execute at t , its priority is higher than the ceiling
of the system at t . This means that none of the resources in use at t are required by Jl or
any higher-priority job. Furthermore, similar arguments allow us to conclude that under the
stack-based protocol, no job is ever blocked due to resource conflict more than once.

304 Chapter 8 Resources and Resource Access Control

Now let us suppose that under the stack-based priority-ceiling protocol, a job Jh is
blocked by the currently executing job Jl . This can happen only if Jh is released after Jl has
acquired a resource X whose priority ceiling is equal to or higher than the priority πh of Jh

and at the time when Jh is released, Jl still holds X . The occurrence of this sequence of events
is not dependent on the protocol used; the sequence can also occur under the basic priority-
ceiling protocol. Moreover, under this circumstance, Jh is also blocked by Jl under the basic
priority-ceiling protocol. In the worst case, Jh is blocked for as long as the job Jl holds such
a resource. Theorem 8.3 follows from the fact that we can repeat this argument for every
lower-priority job which can block Jh .

While the (worst-case) blocking time of individual jobs and periodic tasks are the same
for both versions of the priority-ceiling protocol, the context-switch overhead is smaller un-
der the stack-based version. Because no job is ever blocked once its execution starts, no job
ever suffers more than two context switches. In particular, to take into account the context-
switching overhead in the schedulability analysis of a system of periodic tasks scheduled
according to a fixed-priority algorithm and stack-based priority-ceiling protocol, we add 2C S
to the execution time of every task.

8.7 USE OF PRIORITY-CEILING PROTOCOL IN DYNAMIC-PRIORITY SYSTEMS

While both versions of the priority-ceiling protocol are relatively simple to implement and
perform well when periodic tasks are scheduled on a fixed-priority basis, it is another mat-
ter in a dynamic-priority system. In a dynamic-priority system, the priorities of the periodic
tasks change with time while the resources required by each task remain constant. As a con-
sequence, the priority ceilings of the resources may change with time.

As an example, let us look at the EDF schedule of two tasks T1 = (2, 0.9) and T2 =
(5, 2.3) in Figure 6–4. In its first two periods (i.e., from time 0 to 4), T1 has priority 1 while
T2 has priority 2, but from time 4 to 5, T2 has priority 1 and T1 has priority 2. Suppose that the
task T1 requires a resource X while T2 does not. The priority ceiling of X is 1 from time 0 to
4 and becomes 2 from time 4 to 5, and so on.

For some dynamic systems, we can still use the priority-ceiling protocol to control re-
source accesses provided we update the priority ceiling of each resource and the ceiling of the
system each time task priorities change. This is the approach taken by the dynamic-priority-
ceiling protocol proposed by Chen and Lin [ChLi]. As it will become evident shortly, except
for this update, the priority-ceiling protocol can be applied without modification in job-level
fixed-priority systems. In such a system, the priorities of jobs, once assigned, remain fixed
with respect to each other. In particular, the order in which jobs in the ready job queue are
sorted among themselves does not alter each time a newly released job is inserted in the queue.
This assumption is true for systems scheduled on the EDF and LIFO basis, for example.

8.7.1 Implementation of Priority-Ceiling Protocol in Dynamic-Priority Systems

One way to implement the basic priority-ceiling protocol in a job-level fixed-priority system
is to update the priority ceilings of all resources whenever a new job is released. Specifically,
when a new job is released, its priority relative to all the jobs in the ready queue is assigned
according to the given dynamic-priority algorithm. Then, the priority ceilings of all the re-
sources are updated based on the new priorities of the tasks, and the ceiling of the system is

Section 8.7 Use of Priority-Ceiling Protocol in Dynamic-Priority Systems 305

updated based on the new priority ceilings of the resources. The new priority ceilings are used
until they are updated again upon the next job release. Chen and Lin [ChLi] showed that the
protocol remains effective (i.e., it prevents deadlock and transitive blocking and no job is ever
blocked for longer than the length of one critical section) in a job-level fixed-priority system.

The example in Figure 8–18 illustrates the use of this protocol in an EDF system. The
system shown here has three tasks: T1 = (0.5, 2.0, 0.2; [Black; 0.2]), T2 = (3.0, 1.5; [Shaded;
0.7]), and T1 = (5.0, 1.2; [Black; 1.0 [Shaded; 0.4]). The priority ceilings of the two resources
Black and Shaded are updated at times 0, 0.5, 2.5, 3, 4.5, 5, 6, and so on. We use consecutive
positive integers to denote the priorities of all the ready jobs, the highest priority being 1.2 In
the following description, we focus primarily on how priority ceilings of resources and ceiling
of the systems are updated and leave to you many details on how the priority-ceiling protocol
works to produce the schedule segment shown in this figure. To emphasize that the priority
ceiling of a resource Ri may change with time, we denote it by �t (Ri).

1. At time 0, there are only two ready jobs, J2,1 and J3,1. J2,1 (and hence T2) has priority
1 while T3 has priority 2, the priority of J3,1. The priority ceilings of Black and Shaded
are 2 and 1, respectively. Since J2,1 has a higher priority, it begins to execute. Because
no resource is in use, the ceiling of the system is
. At time 0.3, J2,1 acquires Shaded,
and the ceiling of the system rises from
 to 1, the priority ceiling of Shaded.

2. At time 0.5, J1,1 is released, and it has a higher priority than J2,1 and J3,1. Now the
priorities of T1, T2, and T3 become 1, 2, and 3, respectively. The priority ceiling �t

(Black) of Black is 1, the priority of J1,1 and T1. The priority ceiling �t (Shaded) of
Shaded becomes 2 because the priority of J2,1 and T2 is now 2. The ceiling of the
system based on these updated values is 2. For this reason, J1,1 is granted the resource
Black. The ceiling of the system is 1 until J1,1 releases Black and completes at time 0.7.
Afterwards, J2,1 continues to execute, and the ceiling of the system is again 2. When
J2,1 completes at time 1.7, J3,1 commences to execute and later acquires the resources
as shown.

3. At time 2.5, J1,2 is released. It has priority 1, while J3,1 has priority 2. This update of
task priorities leads to no change in priority ceilings of the resources. Since the ceiling
of the system is at 1, J1,2 becomes blocked at 2.5. At time 2.9, J3,1 releases Black, and
J1,2 commences execution.

4. At time 3.0, only T1 and T2 have jobs ready for execution. Their priorities are 1 and 2,
respectively. The priority ceilings of the resources remain unchanged until time 4.5.

5. At time 4.5, the new job J1,3 of T1 has a later deadline than J2,2. (Again, T3 has no ready
job.) Hence, the priority of T1 is 2 while the priority of T2 becomes 1. This change in
task priorities causes the priority ceilings of Black and Shaded to change to 2 and 1,
respectively.

6. At time 5 when J3,2 is released, it is the only job ready for execution at the time and
hence has the highest priority. The priority ceilings of both resources are 1. These values
remain until time 6.

2Each time a job is completed, it is removed from the ready job queue. Therefore, when priorities and priority-
ceiling values are recomputed, some task may not have any job in the ready job queue. We can either ignore such
a task or let it have the lowest (nonexisting) priority
 until the next update instant. In this example, we choose the
former for the sake of simplicity.

306 Chapter 8 Resources and Resource Access Control

T1

T2

T3

T1

T2

T3

Black

Shaded

Πt (Black)

0.50 1.2 1.9 3.1 3.4 4.1 4.6 5 6 6.5
t

0 1 2 3 4 5 6

1
2
3
Ω

0.2

0.7 1.0

0.4

Πt (Shaded)
1
2
3
Ω

Π̂ (t)
1
2
3
Ω

FIGURE 8–18 Example illustrating the use of the basic priority-ceiling protocol in an EDF system.

Section 8.7 Use of Priority-Ceiling Protocol in Dynamic-Priority Systems 307

7. At time 6, both J2,3 and J3,2 are ready, and the former has an earlier deadline. We now
have the same condition as at time 0.

In a system with ρ resources, each of which is required by n periodic tasks on average,
the time required to update the priority ceilings of all resources is O(ρ) each time a new job is
released. This is a significant amount of overhead. For systems where the release-time jitters
are negligible, we can save this run-time overhead by precomputing and storing the priority
ceilings of all the resources for every time interval between consecutive releases of all N jobs
in the entire hyperperiod. Each time a new job is released, we use the precomputed priority
ceilings of the interval beginning from the release time of the job. The storage overhead for
this purpose is O(Nρ).

It is easy to see that the stack-based priority-ceiling protocol can also be used without
modification for job-level fixed-priority assignments. Each time a new job is released, the
question is whether its priority is sufficiently high for it to join the ready job queue.

8.7.2 Duration of Blocking

Although in principle every job is blocked at most once for the duration of one outermost
critical section, the worst-case blocking time bi (rc) due to resource conflict of each task is
in general larger in a dynamic-priority system than in a fixed-priority system. In particular,
when it is possible for the jobs in every task to have a higher priority and preempt jobs in
every other task, the worst-case blocking time bi (rc) of a task Ti is the execution time of the
longest critical sections of all tasks other than Ti . For example, suppose that the jobs in Figure
8–15 are in six periodic tasks which are scheduled on the LIFO basis. The worst-case blocking
times of all tasks except T1 (i.e., the task containing J1) are equal to 10, and the worst-case
blocking time of T1 is 6.

On the other hand, in a deadline-driven system, jobs with relative deadline Di are never
preempted by jobs with relative deadlines equal to or larger than Di . Hence if the job Ji in
Figure 8–16 belongs to task Ti , for i = 1, 2, . . . , 6, and the tasks are indexed in order of
increasing relative deadlines, then the worst-case blocking times bi (rc) are 6, 6, 5, 4, 4, and 0
when the tasks are scheduled in the EDF basis.

*8.7.3 Applicability of the Basic Priority-Ceiling Protocol in Job-Level
Dynamic-Priority Systems

As discussed in Chapter 6, jobs do not have fixed priorities when scheduled according to some
job-level dynamic-priority algorithm. As an example, we consider a system that contains three
tasks T1 = (2, 1.0), T2 = (2.5, 1.0), and T3 = (0.8, 10, 0.5) and is scheduled according to
the nonstrict LST algorithm. Initially, J1,1 has priority 1 while J2,1 has priority 2. However,
at time 0.8 when J3,1 is released and the slacks of all the jobs are updated, the slack of J1,1 is
still 1.0, but the slack of J2,1 is only 0.7. Hence, J2,1 has the highest priority, while the priority
of J1,1 drops to 2.

Another example is where the tasks are scheduled in a round-robin manner. This
scheduling discipline can be implemented by giving the highest priority to jobs in turn, each
for a fixed slice of time.

The allocation rule of the basic priority-ceiling protocol remains effective as a means
to avoid deadlock and transitive blocking. To see that deadlock between two jobs Ji and Jk

308 Chapter 8 Resources and Resource Access Control

can never occur, let us suppose that both jobs require X and Y . As soon as either X or Y is
granted to one of the jobs, the ceiling of the system becomes πi or πk whichever is higher.
As a consequence, it is no longer possible for the other job to acquire any resource. For this
reason, it is not possible for Ji and Jk to circularly wait for one another, even though their
priorities may change.

To see why it is not possible for any three jobs to block each other transitively, let us
suppose that at time t , Ji is granted some resource X . Moreover, sometime afterwards, Jk is
granted another resource Y . This is possible only when Jk does not require X . Therefore, it is
not possible for Jk to be directly blocked by Ji , while it blocks some other job Jj .

A remaining question is whether priority inheritance is still effective in preventing un-
controlled priority inversion and keeping the delay suffered by every job due to priority in-
version bounded from above. Clearly the statement of the priority-inheritance rule given in
Section 8.4 needs to be modified in order to make sense. While the priority of the job J re-
questing and being denied a resource is higher than the priority of the job Jl blocking J at the
time, the assigned priority of Jl may become higher than the priority of J at some later time.
One way to take this fact into account is to let the blocking job Jl execute at the highest of the
priority ceilings of all resources it holds.

8.8 PREEMPTION-CEILING PROTOCOL

We can avoid paying the time or storage overhead of the dynamic-priority-ceiling protocol
described above for a class of dynamic-priority systems, which includes deadline-driven sys-
tems. We call systems in this class fixed preemption-level systems and will define this term
shortly. For a fixed preemption-level system, Baker [Bake91] has a simpler approach to con-
trol resource accesses. The approach is based on the clever observation that the potentials of
resource contentions in such a dynamic-priority system do not change with time, just as in
fixed-priority systems, and hence can be analyzed statically. The observation is supported by
the following facts:

1. The fact that a job Jh has a higher priority than another job Jl and they both require
some resource does not imply that Jl can directly block Jh . This blocking can occur
only when it is possible for Jh to preempt Jl .

2. For some dynamic priority assignments, it is possible to determine a priori the possibil-
ity that jobs in each periodic task will preempt the jobs in other periodic tasks.

Because of fact 1, when determining whether a free resource can be granted to a job, it is
not necessary to be concerned with the resource requirements of all higher-priority jobs; only
those that can preempt the job. Fact 2 means that for some dynamic priority systems, the
possibility that each periodic task will preempt every other periodic task does not change with
time, just as in fixed-priority systems. We have already seen that in a deadline-driven system,
no job in a periodic task with a smaller relative deadline is ever preempted by jobs in periodic
tasks with identical or larger relative deadlines, despite the fact that some jobs in the latter
may have higher priorities.

Section 8.8 Preemption-Ceiling Protocol 309

8.8.1 Preemption Levels of Jobs and Periodic Tasks

The possibility that a job Ji will preempt another job is captured by the parameter preemp-
tion level ψi of Ji . The preemption levels of jobs are functions of their priorities and release
times. According to a valid preemption-level assignment, for every pair of jobs Ji and Jk , the
preemption level ψi of Ji being equal to or higher than the preemption level ψk of Jk implies
that it is never possible for Jk to preempt Ji . Stated in another way,

Validity Condition: If πi is higher than πk and ri > rk , then ψi is higher than ψk .

Given the priorities and release times of all jobs, this condition gives us a partial assignment
of preemption levels, that is, the preemption levels of a subset of all jobs. The preemption
levels of jobs that are not given by the above rule are valid as long as the linear order over all
jobs defined by the preemption-level assignment does not violate the validity condition.

As an example, we return to the system of jobs in Figure 8–8. Since jobs with higher
priorities are released later, it is possible for every job to preempt all the jobs with lower
priorities than itself. In this case, the preemption levels of the jobs dictated by the the validity
condition give us a complete assignment. For these jobs, we can simply let the preemption
levels of the jobs be equal to their respective priorities.

Figure 8–19 gives another example. As usual, the five jobs are indexed in decreasing
priorities. Their release times are such that r4 < r5 < r3 < r1 < r2. We note that J1, the
job with the highest priority, has a later release time than J3, J4, and J5. Hence, J1 should
have a higher preemption level than these three jobs. However, it is never possible for J1 to
preempt J2 because J1 has an earlier release time, and it is never possible for J2 to preempt J1,
because J2 has a lower priority. We therefore give these two jobs the same preemption level.
Similarly, J3 should have a higher preemption level than J4 and J5, and we can give J4 and J5

the same preemption level. In summary, we can assign ψi for i = 1, 2, 3, 4, and 5 the values
1, 1, 2, 3, and 3, respectively; it is easy see that this is a valid preemption level assignment.
(Again, a smaller integer represents a higher preemption level.) Alternatively, we can assign
preemption levels according to the release times of the jobs: the earlier the release time, the
lower the preemption level. This assignment also satisfies the validity condition. The resultant
preemption levels are 2, 1, 3, 5, and 4, respectively.

Let us now return to periodic tasks. When periodic tasks are scheduled on the EDF
basis, a valid preemption-level assignment is according to the relative deadlines of jobs: the
smaller the relative deadline, the higher the preemption level. (An assumption here is that

J1

J2

J3

J4 J5

Black

Shaded

3

6

2
2

0.5

Jobs ri ei πi yi

J1 5 5 1 1

J2 7 3 2 1

J3 4 4 3 2

J4 0 9 4 3

J5 3 4 5 3

FIGURE 8–19 A schedule according to the preeption-ceiling protocol.

310 Chapter 8 Resources and Resource Access Control

either release-time jitters are negligible or the relative deadlines of all jobs remain fixed despite
release-time jitters.) For this preemption-level assignment, all the jobs in every periodic task
in a deadline-driven system have the same preemption level. This is an example of fixed
preemption-level systems. A system of periodic tasks is a fixed preemption-level system if
there is a valid assignment of preemption levels to all jobs such that all the jobs in every task
have the same preemption level. Clearly, all fixed-priority systems are also fixed preemption-
level systems. Indeed, an obvious preemption-level assignment in a fixed-priority system is to
make the preemption level of each job equal to its priority.

When there is no chance of confusion, we call the preemption level of all the jobs in a
fixed preemption-level task Ti the preemption level of the task and denote it by ψi . We index
periodic tasks in a fixed preemption-level system according to their preemption levels: the
higher the level, the smaller the index. For example, suppose that the system of periodic tasks
in Figure 8–16 are scheduled on the EDF basis. The preemption levels of the tasks T1, T2, T3,
and T4 are 1, 2, 3 and 4, respectively, because the relative deadlines of the tasks are 2, 2.2, 5,
and 10, respectively.

In Chapter 6, we pointed out that when priorities are assigned on the FIFO basis or
the LIFO basis, periodic tasks have dynamic priorities. In a FIFO system, no job is ever pre-
empted. This is a degenerate fixed preemption-level system where all periodic tasks have the
same preemption level. In contrast, periodic tasks scheduled on the LIFO basis have varying
preemption levels. To illustrate, let us consider the system of three tasks T1, T2, and T3 in Fig-
ure 8–18. Suppose that the priorities of jobs in them are assigned on the LIFO basis. J1,1 is re-
leased later than J2,1 and J3,1, has a higher priority than they and hence can preempt these jobs.
Also, J2,2 can preempt J1,2 and J3,1, and J3,2 can preempt J1,3 and J2,2. Suppose that we let the
preemption level of each task at any time in a period equal the preemption level of the job re-
leased at the beginning of the period. For this system, we find that the preemption levels of the
three tasks are 1, 2, and 3, respectively, in (0, 3); 2, 1, and 3 in (3, 4.5); 1, 2, and 3 in (4.5, 5);
2, 3, and 1 in (5, 6) and so on. In other words, this system has dynamic preemption levels.

8.8.2 Definitions of Protocols and Duration of Blocking

A preemption-ceiling protocol makes decisions on whether to grant a free resource to any job
based on the preemption level of the job in a manner similar to the priority-ceiling protocol.
This protocol also assumes that the resource requirements of all the jobs are known a priori.
After assigning preemption levels to all the jobs, we determine the preemption ceiling of each
resource. Specifically, when there is only 1 unit of each resource, which we assume is the
case here, the preemption ceiling �(R) of a resource R is the highest preemption level of all
the jobs that require the resource. For the example in Figure 8–19, the preemption ceiling of
Black is 1, while the preemption ceiling of Shaded is 2.

The (preemption) ceiling of the system �̂(t) at any time t is the highest preemption
ceiling of all the resources that are in use at t . When the context is clear and there is no chance
of confusion, we will simply refer to �̂(t) as the ceiling of the system. We again use
 to
denote a preemption level that is lower than the lowest preemption level among all jobs since
there is no possibility of confusion. When all the resources are free, we say that the ceiling of
the system is
.

Like the priority-ceiling protocol, the preemption-ceiling protocol also has a basic ver-
sion and a stack-based version. The former assumes that each job has its own stack and

Section 8.8 Preemption-Ceiling Protocol 311

the latter allows the jobs to share a common stack. Basic versions of priority-ceiling and
preemption-ceiling protocols differ mainly in their allocation rules. For this reason, only the
allocation rule of the basic preemption-ceiling protocol is given below. You can see that the
principle of this rule for both protocols is the same, the only difference being the parameters
(i.e., priority or preemption levels and ceilings) used by the rule.

Rules of Basic Preemption-Ceiling Protocol

1 and 3. The scheduling rule (i.e., rule 1) and priority inheritance rule (i.e., rule 3) are the
same as the corresponding rules of the priority-ceiling protocol.

2. Allocation Rule: Whenever a job J requests resource R at time t , one of the following
two conditions occurs:
(a) R is held by another job. J ’s request fails, and J becomes blocked.
(b) R is free.

(i) If J ’s preemption level ψ(t) is higher than the current preemption ceiling �̂(t)
of the system, R is allocated to J .

(ii) If J ’s preemption level ψ(t) is not higher than the ceiling �̂(t) of the system,
R is allocated to J only if J is the job holding the resource(s) whose preemp-
tion ceiling is equal to �̂(t); otherwise, J ’s request is denied, and J becomes
blocked.

The stack-based preemption-ceiling protocol is called the Stack-Based Protocol (SBP)
by Baker [Bake91]. It is defined by the following rules. Rules 0, 1, and 2 are essentially the
same as the corresponding rules of the stack-based priority-ceiling protocol; again, the differ-
ence is that priority levels/ceilings are replaced by preemption levels/ceilings. In addition, the
stack-based preemption-ceiling protocol has an inheritance rule. We will show the need for
this rule shortly.

Rules of Basic Stack-Based, Preemption-Ceiling Protocol

0. Update of the Current Ceiling: Whenever all the resources are free, the preemption
ceiling of the system is
. The preemption ceiling �̂(t) is updated each time a resource
is allocated or freed.

1. Scheduling Rule: After a job is released, it is blocked from starting execution until its
preemption level is higher than the current ceiling �̂(t) of the system and the preemp-
tion level of the executing job. At any time t , jobs that are not blocked are scheduled
on the processor in a priority-driven, preemptive manner according to their assigned
priorities.

2. Allocation Rule: Whenever a job J requests for a resource R, it is allocated the resource.
3. Priority-Inheritance Rule: When some job is blocked from starting, the blocking job

inherits the highest priority of all the blocked jobs.

Obviously, when the preemption levels of jobs are identical to their priorities, these
versions of the preemption-level protocol are the same as the corresponding versions of the
priority-ceiling protocol. For this reason, if the jobs in Figure 8–8 are scheduled according
to the preemption-ceiling protocol, the resultant schedules are the same as those shown in
Figures 8-10 and 8-17.

312 Chapter 8 Resources and Resource Access Control

0 5 10 15 20 25

ψ̂ (t)

t

1
2
3
Ω

5

7

4

0

3

J1

J2

J3

J4

J5

FIGURE 8–20 Example of priority ceilings of multiple-unit resources.

To see the necessity of the priority-inheritance rule of the stack-based preemption-
ceiling protocol when preemption levels are assigned on the basis of jobs’s relative deadlines,
let us examine Figure 8–20. This figure gives an EDF schedule of jobs in Figure 8–19. (The
deadline of each job is indicated by the second vertical bar on its time line. Specifically, the
deadlines of J1 and J2 are at 18 and 18.5, respectively.) The preemption levels of the jobs are
2, 1, 3, 5 and 4, respectively, which are chosen based on the relative deadlines of the jobs.3

The preemption ceiling of Black is 2, while the preemption ceiling of Shaded is 3. Hence,
the preemption ceiling of the system is given by the dotted line in the graph. Because of the
priority-inheritance rule, J4 inherits the priority of J1 when it blocks J1 from starting exe-
cution at time 5. Consequently, J4 can continue to execute and completes its critical section.
Without this rule, J1 would be blocked because of rule 1, but J2, whose preemption level is
1, could start execution at time 7. Consequently, it would complete before J4 completes its

3We note that the stack-based preemption-ceiling protocol without the priority-inheritance rule would produce
the schedule in Figure 8–20 if the preemption levels of jobs are 1, 1, 2, 3, and 3, respectively. (The ceiling of the
system for this set of preemption levels is given by the solid line in the graph below the schedule.) Nevertheless, we
may not want to use this set of preemption levels and choose the set based on jobs’ relative deadlines, despite the need
for priority inheritance. You recall that this set of preemption levels was obtained by analyzing both the priorities and
release times of the jobs. If each of these jobs is the first job of a periodic task, the preemption levels of the second
jobs in the tasks containing J1 and J2, respectively, must be 2 and 1 in order to meet the validity condition. Now,
undesirably, the preemption levels of these tasks vary with time.

Section 8.9 Controlling Accesses to Multiple-Unit Resources 313

critical section. In other words, without the inheritance rule, J1 would be blocked first by J4

and then by J2. This uncontrolled priority inversion is prevented by the inheritance rule.
It is not surprising that both versions of the preemption-ceiling protocol prevent dead-

lock and transitive blocking and ensure that every job is blocked for at most the duration of
one critical section. Like priority ceilings, preemption ceilings of resources impose an order
on all the resources. The preemption ceiling �̂(t) of the system tells us the subset of all jobs
which we can safely grant available resources at time t . This subset contains all the jobs whose
preemption levels are higher than the ceiling �̂(t) of the system. Such a job J can be granted
any resource R that is available at t because it does not require any resource that is in use at
the time. Moreover, none of the jobs that are holding any resources at t can later preempt J .

8.9 CONTROLLING ACCESSES TO MULTIPLE-UNIT RESOURCES

Both versions of the priority-ceiling protocol and preemption-ceiling protocol described in
the previous sections assume that there is only one unit of each resource. We now describe an
extension to these protocols so that they can deal with the general case where there may be
more than one unit of each resource (type).

8.9.1 Priority (Preemption) Ceilings of Multiple-Unit Resources

The first step in extending the priority-ceiling protocol is to modify the definition of the prior-
ity ceilings of resources. We let �(Ri , k), for k ≤ vi , denote the priority ceiling of a resource
Ri when k out of the νi (≥ 1) units of Ri are free. If one or more jobs in the system require
more than k units of Ri , �(Ri , k) is the highest priority of all these jobs. If no job requires
more than k units of Ri , �(Ri , k) is equal to
, the nonexisting lowest priority. In this nota-
tion, the priority ceiling �(R j) of a resource R j that has only 1 unit is �(R j , 0).

Let ki (t) denote the number of units of Ri that are free at time t . Because this number
changes with time, the priority ceiling of Ri changes with time. The (current) priority ceiling
of the system at time t is equal to the highest priority ceiling of all the resources at the time.

Figure 8–21 gives an example. The resource requirement graph gives the numbers of
units of the resources X , Y , and Z required by the five jobs that are indexed in decreasing
order of their priorities. The table below the graph gives the priority ceilings of each resource
for different numbers of free resource units. For example, there are 2 units of X . When 1 unit
of X is used, only J3 is directly blocked. Therefore, �(X, 1) is π3. J1 is also directly blocked
when both units of X are in use. For this reason, �(X, 0) is π1, the higher priority between
π1 and π3. When both units of X are free, the ceiling of the resource is
. Similarly, since
J2, J3, and J5 require 2, 3, and 1 unit of Y , which has 3 units, �(Y, 0), �(Y, 1), and �(Y, 2)
are equal to π2, π2, and π3, respectively. Suppose that at time t , 1 unit of each of X , Y , and Z
is free. The priority ceilings of the resources are π3, π2, and
, respectively, and the priority
ceiling of the system is π2.

The preemption ceilings of resources that have multiple units can be defined in a similar
manner: The preemption ceiling �(Ri , k) of the resource Ri when k units of Ri are free is
the highest preemption level of all the jobs that require more than k units of Ri . Hence, if
the jobs in Figure 8–21 were indexed in decreasing order according to their preemption levels
and we replaced πi and�(∗, k) in the table by ψi and�(∗, k), respectively, we would get the
preemption ceilings of the three resources. The preemption ceiling of the system at time t is
equal to the highest preemption ceiling of all the resources at the time.

314 Chapter 8 Resources and Resource Access Control

J2

J1

J5

J3

y(3)

x(2)

z(1)

J4

10

2

2

3

1

1

1

1

J1

J2

J3

J4

J5

Π(*, 0)

Π(*, 1)

Π(*, 2)

Π(*, 3)

1

0

2

1

0

π1

π3

Ω
Ω

0

2

3

0

1

π2

π2

π3

Ω

0

0

1

1

0

π3

Ω
Ω
Ω

Resources
x(2) z(1)y(3)

U
ni

ts
 R

eq
ui

re
d

by

FIGURE 8–21 Example of priority ceilings of multiple-unit resources.

8.9.2 Modified Rules

It is straightforward to modify the ceiling-priority protocol so it can deal with multiple-unit
resources. In essence, the scheduling and allocation rules remains unchanged except for the
new definition of priority ceiling of resources. However, since more than one job can hold
(some units of) a resource, scheduling rule 1b needs to be rephrased for clarity. It should read
as follows:

Scheduling Rule of Multiple-Unit Ceiling-Priority Protocol

Upon acquiring a resource R and leaving k ≥ 0 free units of R, a job executes at the
higher of its priority and the priority ceiling �(R, k) of R.

Similarly, the allocation rule of the priority-ceiling (or preemption-ceiling) protocol for
multiple units of resources is a straightforward modification of the allocation rule of the basic
priority-ceiling (preemption-ceiling) protocol.

Allocation Rule of Multiple-Unit Priority-(Preemption-) Ceiling Protocol

Whenever a job J requests k units of resource R at time t , one of the following two
conditions occurs:

(a) Less than k units of R are free. J ’s request fails and J becomes directly blocked.

(b) k or more units of R are free.

(i) If J ’s priority π(t) [preemption level ψ(t)] is higher than the current priority
ceiling �̂(t) [preemption ceiling �̂(t)] of the system at the time, k units of R
are allocated to J until it releases them.

(ii) If J ’s priority π(t) [preemption level ψ(t)] is not higher than the system
ceiling �̂(t) [�̂(t)], k units of R are allocated to J only if J holds the re-

Section 8.9 Controlling Accesses to Multiple-Unit Resources 315

source(s) whose priority ceiling (preemption ceiling) is equal to �̂(t) [�̂(t)];
otherwise, J ’s request is denied, and J becomes blocked.

You can see that this rule is essentially the same as the allocation rule of the basic version.
The only change is in the wording to accommodate multiple-unit requests.

8.9.3 Priority-Inheritance Rule

In the case where there is only 1 unit of each resource, we have shown that when a job J is
blocked, only one lower-priority job is responsible for this blocking and this lower-priority
job inherits J ’s priority. This may no longer be true in a system containing multiple resource
units. More than one lower-priority job may be responsible. The question is which one of
these jobs should inherit J ’s priority.

To illustrate, let us examine a system where there are 3 units of resource R, and there are
four jobs, each requiring 1 unit of R. Suppose that at the time when the highest priority job J1

requests a unit of R, all 3 units are held by the other three jobs. Now, all three lower-priority
jobs block J1. In this case, it is reasonable to let J2 (i.e., the job with the highest priority
among the three lower-priority jobs) inherit J1’s priority until it releases its units of R.

Indeed, an important special case is when a job can request and hold at most 1 unit of
every resource at a time. (An example is counting semaphores.) In this case, the following
priority-inheritance rule proposed by Chen [Chen] works well, that is, each job is blocked at
most once for the duration of one critical section.

Priority-Inheritance Rule

When the requesting job J becomes blocked at t , the job with the highest priority among
all the jobs holding the resource R that has the highest priority ceiling among all the
resources inherits J ’s priority until it releases its unit of R.

In general, a job may request and hold arbitrary numbers of resources. The example
in Figure 8–22 illustrates that a straightforward generalization of the priority-ceiling protocol
and the above priority-inheritance rule ensures that each job is blocked at most once. The
system in this example has five jobs indexed in decreasing order of their priorities. (In the
description below, the priorities are 1, 2, 3, 4 and 5.) There are two resources Black and
Shaded. The numbers of units are 5 and 1, respectively. The resource requirements of the jobs
and priority ceilings of the resources are listed in Figure 8–22(a).

1. At time 0, J5 starts to execute. When it requests 1 unit of Black at time 0.5, the ceiling
of the system is
; therefore, it is granted 1 unit of Black and continues to execute. The
ceiling of the system stays at
 because there still are sufficient units of Black to meet
the demand of every job.

2. At time 1, J4 becomes ready. It preempts J5 and, later, requests and is granted 1 unit of
Black. Now, J2 would be directly blocked if it requests Black, and the ceiling of Black,
and consequently of the system, becomes 2, the priority of J2.

3. At time 2, J3 preempts J4, and at time 2.5, J2 preempts J3. J2 becomes blocked when
it requests Shaded at time 3 because its priority is not higher than the ceiling of the
system. J4 now inherits priority 2 and executes.

316 Chapter 8 Resources and Resource Access Control

2 4 0 1 1 1 1 2 2

1

5

1

1
2
3
4
5

1 0

0

0 1 1

units required

Black

S haded

no. of
units

(*, k), k =

J1 J2 J3 J4 J5

J1

J2

J3

J4

J5

0 1 2 3 4 5

(b)

t

(a)

0 1 2 3 4 5 6 7 8 9 10

Π(t)

FIGURE 8–22 Example of multiple-unit resource access.

Section 8.10 Controlling Concurrent Accesses to Data Objects 317

4. At time 3.5, J1 preempts J4. Since its priority is higher than the ceiling of the system,
J1 is allocated both resources when it requests them.

5. At time 6, J1 completes, and J4 continues to execute until it releases its 1 unit of Black at
time 6.5. The ceiling of the system returning to
, J2 is allocated Shaded. After Shaded
is allocated, the ceiling of the system becomes 1.

6. At time 7, when J2 requests 4 units of Black, the units are available. The ceiling of the
system is 1, but J2 holds the resource with this priority ceiling. Hence it is allocated 4
units of Black.

7. When J2 completes, J3 resumes. When J3 completes, J4 resumes, and it is followed by
J5. The system becomes idle at time 10.

From this example, we can see that Chen’s priority-inheritance rule works for the gen-
eral case as well. Specifically, we let R denote the resource whose priority ceiling is the
highest among all resources in the system at time t . Let J ′ denote the job that has acquired
the resource latest among all jobs holding R. If a requesting job J becomes blocked at t , J ′
inherits the priority of J . The fact that the priority-ceiling protocol defined by the rules stated
in this section ensures that every job is blocked at most once can be proved in a manner similar
to the proof of Theorem 8.2.

*8.10 CONTROLLING CONCURRENT ACCESSES TO DATA OBJECTS

Data objects are a special type of shared resources. When jobs are scheduled preemptively,
their accesses to (i.e., reads and writes) data objects may be interleaved. To ensure data in-
tegrity, it is common to require that the reads and writes be serializable. A sequence of reads
and writes by a set of jobs is serializable if the effect produced by the sequence on all the data
objects shared by the jobs is the same as the effect produced by a serial sequence (i.e., the
sequence of reads and writes when the jobs execute according to a nonpreemptive schedule).

8.10.1 Convex-Ceiling Protocol

The resource access-control protocols described in earlier sections do not ensure serializabil-
ity. For example, both the NPCS and PC (Priority- and Preemption-Ceiling) protocols allow
a higher-priority job Jh to read and write a data object X between two disjoint critical sec-
tions of a lower-priority job Jl during which Jl also reads and writes X . The value of X thus
produced may not be the same as the value produced by either of the two possible serial
sequences (i.e., all the reads and writes of Jl either proceed or follow that of Jh).

Motivation and Assumptions. A well-known way to ensure serializability is Two-
Phase Locking (2PL). According to the 2PL protocol, a job never requests any lock once it
releases some lock. Hence, the critical sections of J1 and J3 in Figure 8–1 satisfy this protocol,
but the critical sections of J2 do not. Under the 2PL protocol, J2 would have to hold the locks
on R2 and R3 until time 16. (This is because we also require the critical sections be properly
nested.)

We can easily get concurrency-control protocols that not only ensure serializability but
also prevent deadlock and transitive blocking by augmenting the protocols described in earlier

318 Chapter 8 Resources and Resource Access Control

sections with the two-phase locking rule. As a result, we have the NPCS-2PL and the PCP-
2PL protocols. The augmented protocols have an obvious shortcoming: prolonged blocking.
Following the 2PL rule, a job may hold a data object even when it no longer require the object.
As a consequence, it may block other jobs for a longer duration.

The convex-(priority-) ceiling protocol [Naka] described below is another extension
of the priority-ceiling protocol. It is an improvement over the PCP-2PL protocol because it
reduces the duration of blocking. In the description below, we assume that there is only one
of each data object.

Priority-Ceiling Function. As with the PCP-2PL protocol, the convex-ceiling pro-
tocol assumes that the scheduler knows a priori the data objects require by each job and,
therefore, the priority ceiling of each data object. In addition, each job notifies the scheduler
immediately after it accesses each of its required objects for the last time. We call a notifica-
tion sent by a job Ji after it accesses Rk for the last time the last access notification for Rk by
Ji and the time of this notification the last access time of Rk by Ji .

For each job Ji in the system, the scheduler generates and maintains the following two
functions: the remainder priority ceiling, RP(Ji , t) and the priority-ceiling function,�(Ji , t).
RP(Ji , t) is the highest priority ceiling of all data objects that Ji will require after time t . When
Ji is released, RP(Ji , t) is equal to the highest priority ceiling of all data objects required by
the job. The scheduler updates this function each time when it receives a last access notifi-
cation from Ji . When the job no longer requires any object, its remainder priority ceiling is

.

When each job Ji starts execution, its priority-ceiling function �(Ji , t) is equal to
.
When Ji is allowed to access an object Rk for the first time, �(Ji , t) is set to the priority
ceiling �(Rk) of Rk if the current value of �(Ji , t) is lower than �(Rk). Upon receiving a
last access notification from Ji , the scheduler first updates the function RP(Ji , t). It then sets
the priority-ceiling function �(Ji , t) of the job to RP(Ji , t) if the remainder priority ceiling
is lower.

Figure 8–23 gives an example. The job Ji requires three data objects: Dotted, Black, and
Shaded. Their priority ceilings are 1, 2, and 3, respectively. Figure 8-23(a) shows the time in-
tervals when the job executes and accesses the objects. The two functions of the job are shown
in Figure 8–23(b). At time 0, RP(Ji , 0) is 1. The job sends last access notifications at times
4, 6, and 8 when it no longer needs Dotted, Black, and Shaded, respectively. The scheduler
updates RP(Ji , t) at these instants; each time, it lowers the remainder priority ceiling to the
highest priority ceiling of all objects still required by the job in the future.

Initially, �(Ji , t) is equal to
. At time 2 when Ji accesses Black for the first time, its
priority ceiling function is raised to 2, the priority ceiling of Black. �(Ji , t) stays at 2 until
time 3 and is raised to 1 at time 3 when Ji accesses Dotted for the first time. At time 4 when
the last access notification for Dotted is received, �(Ji , t) is set to 2, the updated value of
RP(Ji , t). Similarly, �(Ji , t) is lowered to 3 and
 at the last access times 6 and 8 of Black
and Shaded, respectively.

By definition, RP(Ji , t) is a nonincreasing function of t . The priority-ceiling function
�(Ji , t) first raises as the job is allowed to access more and more data objects. Its value,
once lowered, never rises again. In other words, the priority-ceiling function of every job is
“two-phase”; it has only one peak.

Section 8.10 Controlling Concurrent Accesses to Data Objects 319

1
2
3

0
Ω

Ji

(b)

(c)

t

t

(a)

0 1 2 3 4 5 6 7 8 9 10

2 4 6 8 10

2 4 6 8 10

2 4 6 8 10

RP(Ji, t)

1
2
3

0
Ω t

Π(Ji, t)

1
2
3

0
Ω t

Π(t)

FIGURE 8–23 Example of priority-ceiling functions.

320 Chapter 8 Resources and Resource Access Control

Definition and Capability. As with the priority-ceiling protocol, at any time t when
the scheduler receives a request to access an object R for the first time from any job J , it
computes the system ceiling �̂(t). �̂(t) is equal to the highest priority of the priority-ceiling
functions of all the jobs in the system. The convex-ceiling protocol defined by the following
rules.

Rules of Convex-Ceiling Protocol

1. Scheduling Rule: At any time, jobs that are not suspended are scheduled on the processor
in a preemptive, priority-driven manner. Upon its release, the current priority of every
job Ji is its assigned priority πi . It executes at this priority except when the inheritance
rule is applied.

2. Allocation Rule: When a job Ji requests to access a data object R for the first time,
(a) if Ji ’s priority is higher than the system ceiling �̂(t), J is allowed to continue

execution and access R;
(b) if Ji ’s priority is not higher than �̂(t),

i. if �̂(t) is equal to �(Ji , t), Ji is allowed to access R;
ii. otherwise, J is suspended.

3. Priority-Inheritance Rule: When Ji becomes suspended, the job Jl whose priority-
ceiling function is equal to the system ceiling at the time inherits the current priority
πi (t) of Ji

By definition, the priority-ceiling function of any job J (and hence the ceiling of the
system) never falls below the priority ceiling of any data object already read and written by J
until J no longer requires the object. In this way, the convex-ceiling protocol prevents other
jobs from reading and writing the objects required by J between the reads and writes of J .
The formal proof that the protocol ensures serializability can be found in [Naka].

In principle, the convex-ceiling protocol is the same as the basic priority-ceiling proto-
col. (The system ceiling used by the basic priority-ceiling protocol can also be defined as the
highest priority of the priority-ceiling functions of all the jobs: The priority-ceiling function of
a job is equal to the highest priority ceiling of all the resources being used by the job.) That the
convex-ceiling protocol prevents deadlock and transitive blocking follows straightforwardly
from this fact.

From its definition, we see that that the convex-ceiling protocol can be implemented en-
tirely in the application level. An application-level object manager can serve as the scheduler.
It maintains the priority-ceiling functions of jobs and controls the concurrent accesses to data
objects. It can do so without relying on a locking mechanism. Since the basic priority-ceiling
and PCP-2PL protocols can also be defined in the same manner, the same can be said for these
protocols as well.

Comparison with Basic and PCP-2PL Protocols. To illustrate the differences be-
tween this protocol and the basic priority-ceiling protocol, we return to the example in Figure
8–23. Suppose that after Ji accesses Black, a job J2 with priority 2 were to request access to
a data object. According to the convex-ceiling protocol, this request would be denied and J2

would be suspended until time 6 when the system ceiling is lowered to 3. In contrast, accord-
ing to the basic priority-ceiling protocol, the system ceiling is given by the solid line in Figure

Section 8.10 Controlling Concurrent Accesses to Data Objects 321

8–23(c). J2 would be allowed to access its required data object starting from time 4. J2 would
be blocked for a shorter amount of time at the expense of potential violation of serializability.

On the other hand, according to the PCP-2PL protocol, the system ceiling would be
given by the dotted line in Figure 8–23(c) because Ji does not release any data object until it
no longer requires additional objects. As a consequence, J2 would be blocked for 1 more unit
of time when compared with the convex-ceiling protocol. A job with priority 1 can be blocked
by Ji for only 1 unit of time under the convex-ceiling protocol, but can be blocked for 5 units
of time under PCP-2PL protocol.

8.10.2 Other Real-Time Concurrency Control Schemes

One way to improve the responsiveness of soft real-time jobs that read and write multiple data
objects is to abort and restart the lower-priority job whenever it conflicts (i.e., contends for
some data object) with a higher-priority job. A policy that governs which job proceeds at the
expense of which job is called a conflict resolution policy.

Well-Known Conflict Resolution Policies. To explain conflict resolution policies
that have been proposed for database transactions, we note that each transaction typically
keeps a copy of each object it reads and may write in its own memory space. When it com-
pletes all the reads, writes, and computations, it writes all data objects it has modified back to
the global space. This last step is called commit. So, until a transaction commits, no shared
data object in the database is modified, and it is safe to abort and restart a transaction and take
back the data objects allocated to it.

Abbott, et al. [AbMo] showed that the 2PL-HP schemes perform well for soft real-time
transactions compared with Optimistic Concurrency Control (OCC) schemes, which we will
explain shortly. According to the 2PL-HP scheme, all transactions follow a two-phase policy
in their acquisitions of (locks of) data objects. Whenever two transactions conflict (i.e., they
want to access the same object), the lower-priority transaction is restarted immediately (i.e.,
the executing instance is aborted and new instance is made ready immediately). In essence,
this scheme allocates data objects to transactions preemptively. Therefore, priority inversion
cannot occur.

The results of a soft real-time transaction remains useful to some extent even when the
transaction completes late. In contrast, the result of a late transaction with a firm deadline
is useless and hence is discarded. The 2PL-HP scheme does not work well for firm real-time
transactions compared with OCC schemes. The reason is that 2PL-HP can cause wasted restart
and wasted wait [HoJC]. The former refers to a restart of a lower-priority transaction which
turns out to be unnecessary because the conflicting higher-priority transaction completes late.
A way to reduce wasted restarts is by simply suspending a conflicting lower-priority transac-
tion when a conflict occurs. If the conflicting higher-priority transaction completes in time,
the suspended transaction is aborted and restarted. On the other hand, if the conflicting trans-
action completes late, the suspended transaction can resume. Unfortunately, the stop and wait
may cause the lower-priority transaction to be late, and thus incurs wasted wait.

Optimistic Concurrency Control Schemes. Optimistic concurrency control is an
alternative approach to two-phase locking. Under the control of an OCC scheme, whether a
transaction conflict with other executing transactions is checked immediately before the trans-
action commits. This step is called validation. If the transaction is found to conflict with other

322 Chapter 8 Resources and Resource Access Control

transactions at the time, one of them is allowed to proceed and commit, while the conflicting
transactions are restarted. Different OCC schemes differ in the choices of these transactions.
A priority-based OCC scheme allows a conflicting lower-priority scheme to proceed until val-
idation time and then is restarted if it is found to conflict with some higher-priority transaction
at validation time.

Most performance evaluation studies (e.g., [HaCL, LeSo] found that OCC schemes per-
form better than 2PL-based schemes in terms of on-time completions of real-time transactions.
However, when the performance criterion is temporal consistency, OCC schemes tend to give
poorer performance, especially when the transactions are periodic. In particular, Song, et al.
[SoLi] found that the age and dispersion of data read by transactions tend to be larger under
an OCC scheme than under lock-based schemes. (The terms temporal consistency, age and
dispersion were defined in Section 1.4.1.) This is because both blocking and preemption can
cause temporal inconsistency (i.e., age and dispersion of data being large). Blocking due to
resource contention can cause higher-priority update transactions to complete late and data to
be old. However, preempted transactions may read data that are old and have large age dis-
persion as well. When transactions are periodic, a transaction restarted in one period is likely
to restart again in other periods. The repeated restarts lead to a large variance in the age and
dispersion of data.

8.11 SUMMARY

This chapter described several protocols for controlling accesses to shared resources in sys-
tems where jobs are scheduled on a processor in a preemptive, priority-driven manner. This
section first summarizes them and then discusses the effect of resource contention with aperi-
odic jobs and rules for safe mode changes.

8.11.1 Resource Access-Control Protocols

Because every unit of resource can be used by at most one job at a time without preemption,
priority inversions may occur. The primary design objective of resource access control proto-
cols is to control priority inversion, that is, to keep the duration of every priority inversion (and
hence the blocking time suffered by the higher-priority job) bounded from above. Among the
protocols described above,

1. the NPCS and priority-inheritance protocols do not require prior knowledge on the re-
sources required by jobs, while all other protocols do;

2. the priority-inheritance protocol does not prevent deadlock, while all other protocols
do; and

3. all protocols except the priority-inheritance protocol ensures that every job is blocked
at most once.

Nonpreemptive Critical Section (NPCS) Protocol. The NPCS protocol described
in Section 8.3 offers the simplest means to ensure that every job is blocked at most once if it
does not self-suspend. According to this protocol, the scheduler allows the executing job to
use any resource at any time and never preempts a job when the job is using any resource.

Section 8.11 Summary 323

A job can be blocked only if it becomes ready when some lower-priority job is in a critical
section (i.e., using some resource). The blocking time thus incurred is at most equal to the
execution time of the critical section. Simplicity is the major advantage of this protocol. Its
disadvantage is that every job can be blocked by all lower-priority jobs.

Priority-Inheritance Protocol. According to the priority-inheritance protocol de-
scribed in Section 8.4, the request for a resource is denied and the requesting job becomes
blocked only if the resource is in use. When this occurs, the job that directly blocks the re-
questing job (i.e., is using the requested resource) inherits (i.e., executes at) the requesting
job’s priority. Because of priority inheritance, a job may also be priority-inheritance blocked
when a lower-priority job inherits a higher priority. The priority-inheritance protocol keeps
the blocking time bound from above by the maximum execution time of critical sections of
lower-priority jobs each time a job is blocked. However, a job that conflicts with more than
one job over more than one resource can be blocked a multiple number of times. Again, this
protocol does not prevent deadlock.

Basic Priority-Ceiling Protocol. Section 8.5 described a version of the priority-
ceiling protocol. This protocol prevents deadlock and transitive blocking among jobs. When
it is used, a job that never self-suspends is blocked at most once, and the duration of blocking
is bounded from above by the maximum execution time of critical sections of lower-priority
jobs.

The scheduler finds a priori the priority ceiling of each resource (i.e., the highest prior-
ity of all jobs that require the resource). When a job J requests a resource, say at time t , the
scheduler first finds the system ceiling �̂(t), which is the highest of the priority ceilings of all
resources in use at the time. The requesting job can use the resource only when the job’s pri-
ority is higher than the system ceiling or when the job has the resource whose priority ceiling
is equal to �̂(t). When the requesting job becomes blocked, the job holding the resource with
priority ceiling �̂(t) inherits the priority of the requesting job.

The priority-ceiling protocol is nongreedy: a requesting job may be denied a resource
and becomes priority-ceiling blocked even when the resource is free. Every time a job requests
a resource, the scheduler must update the system ceiling. The complexity of this operation is
O(log ρ) where ρ is the number of resource types. The priority-ceiling protocol is better
suited for a fixed-priority system of periodic tasks than dynamic-priority systems.

Ceiling-Priority (Stack-Based Priority-Ceiling) Protocol. According to the ceiling-
priority protocol, which is identical to the stack-based version of the priority-ceiling protocol,
each job executes at its assigned priority when it does not hold any resource, and at the high-
est of priority ceilings of all resources held by the job whenever the job holds any resource.
Another way to implement the protocol is to have the scheduler update the system ceiling
each time the status (i.e., in use or free) of a resource changes. Upon release, a job whose
priority is no higher than the system ceiling is blocked until the system ceiling becomes lower
than its priority. Once a job is unblocked and scheduled for execution, it is never blocked
because all its required resources are available.

The stack-based version of the priority-ceiling protocol is described in Section 8.6. It
allows the jobs to share the run-time stack if the jobs never self-suspend. The stack-based
version has the same worst-case blocking time as the basic version. It is much simpler to

324 Chapter 8 Resources and Resource Access Control

implement. For this reason, it is preferred over the basic priority-ceiling protocol even for
jobs that do not share stack space.

Preemption-Ceiling Protocols. In principle, the priority-ceiling protocol can be used
in a dynamic-priority system. However, the high overhead due to the updates of priority ceil-
ings of resources upon the releases of new jobs makes it unattractive. The preemption-ceiling
protocol described in Section 8.8 is a better alternative. The protocol is motived by the ob-
servation that the potential for a job to preempt other jobs depends not only on its priority
but also on its release time. Therefore, rather than than working with priorities of jobs, the
preemption-ceiling protocol assigns each job a preemption level based on its priority and re-
lease time: the higher the preemption level of a job, the larger the possibility of its preempting
other jobs. So, a job that has a higher priority and later release time should have a higher
preemption level. For example, the preemption levels of jobs in a deadline-driven system can
be assigned on the basis of their relative deadlines: the shorter the deadline, the higher the
preemption level.

The preemption ceiling of a resource is the highest preemption level of all jobs that re-
quire the resource. The basic and stack-based versions of the preemption-ceiling protocol are
essentially the same as the corresponding versions of the priority-ceiling protocol except that
in place of priority ceilings, the schedulers works with the preemption ceiling of resources.

Periodic tasks in many dynamic-priority systems (e.g., those scheduled on the EDF or
LST basis) have fixed preemption levels. The preemption-ceiling protocol is a better option
because it should have lower run-time overhead than the priority-ceiling protocol.

Priority- and Preemption-Ceiling Protocols for Multiple-Unit Resources. The
priority-ceiling (and preemption-ceiling) protocols were extended in Section 8.9 so they can
deal with multiple-unit resources. The priority ceiling�(R, k) of a resource R that has ν ≥ 1
units when k (ν ≥ k ≥ 0) are available is the highest priority of all jobs that require more
than k units of R. The system ceiling at any time is equal to the highest of priority ceilings
of all resources in the system. Except for this modification, the multiple-unit priority-ceiling
protocol is the same as the basic version.

Implementation Issue. The most straightforward implementation of the priority-
ceiling (or preemption-ceiling) protocol makes use of a locking mechanism: A job locks a
(unit of a) resource when the scheduler allows it to use the resource and releases the lock to
free the resource. The definition of the protocol makes this assumption.

This protocol can also be implemented without relying a locking mechanism. An im-
plementation without locking requires that each job notifies the scheduler when it is no longer
requires a resource, in addition to requesting the use of a resource. The scheduler keeps a
priority-ceiling function �(J, t) for each job J . At any time t , �(J, t) is the highest priority
ceiling of all resources which J is allowed to use at time t . This function is updated each time
the scheduler allows J to access a resource and when a notification from the job is received.
The system ceiling at time t is equal to the highest ceiling of priority-ceiling functions of all
jobs at time t . You can find in Section 8.10.1 reworded allocation and inheritance rules of the
protocol that assume the information used by the scheduler is kept in this form and jobs do
not lock resources.

Section 8.11 Summary 325

Protocols for Controlling Accesses to Data Objects. Section 8.10 discussed the
additional concern about serializability when jobs share data. A way to ensure serializable ac-
cesses to data objects is to augment the priority-ceiling and preemption-ceiling protocols with
a two-phase locking rule. The augmented protocol is called the PCP-2PL protocol. This is also
the basic principle of the convex-ceiling protocol described in Section 8.10.1. This protocol
improves on the PCP-2PL protocol by reducing the blocking times. Optimistic concurrency
control are well-known alternatives to locking-based protocols described above.

Computing the Total Blocking Time. Finally, let us denote the number of times
each job Ji self-suspends by K . Moreover, each job Ji has resource conflict over different re-
sources with vr lower-priority jobs and vn lower-priority jobs have nonpreemption segments.
Let bi (ss), bi (rc), and bi (np) denote the blocking times of Ji due to self-suspension, resource
contention, and nonpreemptivity, respectively. Then the total blocking time bi suffered by Ji

is given by

bi = bi,k(ss)+ (K + 1)max(bi (rc), bi (np))

bi = bi,k(ss)+ max(K + 1, vr)bi (rc)+ min(K + 1, vn)bi (np)

bi = bi,k(ss)+ (K + 1)bi (rc)+ (K + 1)bi (np)

when resource accesses are controlled according to the NPCS, priority-inheritance, and
priority-ceiling (or preemption-ceiling) protocols, respectively.

8.11.2 Resource Contention with Aperiodic Jobs

Aperiodic (and sporadic) jobs may also use resources. Their resource requirements must be
taken into account when we compute the blocking time due to resource contention of any
job (or task). The techniques for computing blocking time described earlier can be used for
this purpose as well, provided that an aperiodic job is never suspended while it is in a critical
section because the server executing it runs out of budget.

To prevent prolonged blocking, the deferrable and sporadic server algorithms must be
modified as follows so the server will not be suspended because it runs out of budget when
the aperiodic job being executed is holding some resource. (1) When the server exhausts its
budget, the scheduler suspends the server immediately if the aperiodic job being executed is
not in a critical section, but if the job is in a critical section, the scheduler waits until the
job exits from the critical section and then suspends the server. In other words, the server is
nonpreemptable while it is in a critical section. (2) Whenever the scheduler has allowed the
server to execute after the server budget is exhausted (i.e., allows the server to overrun its
allocated time), the scheduler deducts the length of the overrun from the server budget when
it replenishes the server budget. As a consequence of this overrun, a lower-priority task may
suffer additional delay. When we compute the time demand of the lower-priority task, we need
to add the execution time of the longest critical section of the aperiodic task as a blocking term
into the time demand function [e.g., given by the expression in Eq. (7.1)] of the task.

An advantage of a total bandwidth, constant utilization, or weighted fair-queueing server
is that such a server never runs out of budget before the completion of the aperiodic job
being executed. Consequently, when some job in the aperiodic task executed by such a server
requires resources, we can simply treat the aperiodic task in the same way as a periodic task in

326 Chapter 8 Resources and Resource Access Control

our computation of blocking time. A slight complication is the choice of preemption level for
the server in a system that uses a preemption-ceiling protocol, since the “relative deadline” of
the server changes with time. The server should be given a high preemption level for the sake
of the system’s aperiodic response. If the server has a low preemption level (e.g., based on
the longest relative deadline it may have), it in effect executes in the background of periodic
tasks.

8.11.3 Mode Changes

We conclude this chapter by returning to the question that was last discussed in Section 5.7.2:
how to carry out mode change. In other words, when it is safe to add new (periodic and
sporadic) tasks into a priority-driven system and delete existing tasks from it. Earlier chapters
mentioned admissions of tasks after they pass acceptance, but do not explicitly say when.
During a mode change, that is, when the system changes from one operation mode to another,
not only new tasks (i.e., tasks that do not run in the current mode but will run in the new mode)
need to be added, but also old tasks (i.e., tasks that run in the current mode but will not run
in the new mode) need to be deleted. As we did in Section 5.7.2, we focus here on periodic
tasks. This subsection provides a brief summary of rules governing the deletion and addition
of these tasks; you can find details on mode-change protocols in [SRLR].

Task Deletions and Admissions. In the simpler case, tasks’ resource accesses are
controlled by the NPCP and priority-inheritance protocols. The scheduler does not maintain,
and therefore does not need to update, resource usage information. In the task deletion phase,
the scheduler deletes every old task T and reclaims the processor time allocated to the task.
Specifically, it deletes T immediately if at the start t of the mode change, the current job of
T has not begun to execute. However, it waits to do so until the beginning of the next period
of T or when the current job completes, whichever is later, if the job has executed at time t .
Therefore, the length of time the scheduler takes to complete the task-deletion phase is at most
equal to the longest of the periods of all old tasks.

In principle, new tasks can be added one by one as sufficient processor time becomes
available and the new task becomes schedulable with existing tasks. This does not speed up
the completion of mode change, however, and it is much simpler for the scheduler to wait
until the task-deletion phase completes and then adds all the new tasks at once.

Updates of Resource Usage Information. In a system that uses priority-ceiling,
ceiling-priority, or preemption-ceiling protocols, priority (preemption) ceilings of resources
must be updated before new tasks can be added into the system. The scheduler raises the pri-
ority ceiling of a resource whose new priority ceiling (i.e., the ceiling in the new mode) is
higher than the old after the start t of the mode change as soon as the resource is free. It waits
until all the tasks that use a resource R whose new priority ceiling is lower than the old have
been deleted and then lowers the priority ceiling of R to the new value.

A new task that will use a resource R whose priority ceiling must be raised can be added
into the system only after the priority ceiling of R has been raised. All the updates of priority
(or preemption) ceilings are surely complete shortly after the task-deletion phase completes
or all the resources are released, whichever is later.

Exercises 327

EXERCISES

8.1 A system contains five jobs. There are three resources X, Y, and Z. The resource requirements of
the jobs are listed below.

J1: [X; 2]
J2: none
J3: [Y ; 1]
J4: [X; 3 [Z ; 1]]
J5: [Y ; 4 [Z ; 2]]

The priority Ji is higher than the priority of Jj for i < j . What are the maximum blocking
times of the jobs under the nonpreemptable critical-section protocol and under the priority-ceiling
protocol?

8.2 A system contains the following four periodic tasks. The tasks are scheduled by the rate-
monotonic algorithm and the priority-ceiling protocol.

T1 = (3, 0.75) b1 = 0.9
T2 = (3.5, 1.5) b2 = 0.75
T3 = (6, 0.6) b3 = 1.0
T4 = (10, 1)

bi is the blocking time of Ti . Are the tasks schedulable? Explain your answer.

8.3 Consider a fixed-priority system in which there are five tasks Ti , for i = 1, 2, 3, 4, and 5, with
decreasing priorities. There are two resources X and Y . The critical sections of T1, T2, T4, and
T5 are [Y ; 3], [X; 4], [Y ; 5 [X; 2]], and [X; 10], respectively. (Note that T3 does not require any
resource.) Find the blocking times bi (rc) of the tasks.

8.4 A fixed-priority system contains four tasks Ti , for i = 1, 2, 3, 4, and 5, with decreasing priorities
and uses the ceiling-priority protocol to control resource access. There are three resources X , Y ,
and Z ; each has 1 unit. The critical sections of the tasks are [X; 4], [Y ; 6], [Z ; 5], and [X; 3 [Y ; 2
[Z ; 1]]], respectively. Suppose that T2 may self-suspend once, and b2(ss) is 1. The other tasks
never self-suspend. What are the blocking times of the tasks?

8.5 Sections 8.6.1 and 8.6.2 give two different implementations (and two different names) of the
ceiling-priority protocol.
(a) Discuss the pros and cons of the implementations.
(b) The definitions of the stack-based, priority-ceiling protocol and ceiling-priority protocol do

not say whether jobs are allowed to self-suspend. Do protocols still limit the duration of
blocking if jobs may self-suspend? If yes, give an intuitive argument to support your answer.
If no, give an illustrative example.

(c) Oftentimes, jobs of equal priority are scheduled on the round-robin basis. Modify the defini-
tion of priority ceilings of resources and the scheduling rule of the ceiling-priority protocol
to make the protocol work for such jobs. (Hint: Consider restricting the priorities of all jobs
to even integers. Define the priority ceiling of each resource to be the highest of the priorities
of all jobs that require the resource minus one. In other words, the ceiling priorities of all
resources are odd integers.)

8.6 A fixed-priority system contains five tasks. There are two kinds of resources X and Y . The re-
source X has 3 units and Y has 2 units. The resource requirements of the tasks are as follows:

328 Chapter 8 Resources and Resource Access Control

T1 : [X, 1; 3]
T2 : [Y, 1; 4]
T3 : [Y, 1; 4 [X, 3; 2]]
T4 : [X, 1; 4] [Y, 2; 2]]
T5 : [Y, 1; 3]

The priority of Ti is higher than the priority of Tk if i < k.
(a) Suppose that the system uses the stack-based priority-ceiling protocol. What are the maxi-

mum blocking times of the jobs?
(b) Suppose that these periodic tasks have the following parameters: T1 = (40, 5, 20), T2 =

(30, 5, 25), T3 = (35, 5, 30), T4 = (60, 6, 40), and T5 = (55, 5, 50). Are these tasks schedu-
lable? Explain your answer.

8.7 A system contains the following five periodic tasks. The tasks are scheduled rate-monotonically.

T1 = (6, 3, [X; 2])
T2 = (20, 5, [Y ; 1])
T3 = (200, 5, [X; 3 [Z ; 1]])
T4 = (210, 6, [Z ; 5 [Y ; 4]])

Compare the schedulability of the system when the priority-ceiling protocol is used versus the
NPCS protocol.

8.8 A system contains six jobs, Ji , for i = 1, . . . , 6. Jobs J2 and J3 have the same priority. Otherwise,
the smaller the index, the higher the priority. There are three resources X , Y , and Z in the system;
each resource has 1 unit. The stack-based priority-ceiling protocol is used to control resource
access. The amounts of time the jobs use the resources are given by the following table. (A blank
means zero.)

Jobs X Y Z

J1 1
J2 7
J3 1
J4

J5 2
J6 3 4

(a) Find the blocking times of all jobs.
(b) Suppose that all the jobs except J5 are released at the same time t . At time t , J5 holds Z .

Which jobs are ready for execution and which ones are not? Explain your answers.

8.9 A system contains three periodic tasks (T1, T2 and T3) and three resources (X , Y , and Z). There are
3 units of resource X , 2 units of resource Y , and 3 units of resource Z . The resource requirements
of the tasks are as follows:

T1: [Y, 1; 4 [X, 3; 2]]
T2: [Z , 3; 5 [Y, 1; 1]]
T3: [Z , 1; 7 [X, 1; 3]]

(a) Draw the resource requirement graph for the task system.
(b) Suppose that the periods and execution times of the tasks are given by

T1 = (20, 5)
T2 = (15, 6)
T3 = (35, 8)

Exercises 329

Construct a table of preemption ceilings for the resources, assuming that the tasks are sched-
uled according to the earliest-deadline-first algorithm. Are the tasks schedulable? Why?

(c) What are the blocking times of the tasks if the tasks are scheduled rate-monotonically? Are
the tasks schedulable according to the rate-monotonic algorithm? Why?

8.10 Given a system consisting of the following tasks whose periods, execution times, and resource
requirements are given below.

T1 = (2, 0.4, [X, 3; 0.3])
T2 = (3, 0.75, [X, 1; 0.3][Y, 1; 0.4])
T3 = (6, 1.0[Y, 1; 0.4][Z , 1; 0.5[X, 1; 0.4]]
T4 = (8, 1.0[X, 1; 0.5][Y, 2; 0.1][Z , 1; 0.4])

There are 3 units of X , 2 units of Y , and 1 unit of Z . The tasks are scheduled by the EDF algorithm
and the stack-based protocol.
(a) Find the preemption ceiling of each resource and the the maximum blocking time for each

task.
(b) Are the tasks schedulable according to the earliest-deadline-first algorithm? Why?

8.11 Rule 3 of the basic priority-inheritance protocol assumes that when a job J becomes blocked, the
job which directly blocks it has an equal or lower priority. Prove that this is assumption is valid in
the absence of a deadlock. Given an example to show that this assumption is not true when there
is a deadlock.

8.12 Show that under the control of the priority-inheritance protocol, a job can be blocked directly by
any lower-priority job for at most once for the duration of one outermost critical section, in the
absence of a deadlock.

8.13 As defined in Section 8.4, three jobs J1, J2, and J3 are said to be transitively blocked when J3

blocks J2 which in turn blocks J1. Show that priority-ceiling protocol prevents transitive blocking
of three or more jobs and, hence prevents deadlock among three or more jobs.

8.14 You are given a system of n periodic tasks that are scheduled on a fixed-priority basis and under
the basic priority-ceiling protocol and the resource requirement graph of the system. Write a
pseudocode description of an algorithm that computes the blocking set BSi and the worst-case
blocking time bi of each task.

8.15 Suppose that periodic tasks are scheduled according to a fixed-priority scheduling algorithm and
there is only 1 unit of resource of each type. We can, therefore, choose to use either the Stack-
Based Protocol (SBP) or Priority-Ceiling Protocol (PCP). Give examples to illustrate that (a)
PCP is better than SBP and (b) SBP is better than PCP, when performance is measured in terms
of blocking times. Explain why such an example (or examples) cannot exist if you cannot find
one (or both) of the examples.

C H A P T E R 12

Operating Systems

This chapter describes operating systems services and mechanisms. A good real-time operat-
ing system not only provides efficient mechanisms and services to carry out good real-time
scheduling and resource management policies, but also keeps its own time and resource con-
sumptions predictable and accountable. The chapter first discusses how to implement operat-
ing system functions to accomplish these objectives. It then examines how well several widely
used real-time operating systems and general-purpose operating systems perform in this re-
spect.

There are numerous texts and survey articles on operating systems principles in general
and on real-time systems in specific (e.g., [Bute, Crow, Gall, SiGa, NiFB, TaWo]). In partic-
ular, Gallmeister [Gall] gives insightful discussions on effective approaches to programming
real-time applications and selection of real-time operating systems, as well as capabilities
of existing UNIX operating systems and Application Program Interfaces (APIs). Rather than
duplicating their treatment of these topics, this chapter complements their coverage. It empha-
sizes those services and mechanisms that are easy to implement, have low overhead, can make
the implementation of many algorithms described in previous chapters significantly simpler
but are not provided by most existing operating systems.

Following the introduction, Section 12.1 begins by introducing the terminology used
here and relates the terms to the terms used in previous chapters. More than general-purpose
operating systems, a real-time operating system should be modular and extensible. In em-
bedded systems, the kernel must be small because it is often in ROM and RAM space may
be limited. Some systems are safety critical and require certification, including the operating
system. Simplicity and smallness are advantageous from this perspective as well. This is why
a real-time operating system may have a microkernel that provides only essential services,
such as scheduling, synchronization, and interrupt handling. Section 12.1 describes a general
structure of an operating system microkernel and the services it typically provides. Sections
12.2 and 12.3 discuss the quality of these services and point out where timing unpredictability
is typically introduced. They also describe operating system primitives that can drastically
simplify user-level implementation of many scheduling algorithms (e.g., the sporadic-server
algorithm and release-guard protocol).

Continuing the thrust of Sections 12.2 and 12.3, Sections 12.4 and 12.5 describe two
desirable architectural features that are not yet found in most existing systems. Some real-
time applications (e.g., air traffic control) require all the functionalities (e.g., I/O, files, and

497

498 Chapter 12 Operating Systems

networking) of general-purpose operating systems. A real-time operating system typically
provides these services by adding to the kernel optional components, which we call (System)
Service Providers (SSPs).1 Section 12.4 presents the processor reserve abstraction proposed
by Mercer, et al. [MeST], together with the associated architecture of SSPs. This abstraction
supports accurate monitoring and control of resource consumption of each SSP when the SSP
executes on behalf of its clients.

Most operating systems (even those that support multiple scheduling policies) schedule
all applications according to the same scheduling algorithm at any given time. Whether each
application can meet its timing requirements is determined by a global schedulability analysis
based on parameters of every task in the system. The necessity of detailed timing and resource
usage information of all applications that may run together often forces the applications to be
developed together and, thus, keeps the system closed. Section 12.5 describes an operating
system architecture that offers real-time applications an open environment. Hard real-time
applications can run with soft real-time and nonreal-time applications in this environment. It
makes use of the two-level scheduling scheme described in Section 7.9. This scheme enables
each real-time application to be scheduled in a way best suited for the application and the
schedulability of the application to be determined independent of other applications that may
run with it on the same hardware platform.

Sections 12.6 and 12.7 get back to the reality of existing operating systems. Specifically,
Section 12.6 compares and contrasts several widely used real-time operating systems. Section
12.7 describes the shortcomings of Windows NT and Linux, two commonly used general-
purpose operating systems and ways to make real-time applications run more predictably
on these operating systems. Section 12.8 summarizes the chapter. Throughout the chapter,
we often refer to Real-Time POSIX. By this, we mean the real-time and thread extensions
[IEEE98] of the POSIX Application Program Interface (API) standard [IEEE90b, Zlot]. You
can find a brief overview of Real-Time POSIX in the appendix of this chapter.

12.1 OVERVIEW

We now switch over to use the terms commonly used in operating system literature. This
section adds a few important ones to the terms we used in earlier chapters. We make several
assumptions about the implementation of the applications and the architecture of the oper-
ating system. These assumptions help keep our discussion concrete. They lead to no loss of
generality for most of the chapter.

12.1.1 Threads and Tasks

A thread implements a computation job and is the basic unit of work handled by the sched-
uler. In earlier chapters, we spoke of the admission of a job (or a task) into the system after
an acceptance test; this step encompasses the creation of a thread that implements the job.

1The term server is commonly used to refer to a system service provider. We use the uncommon term SSP
here in order to avoid further overloading the term server, which was used in earlier chapters to mean a user-level
task that executes one or more aperiodic and sporadic tasks. We will use the term server again later in this chapter to
mean something similar.

Section 12.1 Overview 499

Thread ID

Starting Address

Thread Context

•
Scheduling
Information

Synchronization
Information

Time Usage
Information

Timer Information

Other Information

Task Type

Phase

Period

Relative Deadline

Number of Instances

Event List

Task Parameters

FIGURE 12–1 Thread Control Block.

When the kernel creates a thread, it allocates memory space to the thread and brings the code
to be executed by the thread into memory. In addition, it instantiates a data structure called
the Thread Control Block (TCB) and uses the structure to keep all the information it will
need to manage and schedule the thread. Figure 12–1 shows a general structure of thread con-
trol blocks. The information kept in the TCB of a thread includes the ID of the thread and
the starting address of thread’s code. The context of a thread refers to the values of registers
(e.g., program counter and status register) and other violatile data that define the state and en-
vironment of the thread. When a thread is executing, its context changes continuously. When
the thread stops executing, the kernel keeps its context at the time in the thread’s TCB. We
will explain the other types of information later as the need for the information becomes ap-
parent.

When we say that the operating system inserts a thread in a queue (e.g., the ready or
suspend queue), we mean that it inserts (a pointer to) the TCB of the thread into a linked list
of TCBs of other threads in that queue. The kernel destroys a thread by deleting its TCB and
deallocating its memory space.

Periodic Threads. A periodic (computation) task is a thread that executes periodi-
cally. It is clearly inefficient if the thread is created and destroyed repeatedly every period.
In an operating system that supports periodic tasks (e.g., Real-Time Mach [ToNR] and EPIQ
[DLZS]), the kernel reinitializes such a thread and puts it to sleep when the thread completes.
The kernel keeps track of the passage of time and releases (i.e., moves to the ready queue) the
thread again at the beginning of the next period. We call such a thread a periodic thread.

The parameters of a periodic thread include its phase (i.e., the interval between its
creation and its first release time), period, relative deadline, and the number of instances. A
periodic thread with a finite number of instances terminates and may be destroyed by the
kernel after it has executed for the specified number of times. These parameters are given by

500 Chapter 12 Operating Systems

the application2 when its requests the creation of the periodic thread. They are kept in the
TCB of the thread.

Most commercial operating systems do not support periodic threads. We can implement
a periodic task at the user level as a thread that alternately executes the code of the task
and sleeps until the beginning of the next period. (In other words, the thread does its own
reinitialization and keeps track of time for its own next release.) We will return to describe
this implementation in Section 12.2.1. The difference in the implementation is unimportant
in our discussion. For the sake of concreteness, we assume that the operating system supports
periodic threads in this section.

Aperiodic, Sporadic, and Server Threads. Analogously, we can implement a spo-
radic or aperiodic task as a sporadic thread or aperiodic thread that is released in response
to the occurrence of the specified types of events. The events that cause the releases of these
threads occur sporadically and may be triggered by external interrupts. Upon its completion,
a sporadic thread or aperiodic thread is also reinitialized and suspended. We assumed this
implementation of aperiodic (and sporadic) tasks in Figures 5–7 and 5–10, which describe
a cyclic executive in a multithreaded time-driven system. An aperiodic task is the same as a
periodic task, except for the types of events that causes their releases.

We call a thread that implements a bandwidth-preserving server or a slack stealer a
server thread. In Chapter 7 we talked about a “server queue.” Such a queue is simply a list
of pointers which give the starting addresses of functions to be executed by the server thread.
Each aperiodic (or sporadic) job is the execution of one of these functions. Upon the occur-
rence of an event that triggers the release of an aperiodic job, the event handler (frequently an
interrupt service routine) inserts into this list a pointer to the corresponding function. Thus,
the aperiodic job is “released” and queued. When the server is scheduled, it executes these
functions in turn. In our discussion of bandwidth-preserving servers, we assume that this is
how aperiodic and sporadic jobs are implemented.

Major States. Our subsequent discussion focuses primarily on priority-driven sys-
tems. We will mention five major states of a thread.

• Sleeping: A periodic, aperiodic, or server thread is put in the sleeping state immediately
after it is created and initialized. It is released and leaves the state upon the occurrence
of an event of the specified types. Upon the completion of a thread that is to execute
again, it is reinitialized and put in the sleeping state. A thread in this state is not eligible
for execution.

• Ready: A thread enters the ready state after it is released or when it is preempted. A
thread in this state is in the ready queue and eligible for execution.

• Executing: A thread is the executing state when it executes.

2We use the term application here to mean a group of threads that jointly deliver some services to the end
user. Threads in the group communicate and synchronize with each other, while threads in different applications
communicate relatively rarely if at all. You may question why we do not call such a group a process. According to
its common definition, different processes execute in different address spaces; hence, threads in different processes
execute in different address spaces. We call our thread groups applications to avoid this implication because there
may be only a single address space for all threads in the system. Later, when we say a process, we mean a process.

Section 12.1 Overview 501

• Suspended (or Blocked): A thread that has been released and is yet to complete enters
the suspended (or blocked) state when its execution cannot proceed for some reason.
The kernel puts a suspended thread in the suspended queue.

• Terminated: A thread that will not execute again enters the terminated state when it
completes. A terminated thread may be destroyed.

You recall from our earlier discussion that a job (and hence a thread) can be suspended
or blocked for many reasons. For example, it may be blocked due to resource-access control;
it may be waiting to synchronize its execution with some other thread(s); it may be held
waiting for some reason (e.g., I/O completion and jitter control), and so on. A bandwidth-
preserving server thread enters the suspended state when it has no budget or no aperiodic
job to execute. The operating system typically keeps separate queues for threads suspended
or blocked for different reasons (e.g., a queue for threads waiting for each resource). For the
sake of simplicity, we call them collectively the suspended queue. Similarly, the kernel usually
keeps a number of ready queues. For example, to support fixed-priority scheduling, there may
be a queue for ready threads of each priority level. We often call all these queues collectively
the ready queue.

12.1.2 The Kernel

Again, with a few exceptions, a real-time operating system consists of a microkernel that
provides the basic operating system functions described below. Figure 12–2 shows a general
structure of a microkernel.3 There are three reasons for the kernel to take control from the
executing thread and execute itself: to respond to a system call, do scheduling and service
timers, and handle external interrupts. The kernel also deals with recovery from hardware and
software exceptions, but we ignore those activities here.

System Calls. The kernel provides many functions which, when called, do some
work on behalf of the calling thread. An application can access kernel data and code via
these functions. They are called Application Program Interface (API) functions. Figure 12–2
lists several examples.

A system call is a call to one of the API functions. In a system that provides memory
protection, user and kernel threads execute in separate memory spaces. Upon receiving a
system call, the kernel saves the context of the calling thread and switches from the user
mode to the kernel mode. It then picks up the function name and arguments of the call from
the thread’s stack and executes the function on behalf of the thread. When the system call
completes, the kernel executes a return from exception. As a result, the system returns to the
user mode. The calling thread resumes if it still has the highest priority. If the system call
causes some other thread to have the highest priority, then that thread executes.

We have just described what happens when a thread makes a synchronous system call.
The calling thread is blocked until the kernel completes the called function. When the call is
asynchronous (e.g., in the case of an asynchronous I/O request), the calling thread continues

3Many small embedded applications (e.g., home appliances and traffic light controllers) require only a nano-
kernel. A nanokernel provides only time and scheduling services and consists of only the clock interrupt part of the
figure.

502 Chapter 12 Operating Systems

Immediate
Interrupt
Service

Trap

Scheduling

Time
Services and
Scheduling

case of

create_thread
suspend_thread
destroy_thread

create_timer
timer_sleep
timer_notify

open
read

other system calls

Return_from_exceptionKernel

External
Interrupts

Hardware/
Software

exceptions

System
Calls

Clock
Interrupts

…
…

…

FIGURE 12–2 Structure of a microkernel.

to execute after making the call. The kernel provides a separate thread to execute the called
function.

Many embedded operating systems do not provide memory protection; the kernel and
user execute in the same space. Reasons for this choice are the relative trustworthiness of
embedded applications and the need to keep overhead small. (The extra memory space needed
to provide full memory protection is on the order of a few kilobytes per process. This overhead
is more serious for small embedded applications than the higher context-switch overhead that
also incurs with memory protection.) In such a system, a system call is just like a procedure
or function call within the application.

Figure 12–2 shows examples of thread management functions: create thread, suspend
thread, resume thread and destroy thread.4 The timer functions listed below them exemplify

4A fork() function, which creates a duplicate process, is another means to create threads: all the threads in
the calling process.

Section 12.1 Overview 503

the time services a real-time operating system provides. From the user’s point of view, a
(software) timer is an object used to keep track of time. In addition to systemwide timers,
most operating systems allow threads (or processes) to have their own timers. A per thread (or
per process) timer is created by the kernel on behalf of a thread (or process) when the thread
calls the create timer function. In a system that contains more than one clock, the calling
thread specifies the clock to which the timer is to be bound; by this, we mean that the timer
will keep track of time according to that clock. A clock is a hardware device that contains a
counter. At any time, the content of the counter gives a representation of the current time.

A set-timer function call specifies the ID of the timer to be set and an expiration time.
By calling this function, a thread asks the kernel to carry out an action at the timer expiration
time. The action may be the execution of a specified function, or the waking up of a suspended
thread, or the placement of a message in a message queue, and so on. We say that a timer
event occurs at the timer’s expiration time; when a timer event occurs, the kernel carries
out the specified action. As a consequence, the calling thread carries out its own action or
synchronizes with other threads at the specified time. In a system that supports periodic tasks,
the kernel uses such a function to take care of the releases of periodic thread instances. We
will return to discuss clocks and timers in more detail in Section 12.2.1.

Time Services and Scheduling. The scheduler is a central part of the kernel. In most
operating systems, the scheduler executes periodically, as well as whenever the state of any
thread changes. To trigger the scheduler into action, the system clock device raises interrupts
periodically. A clock interrupt refers to an interrupt from the device. In Section 6.8.5, which
describes how to determine the schedulability of applications that run on an operating system
whose scheduler only executes periodically, we called the period of clock interrupts the tick
size. The tick size used by most operating systems is 10 milliseconds.5

At each clock interrupt, the kernel does the following chores.

1. Processes timer events: A clock device has a timer queue. The pending expiration times
of all the timers that are bound to the clock are stored in time order in this queue. By
checking this queue, the kernel can determine whether some timer events have occurred
since the previous time it checked the queue. This is what the kernel does first when
servicing a clock interrupt. As we said earlier, when the kernel finds that a timer event
did occur, it is to carry out a specified action. The kernel processes in turn all the timer
events that have occurred and queues the specified actions. It carries out the actions
before returning control to the user.

2. Updates execution budget: Most real-time operating systems (including all Real-Time
POSIX-compliant systems) provide the user with the choice of round-robin or FIFO
scheduling of threads of equal priority. (These policies are called SCHED RR and
SCHED FIFO, respectively.) To schedule equal-priority threads in a round-robin man-
ner, the scheduler gives such a thread a time slice when it schedules the thread for
execution. We can think of the time slice as the execution budget of the executing
thread. At each clock interrupt, the scheduler decrements the budget of the thread by

5In a clock-driven system that uses a cyclic scheduler, clock interrupts occur only at the beginnings of frames.

504 Chapter 12 Operating Systems

the tick size. If the thread is not complete when the budget (i.e., its remaining time slice)
becomes 0, the kernel decides to preempt the thread. The same mechanism can be used
for the FIFO policy. The scheduler simply gives a thread that chooses the FIFO policy
an infinite time slice or does not decrement the budget of such a thread, thus making
the thread nonpreemptable by equal-priority threads.

3. Updates the ready queue and returns control: As a result of the above actions, some
threads may become ready (e.g., released upon timer expiration) and the thread that was
executing at the time of the clock interrupt may need to be preempted. The scheduler
updates the ready queue accordingly and then gives control to the thread at the head of
the highest priority queue.

In addition, the kernel may also update monitoring information, such as interval timers which
keep track of the total processor time consumption of the thread and the time spent by the
kernel on behalf of the thread.

We can see from what it does at each clock interrupt that the periodical execution of
the scheduler is necessary. However, if the scheduler executes only at clock interrupts, the
responsiveness and schedulability of the system depend critically on the tick size. The typ-
ical 10-millisecond tick size is sufficiently short for round-robin scheduling of time-shared
applications but may severely degrade the schedulability of applications with stringent tim-
ing requirements. A smaller tick size can improve the system in this respect but means more
frequent service of clock interrupts and a higher scheduling overhead. For this reason, most
operating systems do not rely on tick scheduling (sometimes called time-based scheduling)
alone. Rather, it is used in combination with event-driven scheduling. The kernel invokes the
scheduler to update the ready queue whenever it wakes up or releases a thread, finds a thread
unblocked, or creates a new thread, and so on. Thus a thread is placed in the proper place in
the ready queue as soon as it becomes ready.

External Interrupts. Hardware interrupts provide an effective mechanism for noti-
fying the application of the occurrences of external events and dealing with sporadic I/O ac-
tivities. For applications that have such activities, handling external interrupts is an essential
function of the kernel.

Depending on the source of the interrupt, the amount of time required to handle an
interrupt varies. In particular, handling interrupts from DMA (Direct Memory Access) inter-
faces may take significant amounts of time. A network interface is an example. When there
is an incoming message to be delivered, the interface raises an interrupt. In response to this
interrupt, the protocol handler executes to identify the thread that is to receive the message,
move the message to the address space of the receiving thread, perform handshakes, and so
on. The required time can be large and varied. Service routines for disk and network devices
can take hundreds of microseconds to tens of milliseconds to complete. For this reason, in
most operating systems, interrupt handling is divided into two steps.

Immediate Interrupt Service. The first step of interrupt handling is executed at an
interrupt priority level. All modern processors support some form of priority interrupt. The
relationship between interrupt priority levels and normal thread priorities (i.e., software prior-
ities) are depicted by Figure 12–3: The higher the box, the higher the priority. The number of
interrupt priority levels depends on the hardware and is unimportant to our discussion here. It

Section 12.1 Overview 505

System shutdown priority

Power down priority

Clock interrupt priority

highest interrupt priority

other interrupt priorities

lowest interrupt priority

dispatcher/scheduler priority

highest thread priority

other thread priorities

lowest thread priority

FIGURE 12–3 Hardware and software interrupt priorities.

suffices for us to note that all interrupt priority levels are higher than all thread priorities. In
fact, interrupt priorities are higher than the priority at which the scheduler executes.

When an interrupt occurs, the processor pushes the program counter and status register
on the interrupt stack and branch to the starting address of the kernel’s interrupt handling
code. When the kernel executes, it disables interrupts temporarily so it can safely modify data
structures that might otherwise also be modified by interrupt service routines. It then saves the
processor state on the interrupt stack, enables interrupts, and calls the interrupt service routine
of the interrupting device to service the device (e.g., reload registers in the device interface).
When more than one device is attached to the same interrupt request line and hence may have
raised the interrupt, the kernel calls their interrupt service routines in turn. (When polled, the
interrupt service routine of a device that did not raise the interrupt returns immediately.) If
during the execution of an interrupt service routine a higher-priority interrupt is raised, the
processor and the kernel take care of the higher-priority interrupt in the same manner.

In Figure 12–2, the first step of interrupt handling is called immediate interrupt service.
Again the immediate interrupt service routine executes at an interrupt priority. The total delay
experienced by a device from the time it raises an interrupt to the time its interrupt service rou-
tine begins to execute (and hence the device begins to be serviced) is the sum of the following
factors:

1. the time the processor takes to complete the current instruction, do the necessary chores
(e.g., flush the instruction pipeline and read the interrupt vector), and jump to the trap
handler and interrupt dispatcher part of the kernel;

506 Chapter 12 Operating Systems

2. the time the kernel takes to disable external interrupts;

3. the time required to complete the immediate interrupt service routines of higher-priority
interrupts if any;

4. the time the kernel takes to save the context of the interrupted thread, identify the inter-
rupting device, and get the starting address of the interrupt service routine; and

5. the time the kernel takes to start the immediate interrupt service routine of the interrupt-
ing device.

The sum of the above factors is called the interrupt latency. It measures the responsive-
ness of the system to external events. We note that the first factor is very small because the
operations are done by the interrupt handling hardware. Similarly, factors 2, 4, and 5 are rel-
atively small (i.e., in order of a few or a few tens of microseconds) and deterministic. Factor
4 is typically shorter when the application and kernel execute in the same address space. By
far, factor 3 can be the largest among these factors and contributes to variation in interrupt
latency. This factor can be kept small only by making immediate interrupt handling routines
as short as possible.

We pause to note three points here. First, the term interrupt service routine refers specif-
ically to the device-dependent portion of the routine provided by the device driver. Many op-
erating systems provide the portion of interrupt service code that are device-independent (i.e.,
the code for saving processor state before the device-dependent code executes). A bare-bone
operating system for embedded applications may not provide such code. We must have this
part of the code in the interrupt service routine. The advantage is speed; the processor jumps
directed to interrupt service routines without going through the kernel.

Second, we assume here that the operating system polls all the devices that may raise
interrupts at the same priority and thus identifies the interrupting device or devices. In embed-
ded systems, numerous I/O devices may be attached to the same interrupt request line. A more
effective alterative to polling (also called autovectoring) is vector interrupt: The interrupting
device identifies itself by giving the processor an interrupt vector (i.e., the starting address
of its interrupt service routine or its identifier) when its interrupt request is granted by the
processor. The processor then branches to the address indicated by the vector after saving the
program counter and status register. Not all I/O buses support vector interrupt. Hence your
choice of vector interrupt limits your choice of I/O bus (e.g., to VME bus) and portability of
your interrupt handling mechanism. For the sake of portability, an operating system typically
polls even when the I/O bus supports vector interrupt. Ignoring an interrupt vector and polling
the requesting device do no harm, while an interrupt handling mechanism that relies on vector
interrupt capability does not work when the I/O bus and interrupting device do not have the
capability.

Third, rather than getting ready to accept interrupt again as soon as possible as described
here, operating systems provide the application with control over when interrupt is enabled
again. Thus, the application can control the rate at which external interrupts are serviced and
the amount of time spent in interrupt handling.

Scheduled Interrupt Service. Except for the simplest devices, the immediate step
does not complete interrupt handling. Rather, it invokes another service routine to complete
interrupt handling. We call the function executed in the second step of interrupt handling a

Section 12.2 Time Services and Scheduling Mechanisms 507

scheduled interrupt handling routine. The execution of this routine is typically preemptable
and should be scheduled at a suitable (software) priority in a priority-driven system. (As an
example, in the real-time operating system LynxOS [Bunn], the priority of the kernel thread
that executes a scheduled interrupt handling routine is the priority of the user thread that
opened the interrupting device.) This is why Figure 12–2 shows that following immediate
interrupt service, the scheduler executes and inserts the scheduled interrupt handling thread in
the ready queue. The scheduler then lets the highest priority thread have the processor.

Since scheduled interrupt handling routines may modify kernel data, they are executed
by kernel threads in operating systems that provide memory protection. LynxOS and SunOS
are examples. When a device driver is created in LynxOS, a kernel thread comes into exis-
tence. At its creation, the thread has the lowest priority in the system. Whenever a user thread
opens the device driver, the kernel thread inherits the current priority of the user thread. When
the I/O operation of the user thread completes, the priority of the kernel thread returns to the
level immediately before the priority inheritance. The LynxOS literature refers to this priority
inheritance as priority tracking and points out that this mechanism gives us accountability of
the delay incurred by threads due to interrupt handling. (Problems 6.24 and 6.30 are about
how to analyze the schedulability of such a system.) In SunOS, the kernel thread, called the
interrupt thread, is created at interrupt time and is terminated when interrupt handling com-
pletes. However unlike kernel threads in LynxOS, an interrupt thread executes immediately
after creation. Without priority tracking, the execution of interrupt threads can lead to uncon-
trolled priority inversion.6

We can think of the scheduled interrupt handling step as an aperiodic or sporadic thread.
When the immediate interrupt service routine completes, an aperiodic thread is released to
execute the scheduled interrupt service routine or inserts the routine into the queue of a
bandwidth-preserving server. The scheduler can use some of the bandwidth-preserving or
slack-stealing algorithms described in Chapter 7 for this purpose. Unfortunately, existing op-
erating systems not only do not provide such servers but also do not provide good hooks with
which we can customize the scheduler for this purpose. It is expensive to implement most
of these algorithms in the user level without help from the kernel. In Section 12.2.2, we will
describe minor modifications of the scheduling mechanism that simplify the implementation
of bandwidth-preserving servers both in the user level and within the kernel.

Hereafter, we will refer to the strategy of dividing interrupt handling into two steps as
split interrupting handling. As we will see in Sections 12.6 and 12.7, most modern operating
systems use this strategy in one form or the other.

12.2 TIME SERVICES AND SCHEDULING MECHANISMS

This and the next sections discuss the basic operating system functions that the previous sec-
tion either did not mention or treated superficially. Specifically, this section discusses time
services and scheduling mechanisms, leaving interprocess communication and synchroniza-
tion, software interrupts, memory management, and I/O and networking to the next section.

6A way to reduce the effect of this incorrect prioritization is to have the interrupt thread sets its own priority
to the priority of the thread causing the interrupt as soon as that thread is identified.

508 Chapter 12 Operating Systems

12.2.1 Time Services

Obviously, good time services are essential to real-time applications. To provide these services
and support its own activities, every system has at least one clock device. We have been
calling it the system clock. In a system that supports Real-Time POSIX, this clock is called
CLOCK REALTIME.

Clocks and Time. Again, a clock device contains a counter, a timer queue, and an
interrupt handler. The counter is triggered to increment monotonically by a precise periodic
sequence of pulses. At any time, the content of the counter gives a representation of the current
time. We have been calling this counter a (hardware) clock and the triggering edge of each
pulse a clock tick. The timer queue contains the pending expiration times of timers bound to
the clock.

A system may have more than one clock device and uses them for different purposes.
For example, a real-time monitor system may use a clock device to trigger the sampling and
digitization of sensor readings and initialize the input of sensor data. A digital control system
may use one or more clock devices to time the control-law computations of a rate group or
commands to embedded plants.

Resolution. The resolution of a clock is the granularity of time provided by the clock.
Today’s technology makes it possible to have hardware clocks with resolution on an order
of nanoseconds. However, the clock resolution available to applications is usually orders of
magnitude coarser, on an order of hundreds of microseconds or milliseconds.

To see why there is such disparity, let us look at how an application finds what the cur-
rent time is. Typically, the kernel maintains a software clock for each clock device it supports.
It programs the clock device to raise interrupts periodically. Whenever it gets an interrupt
from the clock device, it updates the software clock, and hence the current time according to
the clock. Therefore, the resolution of the software clock is equal to the period of these inter-
rupts. A thread gets the current time according to a clock by calling a get time function, such
as the POSIX function clock gettime(), and providing as an argument the ID of the clock to
be read. In response to the request, the operating system returns the current time according to
the corresponding software clock. Therefore, the resolution of time seen by the calling thread
is resolution of the software clock.

In Sections 6.8.5 and 12.1.2, we called the interrupts from the system clock that triggers
the scheduler into action clock interrupts. We said that the typical period of clock interrupts
is 10 milliseconds. If an operating system updates the system clock only at these interrupts,
its clock resolution is 10 milliseconds. A 10-millisecond resolution is too coarse for many
applications. For this reason, most modern operating systems support, or allow applications
to request, a finer clock resolution. To support a finer resolution, the system clock device is
set to interrupt at a higher frequency. At each of the higher-frequency interrupts, the kernel
merely updates the software clock and checks the clock’s timer queue for timer expirations.
Typically, the period of these interrupts, hence the resolution of the software clock, ranges
from hundreds of microseconds to tens of milliseconds. It is more convenient if the resolution
divides the tick size, so the kernel does tick scheduling at one interrupt out of an integer x
number of interrupts from the clock, where x is the ratio of tick size to clock resolution. For
the sake of clarity, we will call the higher-frequency interrupts from the clock device time-

Section 12.2 Time Services and Scheduling Mechanisms 509

service interrupts and continue to call the one-out-of-x subsequence of interrupts at which the
scheduler executes clock interrupts.

The resolution of each (software) clock is a design parameter of the operating sys-
tem. The finer the resolution, the more frequent the time-service interrupts and the larger the
amount of processor time the kernel spends in responding to these interrupts. This overhead
places a limitation on how fine a resolution the system supports. Moreover, the response time
of the get time function is not deterministic, and the variation in the response time introduces
an error in the time the calling thread gets from the kernel. This error is far greater than a few
nanoseconds! A software clock resolution finer than this error is not meaningful.

High Resolution. A way to provide a finer resolution than hundreds of microseconds
and more accurate time to an application is to map a hardware clock into the address space
of the application. Then, the application can read the clock directly. On a Pentium processor,
a user thread can read the Pentium time stamp counter.7 This counter starts at zero when the
system is powered up and increments each processor cycle. At today’s processor speed, this
means that counter increments once a few nanoseconds. By computing from the cycle count
provided by the counter, an application can get more precise and higher-resolution time than
that provided by the operating system.

However, an operating system may not make the hardware clock readable for the sake
of portability, and processors other than those in the Pentium family may not have a high-
resolution time stamp counter. Using its own clock/timer device and device driver, an applica-
tion can maintain its own high-resolution software clock. A higher overhead is a disadvantage
of this scheme: The overhead incurred by an application in the maintenance of its own soft-
ware clock is invariably larger than when the software clock is maintained by the kernel.

Timers and Timer Functions. Most operating systems (including all Real-Time
POSIX compliant systems, Windows NT, and Solaris) allow a thread or process to have its
own timers.8 Specifically, by calling the create timer function, a thread (or process) can create
a per thread (or per process) timer and, in a system containing multiple clocks, bind the timer
to a specified clock. Associated with each timer is a data structure which the kernel creates in
response to the create timer call. Among the information kept in the data structure is the ex-
piration time of the timer. The data structure may also have a pointer to a handler; the handler
is a routine that the calling thread wants to be execute when a timer event occurs. A thread
destroys its own timer by calling the destroy timer function.

We say that a thread sets (or arms) a timer when it asks the kernel to give the timer
a future expiration time. A timer is canceled (or disarmed) if before the occurrence of the
timer event, it is set to expire at or before the current time. (In effect, the kernel does not
act when it finds this expiration time.) Every operating system provides timer functions with

7Some operating systems also use this counter to improve clock resolution. At each time-service interrupt,
the kernel reads and stores the time stamp. When servicing a clock gettime() call, the kernel reads the counter again.
From the difference in the two counter readings, the kernel can compute the elapse of time since the last time-service
interrupt. By adding this time to the clock reading, the kernel gets and returns a more accurate time.

8Operating systems, such as Linux, that do not support per process timers provide one or more systemwide
timers. Processes cannot destroy these timers but can set them and use them for alarm purposes.

510 Chapter 12 Operating Systems

which a thread can set and cancel timers. Similarly, various forms of set-timer functions allow
a thread to specify an action to take upon timer expiration. The types of action include calling
a specified function, waking up a thread, and sending a message to a message queue.

The expiration time can be either absolute or relative. The former is a specific time
instant. The latter is the length of the delay from the current time to the absolute expiration
time. There are two kinds of timers: one-shot or periodic. When set, a one-shot timer expires
once at the specified expiration time or when the specified delay has elapsed. In contrast,
a thread sets a periodic timer by giving it a first expiration time and an interval between
consecutive expiration times. Starting from the first expiration time, the periodic timer expires
periodically until it is cancelled.

Asynchronous Timer Functions. As an example, we look at the set watchdog timer
function wdStart() provided by VxWorks [Wind]. A watchdog (or alarm) timer is a one-
shot timer that supports relative time. After a timer is created, a thread can use it by calling
the wdStart() function and specifying as arguments the timer ID, the delay to the expiration
time, the function to call at the expiration time, and an argument to be passed to the specified
function. A thread can cancel a timer before its expiration by calling wdCancel().

A watchdog timer mechanism is useful for many purposes. Figure 12–4 gives an
example: An implementation of a timing monitor. The timing monitor logs the deadlines
missed by input tasks. Each of these tasks processes sporadic sensor readings collected by
an input device. Whenever the input device presents a sensor reading by raising an interrupt,
its input task must process the reading within the relative deadline of the task. The example
assumes that the driver code for each device device k consists of a short interrupt service
routine ISR k followed by a data processing routine DPR k. When the ISR k completes, it

• During system initialization: The application process creates sporadic thread S k to execute the
data processing routine DPR k for each input device device k and sets the late flag of the device
to false.

• The sporadic thread S k

– After being created, creates watchdog timer wdT imer k and then suspends itself.

– When awaked and scheduled, executes DPR k.

– At the end of DPR k, calls wdTimercancel(wdT imer k) if late is false, and then enables in-
terrupt from device k and suspends itself.

• Input device device k: When sensor data become available, raises an interrupt if interrupt is en-
abled.

• Immediate interrupt handling step:

– After identifying the interrupting device device k, disables interrupt from device k.

– Calls wdTimerSet (wdTimer k, relativeDeadline k, timingMonitor, device k) so that the watch-
dog timer will expire at current time plus relativeDeadline k.

– Services device k.

– Sets late to false and wakes up sporadic thread S k.
• Timing Monitor function timingMonitor(): When called, sets late to true and increments by 1 the

number of deadlines missed by the specified device.

FIGURE 12–4 Example illustrating the use of watchdog timers.

Section 12.2 Time Services and Scheduling Mechanisms 511

wakes up a sporadic thread Sk to execute DPR k. The operating system schedules sporadic
threads according to some suitable algorithm. During the immediate interrupt handling step,
the ISR k routine sets the watchdog timer. The watchdog function wdTimerSet() in Figure
12–4 is similar to the VxWorks’s wdStart(). The first argument of the function identifies the
watchdog timer. The specified delay is equal to the relative deadline relativeDeadline k of
the input task; the function to be called when the timer expires is the timing monitor, and the
argument to be passed to the timing monitor is the ID device k of the input device. After set-
ting the watchdog timer, the interrupt service routine wakes up the sporadic thread Sk , which,
when scheduled, executes the data processing routine DPR k. If the thread completes before
the timer expires, it cancels the timer before suspending itself again. On the other hand, if the
timer expires before the thread completes, the timing monitor is called, which increments by
one the number of sensor readings from the input device that are not processed in time.

The above watchdog timer function uses a function call as a means to notify the ap-
plication of the occurrence of a timer event. The other mechanisms commonly used for this
purpose are messages and signals. As an example, the timer arm() function in Real-Time
Mach [StTo] takes as arguments the timer expiration time and a port. At the specified time,
the kernel sends a notification message containing the current time to the specified port. Thus,
such a timer function enables the calling thread to synchronize and communicate with the
thread or threads that will receive the message at that port.

Signal is the notification mechanism used by Real-Time POSIX timer function timer
settime(). When a thread calls the timer create() function to request the creation of a timer,
it specifies the clock to which the timer is to be bound, as well as the type of signal to be
delivered whenever the timer expires. If the type of signal is not specified and the clock to
which the timer is bound is CLOCK REALTIME, the system will deliver a SIGARLM (alarm
clock expired) signal by default.

After creating a timer, a thread can set it by calling timer settime(). The parameters of
this function include

1. the ID of the timer to be set;

2. a flag indicating whether the new expiration time is relative or absolute;

3. the new timer setting, which gives the delay to the expiration time or the absolute value
of the expiration time, depending on value of the flag; and

4. the period between subsequent timer expiration times.9

Again, when the timer expires, the system delivers a signal of the specified type to the calling
thread.

Earlier in Section 12.1, we mentioned that a periodic thread can be implemented at the
user level. This can be done using a timer as shown in Figure 12–5(a). In this example, a
thread named thread id is created at configuration time to implement a periodic task. The
intended behavior of the task is that it will be released for the first time at 10 time units after

9The timer can be cancelled before its expiration using the same function by setting the new expiration time
argument zero. Similarly, if the period between consecutive timer expiration times is zero, the timer is to expire only
once, and it will expire periodically if the period has some nonzero value.

512 Chapter 12 Operating Systems

timer create(CLOCK REALTIME, NULL, timer id);

block SIGALRM and other signals;

instancesRemaining = 200;

timer settime(timer id, relative, 10, 100);

while (instancesRemaining > 0)

sigwaitinfo(SIGALRM);

statements in the program of the periodic tasks;

instancesRemaining = instancesRemaining - 1;

endwhile;

timer delete(timer id);

thread destroy(thread id);

(a) Implementation 1

instancesRemaining = 200;

nextReleaseTime = clock + 10;

while (instancesRemaining > 0)

NOW = clock;

if (NOW < nextReleaseTime), do

timer sleep until (nextReleaseTime);

statements in the program of the periodic task;

nextReleaseTime = nextReleaseTime +100;

else

statements in the program of the periodic task;

nextReleaseTime = NOW +100;

instancesRemaining = instancesRemaining −1;

endwhile;

thread destroy(thread id);

(b) Implementation 2
FIGURE 12–5 User level implementations of periodic tasks. (a) Implementation 1. (b) Implementation 2.

its creation and afterwards, periodically once every 100 time units. The task has only 200
jobs; so the thread will be deleted after it has executed 200 times. After the thread is created,
it first creates a timer and specifies that the timer is bound to the system clock, indicated by
the argument CLOCK REALTIME. The NULL pointer argument indicates that the timer will
deliver the default timer expiration signal SIGALRM whenever it expires. The timer create()
function returns the ID (timer id) of the timer. The thread then blocks SIGALRM signal, as
well as other signals that it does not want to process, except when it synchronously waits
for the signal. After it thus initializes itself, the thread sets the timer to expire periodically
starting from 10 time units from the current time and then once every 100 time units. After

Section 12.2 Time Services and Scheduling Mechanisms 513

this, the thread calls sigwaitinfo()10 to wait for SIGALRM. This function returns immediately
if a SIGALRM is waiting; otherwise, the thread is blocked until the signal arrives. When the
function returns, the thread “is released” to execute the code of the periodic task. After it has
been released and executed 200 times, the thread asks operating system to delete the timer
and itself.

It is important to note that such a periodic task may not behave as intended. There are
many reasons; we will discuss them at the end of this subsection.

Synchronous Timer Functions. The set-timer functions in the previous examples are
asynchronous. After being set, the timer counts down while the calling thread continues to
execute. Consequently, a thread can set multiple timers to alarm at different rates or times. In
contrast, after calling a synchronous timer function, the calling thread is suspended.

As an example, we look at the timer sleep() function provided by Real-Time Mach. The
function causes the calling thread to be suspended either until the specified absolute time or
for the specified time interval. When the specified time is relative, the timer function is similar
to the Real-Time POSIX nanosleep(t); the parameter t specifies the length of the interval the
calling thread sleeps.

We can implement the periodic task in Figure 12–5(a) using the timer sleep() function
as well. After a thread is created, it executes the code in Figure 12–5(b). For clarity, we refer
to the timer function as timer sleep until() to indicate that the argument is absolute, and this
timer function uses the system’s timer. We assume here that the thread can get the current time
by reading the clock directly, and the value of clock is the current time. When this assumption
is not true, the thread must call a function [e.g., clock gettime()] to get the current time from
the operating system.

Timer Resolution. We measure the quality of timers by their resolution and accuracy.
The term resolution of a timer usually means the granularity of the absolute time or the time
interval specified as an argument of a timer function. We call this granularity the nominal
timer resolution. If the nominal timer resolution is x microseconds, then the operating system
will not mistake two timer events set x microseconds apart as a single timer event. However,
this does not mean that the granularity of time measured by the timer, as seen by application
threads, is this fine.

Periodic Timer Interrupts. To illustrate, we recall that in most operating systems, the
kernel checks for the occurrences of timer events and handles the events only at time-service
interrupts and these interrupts occur periodically. Now let us suppose that the nominal timer
resolution is 10 microseconds and the period of time-service interrupts is 5 milliseconds. A
threads sets a timer to expire twice 10 microseconds apart and reads the current time at the
occurrence of each timer event. Suppose that the first timer event occurs at 5 microseconds

10sigwaitinfo() is a Real-Time POSIX function for synchronous signal waiting. When a signal arrives, the
function does not call the signal handler. Rather, it returns the number of the signal to the thread. If a SIGARLM
signal arrives while it is blocked and the thread is not waiting, the overrun count of the timer is incremented by one.
By processing this count, the thread can determine the number of times the system has delivered SIGALRM. The
example does not include the step to process the overrun counter.

514 Chapter 12 Operating Systems

before an interrupt and the second one at 5 microseconds after the interrupt. The kernel han-
dles the first one at the interrupt and the second at the next time-service interrupt. The time
values read by the thread are approximately 5 milliseconds apart.

We call the granularity of time measured by application threads using timers the actual
timer resolution. In a system where the kernel checks for timer expirations periodically, this
resolution is no finer than the period of time-service interrupts. We can get a finer actual
resolution only by having the kernel check the timer queue more frequently.

One-Shot Timer Interrupts. Alternatively, some operating systems (e.g., QNX) pro-
gram the clock device to raise an interrupt at each timer expiration time. In other words, the
clock interrupts in the one-shot mode. As a part of timer interrupt service, the kernel finds the
next timer expiration time and sets the clock to interrupt at that time. Thus, the kernel carries
out the requested action as soon as a timer expires. With this implementation, the actual timer
resolution is limited only by the amount of time the kernel takes to set and service the clock
device and to process each timer event, since the kernel cannot respond to timer events more
frequently than once per this amount of time. This time is in order of microseconds even on
today’s fast processors.

Since the clock device no longer interrupts periodically, some other mechanism is
needed to maintain the system clock and to time the kernel’s periodic activities. (Section
12.7.2 gives an example: UTIME [HSPN], a high-resolution time service on Linux. UTIME
reads the Pentium time stamp counter at each timer interrupt and computes time based on
the cycle counts.) This means that more work needs to be done upon each timer interrupt
and the execution time of the the timer interrupt service routine is larger. (With UTIME, the
execution time of timer interrupt service routine is several time larger than in standard Linux
where timer expiration is checked periodically.) Moreover, each timer expiration causes an
interrupt. As a consequence, the overhead of time services can be significant higher than
when the occurrences of timer events are checked only periodically, especially when there are
many timers and they expire frequently.

Timer Accuracy. By timer error, we mean the difference between the absolute time
(or time interval) specified by the calling thread and the actual time at which the specified
action starts. Timer error depends on three factors. The first is the frequency at which timer
expirations are checked. This factor is the period of time-service interrupts in most operating
systems since they check for timer expirations periodically.

The second source of error arises from the fact that timer events may not be acted upon
by the kernel in time order. In some operating systems (e.g., Windows NT 4.0 and Linux),
when more than one timer is found expired at a clock interrupt, the kernel takes care of the
timer with the latest expiration time first and in decreasing time order. In other words, it
services timer events in LIFO order. Therefore, if the order of occurrences of timer events
is important, you will need to take care of this matter. For example, if two timer expiration
times are within the same clock interrupt period, you need to give the timer that is supposed
to trigger an earlier activity a later expiration time.

The time spent to process timer events is the third and the most unpredictable source
of error in the absolute time or delay interval the calling thread gets from the kernel. Just

Section 12.2 Time Services and Scheduling Mechanisms 515

as lengthy interrupt service routines cause large variation in interrupt latency, lengthy timer-
service routines increase timer error. By minimizing the amount of time spent processing each
timer event, the error introduced by this factor can be kept negligibly small compared with the
period of time-service interrupts.

Release-Time Jitters of Periodic Tasks. We conclude our discussion on timers by
looking closely at the user-level implementations of a periodic task in Figure 12–5. In partic-
ular, we ask what can cause jitters in the release times of the periodic thread. Suppose that the
kernel finishes creating the thread and places it in the ready queue at time t . The programmer’s
intention is for the thread to be released for the first time at time t + 10. We see that the actual
first release time can be later than this time because (1) the thread may be preempted and not
scheduled until a later time and (2) it takes some time to create a timer (and to get the current
time) when the thread starts to execute. If our time unit is millisecond, the delay due to factor
(2) is small and can be neglected, but the delay due to factor (1) is arbitrary. Therefore, the
implementations are correct only if we accept that t +10 is the earliest release time of the first
instance, while the actual release time of this instance may be much later.

Similarly, 100 time units are the minimum length of time between the release times of
instances of this task. The subsequent instances of the thread will be released periodically
only if the while loop always completes within 100 time units. According to implementation
2, if the response time of an instance of the thread exceeds 100, the next instance is released as
soon as the current instance completes. (Again, the next release can be delayed since the thread
can be preempted between iterations of the loop.) In contrast, the timer in implementation 1
continues to signal every 100 time units. If a signal arrives while the thread is executing its
program, the signal is blocked. The pseudocode in Figure 12–5(a) does not describe a correct
implementation of a periodic task because it neglects this situation. In general, Real-Time
POSIX signals that arrive while blocked are queued, but not SIGARLM signals. Instead, the
number of times the SIGARLM signal has arrived while the signal is blocked is indicated by
the timer overrun count. By examining this count, the thread can determine when the code
of the periodic task should be executed again. How to do so is left for you as an exercise
in Problem 12.6. In any case, the periodic task is not truly periodic. Moreover, because the
thread can be preempted for an arbitrary amount of time, the interrelease time of consecutive
instances can be arbitrarily large.

12.2.2 Scheduling Mechanisms

This section discusses several aspects regarding the implementation of algorithms for schedul-
ing periodic tasks and aperiodic tasks. In particular, we call attention to those scheduling ser-
vices that the kernel can easily provide which can significantly simplify the implementation
of complex algorithms for scheduling aperiodic tasks in the user level.

Fixed-Priority Scheduling. All modern operating systems support fixed-priority
scheduling. Many real-time operating systems provide 256 priority levels. As discussed in
Section 6.8.4, a fixed-priority system with this many priority levels performs as well as an
ideal system that has an infinite number of priority levels. (The loss in schedulable utilization

516 Chapter 12 Operating Systems

of a rate-monotonically scheduled system due to nondistinct priorities is negligible.) In con-
trast, a general-purpose operating system may provide fewer levels. For example, there are
only 16 real-time priority levels in Windows NT.

A parameter of the create thread function is the priority of the new thread; the priority
of each new thread is set at the assigned priority, that is, the priority chosen for the thread
according to the algorithm used to schedule the application. (This is sometimes done in two
steps: The thread is first created and then its priority is set.11) Once created, the assigned
priority of the thread is kept in its TCB. In a system that supports priority inheritance or
the ceiling-priority protocol, a thread may inherit a higher priority than its assigned priority.
In Sections 8.4 and 8.6 where these protocols were described, we called the time varying
priority which a thread acquires during its execution its current priority. The current priority
also needs to be kept in the thread’s TCB.

To support fixed-priority scheduling, the kernel maintains a ready queue for each pri-
ority level. Whenever a thread is ready to execute, the kernel places it in the ready queue of
the thread’s current priority. For this reason, the current priority of a thread is often called its
dispatch priority.

Real-Time POSIX-compliant systems provide the applications with the choice be-
tween round-robin or FIFO policies for scheduling equal-priority threads. Having all equal-
(current-) priority threads in one queue makes it convenient for the kernel to carry out either
policy. We already described how to do this in Section 12.1.2.

Finding the highest priority ready thread amounts to finding the highest priority
nonempty queue. The theoretical worst-case time complexity of this operation is O(�),
where � is the number of priority levels supported by the operating system. In fact, the
number of comparisons required to scan the queues is at most �/K + log2 K − 1, where K is
the word length of the CPU. (How this is done is left to you as an exercise in Problem 12.7.)
Therefore, on a 32-bit CPU, the scheduler takes at most 12 comparisons to find the highest
priority threads when there are 256 priority levels.

EDF Scheduling. Most existing operating systems supposely support dynamic prior-
ity. This claim typically means that the operating system provides a system call by which a
thread can set and change its own priority or the priority of some other thread. This mechanism
is adequate for mode-change and reconfiguration purposes but is too expensive to support dy-
namic scheduling policies such as the EDF algorithm. [We note that to change the priority of a
thread that is ready to run, the thread must be removed from the queue for its current priority,
the value of its priority (in TCB) changed, and then the thread inserted into the queue for its
new priority.]

A better alternative is for the kernel to provide EDF scheduling capability. As it turns
out, the kernel can support both fixed-priority and EDF scheduling using essentially the same
queue structure, in particular, the queues for deadline-monotonic scheduling. In addition to the
small modification of the queue structure, which we will describe below, some of the kernel
functions need to be modified as follows.

11An example is a thread is created by a fork() function. It inherits the priority of the parent thread in the
parent process. If the system supports EDF scheduling, the absolute and relative deadlines of each thread should also
be included in the TCB of the thread.

Section 12.2 Time Services and Scheduling Mechanisms 517

1. The create thread function specifies the relative deadline of the thread. (Earlier, we
mentioned that if the operating system supports periodic threads, the relative deadline
should be a parameter of each periodic thread. To support EDF scheduling, the operating
system needs this parameter of every thread, not just periodic threads.)

2. Whenever a thread is released, its absolute deadline is calculated from its release time
and relative deadline. This can the done by either a timer function or the scheduler.

In short, both the relative and absolute deadlines of each ready thread are known, and they are
kept in the TCB.

Rather than maintaining a single EDF queue, the scheduler keeps a FIFO queue for
threads of each relative deadline. The scheduler places each newly released thread at the
end of the queue for threads which have the same relative deadline as the new thread, as
if the threads were scheduled on the deadline-monotonic basis. Clearly, the threads in each
queue are ordered among themselves according to their absolute deadlines. Therefore, to find
the thread with the earliest absolute deadline, the scheduler only needs to search among the
threads at the heads of all the FIFO queues.

To minimize the time for dequeueing the highest priority thread, the scheduler can keep
the threads at the heads of the FIFO queues in a priority queue of length �′, where �′ is the
number of distinct relative deadlines supported by the system. This queue structure is shown in
Figure 12–6. The time to update the queue structure is the time required to insert a new thread
into the priority queue. The time complexity of this operation is O(log�′), and it occurs only
when a thread completes and when the scheduler inserts a new thread into an empty FIFO
queue. The scheduler can dequeue the highest priority thread in O(log�′) time as well. The
schedulable utilization of a large number of threads depends on �′. This dependency was
discussed in Section 6.8.4.

Preemption Lock. Some kernel activities leave the system in inconsistent states if
preempted. Consequently, it is necessary to make some portions of some system calls nonpre-
emptable. In a good operating system, system calls are preemptable whenever possible, and

Decreasing
Relative
Deadlines

EDF Queue

FIFO Queues

FIGURE 12–6 Queue structure for EDF scheduling.

518 Chapter 12 Operating Systems

each nonpreemptable section is implemented efficiently so its execution time, and hence the
blocking time due to nonpreemptivity, is as small as possible.

Almost all real-time operating systems allow a thread to disable preemption. We use the
name preemption lock, which is the name used by VxWorks [Wind] for this mechanism. [In
VxWorks, a task can call taskLock() to disable preemption; no other task can preempt it until
it completes or executes the unlock routine taskUnlock().] You recall that the Nonpreempt-
able Critical Section (NPCS) protocol is a simple way to control access to shared resources
(e.g., mutex objects and reader/writer locks). With preemption lock, this protocol is simple to
implement at the user level. Each thread makes itself nonpreemptable immediately prior to
entering a critical section and makes itself preemptable when it no longer holds any resource.
Because the resource requested by the thread is always available and the thread has the highest
priority just before it becomes nonpreemptable, the thread always acquires the lock success-
fully. Of course, a thread should never self-suspend when it holds any lock and is therefore
nonpreemptable.

Preemption lock is often achieved by locking or disabling the scheduler. Alternatively,
an operating system (e.g., pSOS+ [Moto]) may provide a task with a choice of running in pre-
emptive or nonpreemptive mode. A task can disable preemption by setting a mode-control bit;
task switching occurs only when a nonpreemptive running task blocks or reenables preemp-
tion. Since hardware interrupt service routines execute at priorities higher than the scheduler,
as shown in Figure 12–3, interrupts are not disabled while some thread is preemption locked.

Aperiodic Thread Scheduling. None of the commercial real-time operating systems
support bandwidth-preserving servers. The implementation of such a server as a user thread
requires the ability to monitor the duration of the server’s execution (i.e., the consumed server
budget) at the user level. Timer functions of the kind described above are cumbersome, ex-
pensive, and inaccurate for this purpose. To replenish the budget of a sporadic server in a
fixed-priority system, the thread that maintains the server (called the user-level scheduler be-
low) needs to know when busy intervals of higher-priority threads begin and end. To get this
information at the user level, the user-level scheduler needs the cooperation of those threads,
and even with their cooperation, incurs large overhead. On the other hand, as we will see
shortly, it is easy and inexpensive for the kernel to get and provide this information.

Monitoring Processor Time Consumption. Specifically, to maintain a server in the
user level, we must monitor the server budget consumption at the user level. What we need
for this purpose is an interval timer (a stop watch) that can be reset at the replenishment time
of each server. The timer counts whenever the server executes. The timer signals the user-
level scheduler when the count reaches the server budget. Such a timer is similar to the UNIX
interval timer ITIMER VIRTUAL12 in the sense that it counts only at times when the server
executes. Indeed, if ITIMER VIRTUAL were more accurate, it could be used for this purpose.

12Interval timers ITIMER VIRTUAL and ITIMER PROF are used by performance monitoring and profiling
tools. The former keeps track of the CPU time consumed by the thread itself. The latter gives the total CPU time
consumed by the thread plus the time consumed by the kernel while working on behalf of the thread.

Section 12.2 Time Services and Scheduling Mechanisms 519

Unfortunately, ITIMER VIRTUAL has two major shortcomings. The first is its resolution, and
the second is its accuracy.

In most UNIX systems, the kernel updates ITIMER VIRTUAL only at times when it
services clock interrupts. As a consequence, the resolution of the timer is coarse and the
consumed budget measured by the timer may be erroneous.

The coarse resolution is not a problem, since we can take into account the effect of
(actual) timer resolution as we take care of the effect of tick scheduling in our choice of server
size. If we use ITIMER VIRTUAL to measure the consumed budget, the measured value
has two kinds of errors. At each clock interrupt, the kernel increments ITIMER VIRTUAL
of a thread by a tick size if it finds the thread executing. If the kernel treats a server thread
in this manner, the interval timer may give an overestimation of the consumed budget since
the server may not have executed throughout the clock interrupt period. On the other hand,
when the kernel finds a thread not executing at the time of the clock interrupt, it does not
increment ITIMER VIRTUAL, even when the thread has executed during part of the clock
interrupt period. If the thread is the server, the interval timer may underestimate the consumed
budget as a consequence. An overestimation is not a serious problem; the server may be less
responsive because it may be suspended when in fact it should still be eligible for execution.
In contrast, an underestimation of the consumed budget may cause the server to overrun and
therefore does not work correctly.

We can easily modify the tick scheduling mechanism to monitor server budget con-
sumption correctly, if not accurately. For this purpose, the kernel needs to keep the current
budget of each server thread (and in the case of a SpSL server, the current budget chunks)
in the TCB of the thread. The scheduler sets the time slice of a server to the current server
budget whenever it schedules the server to run. The scheduler decrements the budget by the
tick size during every clock interrupt period in which the server has executed.13 Figure 12–7
shows a way to do so. As a consequence, the scheduler never underestimates the consumed
budget. Whenever the scheduler preempts a server or suspends a server, it writes the server’s
current budget (i.e., the remaining time slice) back to the TCB of the server. When the budget
becomes 0, the server is no longer eligible for execution, and the scheduler moves the server
back to the suspended queue.

The kernel can keep track of server budget consumption much more accurately if it
takes advantage of a high-resolution hardware clock (or Pentium time counter). The scheduler
reads the clock and updates the current budget of each server thread at each context switch
that involves the thread. Indeed, the kernel can more accurately monitor the processor time
consumption of every thread in the same manner.

Tracking Busy Intervals. Similarly, in a fixed-priority system, it is simple for the ker-
nel to monitor and detect the beginnings and ends of busy intervals of threads with priorities
higher than that of a server (or any thread). In Chapter 7, we called this set of threads TH ,
server priority πs , and a busy interval of TH a level-(πs−1) busy interval. You recall that the
beginning of a busy interval of TH is an instant prior to which no thread in the set is ready for

13The scheme described here is sufficient for SpSL or deferrable servers because the budget of a SpSL or a
deferrable server is consumed only when the server executes. In contrast, according to the consumption rule of simple
sporadic servers stated in Section 7.3.1, after the server begins to execute, its budget should also be decremented when
lower-priority threads execute. A more complex monitoring scheme is required to support this rule.

520 Chapter 12 Operating Systems

Input information maintained by kernel:

• currentBudget: Set to server budget at replenishment time.
• decremented: FALSE if the budget has not been decremented in current clock interrupt

period; TRUE if otherwise.
• server priority πs .
• level-πi Busy: TRUE if the current time is in a level-πs busy interval; FALSE otherwise
• BEGIN and END: Beginning and end of the current level-πs busy interval.

Monitoring consumed server budget:

• When scheduling the server,

– set time slice to currentBudget;

– set decremented to FALSE;
• When preempting or suspending the server in the midst of a clock interrupt period,

– if decremented is FALSE,

∗ decrement (remaining) time slice by tick size;

∗ if time slice is 0, suspend server;

∗ otherwise, set decremented to TRUE and currentBudget = remaining time slice;
• At a clock interrupt when the server is executing,

– if decremented is TRUE, set decremented to FALSE;

– Otherwise,

∗ decrement time slice by tick size;

∗ if time slice is 0, suspend server.

Tracking level-πs busy interval:

• Upon clock interrupt,

– if level-πsBusy is TRUE,

∗ if the queues for priorities πs or higher are empty,

+ set END to current time and level-πsBusy to FALSE;

+ service timer events;

+ if a thread in TH is released, set BEGIN to current time and level-πsBusy to TRUE;

∗ otherwise (i.e., if the queues are not empty), service timer events;

– otherwise (i.e., if level-πsBusy is FALSE),

∗ service timer events;

∗ if a thread in TH is released, set BEGIN to current time and level-πsBusy to TRUE;
• When releasing a thread at times other than clock interrupts,

– if level-πsBusy is FALSE and the newly released thread is in TH , set BEGIN to current time
and level-πsBusy to TRUE;

• When a thread of priority πs or higher completes,

– if level-πsBusy is TRUE and queues for priorities πs and higher become empty, set END to
current time and set level-πsBusy to FALSE.

FIGURE 12–7 Monitoring budget consumption and tracking busy intervals by kernel.

Section 12.2 Time Services and Scheduling Mechanisms 521

execution and at which a thread in the set is released. The end of the busy interval is the first
instant when all threads in TH that were released before the instant have completed. Since
a new busy interval may begin immediately after a busy interval ends, the processor may be
continuously busy executing threads in TH for the entire duration. This is why the boundaries
of busy intervals cannot be detected by simply monitoring the idle/busy state of the thread
set TH .

The kernel can check for the end of a busy interval at each clock interrupt as follows.
When servicing a clock interrupt or releasing a thread upon the occurrence of a signal or
interrupt, the kernel first checks whether the queues for priorities higher than πs are empty.
The current time is the end END of a busy interval if some of these queues were not empty
the last time the kernel checked them but are all empty at the current time.

After the kernel checks the queues, it checks timer events if it is responding to a clock
interrupt. The current time is the beginning BEGIN of a busy interval if the previous busy
interval has ended and a thread in TH is released at the time. Figure 12–7 also gives a pseu-
docode description of this scheme. BEGIN and END are information needed for determining
the next replenishment time of a bandwidth-preserving server. (The replenishment rules of
different servers are described in Sections 7.2 and 7.3.)

Hook for User-Level Implementation. In summary, the modified tick scheduling
mechanism described above is only slightly more complicated than the existing one. The ad-
ditional overhead is small. With this modification, it is relatively straightforward to implement
bandwidth-preserving servers, as well as a slack stealer.

However, for modularity and customizability reasons, it is better for the operating sys-
tem to provide good hooks so that bandwidth-preserving servers and slack stealers can be
implemented efficiently in the user level. The minimum support the operating system should
provide for this purpose is an ITIMER VIRTUAL-like timer that never underestimates the
processor time consumption of the specified thread. Better yet is for the operating system to
also support server threads and provides a system call for a user thread to set the server thread
budget.

Busy-interval tracking is essential. Again, this can be done with only a small modifi-
cation to the standard scheduling mechanism. It would be most convenient if the operating
system provides an API function which a thread can call if the thread wants to be notified
when the current busy interval of the specified priority ends and when a new busy interval
begins.

Static Configuration. As Chapter 9 pointed out, we want multiprocessor or dis-
tributed real-time applications to be statically configured so we can validate their end-to-end
timing constraints. In a static system, computation tasks are partitioned into modules, each
module is bound to a processor, and the tasks and threads on each processor are scheduled
according to a uniprocessor scheduling algorithm. Over a network, each message stream is
sent over a fixed route. Many real-time operating systems are uniprocessor, multitasking sys-
tems, so if we run our application on multiple networked machines on any of these operating
systems, our application is naturally statically configured.

In contrast, modern general-purpose operating systems and some real-time operating
systems (e.g., such as QNX [QNX]) are Symmetrical Multiprocessor (SMP) systems. Multi-

522 Chapter 12 Operating Systems

processor operating systems are designed to support dynamically configured applications. In
a dynamic system, the dispatcher/scheduler puts all the ready threads in a common queue and
schedules the highest priority thread on any available processor. This is what the scheduler in
an SMP operating system does unless you tell it to do otherwise. The mechanism for this pur-
pose is called processor affinity [Solo, QNX]. Among the scheduling information maintained
in the TCB of each thread, there is an affinity mask. There is a bit for every processor in the
system. By default, the affinity mask of a thread is set to all 1’s, telling the scheduler that the
thread can run on every processor. By using a set affinity mask system call, a thread can set
its own affinity mask or that of another thread (or process) so there is only one “1” among all
bits. This value of the mask tells the scheduler to schedule the thread only on the processor
indicated by the “1” in the mask. In this way, a real-time application can bind its threads and
processes to processors.

pSOS+m [Moto] is a multiprocessor kernel that supports the MPCP (Multiprocessor
Priority-Ceiling) and end-to-end multiprocessor models in a natural way. We postpone this
discussion until Section 12.6 when we describe this operating system.

Release Guard Mechanism. In Chapter 9 it was also pointed out that simply binding
computation tasks to CPUs is not sufficient. If the tasks are scheduled on a fixed-priority basis,
we should synchronize the releases of periodic tasks on different CPUs according to one of the
nongreedy protocols discussed in Section 9.4.1. Similarly, sending message streams through
fixed routes is not sufficient. Traffic shaping at the network interfaces is needed. By doing
so, the worst-case response time of each end-to-end task can be computed by the sum of
worst-case response times of the subtasks on individual CPUs and networks.

Among nongreedy protocols, the Release-Guard (RG) protocol is best, because it not
only keeps the worst-case response time of every subtask small but also keeps the average
response time of all subtasks small. Moreover, in any operating system that supports periodic
threads, it is straightforward to integrate rule 1 of the protocol into the mechanism for re-
leasing periodic threads. Specifically, the kernel maintains for each periodic thread a release
guard, which the kernel sets to the current time plus the period of the thread whenever it re-
leases the thread. The kernel releases the thread at that time only if it has received notification
(in the form of a message, or an I/O complete notification, etc.) from the predecessor; oth-
erwise, it waits until the notification is received. This rule is also simple to implement in the
user level. (The implementations of periodic threads in Figure 12–5 can be modified straight-
forwardly to incorporate a release guard for the thread; the modification is left to you as an
exercise.)

According to rule 2 of the protocol, the release guard of every thread is set to the current
time at the end of each busy interval of the entire system. This rule is expensive to implement
in the user level unless the kernel helps. If the kernel detects the end of each busy interval
and provides a notification of some form, it is also simple to integrate rule 2 with the mainte-
nance of periodic threads and bandwidth-preserving servers. At the end of each busy interval,
which can be detected in the way shown in Figure 12–7, the kernel (or a user-level scheduler)
can set the release guard of every periodic thread to the current time and release all those
threads for which the notifications for the completion of their predecessors have already been
received.

Section 12.3 Other Basic Operating System Functions 523

12.3 OTHER BASIC OPERATING SYSTEM FUNCTIONS

This section continues our discussion on operating system services that are essential for all
but the simplest embedded applications. Specifically, it discusses real-time issues in commu-
nication and synchronization, software interrupt, memory management, I/O, and networking.

12.3.1 Communication and Synchronization

As they execute, threads communicate (i.e., they exchange control information and data). They
synchronize in order to ensure that their exchanges occur at the right times and under the right
conditions and that they do not get into each other’s way. Shared memory, message queues,
synchronization primitives (e.g., mutexes, conditional variables, and semaphores), and events
and signals are commonly used mechanisms for these purposes.14 Almost all operating sys-
tems provide a variety of them in one form or the other. (The only exceptions are single-
threaded executives intended solely for small and deterministic embedded applications.)

This subsection discusses message queues and mutexes and reader/writer locks, leaving
events and signals to the next subsection. We skip shared memory entirely. Shared memory
provides a low-level, high-bandwidth and low-latency means of interprocess communication.
It is commonly used for communication among not only processes that run on one proces-
sor but also processes that run on tightly coupled multiprocessors. (An example of the latter
is radar signal processing. A shared memory between signal and data processors makes the
large number of track records produced by signal processors available to the tracking process
running on the data processor or processors.) We gloss over this scheme because we have little
that is specific to real-time applications to add to what has already been said about it in the
literature. (As an example, Gallmeister [Gall] has a concise and clear explanation on how to
use shared memory in general and in systems that are compliant to POSOX real-time exten-
sions in specific.) The little we have to add is the fact that real-time applications sometimes do
not explicitly synchronize accesses to shared memory; rather, they rely on “synchronization
by scheduling,” that is, threads that access the shared memory are so scheduled as to make
explicit synchronization unnecessary. Thus, the application developer transfers the burden of
providing reliable access to shared memory from synchronization to scheduling and schedula-
bility analysis. The cost is that many hard real-time requirements arise from this as a result and
the system is brittle. Using semaphores and mutexes to synchronously access shared memory
is the recommended alternative.

Message Queues. As its name tells us, a message queue provides a place where one
or more threads can pass messages to some other thread or threads. Message queues pro-
vide a file-like interface; they are an easy-to-use means of many-to-many communication
among threads. In particular, Real-Time POSIX message queue interface functions, such as
mq send() and mq receive(), can be implemented as fast and efficient library functions. By

14We skip over pipes, UNIX FIFOs, and NT named pipes. These are efficient mechanisms for communication
among equal-priority processes, but their lack of prioritization is an obvious shortcoming as a means of interprocess
communication in general. Gallmeister [Gall] compares UNIX pipes, FIFOs, and message queues and Hart [Hart]
compares UNIX FIFOs with NT named pipes.

524 Chapter 12 Operating Systems

making message queues location transparent, an operating system can make this mechanism
as easy to use across networked machines as on a single machine.

As an example of how message queues are used, we consider a system service provider.
Message queues provide a natural way of communication between it and its clients. The ser-
vice provider creates a message queue, gives the message queue a name, and makes this name
known to its clients. To request service, a client thread opens the message queue and places its
Request-For-Service (RFS) message in the queue. The service provider may also use message
queues as the means for returning the results it produces back to the clients. A client gets the
result by opening the result queue and receiving the message in it.

Prioritization. You can see from the above example that message queues should be
priority queues. The sending thread can specify the priority of its message in its send message
call. (The parameters of the Real-Time POSIX send function mq send() are the name of the
message queue, the location and length of the message, and the priority of the message.) The
message will be dequeued before lower-priority messages. Thus, the service provider in our
example receives the RFS messages in priority order.

Messages in Real-Time POSIX message queues have priorities in the range [0,
MQ MAX PRIO], where the number MQ MAX PRIO of message priorities is at least 31. (In
contrast, noncompliant operating systems typically support only two priority levels: normal
and urgent. Normal messages are queued in FIFO order while an urgent message is placed
at the head of the queue.) It makes sense for an operating system to offer equal numbers of
message and thread priorities.15 Some systems do. For the sake of simplicity, our subsequent
discussion assumes equal numbers of threads and message priorities.

Message-Based Priority Inheritance. A message is not read until a receiving thread
executes a receive [e.g., Real-Time POSIX mg receive()]. Therefore, giving a low priority to
a thread that is to receive and act upon a high-priority message is a poor choice in general,
unless a schedulability analysis can show that the receiving thread can nevertheless complete
in time. (Section 6.8.6 gives a scheme: You can treat the sending and receiving threads as two
job segments with different priorities.)

A way to ensure consistent prioritization is to provide message-based priority inheri-
tance, as QNX [QNX] does. A QNX server process (i.e., a service provider) receives mes-
sages in priority order. It provides a work thread to service each request. Each work thread
inherits the priority of the request message, which is the priority of the sender. Real-Time
POSIX does not support message-based priority inheritance. A way suggested by Gallmeister
[Gall] to emulate this mechanism is to give the service provider the highest priority while it
waits for messages. When it receives a message, it lowers its priority to the message priority.
Thus, the service provider tracks the priorities of the requests.

15A question here is whether 32 message priority levels are sufficient if the system provides a larger number of
thread priorities. To answer this question, we suppose there are 256 thread priorities, and these priorities are mapped
uniformly to the 32 message priorities: A thread of priority x sets its message priority to �x/8�. (As we did in earlier
chapters, a smaller integer represents a higher priority.) Its message may experience priority inversion only when
threads of priorities 1 + 8�x/8�, 2 + 8�x/8�, . . . , 8 + 8�x/8� are sending messages via the same message queue at
the same time.

Section 12.3 Other Basic Operating System Functions 525

Traditional service providers in microkernel systems are single threaded and service
one request at a time. Since its execution is preemptable, uncontrolled priority inversion can
still occur even with message-based priority inheritance. To control priority inversion in this
case, we want the service provider to inherit the highest priority of all the threads requesting
services at the time. In a system where message-queue send and receive functions are imple-
mented as system calls, this priority inheritance can be done by having the kernel raise the
priority of the service provider to the message priority (i.e., the sender’s priority) whenever
it places a message at the head of the service provider’s request message queue if the prior-
ity of the service provider is lower at the time. The kernel adjusts the priority of the service
provider as indicated by the priority of the message at the head of its (RFS) message queue
each time the service provider executes a receive. A service provider is suspended when its
message queue is empty. A suspended thread consumes no processor time; hence there is no
harm leaving the service provider at its current priority. When the kernel puts a message in an
empty queue, it sets the service provider’s priority accordingly.

No Block and Notification. A useful feature is nonblocking. The Real-Time POSIX
message-queue send function mq send() is nonblocking. As long as there is room in a mes-
sage queue for its message, a thread can call the send function to put a message into the queue
and continue to execute. However, when the queue is full, the mq send() may block. To en-
sure that the send call will not block when the message queue is full, we set the mode of
the message queue to nonblocking (i.e., O NONBLOCK). (The mode is an attribute of the
message queue which can be set when the message queue is opened.) Similarly, by default, a
thread is blocked if the message queue is empty when it calls mq receive(). We can make the
receive call nonblocking in the same manner.

Notification means that a message queue notifies a process when the queue changes
from being empty to nonempty. (A Real-Time POSIX message queue notifies only one pro-
cess.) The service provider in the above example can arrange to be notified; thus it saves itself
the trouble of having to poll its request message queue periodically after the queue becomes
empty. Notification also enables a receiving process to respond quickly. As an example, sup-
pose that a user-level bandwidth-preserving server uses a message queue as its ready queue.
When an aperiodic thread is released, a message is placed in the message queue. The capabil-
ity of the message queue to notify the server is essential.

Synchronization Mechanisms. Threads (and processes) synchronize using mutexes,
reader/writer locks, conditional variables, and semaphores. Chapters 8 and 9 already discussed
extensively protocols for controlling priority inversion that may occur when threads contend
for these resources. This subsection describes a way to implement priority inheritance prim-
itives for mutexes and reader/writer locks in a fixed-priority system. As you will see, the
overhead of priority inheritance is rather high. Since the priority-ceiling protocol uses this
mechanism, its overhead is also high (although not as high as simple priority inheritance
since there is no transitive blocking). We will conclude the subsection by comparing priority
inheritance protocol with the Ceiling-Priority Protocol (CPP). CPP is sometimes called a poor
man’s priority-ceiling protocol; you will see why it is so called.

526 Chapter 12 Operating Systems

Basic Primitives. In the remainder of this subsection, the term resource refers solely
to either a mutex or reader/writer lock. We assume here that the operating system provides two
functions: inherit pr() and restore pr().16 A resource manager within the operating system
or at the user level can use them to raise and restore the priorities of threads, respectively, as
threads acquire and release resources. Since each resource request or release may lead to the
invocation of one of these functions, it is essential that they be implemented efficiently.

The function inherit pr(TH) is called when a thread (named TH here) is denied a re-
source R and becomes blocked. The effect of this function is that all threads directly or in-
directly blocking TH inherits TH’s priority. (We say that these threads inherit TH’s priority
through resource R.) You may have noticed that this statement assumes that the current pri-
orities of all these threads are lower than TH’s priority. This assumption is true when there is
only one processor, there is no deadlock, and threads never self-suspend while holding any
resource, so immediately before it becomes blocked, TH has the highest priority of all ready
and blocked threads.

The function restore pr() is called when a resource is released. It has two parameters:
The name of the resource that has just been released and the ID of the thread which releases
the resource. The effect of the function is that the current priority of the specified thread is
restored to a level πr .

Inheritance Function. Figure 12–8 describes in pseudocode how the inherit pr()
function works. Again, the function is called when a thread named TH is denied a resource
R and becomes blocked. As the first step, the function looks up the thread holding R at the
time. The owner TH1 of R may itself be blocked waiting for another resource R1, which may
be held by yet another thread TH2, and so on. In Chapter 8, we represented the blocking
relationship by a chain in the wait-for graph, as shown in Figure 12–9. In this blocking chain,
all the threads except the thread THi at the end is blocked. Figure 12–8 assumes that every
blocking chain ends at a thread which is not blocked. If resource access is controlled according
to the priority-ceiling protocol, a blocking chain may end at a resource node as well because a
thread may be denied a resource even when the resource is free. The pseudocode description
of inherit pr() does not take care of this case.

Tracking down threads on a blocking chain can be done easily if (1) in the date structure
maintained for each resource that is in use, there is a pointer to the thread holding the resource
and (2) in the TCB of each blocked thread, there is a pointer to the resource for which the
thread waits. The pseudocode of inherit pr() assumes that these pointers are maintained and
calls them owner and wait-for pointers, respectively. By following these pointers, inherit pr()
finds each thread on the blocking chain, starting from the newly blocked thread. After finding
a thread, the function changes the priority of the thread to that of the newly blocked thread. To
ensure the consistency of scheduling and synchronization information, inherit pr() first locks
the scheduler; it unlocks the scheduler when it completes.

Priority Restoration. A thread may hold multiple resources at the same time and
may inherit different priorities as other threads become blocked when they contend for these
resources. Historical information on how the thread inherited its current priority is needed to

16The implementation of these primitives is similar to that of the SunOS 5.0 priority inheritance mechanism
[KhSZ]. The SunOS 5.0 names them pi willto() and pi waive().

Section 12.3 Other Basic Operating System Functions 527

Information maintained by the kernel:

• A circular linked list, called Inheritance Log (IL), for every thread;
• For each resource R that is in use, a data structure consisting of

– a priority queue for threads that will be blocked when they request R, and

– an owner pointer to the thread TH holding R.

When called after a thread TH, whose current priority is π , is denied resource R, the function in-
herit pr(TH)

1. locks scheduler;

2. adds a wait-for pointer to R in the thread’s TCB;

3. starting from TH to the end of the blocking chain, finds the next thread, nextThread, on the chain
as follows:

(a) thisThread = TH;

(b) follows thisThread’s wait-for pointer to the resource X thisThread is waiting for;

(c) follows the owner pointer of X to find the ID, nextThread, of the thread holding X ;

(d) if a record on X is not in the IL of nextThread, inserts the record (resource name X , next-
Thread’s current priority) in the IL;

(e) sets the current priority of nextThread to π ;

(f) if nextThread is not blocked, goes to step 4;

otherwise, sets thisThread = nextThread and goes back to step 3(b);

4. unlocks scheduler.

When restore pr(R, TH) is called, if the record (R, π) is in IL of TH,

1. locks scheduler;

2. computes the new priority πr of the thread TH based on records in IL;

3. sets the priority of TH to πr and removes (R, π) from IL;

4. unlocks scheduler.

FIGURE 12–8 Priority inheritance primitives.

TH R R1

R2Ri-1

TH2

THi

TH1

FIGURE 12–9 Blocking chain.

528 Chapter 12 Operating Systems

facilitate the determination of the thread’s new current priority after it releases each resource.
The pseudocode description of inherit pr() and restore pr() assumes that this information is
maintained for each thread in its TCB as a linked list of records, one for each resource which
the thread holds and through which the thread has inherited some priority. The list is called
an Inheritance Log (IL).

When restore pr(TH, R) is called, it searches the IL of the specified thread TH for the
record on the specified resource R. The absence of a record on R indicates that the thread has
not blocked any thread while it holds R. Hence, when the thread releases R, restore pr() does
not change its priority. If a record on R exists, the function restore pr() computes the new
thread priority, called πr , based on the information provided by all records in the IL, restores
the thread’s priority to πr , and then deletes the record on R. The computation of πr is left for
you as an exercise.

Ceiling-Priority Protocol. The overhead of the ceiling-priority protocol can be con-
siderably lower than the priority inheritance protocol because each resource acquisition and
release requires the change of the priority of at most the executing thread. CCP can be imple-
mented easily by the system or at the user level in a fixed-priority system that supports FIFO
within equal policy. (Problem 8.5 discussed how to implement this protocol if the system sup-
ports only round-robin within equal priority.) You recall that CCP requires prior knowledge
of resource requirements of all threads. The resource manager generates from this knowledge
the priority ceiling�(R) of every resource R. In addition to the current and assigned priorities
of each thread, the thread’s TCB also contains the names of all resources held by the thread at
the current time.

Whenever a thread requests a lock on R, the resource manager locks the scheduler;
looks up �(R); if the current priority of the requesting thread is lower than �(R), sets the
thread’s current priority to �(R); allocates R to the thread; and then unlocks the scheduler.
Similarly, when a thread unlocks a resource R, the resource manager checks whether the
thread’s current priority is higher than �(R). The fact that the thread’s current priority is
higher than �(R) indicates that the thread still holds a resource with a priority ceiling higher
than �(R). The thread’s priority should be left unchanged in this case. On the other hand,
if the thread’s current priority is not higher than �(R), the priority may need to be lowered
when R is released. In this case, the resource manager locks the scheduler, changes the current
priority of the thread to the highest priority ceiling of all resources the thread still holds at the
time, or the thread’s assigned priority if the thread no longer holds any resource, and then
unlocks the scheduler.

12.3.2 Event Notification and Software Interrupt

Event notification, exception handling, and software interrupts are essential for multitasking
systems. Responsive mechanisms are needed to inform threads of the occurrences of timer
events, the receipt of messages, the completion of asynchronous I/O operations, and so on. In
UNIX systems, signal is the general mechanism for these purposes. Most of this subsection is
devoted to the Real-Time POSIX signal as its features exemplify what are good and practical
for real-time applications.

Signal and Similar Mechanisms. We saw earlier that in a UNIX system, interrupt
handlers and the kernel use signals as a means to inform threads of the occurrences of ex-

Section 12.3 Other Basic Operating System Functions 529

ceptions (e.g., divide by zero and bad system call) or waited for events (e.g., the expiration
of a timer and arrival of a message). A thread may signal another thread to synchronize and
communicate. (For example, a predecessor thread may signal a successor thread when it com-
pletes.) A thread has a service function, called a signal handler. When the kernel delivers a
signal to the thread, the signal handler executes. Thus, the signal mechanism provides asyn-
chrony and immediacy, just as hardware interrupts do.

Non-UNIX systems typically provide these capabilities using more than one mecha-
nism. As an example, in Windows NT [Solo, Hart], events and Asynchronous Procedure Calls
(APCs) serve the same purposes as signals in UNIX systems. Events are set by threads for the
purpose of notification and synchronization. They are synchronous. In other words, a thread
must explicitly wait for an event for the event to have effect, and the thread is suspended while
it waits. When a thread sets an event (object) to the signaled state, the thread(s) that is waiting
on the event is awakened and scheduled. An NT event is an efficient and powerful notification
and synchronization mechanism. Being synchronous, NT event delivery does not have the rel-
atively high overhead of asynchronism. It is many-to-many in the sense that multiple threads
can wait on one event and a thread can wait for multiple events. In contrast, each UNIX signal
is targeted to an individual thread or process, and each signal is handled independently of
other signals.

As its name implies, NT APCs are asynchronous.17 The kernel and device drivers use
kernel-mode APCs to do work in the address spaces of user threads (e.g., to copy data from
kernel space to the space of the thread that initiated the I/O). Environment subsystems (i.e.,
the POSIX subsystem) uses APCs as software interrupts (e.g., to suspend a thread). Indeed,
the POSIX subsystem on NT implements the delivery of POSIX signals to user processes
using APCs. We will discuss this mechanism further in Section 12.7.1.

Similarly, the pSOSystem [Moto] provides events and asynchronous signals. The former
are synchronous and point-to-point. An event is sent to a specified receiving task. The event
has no effect on the receiving task if the task does not call the event receive function. In
contrast, an asynchronous signal forces the receiving task to respond.

More on Signals. Internal to UNIX operating systems, signals used for different pur-
poses are identified by numbers. In programs and in the literature, they are referred to by their
symbolic names. The correspondence between the number and the symbolic name of each
signal is given in the header file <signal.h>. Most POSIX signals (i.e., signal numbers) are
used by the operating system; what they do is defined by the system. (We have already seen
SIGALRM for signaling upon timer expiration. Other examples are SIGTERM for terminat-
ing a process, SIGFPE for floating-point exception, and SIGPIPE for writing a pipe with no
readers.) There are also signal numbers which are to be used solely for application-defined
purposes. A Real-Time POSIX compliant system provides at least eight application-defined
signals. An application-defined signal (with one of the numbers reserved for applications) is
defined by the function (i.e., the signal handler) which the application sets up for the operating
system to call when a signal with that number arrives. [Specifically, the action to be taken upon

17More precisely, NT kernel-mode APCs are asynchronous; a kernel-mode APC interrupts a thread without
the thread’s cooperation. There are also user-mode APCs. A user-level APC queued for a thread is delivered to the
thread only when the thread is in a wait state (e.g., by having previous executed a SleepEx to test whether it has a
pending APC).

530 Chapter 12 Operating Systems

the occurrence of a signal is specified by the data structure sigaction on the signal. Among the
information provided by this data structure is a pointer to the signal handler, a mask sa mask
and a flag field sa flag. A process (thread) can ask the operating system to set these members
by calling sigaction() and providing these and other arguments of the function.]

By default, when a signal arrives, it is handled, meaning that the signal handler set up for
the signal is executed. A process (thread) may ignore any signal, except those (e.g, SIGKILL)
used by the operating system to stop and destroy an errant process. The operating system
ignores a signal when the pointer to the associated signal handler has the system-defined
constant SIG IGN as its value.

Just as it is necessary to be able to disable interrupts, it is essential that signals can be
blocked selectively from delivery. This is done via signal masks. Some signals may need to be
blocked from delivery while a signal handler is executing. One specifies the signals blocked
by the handler of a signal by putting their numbers in sa mask in the data structure sigaction
of that signal. The operating system does not deliver a signal thus blocked while the signal
handler is executing. Each process (thread) also has a signal mask containing numbers of
signals the process (thread) wants blocked. A signal thus blocked is delivered by the operating
system but remains pending until the process (thread) unblocks the signal by removing its
number from the signal mask.

Signal delivery is on per process basis, so if a thread ignores a signal, all threads in the
process do also. On the other hand, each thread has its own signal mask. Therefore, threads in
a process can choose to block or unblock signals independent of other threads. Some signals
(e.g., SIGTERM for terminating a process) are intended for the entire process. Such a signal,
if not ignored, is delivered to any thread that is in the process and does not block the signal.
The signal is blocked only when all threads in the process blocks it.

Real-Time POSIX Signals. POSIX real-time extensions [IEEE98] change the
POSIX signals to make the mechanism more responsive and reliable. To distinguish sig-
nals conforming to POSIX real-time extensions from POSIX and traditional UNIX signals,
we call the former real-time signals. First, as we mentioned earlier, there are at least eight
application-defined real-time signals versus only two provided by POSIX. These signals are
numbered from SIGRTMIN to SIGRTMAX.

Second, real-time signals can be queued, while traditional UNIX signals cannot. Queue-
ing is a per signal option; one chooses the queueing option for a real-time signal by setting
bit SA SIGINFO in the sa flags field of the sigaction structure of the signal. If not queued, a
signal that is delivered while being blocked may be lost. Hence, queueing ensures the reliable
delivery of signals.

Third, a queued real-time signal can carry data. A traditional signal handler has only
one parameter: the number of the signal. In contrast, the signal handler of a real-time signal
whose SA SIGINFO bit is set has as an additional parameter a pointer to a data structure
that contains the data value to be passed to the signal handler. This capability increases the
communication bandwidth of the signal mechanism. As an example, a server can use this
mechanism to notify a client of the completion of a requested service and pass the result back
to the client at the same time.

Fourth, queued signals are prioritized: The smaller the signal number, the higher the
priority. They are delivered in priority order.

Section 12.3 Other Basic Operating System Functions 531

Fifth, POSIX real-time extensions provide a new and more responsive synchronous
signal-wait function called sigwaitinfo. When a signal arrives for a process that is blocked after
calling the POSIX synchronous signal-wait function sigsuspend, the signal handler executes
before the process returns from the blocked state. In contrast, upon the arrival of the signal, the
sigwaitinfo function does not call the signal handler; it merely unblocks the calling process.
Figure 12–5(a) gives an example of how this function may be used.

Overhead and Timing Predictability. The down side of the signal mechanism is
the slow speed and high overhead of signal delivery. Like a hardware interrupt, a signal also
causes a trap out of the user mode, complicated operations by the operating system, and
a return to user mode. The time taken by these activities is high in comparison with other
communication and synchronization mechanisms.

Signal handler are executed ahead of threads of all priorities. (Typically, the kernel
executes signal handlers prior to returning control to the user.) Hence, it is important that the
execution times of signal handlers be kept small, just as it is important that execution times of
interrupt service routines small.

12.3.3 Memory Management

Thus far, we have ignored memory and memory management. An underlying assumption
throughout previous chapters is that all the real-time applications that may run together fit
in memory. Indeed, a task is not admitted into the system if there is not enough memory to
meet its peak memory space demand. A mode change cannot complete unless the operating
system can find sufficient memory for the codes, data, and run-time stacks of the threads that
execute in the new mode. We now discuss those aspects of memory management that call
for attention. They are virtual memory mapping, paging, and memory protection. Whereas
all general-purpose operating systems support virtual memory and memory protection, not all
real-time operating systems do, and those that do typically provide the user with the choice of
protection or no protection. Unlike nonreal-time applications, some real-time applications do
not need these capabilities, and we do not get these capabilities without penalty.

Virtual Memory Mapping. We can divide real-time operating systems into three
categories depending on whether they support virtual memory mapping (i.e., virtual conti-
guity) and paging (i.e., demand paging or swapping). Real-time operating systems designed
primarily for embedded real-time applications such as data acquisition, signal processing,
and monitoring,18 may not support virtual memory mapping. The pSOSystem is an example
[Moto]. Upon request, the system creates physically contiguous blocks of memory for the
application. The application may request variable size segments from its memory block and
define a memory partition consisting of physically contiguous, fixed-size buffers.

18The lack of virtual memory mapping is not a serious problem when the application has a small code and
relatively small number of operating modes (and hence configurations). The application may be data intensive and
its data come in fixed-size chunks. A radar signal processing application is an example. It needs fixed-size buffers
to hold digitized radar returns from range bins, and the space required for its FFT code and run time stack is small
by comparison. During a mode change, for example, from searching to tracking, it may request more buffers or free
some buffers. The number of buffers required in each mode is usually known.

532 Chapter 12 Operating Systems

Memory fragmentation is a potential problem for a system that does not support virtual
mapping. After allocating variable-size segments, large fractions of individual blocks may be
unused. The available space may not be contiguous and contiguous areas in memory may not
be big enough to meet the application’s buffer space demand. The solution is to provide virtual
memory mapping from physical addresses, which may not be contiguous, to a contiguous,
linear virtual address space seen by the application.

The penalty of virtual address mapping is the address translation table, which must be
maintained and hence contribute to the size of the operating system. Moreover, it compli-
cates DMA-controlled I/O. When transferring data under DMA control, it is only necessary
to set up the DMA controller once if the memory addresses to and from which the data are
transferred are physically contiguous. On the other hand, when the addresses are not physi-
cally contiguous, the processor must set up the DMA controller multiple times, one for each
physically contiguous block of addresses.

Memory Locking. A real-time operating system may support paging so that nonreal-
time, memory demanding applications (e.g., editors, debuggers and performance profilers)
needed during development can run together with target real-time applications. Such an op-
erating system must provide applications with some means to control paging. Indeed, all op-
erating systems, including general-purpose ones, offer some control, with different granular-
ities.

An examples, Real-Time POSIX-compliant systems allow an application to pin down
in memory all of its pages [i.e., mlockall()] or a range of pages [i.e., mlock() with the starting
address of the address range and the length of the range as parameters]. So does Real-Time
Mach. In some operating systems (e.g., Windows NT), the user may specify in the create
thread system call that all pages belonging to the new thread are to be pinned down in mem-
ory. The LynxOS operating system controls paging according to the demand-paging priority.
Memory pages of applications whose priorities are equal to or higher than this priority are
pinned down in memory while memory pages of applications whose priorities are lower than
the demand-paging priority may be paged out.

Memory Protection. As we stated in Section 12.1.2, many real-time operating sys-
tems do not provide protected address spaces to the operating system kernel and user pro-
cesses. Argument for having only a single address space include simplicity and the light
weight of system calls and interrupt handling. For small embedded applications, the over-
head space of a few kilobytes per process is more serious. Critics points out a change in any
module may require retesting the entire system. This can significantly increase the cost of
developing all but the simplest embedded systems. For this reason, many real-time operating
systems (e.g., QNX and LynxOS) support memory protection.

A good alterative is to provide the application with the choices in memory management
such as the choices in virtual memory configuration offerred by VxWorks [Wind] and QNX
[QNX]. In VxWorks, we can choose (by defining the configuration in configAll.h) to have only
virtual address mapping, to have text segments and exception vector tables write protected,
and to give each task a private virtual memory when the task requests for it.

Section 12.3 Other Basic Operating System Functions 533

12.3.4 I/O and Networking

Three modern features of file system and networking software are (1) multithreaded-server
architecture, (2) early demultiplexing and (3) lightweight protocol stack. These features were
developed to improve the performance of time-shared applications, high-performance appli-
cations and network appliances. As it turns out, they also benefit real-time applications with
enhanced predictability.

Multithreaded Server Architecture. Servers in modern operating systems are typi-
cally multithreaded. In response to a request, such a server activates (or creates) a work thread
to service the request. By properly prioritizing the work thread, we can minimize the dura-
tion of priority inversion and better account for the CPU time consumed by the server while
serving the client.

As a example, we consider a client thread that does a read. Suppose that the file server’s
request queue is prioritized, the request message has the same priority as the client, and the
work thread for each request inherits the priority of the request message. (Section 12.3.1
described a way to do this.) As a consequence, the length of time the client may be blocked is
at most equal to the time the server takes to activate a work thread. I/O requests are sent to the
disk controller in priority order. For the purpose of schedulability analysis, we can model the
client thread as an end-to-end job consisting of a CPU subjob, which is followed by a disk-
access subjob, and the disk-access job executes on the disk system (i.e., the controller and the
disk) and is in turn followed by a CPU subjob. Both CPU subjobs have the same priority as the
client thread, and their execution times include the lengths of time the work thread executes.
Since the time taken by the server to activate a work thread is small, the possible blocking
suffered by the client is small. In contrast, if the server were single-threaded, a client might be
blocked for the entire duration when the server executes on behalf of another client, and the
blocking time can be orders of magnitude larger.

Early Demultiplexing. Traditional protocol handlers are based on layered architec-
tures. They can introduce a large blocking time. For example, when packets arrive over a
TCP/IP connection, the protocol module in the network layer acknowledges the receipts of
the packets, strips away their headers, reassembles them into IP datagrams, and hands off the
datagram to the IP module after each datagram is reassembled. Similarly, the TCP and IP
modules reassemble IP datagrams into messages, put the messages in order and then deliver
the messages to the receiver. Because much of this work is done before the identity of the
receiver becomes known, it cannot be correctly prioritized. Typically, the protocol modules
execute at a higher priority than all user threads and block high-priority threads when they
process packets of low-priority clients.

The duration of priority inversion can be reduced and controlled only by identifying
the receiver of each message (i.e., demultiplexing incoming messages) as soon as possible.
Once the receiver is known, the execution of the protocol modules can be at the priority of the
receiver.

Traditionally, incoming messages are first moved to the buffer space of the protocol
modules. (Figure 11-1 is based on this assumption.) They are then copied to the address space
of the receiver. Early demultiplexing also makes it possible to eliminate the extra copying.
Some communication mechanisms [e.g., Illinios FM (Fast Message] [PaLC]) for high-speed
local networks take this approach. The fact that messages are copied directly between the net-

534 Chapter 12 Operating Systems

work interface card and the application is a major reason that these mechanisms can achieve
an end-to-end (i.e., application-to-application) latency in the order of 10 to 20 microseconds.

Lightweight Protocol Stack. Protocol processing can introduce large overhead and
long latency. This is especially true when the protocol stack has the client/server structure:
Each higher-level protocol module uses the services provided by a protocol module at a layer
below. This overhead can be reduced by combining the protocol modules of different layers
into a single module and optimizing the module whenever possible. A challenge is how to
provide lightweight, low overhead protocol processing and still retain the advantages of the
layer architecture.

An example of operating systems designed to meet this challenge is the Scout operating
system [MMOP, MoPe]. Scout is based on the Path abstraction. Specifically, Scout uses paths
as a means to speed up the data delivery between the network and applications. Conceptually,
a path can be thought of as a bidirectional virtual connection (channel) which cuts through
the protocol layers in a host to connect a source and a sink of data to the network. From the
implementation point of view, a path is an object that is obtained by glueing together protocol
modules (called routers) to be used to process data between an application and network.

At configuration time, a path consisting multiple stages is created one stage at a time
starting from one end of the path (e.g., the network layer router). A stage is created by invocat-
ing the function pathCreate() on the router specified by one of the arguments of the function.
(The other argument of the function specifies the attributes of the path.) As the result of the
invocation of pathCreate() and the subsequent invocation of createStage function, the router
creates a stage of the path and identifies the next router, if any, on the path. Similarly, the next
stage is created by the next router, and if the next router is to be followed by yet another router,
that router identified. This process is repeated until the entire sequence of stages is created.
The stages are then combined into a single path object and initialized. Whenever possible,
Scout applies path transformation rules to optimize the path object.

At run time, each path is executed by a thread. Scout allows these threads to be sched-
uled according to multiple arbitrary scheduling policies and allocates a fraction of CPU time
to threads scheduled according to each policy. As you will see shortly, this features comple-
ments ideally resource reserves that we will present in the next section.

Still, priority inversion is unavoidable because when a packet arrives, it may take some
time to identify the path to which the packet belongs. Scout tries to minimize this time by
giving each router a demultiplexing operation. A router asks the next router to refine its own
decision only when it cannot uniquely decide to which path a packet belongs.

*12.4 PROCESSOR RESERVES AND RESOURCE KERNEL

One can easily argue that a real-time operating system should support as options admission
control, resource reservation, and usage enforcement for applications that can afford the ad-
ditional size and complexity of the option. By monitoring and controlling the workload, the
operating system can guarantee the real-time performance of applications it admits into the
system. This is the objective of the CPU capacity-reservation mechanism proposed by Mer-
cer, et al. [MeST] to manage quality of services of multimedia applications. Rajkumar, et al.
[RKMO] have since extended the CPU reserve abstraction to reserves of other resources and

Section 12.4 Processor Reserves and Resource Kernel 535

used it as the basis of resource kernels. In addition to Real-Time Mach, NT/RK19 also provides
resource kernel primitives. Commercial operating systems do not support this option.

12.4.1 Resource Model and Reservation Types

A resource kernel presents to applications a uniform model of all time-multiplexed resources,
for example, CPU, disk, network link. We been calling these resources processors and will
continue to do so.

An application running on a resource kernel can ensure its real-time performance by
reserving the resources it needs to achieve the performance. To make a reservation on a pro-
cessor, it sends the kernel a request for a share of the processor. The kernel accepts the request
only when it can provide the application with the requested amount on a timely basis. Once the
kernel accepts the request, it sets aside the reserved amount for the application and guarantees
the timely delivery of the amount for the duration of the reservation.

Reservation Specification. Specifically, each reservation is specified by parameters
e, p, and D: The reservation is for e units (of CPU time, disk blocks, bits or packets, and
so on) in every period of length p, and the kernel is to provide the e units of every period
(i.e., every instance of the reservation) within a relative deadline D. Let φ denote the first
time instant when the reservation for the processor is to be made and L denote the length
of time for which the reservation remains. The application presents to the kernel the 5-tuple
(φ, p, e, D, L) of parameters when requesting a reservation.

In addition to the parameters of individual reservations, the kernel has an overall pa-
rameter B for each type of processor. As a consequence of contention for nonpreemptable
resources (such as buffers and mutexes), entities executing on the processor may block each
other. B is the maximum allowed blocking time. (B is a design parameter. It is lower bounded
by the maximum duration of time entities using the processor holding nonpreemptable re-
sources. Hence, the larger B is, the less restriction is placed on applications using the proces-
sor, but the larger fraction of processor capacity becomes unavailable to reservations.) Every
reservation request implicitly promises never to hold any nonpreemptable resources so long
as to block higher-priority reservations on the processor for a duration longer than B, and the
kernel monitors the usage of all resources so it can enforce this promise.

As an example, let us look at CPU reservation. From the resource kernel point of view,
each CPU reservation (p, e, D) is analogous to a bandwidth-preserving server with period p
and execution budget e whose budget must be consumed within D units of time after replen-
ishment. Any number of threads can share a CPU reservation, just as any number of jobs may
be executed by a server. In addition to the CPU, threads may use nonpreemptable resources.
The kernel must use some means to control priority inversion. The specific protocol it uses is
unimportant for the discussion here, provided that it keeps the duration of blocking bounded.

Maintenance and Admission Control. If all the threads sharing each CPU reserva-
tion are scheduled at the same priority (i.e., at the priority of the reservation), as it is suggested

19NT/RK is a middleware that runs on top of Windows NT. NT 5.0 allows processes to set execution and
memory usage limits for a process or group of processes. This capability can be exploited to support CPU and
memory resource reserves; it is described in Section 12.7.1.

536 Chapter 12 Operating Systems

in [RKMO], each CPU reservation behaves like a bandwidth-preserving server. The kernel can
use any bandwidth-preserving server scheme that is compatible with the overall scheduling
algorithm to maintain each reservation. The budget consumption and busy interval tracking
mechanisms described in Figure 12–7 are useful for this purpose.

The simplest way is to replenish each CPU reservation periodically. After granting a
reservation (p, e, D), the kernel sets the execution budget of the reservation to e and sets
a timer to expire periodically with period p. Whenever the timer expires, it replenishes the
budget (i.e., sets the budget in the reserve back to e). Whenever any thread using the reser-
vation executes, the kernel decrements the budget. It suspends the execution of all threads
sharing the reservation when the reservation no longer has any budget and allows their ex-
ecution to resume after it replenishes the budget. You may have noticed that we have just
described the budget consumption and replenishment rules of the deferrable server algorithm.
(The algorithm was described in Section 7.2.) In general, threads sharing a reservation may
be scheduled at different fixed priorities. This choice may make the acceptance test consid-
erably more complicated, however. If budget replenishment is according to a sporadic server
algorithm, budget replenishment also becomes complicated.

The connection-oriented approach is a natural way to maintain and guarantee a network
reservation. A network reservation with parameters p, e, and D is similar to a connection on
which the flow specification is (p, e, D). After accepting a network reservation request, the
kernel establishes a connection and allocates the required bandwidth to the connection. By
scheduling the message streams on the connection according to a rate-based (i.e., bandwidth-
preserving) algorithm, the kernel can make sure that the message streams on the connection
will receive the guaranteed network bandwidth regardless of the traffic on other connection.

In summary, the resource kernel for each type of processor schedules competing reser-
vations according to an algorithm that provides isolation among reservations if such algo-
rithms exist. Previous chapters give many such algorithms for CPU and network scheduling.
The kernel can use the schedulability conditions described in those chapters as the basis of its
acceptance test when deciding whether to accept and admit a reservation.

An exception is disk. Clearly, the kernel needs to use a real-time disk-scheduling al-
gorithm that allows the maximum response time of each disk access request to be bounded
from the above.20 However, most real-time disk scheduling algorithms are not bandwidth-
preserving. For this reason, the kernel must provide this capability separately from schedul-
ing.

Types of Reservation. In addition to parameters p, e, and D, Real-Time Mach also
allows an application to specify in its reservation request the type of reservation: hard, firm,

20Real-time disk scheduling algorithms typically combine EDF and SCAN strategies. According to the SCAN
algorithm, the read/write head scans the disk, and the next request to service is the one closest to the head in the
direction of scan. This strategy minimizes average seek and latency times but ignores timeliness. According to real-
time scheduling algorithms such as EDF-SCAN and “just-in-time,” when a request completes, the head moves to the
request with the earliest deadline among all pending requests. A pure EDF scheme may yield poor average seek and
latency. To improve this aspect of performance, requests on tracks between the just completed request and the request
with the earliest deadline may also be serviced. Different algorithms make the decision on whether to service the
in-between requests based on different criteria, for example, whether the request with the earliest deadline has slack,
or whether its deadline is within a certain window of time.

Section 12.4 Processor Reserves and Resource Kernel 537

or soft. Thus, it specifies the action it wants the kernel to take when the reservation runs out
of budget.

The execution of all entities sharing a hard reservation are suspended when the reser-
vation has exhausted its budget. In essence, a hard reservation does not use any spare pro-
cessor capacity. A hard network reservation is rate controlled; its messages are not allowed
to transmit above the reserved rate even when spare bandwidth is available. We make hard
reservations for threads, messages, and so on, when completion-time jitters need to be kept
small and early completions have no advantage.

In contrast, when a firm reservation (say a CPU reservation) exhausts its budget, the
kernel schedules the threads using the reservation in the background of reservations that have
budget and threads that have no reservation. When a soft reservation runs out of budget, the
kernel lets the threads using the reservation execute along with threads that have no reserva-
tion and other reservations that no longer have budget; all of them are in the background of
reservations that have budget. A firm or soft network reservation is rate allocated. We make
firm and soft reservations when we want to keep the average response times small.

Rajkumar, et al. [RKMO] also suggested the division of reservations into immediate
reservations and normal reservations. What we have discussed thus far are normal reserva-
tions. An immediate reservation has a higher priority than all normal reservations. We will
return shortly to discuss the intended use of immediate reservations.

12.4.2 Application Program Interface and SSP Structure

The API functions Real-Time Mach provides to support resource reservation include re-
quest() and modify() for requesting and modifying reservations. There are also functions
for binding threads to a reservation and specifying the type of a reservation. In addition, an
application may create a port for a reservation and request the kernel to send a notification
message to that port whenever the budget of the reservation is exhausted.

Mercer, et al. [MeST] pointed out that a System Service Provider (SSP) executes mostly
in response to requests from clients. If each SSP were to reserve sufficient resources to ensure
its responsiveness, most of its reserved resources would be left idle when there is no request
for its service. A better alternative is to have the client pass the client’s reservations needed by
the SSP to do the work along with the request for service.

In a microkernel system adopting this approach, each SSP has only a small CPU reser-
vation. Only its daemon thread executes using this reservation. When a client requests service
from an SSP, it allows the SSP to use its own reservations. When the SSP receives a request,
the daemon thread wakes up, executes using the SSP’s CPU reservation, creates a work thread
to execute on the client’s behalf, and suspends itself. This work thread uses the client’s CPU
reservation, as well as reservations of other types of processors. In this way, the resources used
by the SSP to service each request are charged to the requesting client. The SSP structure de-
scribed in the next section is an extension, and we will provide more detail on this structure
when we describe the extension.

To explain the use of the immediate reservation type, we consider the example given by
[RKMO]: A stream of packets from the network is stored on the disk. The application clearly
needs both network bandwidth and disk bandwidth; hence, it may have reservations for both
types of processors. Moreover, CPU time is also needed for processing incoming packets
and writing them to disk. If the application’s CPU reservation were used to do this work, the

538 Chapter 12 Operating Systems

receive buffer might not be drained sufficiently fast to prevent overflow, since the application’s
CPU reservation may have a low priority and large relative deadline. The alternative proposed
by Rajkumar, et al. is to have a separate (immediate) CPU reservation for processing incoming
packets and writing the packets to disk and give the reservation the highest priority to ensure
its immediate execution. However, immediate reservation introduces priority inversion. It is
the same as executing a scheduled interrupt service routine immediately rather than properly
prioritizing it. The execution times of threads using immediate reservations must be kept very
small.

To conclude this section, we note that the above example illustrates an end-to-end task.
Its subtasks execute on the network, on the CPU, and the disk. Providing guaranteed resource
reservation for each processor type is a way to ensure that each subtask has a bounded re-
sponse time and the response time of the end-to-end task is bounded by the sum of the maxi-
mum response times of its subtasks.

*12.5 OPEN SYSTEM ARCHITECTURE

For most of this book, we have assumed that all the hard real-time applications running on
the same platform form a monolithic system. Their tasks are scheduled together according to
the same algorithm. When we want to determine whether any application can meet its timing
requirements, we carry out a global schedulability analysis based on the parameters for each
combination of tasks from all applications that may run together. In essence, the system is
closed, prohibiting the admission of real-time applications whose timing characteristics are
not completely known.

12.5.1 Objectives and Alternatives

Ideally, a real-time operating system should create an open environment. Here, by an open
environment, we mean specifically one in which the following development and configuration
processes are feasible.

1. Independent Design Choice: The developer of a real-time application that is to run in
an open environment can use a scheduling discipline best suited to the application to
schedule the threads in the application and control their contention for resources used
only by the application.

2. Independent Validation: To determine the schedulability of an application, its developer
can assume that the application runs alone on a virtual processor that is the same as the
target processor but has a speed that is only a fraction 0 < s < 1 of the speed of
the target processor. In other words, if the maximum execution time of a thread is e on
the target processor, then the execution time used in the schedulability analysis is e/s.
The minimum speed at which the application is schedulable is the required capacity of
the application.21

21We note that the notion of the required capacity s here is essentially the same as that in the processor reserve
model. As we will see shortly, it is not necessary for an application in the open system to specify the period p in real
time over which ps units of processor time are to be allocated to the application. Instead, the application informs the
operating system the shortest relative deadline of all of its threads.

Section 12.5 Open System Architecture 539

3. Admission and Timing Guarantee: The open system always admits nonreal-time appli-
cations. Each real-time application starts in the nonreal-time mode. After initialization, a
real-time application requests to execute in the real-time mode by sending an admission
request to the operating system. In this request, the application informs the operating
system of its required capacity, plus a few overall timing parameters of the applica-
tion. (In the open environment described below, the parameters are the shortest relative
deadline, the maximum execution time of all nonpreemptable sections, the presence or
absence of sporadic threads and, if its periodic tasks have release-time jitters, an upper
bound on release-time jitters.) The operating system subjects the requesting application
to a simple but accurate acceptance test. If the application passes the test, the operat-
ing system switches the application to run in real-time mode. Once in real-time mode,
the operating system guarantees the schedulability of the application, regardless of the
behavior of the other applications in the system.

In short, independently developed and validated hard real-time applications can be configured
at run time to run together with soft real-time and nonreal-time applications.

We recall that the fixed-time partitioning scheme discussed in Section 6.8.7 is a
way to achieve the above goal and has been used to allow safety-critical applications
to run together with nonsafety-critical applications. According to that scheme, we parti-
tion time into slots and confine the execution of each application in the time slots allo-
cated to the application. We saw in Section 6.8.7 that if applications do not share any
global resource (i.e., resources shared by tasks in different applications) and the time
slots are assigned to applications on the TDM (Time-Division Multiplexing) basis, we
can determine the schedulability of each application independently of other applications.
The number of slots per round an application requires to be schedulable is then its re-
quired capacity. An application can be admitted into the system whenever the system
has enough spare time slots per round to meet the required capacity of the application.
The key parameter of the fixed-time partitioning scheme is the length of the time slots.
Obviously, this length should be smaller than the shortest relative deadline of all appli-
cations. The shorter the time slots, the closer the system emulates a slower virtual pro-
cessor for each application, but the higher the context-switch overhead. Hence, using the
fixed-time partitioning scheme, we cannot accommodate stringent response time require-
ments without paying high overhead. Modern operating systems typically provide priority-
driven scheduling. Some kind of middleware is needed to put the time-driven scheme on
them.

The remainder of this section describes a uniprocessor open system architecture that
uses the two-level priority-driven scheme described in Section 7.9. That scheme emulates
infinitesmally fine-grain time slicing (often called fluid-flow processing sharing) and can ac-
commodate stringent response time requirements. Deng, et al. [DLZS] implemented a proto-
type open system based on the architecture by extending the Windows NT operating systems.
The prototype demonstrates that the architecture can easily be incorporated into any modern
operating system to make the operating system open for real-time applications and still remain
backward compatible for existing nonreal-time applications. By using a two-level scheme in
a similar way to schedule messages to and from networks (e.g., Zhang, et al. [ZLDP] give a
scheme for scheduling periodic messages over Myrinet), the architecture can be extended into
a distributed one.

540 Chapter 12 Operating Systems

12.5.2 Two-Level Scheduler

According to the two-level priority-driven scheme described in Section 7.9, each real-time
application (denoted by Tk for some k ≥ 1) is executed by a bandwidth-preserving server Sk ,
which in essence is a constant utilization or total bandwidth server, and all the nonreal-time
applications are executed by a total bandwidth server S0. At the lower level, the OS scheduler
maintains the servers and schedules all the ready servers. (A server is ready when it has ready
threads to execute and budget to execute them.) At the higher level, the server scheduler of
each server Sk schedules the ready threads in the application(s) executed by the server.

Scheduling Hierarchy. At each scheduling decision time, the OS scheduler sched-
ules the server with the earliest deadline among all ready servers. When a server is scheduled,
it executes the thread chosen by its own server scheduler according to the scheduling algo-
rithm
k used by the application(s) executed by the server. The block diagram in Figure 12–10
depicts this scheduling hierarchy. To highlight the fact that the scheduling disciplines used by
the real-time applications may be different, the block diagram shows two different real-time
scheduling disciplines. Nonreal-time applications are scheduled according to a time-shared
scheduling discipline. The block diagram also suggests that we put all the schedulers in the

…

User
Kernel

Time Shared
Scheduler

RM-PCP
Scheduler

EDF-SBP
Scheduler Passive

Server

Non-Real-time
Applications

Real-Time
Application

Real-Time
Application

Communication
Server

CSTNT1

S0 S1 SN

Ready Queue

OS Scheduler
(EDF)

FIGURE 12–10 A two-level scheduler.

Section 12.5 Open System Architecture 541

kernel; thus, only one context switch occurs at each scheduling decision time, just as in a
one-level scheduling scheme.

An application can use any protocol to control access to its local resources. In this sec-
tion, by a local resource, we mean one that is used by only one application. A resource shared
by multiple applications is a global resource. In the open system, global resource contention
is resolved according to the Nonpreemptable Critical Section (NPS) protocol or the ceiling-
priority protocol. Consequently, a section of a thread may be nonpreemptable. In general, a
thread or a section of a thread may be nonpreemptable for reasons other than global resource
access control. There is no need for us to distinguish the reasons. Hereafter, we simply say
that some applications have nonpreemptable sections, lumping applications that use global
resources into this category.

Without loss of generality, we assume that the required capacity sk of every real-time
application Tk is less than 1. (Otherwise the application cannot share the processor with other
applications.) The maximum execution time of every thread in each real-time application
becomes known when the thread is released. One of the parameters a real-time application
declares to the operating system when it requests to execute in the real-time mode is the max-
imum execution time of the nonpreemptable sections of all its threads. After admitting the
application, the operating system never allows any thread in the application to be nonpre-
emptable for more than the declared amount of time. Similarly, the operating system ensures
that no nonreal-time thread is nonpreemptable for longer than a certain length of time. (This
length is a design parameter.) Consequently, at any time the maximum execution time of the
nonpreemptable sections of all threads in the system is known.

In Section 7.9, we called an application that is scheduled according to a preemptive,
priority-driven algorithm and contains threads whose release times are not fixed a nonpre-
dictable application. It is so called because the OS scheduler needs to know the next event
time of such an application at each server budget replenishment time but the server sched-
uler for the application cannot compute this time accurately. (At any time, the next event time
of an application is the occurrence time of the earliest of all events in the applications that
may cause a context switch.) Applications whose threads have fixed and known release times
and applications that are scheduled nonpreemptively are predictable. An application of the
former kind is predictable because its server scheduler can compute the next event time ac-
curately. Similarly, an application that is scheduled in the clock-driven manner is predictable.
A nonpreemptively scheduled application is predictable, even when it contains aperiodic and
sporadic threads, because this computation is not necessary.

Operations of the OS scheduler. Figure 12–11(a) describes the operations of the
OS scheduler and its interaction with the server schedulers. At initialization time, the OS
scheduler creates a total bandwidth server S0 to execute all the nonreal-time applications and
a server for each service provider. The size of S0 is ũ0, and the total size of the servers for
all system service providers is ũ p. The total size Ut = ũ0 + ũ p (< 1) of these servers is the
processor utilization that is no longer available to real-time applications.

Scheduling NonReal-Time Applications. Again, the server scheduler of S0 schedules
all the nonreal-time threads according to a time-sharing scheduling algorithm. We let x denote

542 Chapter 12 Operating Systems

Initialization

• Create a total bandwidth server S0 with size u0 < 1 for nonreal-time applications and a passive
server for each service provider in the system.

• Set Ut to the total size of S0 and all passive servers.

Acceptance test and admission of a new real-time application Tk :

• Upon request from the application, do the acceptance test as described in Figure 12–11(c).
• If Tk passes the acceptance test, create server Sk of size uk , following the rules described in Figure

12–11(c).

Maintenance of each server Sk: Replenish the budget and set the deadline of server Sk according to
Figure 12–11(b).

Interaction with server scheduler of each server Sk:

• When a thread in the application Tk becomes ready, invoke the server scheduler of Sk to insert the
thread in Sk’s ready queue.

• If Tk uses a preemptive scheduling algorithm, before replenishing the budget of Sk , invoke the
server scheduler of Sk to update the next event time tk of Tk .

• When a thread in Tk enters its nonpreemptable section, mark the server Sk nonpreemptable until
the thread exits the nonpreemptable section, and mark the server preemptable when the nonpre-
emptable section exceeds the declared maximum length.

• When a thread in Tk requests a global resource, grant the thread the resource and mark the server
Sk nonpreemptable until the thread releases the global resource.

Scheduling of all servers: Schedule all ready servers on the EDF basis, except when a server is marked
nonpreemptable; when a server is nonpreemptable, it has the highest priority among all servers.

Termination of a real-time application Tk :

• Destroy server Sk .
• Decrease Ut by uk .

(a) Operation of the OS scheduler
FIGURE 12–11 Acceptance test, admission, and server maintenance. (a) Operations of OS scheduler. (b) Server
maintenance rules. (c) Acceptance test and choice of server size.

the length of the time slices used by the time-sharing scheduler. The OS scheduler sets the
budget of S0 to x when the first nonreal-time thread is ready to execute (say at time 0) and sets
the deadline of the server at x/ũ0. Hereafter, at each time t when the budget of S0 is exhausted
and there are threads ready to be executed by S0, the OS scheduler sets the budget to x and
the corresponding deadline to either t + x/ũ0 or the current deadline of the server plus x/ũ0

whichever is later. Moreover, whenever a busy interval ends, the OS server gives the server x
units of budget and sets the server deadline at the current time plus x/ũ0.

As long as the server S0 is schedulable (meaning that its budget is always consumed
before the current deadline), the open system offers nonreal-time applications a virtual slower
processor with speed ũ0. As you will see later, the acceptance test of the open system is such
that S0 is always schedulable. Hereafter, we will keep in mind the existence of server S0 and

Section 12.5 Open System Architecture 543

processor utilization ũ0 committed to the server. Other than this, we will not be concerned
with nonreal-time applications any further.

Passive Server. The server created by the OS scheduler for each service provider is
a passive server. A passive server is a sporadic server. Its execution budget comes from two
sources. The first is the server’s processor time allocation; the server has a very small size.
(This is analogous to processor reservation of a system service provider.) The OS scheduler
treats the passive server as a total bandwidth server of its size and replenishes its budget
according to the rules described in Section 7.4.3. The only “aperiodic task” executed by the
server using this budget is the daemon thread of the service provider. The daemon thread
is created during initialization (or when a service provider is admitted into the system). It
is suspended immediately after it is created and wakes to run whenever the service provider
receives a request for service. When the daemon thread runs, it creates a work thread to service
the request and puts itself back to the suspended state again.

In addition, a passive server also gets execution budget from client applications of the
SSP executed by the server. When a client application requests a service, it passes to the
service provider its own budget and the associated deadline for consuming the budget.22 The
work thread created by the daemon to service the client’s request executes with this budget
and has this deadline. (Conceptually, we can think of the budget/deadline passed to the passive
server as a CPU reservation. This reservation is not replenished periodically, however; rather it
is under the control of the server scheduler of the client application.) We will return to provide
more details on how the scheduler of a passive server works.

Admission, Termination, and Scheduler Interactions. To request admission, that is,
to execute in the real-time mode, a new real-time application Tk provides in its request to
the OS scheduler the information needed by the scheduler to do an acceptance test. If the
application passes the test, the OS scheduler creates a server Sk of size ũk to execute the new
application. (The information the OS scheduler needs to do an acceptance test and the rules
used by the scheduler to do the test and select the server type and size are described below.)
Whenever a real-time application terminates, the OS scheduler destroys its server.

When a thread in a real-time application Tk becomes ready, the OS scheduler invokes
the server scheduler of the server Sk to insert the thread into the server’s ready queue. The
server scheduler orders the ready threads according to the scheduling algorithm
k of the
real-time application Tk .

12.5.3 Server Maintenance

Again, the OS scheduler maintains (i.e., replenishes its budget and sets its deadline) the server
Sk for each real-time application Tk with the help of the scheduler of Sk . Figure 12–11(b)
summarizes the rules the OS scheduler uses. In the figure, ũ denotes the size of the server
being maintained. For simplicity, we take as the time origin the time instant immediately after
the server is created; this is the instant when the application executed by the server begins to
execute in real-time mode.

22In the prototype in [DLZS], the budget and deadline are passed by the server scheduler of the client appli-
cation to the scheduler of the passive server. In this way, the number of context switches is kept small.

544 Chapter 12 Operating Systems

Inputs: Server size= ũ, scheduling quantum= q , start time of the application= 0.

• If the application is cyclically scheduled with frame size f ,

– server type: Constant utilization

– replenishment rule: At time 0, f , 2 f , . . ., set budget to ũ f and deadline to f , 2 f , 3 f , . . . ,
respectively.

• If the application is nonpreemptively scheduled:

– server type: Constant utilization.

– replenishment rule: The constant utilization server algorithm.
• If the application is unpredictable,

– server type: Total bandwidth server-like.

– replenishment rule:

∗ replenishment time t :

(1) when the ready queue is empty and a thread is released, or

(2) when the ready queue is nonempty,

(i) t is the current server deadline d , or

(ii) the budget is exhausted at t and the next event time is not the release time of
a thread with priority higher than the thread at the head of the server ready
queue.

∗ budget replenished: ũ(tn + q − max(t, d)), where tn is a lower bound to the next event
time and q is the scheduling quantum of the open system.

∗ server deadline: tn + q
• If the application is preemptively scheduled but predictable,

– server type: Total bandwidth server

– replenishment rule: Same as the rule for unpredictable applications except q is equal to 0 and
tn is the next event time.

(b) Server maintenance rules
FIGURE 12–11 (continued)

Predictable Applications. You recall that there are three types of predictable ap-
plications: cyclically scheduled applications, nonpreemptively scheduled applications, and
priority-driven, preemptively scheduled applications that have known next event times. The
server used to execute a cyclically scheduled application is a constant utilization server. For
the purpose of server maintenance, the workload presented to the server appears to be a single
thread. The thread is ready for execution at the beginning of each frame (i.e., at times 0, f ,
2 f , and so on). The execution time of this thread is ũ f . Hence, the OS scheduler replenishes
the server budget at the beginning of the frames. Each time, the OS scheduler gives the server
ũ f units of budget and sets the deadline of the server accordingly. When the application be-
comes idle, the OS reclaims the remaining budget. (This emulates the case where the virtual
slow processor idles during parts of some frames.)

Similarly, each nonpreemptively scheduled real-time application is executed by a con-
stant utilization server. The OS treats the application as a single aperiodic task and replenishes

Section 12.5 Open System Architecture 545

the budget of the server according to the rules given in Section 7.4.2. If the server is schedu-
lable, it emulates a slow processor of speed ũ in the following sense for both types of applica-
tions. If we compare the schedule of the application in the open system with its schedule on a
slow processor of speed ũ, (1) scheduling decisions are made at the same time and (2) every
thread completes at the same time or sooner in the open system.

Each preemptively scheduled application is executed by a server that is similar to a
total bandwidth server.23 The rules for maintaining the server of a predictable preemptive
application are motived by the example on priority inversion due to budget over replenishment
that was described in Section 7.9.2. Whenever the OS scheduler gets ready to replenish the
server budget, say at time t , it queries the server scheduler for the next event time t ′. It gives
the server ũ(t ′ − t) units of budget; the new deadline of the server is t ′. This way, if a new
thread with a higher priority is released at the next event time t ′, the OS scheduler will be able
to give a new chunk of budget to the server for the execution of the new thread.

Unpredictable Applications. When periodic tasks in a preemptively scheduled ap-
plication have release-time jitters or sporadic tasks, it is impossible for the server scheduler to
compute an accurate estimate of the next event time. In the extreme when nothing is known
about the release times of some threads, the OS scheduler simply maintains the server in the
same way as the server S0 for nonreal-time applications. In other words, it replenishes the
server budget periodically, q units of time apart, giving the server ũq units of budget each
time. We call this design parameter of the open system the scheduling quantum. We will
discuss shortly the effect of the scheduling quantum on scheduling overhead and processor
utilization.

When it is possible for the server scheduler to provide the OS scheduler with a lower
bound t̂ to the next event time, the OS scheduler sets the server deadline at t̂ + q and sets the
server budget to ũ(t̂ + q − t) where t is the current time. Since the actual next event time t ′
(i.e., the next context switch) is never more than q time units earlier than the current server
deadline, should a higher-priority thread be released at t ′, it is delayed by at most q units of
time. In other words, the duration of a priority inversion due to overreplenishment of server
budget is never more than q units of time.

12.5.4 Sufficient Schedulability Condition and Acceptance Test

Again, the OS scheduler subjects the application to an acceptance test whenever an application
Tk requests to execute in the real-time mode. The required capacity of the application is sk ,
and in the open system, it is scheduled by its server scheduler according to algorithm
k .
Deng, et al. [DLZS] showed that the following conditions together constitute a sufficient
condition for the application Tk to be schedulable when executed in the open system according
to algorithm
k .

23Unlike a total bandwidth server, the server of a preemptively scheduled application is not always work
conserving. When the next event is the release of a thread with a higher priority than the thread currently at the
head of the server queue, the OS server waits until the current server deadline to replenish the server budget, even
if the executing thread completes before the deadline. As a consequence, every thread may be blocked once by a
nonpreemptable section in another application. In contrast, in a one-level priority-driven system, a thread can be
blocked only if it is released while some lower-priority thread is in a nonpreemptable section.

546 Chapter 12 Operating Systems

1. The size ũk of the server Sk used to execute Tk is equal to sk , if Tk is predictable, or ũk =
skδk,min/(δk,min − q) if Tk is unpredictable, where δk,min is the shortest relative deadline
of all threads in Tk whose release times or resource acquisition times are unknown.

2. The total size of all servers in the open system is no more than 1 − maxall j (Bj/Dmin, j)

where the max function is over all real-time applications T j ’s in the system, Bj is the
maximum execution time of nonpreemptable sections of all applications other than T j ,
and Dmin, j is the shortest relative deadline of all threads in T j .

3. In the interval (t, d − q) from any budget replenishment time t of Sk to q time units
before the corresponding server deadline d, where q ≥ 0 and d − q > t , there would
be no context switch among the threads in Tk if Tk were to execute alone on a slow
processor of speed sk .

Figure 12–11(c) summarizes the acceptance test that the OS scheduler subjects each
application to and the choice of server size that the scheduler makes when admitting a new
real-time application. The rationale behind them are conditions 1 and 2 stated above: The
OS scheduler makes sure that these conditions are met. Similarly, the replenishment rules in
Figure 12–11(b) are such that condition 3 is satisfied for all types of real-time applications.

Information provided by requesting application T:

• required capacity s and scheduling algorithm
;
• maximum execution time B of all nonpreemptable sections;
• existence of aperiodic/sporadic tasks, if any;
• the shortest relative deadline δ of all threads with release-time jitters;
• the shortest relative deadline Dmin if the application is priority driven or the shortest length of

time between consecutive timer events if the application is time driven.

Information maintained by the OS scheduler:

• the total size Ut of all servers in the system, and
• the above parameters provided by existing real-time application.

Step 1: Choose the size u of the server for the new application as follows:

• u = s if T is predictable, or
• u = sδ/(δ − q) if T is unpredictable.

Step 2: Acceptance test and admission:

• If Ut + u + maxall j (Bj/Dmin, j) > 1, reject T;
• Else, admit T:

– increase Ut by u,

– create a server S of the chosen size for T, and

– set budget and deadline of S to 0.

(c) Acceptance test and choice of server size
FIGURE 12–11 (continued)

Section 12.5 Open System Architecture 547

12.5.5 Scheduling Overhead and Processor Utilization

Deng et al. [DLZS] simulated systems with different workloads for the purpose of determining
the scheduling overhead of the two-level priority-driven scheme. Specifically, they compare
the numbers of context switches and queue insertion/deletion operations incurred in systems
using the two-level scheme with the corresponding numbers in a closed system using a one-
level priority-driven scheduler.

Their simulation results show that scheduling overhead of the open system depends
critically on the scheduling quantum. This design parameter can be set to 0 when all real-
time applications are predictable. In this case, the scheduling overhead of the open system
is essentially the same as that of a closed system. (The number of context switches are the
same. There are more queues to maintain but all the queues are shorter.) When some real-
time applications are nonpredictable, we must choose a nonzero scheduling quantum. The
scheduling overhead of the open system is significantly higher than that of the closed system
only when the scheduling quantum is small.

We note that the smaller the minimum relative deadline, the smaller the scheduling
quantum must be. Even when the minimum relative deadlines of all applications are large, we
may still want to use a small scheduling quantum. The reason is that the size of the server for
each nonpredictable application required to meet the schedulability condition 1 grows with
the scheduling quantum. A larger server than the required capacity of the applications means
a lower processor utilization for real-time applications. In short, in order to accommodate
nonpredictable applications with large release-times jitters and small relative deadlines, some
processor bandwidth (on the order of 30 percent) is not available for real-time applications.
This bandwidth is either wasted as scheduling overhead, when the scheduling quantum is
small, or set aside for the sake of compensating blocking time in nonpredictable applications,
when the scheduling quantum is large. The latter is better because the extra processor band-
width over the required capacity of the real-time application will be used by server S0 for
nonreal-time applications.

12.5.6 Service Provider Structure and Real-Time API Functions

In the open system, services such as network and file access are implemented as special-
purpose user-level server applications. As stated earlier, the OS scheduler creates a passive
server to execute each service provider. Each SSP has a daemon thread, which is created
when the service provider is admitted into the system. Its responsibilities are (1) to create
work threads in the address space of the service provider in response to requests for service
from clients, and (2) to process incoming data to identify the receiving thread and to notify
that thread. The daemon thread is suspended immediately after it is created. When the daemon
thread wakes up to run, the passive server executes it using the server’s own budget.

Scheduling of Work Threads When a client application Tk requests service from
an SSP, it sends a budget and a deadline for consuming the budget along with its request to
the service provider. The parameters of the work thread created to service the client include
its budget and deadline, which are equal to the respective values given by the request. The
scheduler of the passive server schedules its daemon thread and all the work threads on the
EDF basis, and the OS scheduler schedules the passive server according to the deadline of the
thread at the head of the server’s ready queue.

548 Chapter 12 Operating Systems

The passive server also has a suspend queue. Whenever the budget of the passive server
is exhausted but the executing thread remains incomplete, it is removed from the server’s
ready queue and inserted in the suspend queue. When the requesting application sends more
budget, the scheduler of the passive server reactivates the work thread, setting its budget and
deadline accordingly and moving it back to the ready queue. When the thread completes, any
unused budget is returned to the requesting application.

API Functions for Invocation of System Services. A real-time client application
requests service by sending the service provider one of two Real-Time Application Program-
ming Interface (RTAPI) calls: send data() and recv data(). The former is called when a client
application requests the service provider to accepts its data (e.g., to send a message or write
a file.) When called at time t by an application Tk , the function send data() first invokes the
server scheduler of server Sk to transfer its budget and deadline to the passive server of the ser-
vice provider. The call wakes up the daemon thread of the service provider. When this thread
executes, it creates a work thread, as described in the previous paragraphs. In the meantime,
the calling thread within the client application is blocked until the work thread completes.

A client application calls recv data() to request a service provider to process incoming
data on its behalf. Similar to send data(), recv data() also causes a transfer of budget to the
passive server of the system service provider. If the data to be received are not available at the
time, the call effectively freezes the client application, since the server of the application has
no budget to execute and the service provider cannot execute on behalf of the application as the
data are not available. To circumvent this problem, the client application first calls wait data()
to wait for the data. If the data are available, wait data() returns immediately. Otherwise, the
thread calling wait data() is blocked. Unlike send data() and recv data(), wait data() does
not transfer budget to service provider. Hence, when the calling thread is blocked, the server
of the application can still execute other threads in the client application. When incoming data
arrive, the daemon thread processes the data just to identify the receiver of the incoming data
and, after the receiver is identified, wakes up the thread that called wait data() if the thread
exists, and wait data() returns. The client application then calls recv data() to transfer to the
service provider the budget needed by the SSP process and receive the incoming data.

In effect, a call of the send data() or recv data() function causes a transfer of budget
from the server of the client application to the passive server of service provider. Because this
transfer does not violate any of the schedulability conditions stated above, the client remains
schedulable. The schedulability of other applications is not affected by the execution of the
service provider.

Other Real-Time API Functions. In addition to the real-time API functions for com-
munication between real-time applications and system service providers, the open system also
needs to provide API functions for the creation, admission, and termination of real-time appli-
cations. As an example, the prototype system described in [DLZS] provides a function called
register application(). A real-time application calls this function to specify for the operat-
ing system its required capacity, as well as its choice of real-time scheduling algorithm and
resource-access protocol among the ones supported by the system.

The prototype supports periodic and aperiodic tasks. A real-time application calls a cre-
ate periodic task function to create a periodic task of the specified phase, period, and relative

Section 12.6 Capabilities of Commercial Real-Time Operating Systems 549

deadline, as well as informing the operating system of the resources the periodic task will
require and the maximum length of time the task will hold these resources. Similarly, it calls
a create aperiodic task function to create an aperiodic task that will execute in response to a
specified list of events. After creating and initializing all its tasks, an application then calls
start application() to request admission into the open system.

The prototype also provides API functions for use by SSPs in their interaction with
client applications. Examples of these functions are add thread budget(), which replenishes
the budget of the specified thread in response to the add budget() request.

12.6 CAPABILITIES OF COMMERCIAL REAL-TIME OPERATING SYSTEMS

This section describes several real-time operating systems that run on common processors and
have sizable user bases. They are LynxOS [Bunn], pSOSystem [Moto], QNX [QNX], VRTX
[Ment] and VxWorks [Wind]. In many respects, these operating systems are similar. Below
is a summary of their commonalities; with few exceptions, you can replace the noun “the
operating system” in the summary by the name of any of them.

• Conformance to Standards: The operating system is compliant or partially compliant
to the Real-Time POSIX API standard, so you have preemptive fixed-priority schedul-
ing, standard synchronization primitives, and so on, but the operating system may sup-
port only threads or processes (i.e., not both) and may implement only a subset of
the standard functions. The operating system also has its own set of API functions,
which may differ significantly from the corresponding POSIX functions and, in the
cases where they are similar, may have more features. Some of the operating systems
also provide AT&T System V and BSD system call interfaces (e.g., LynxOS) and Wil-
lows Win32 Library (e.g., QNX). (You can find information on Willows Library from
http://www.willows.com.)

• Modularity and Scalability: The kernel is small, and the operating system configurable.
In particular, the operating system can be scaled down to fit with the application in ROM
in small embedded systems. By adding optional components to the kernel, the operating
system can be configured to provide I/O, file, and networking services.

• Speed and Efficiency: Most of these operating systems are microkernel systems. Unlike
microkernel systems of old, which usually have higher run-time overhead than mono-
lithic operating systems, these microkernel operating systems have low overhead. In
some, sending a message to a system service provider incurs no context switch. Impor-
tant timing figures such as context-switch time, interrupt latency, semaphore get/release
latency, and so on, are typically small (i.e., one to a few microseconds).

• System Calls: Nonpreemptable portions of kernel functions necessary for mutual exclu-
sion are highly optimized and made as short and deterministic as possible.

• Split Interrupt Handling: Similarly, the nonpreemptable portion of interrupt handling
and the execution times of immediate interrupt handling routines are kept small. The
bulk of the work done to handle each interrupt is scheduled and executed at an appro-
priate priority.

550 Chapter 12 Operating Systems

• Scheduling: All real-time operating systems offer at least 32 priority levels, which is the
minimum number required to be Real-Time POSIX compliant; most offer 128 or 256
(or 255). They all offer the choice between FIFO or round-robin policies for scheduling
equal-priority threads. They allow you to change thread priorities at run time, but none
provides adequate support for EDF scheduling and good hook for user-level bandwidth-
preserving servers and slack stealers.

• Priority Inversion Control: The operating system provides priority inheritance but may
allow you to disable it to save the overhead of this mechanism if you choose to use a
resource access-control scheme that does not need priority inheritance. The system may
also provide ceiling-priority protocol.

• Clock and Timer Resolution: The operating system may provide a nominal timer resolu-
tion down to nanoseconds. However, even on the fastest processor today, the operating
system takes about a microsecond to process a timer interrupt, so you should not ex-
pect to be able to release a thread periodically with a period down to microseconds or
precision and granularity in time down to tens and hundreds of nanoseconds.

• Memory Management: The operating system may provide virtual-to-physical address
mapping but does not do paging. The operating system may not offer memory protec-
tion. Even when it does, it provides the user with the choice among multiple levels of
memory protection, ranging from no protection to private virtual memory.

• Networking: The operating system can be configured to support TCP/IP, streams, and
so on.

The remainder of the section highlights some distinguishing features of the operating
systems listed above, especially those features not mentioned in the above summary. The
fact that we say that an operating system has a feature but do not mention the same fea-
ture in our discussion on another operating system does not imply that the other operating
system does not have the same or similar features! The section refrains from giving you a
table of features and performance data on the operating systems described here. Such infor-
mation will most likely to be out-of-date by the time this book reaches you. The best source
of up-to-date information on any operating system is the home page provided by the ven-
dor. There you are also likely to find a good tutorial on basic operating system primitives in
general.

12.6.1 LynxOS

LynxOS 3.0 moves from the monolithic architecture of earlier versions to a microkernel de-
sign. The microkernel is 28 kilobytes in size and provides the essential services in scheduling,
interrupt dispatch, and synchronization. Other services are provided by kernel lightweight ser-
vice modules, called Kernel Plug-Ins (KPIs). By adding KPIs to the microkernel, the system
can be configured to support I/O and file systems, TCP/IP, streams, sockets, and so on, and
functions as a multipurpose UNIX operating system as earlier versions do.

Unlike single-threaded system service providers in traditional microkernel systems,
KPIs are multithreaded. Each KPI can create as many threads to execute its routines as needed.
LynxOS says that there is no context switch when sending a message (e.g., RFS) to a KPI,
and inter-KPI communication takes only a few instructions [Bunn].

Section 12.6 Capabilities of Commercial Real-Time Operating Systems 551

LynxOS can be configured as a self-hosted system. In such a system, embedded appli-
cations are developed on the same system on which they are to be deployed and run.24 This
means that the operating system must also support tools such as compilers, debuggers, and
performance profilers and allow them to run on the same platform as embedded applications.
Protecting the operating system and critical applications from these possibly untrustworthy
applications is essential. Moreover, their memory demands are large. For this reason, LynxOS
not only provides memory protection through hardware Memory Management Units (MMUs)
but also offers optional demand paging; we have already described this feature in Section
12.3.3.

In LynxOS, application threads (and processes) make I/O requests to the I/O system
via system calls such as open(), read(), write(), select(), and close() that resemble the
corresponding UNIX system calls. Each I/O request is sent directly by the kernel to a device
driver for the respective I/O device. LynxOS device drivers follow the split interrupt handling
strategy. Each driver contains an interrupt handler and a kernel thread. The former carries out
the first step of interrupt handling at an interrupt request priority. The latter is a thread that
shares the same address space with the kernel but is separate from the kernel. If the interrupt
handler does not complete the processing of an interrupt, it sets an asynchronous system
trap to interrupt the kernel. When the kernel can respond to the (software) interrupt (i.e.,
when the kernel is in a preemptable state), it schedules an instance of the kernel thread at the
priority of the thread which opened the interrupting device. When the kernel thread executes,
it continues interrupt handling and reenables the interrupt when it completes. LynxOS calls
this mechanism priority tracking. (LynxOS holds a patent for this scheme.) Section 12.1.1
gave more details.

12.6.2 pSOSystem

Again, pSOSystem is an object-oriented operating system. Like the other operating systems
described in this section, it is modular. pSOS+ is a preemptive, multitasking kernel that runs
on a single microprocessor, while pSOS+m is a distributed multiprocessor kernel. pSOS+m
has the same API functions as pSOS+, as well as functions for interprocessor communication
and synchronization. The most recent release offers a POSIX real-time extension-compliant
layer. Additional optional components provide a TCP/IP protocol stack and target and host-
based debugging tools.

The classes of pSOSystem objects include tasks, memory regions and partitions, mes-
sage queues, and semaphores. Each object has a node of residence, which is the processor on
which the system call that created the object was made. An object may be global or local. A
global object (a task or a resource) can be accessed from any processor in the system, while a
local object can be accessed only by tasks on its local processor. A remote node with respect
to any object is a processor other than its node of residence. You may have notice that this
is how the MPCP model views a static multiprocessor system. In Section 9.1.3, we called
the node of residence of a task (object) its local processor and the node of a residence of a
resource (e.g., a semaphore) its synchronization processor.

24The opposite is a cross-development environment, where the host environment is separated from the target
embedded systems. Embedded applications are written and compiled in the host environment and then moved to the
target system to run and to be debugged and tested.

552 Chapter 12 Operating Systems

The basic unit of execution is a task, which has its own virtual environment.25 pSOS+
provides each task with the choice of either preemptive priority-driven or time-driven schedul-
ing. The application developer can also choose to run user tasks in either user or supervisory
mode. pSOSystem 2.5 offers, in addition to priority inheritance, priority-ceiling protocol.

In Section 12.1.2, we said that in most modern operating systems, the processor jumps
to the kernel when an interrupt occurs. pSOSystem is an exception. Device drivers are outside
the kernel and can be loaded and removed at run time. When an interrupt occurs, the processor
jumps directly to the interrupt service routine pointed to by the vector table. The intention is
not only to gain some speed, but also to give the application developer complete control over
interrupt handling.

pSOSystem allocates to tasks memory regions. A memory region is a physically con-
tiguous block of memory. Like all objects, it may be local (i.e., strictly in local memory) or
global (i.e., in a systemwide accessible part of the memory). The operating system creates a
memory region in response to a call from an application. A memory region may be divided
into either fixed-size buffers or variable-size segments.

12.6.3 QNX/Neutrino

QNX is one of the few multiprocessor operating systems suitable for real-time applications
that requires high-end, networked SMP machines with gigabytes of physical memory. Its mi-
crokernel provides essential thread and real-time services. Other operating system services
are provided by optional components called resource managers. For example, in the recent
version, called Neutrino, the microkernel supports only threads. A process manager is needed
to support processes that are memory-protected from each other, and the process manager is
optional. Because optional components can be excluded at run time, the operating system can
be scaled down to a small size. (The QNX 4.x microkernel is 12 kilobytes in size.)

QNX is a message-passing operating system; messages are the basic means of interpro-
cess communication among all threads. Section 12.3.1 already talked about its message-based
priority inheritance feature. This is the basic mechanism for priority tracking: Messages are
delivered in priority order and the service provider executes at the priority of the highest pri-
ority clients waiting for service.

QNX implements POSIX message queues outside the kernel but implements QNX’s
message passing within the kernel. QNX messages are sent and received over channels and
connections. When a service provider thread wants to receive messages, it first creates a chan-
nel. The channel is named within the service provider by a small integer identifier. To request
service from a service provider, a client thread first attaches to the service provider’s chan-
nel. This attachment is called a connection to the channel. Within the client, this connection
is mapped directly to a file descriptor. The client can then send its RFS messages over the
connection, in other words, directly to the file descriptor.

25The most well-known application of pSoSystem is Iridium, the system of communication satellites. The
version of pSOSystem used in Iridium takes 400 microseconds to context switch among tasks, while the application
is required to run 125 thread repetitions in each 90-millisecond L-Band interval. A two-level scheme is used to keep
the overhead of context switches among threads low. The operating system schedules a small number (two or three)
of scheduler tasks. When a scheduler runs, it polls threads.

Section 12.6 Capabilities of Commercial Real-Time Operating Systems 553

While POSIX messages are queued and the senders are not blocked, QNX’s message
send and receive functions are blocking. A thread that calls the QNX send function Ms-
gSendv() is blocked until the receiving thread executes a receive MsgReceivev(), processes
the message, and then executes a MsgReply(). Similarly, a thread that executes a MsgRe-
ceive() is blocked if there is no pending message waiting on the channel and becomes un-
blocked when another thread executes a MsgSend(). The blocking and synchronous nature of
message passing eliminates the need of data queueing and makes a separate call by the client
to wait for response unnecessary. Each message is copied directly to the receiving thread’s
address space without intermediate buffering. Hence, the speed of message passing is limited
only by the hardware speed. You recall that the thread used to process a message inherits the
priority of the sender. Therefore, for the purpose of schedulability analysis, we can treat the
client and the server as if they were a single thread with their combined execution time.

Neutrino also supports fixed-size, nonblocking messages. These messages are called
pulses. QNX’s own event notification mechanism, as well as some of the POSIX and real-
time signals, use pulses. Like QNX messages, pulses are received over channels.

In addition to thread-level synchronization primitives, Neutrino provides atomic opera-
tions for adding and subtracting a value, setting and clearing a bit, and complementing a bit.
Using these operations, we can minimize the need for disabling interrupts and preemptions
for the purpose of ensuring atomicity.

12.6.4 VRTX

VRTX has two multitasking kernels: VRTXsa and VRTXmc. VRTXsa is designed for perfor-
mance. It has a POSIX-compliant library, provides priority inheritance, and supports multi-
processing. Its system calls are deterministic and preemptable. In particular, VRTXsa 5.0 is
compliant to POSIX real-time extensions. It is for medium and large real-time applications.
VRTXmc, on the other hand, is optimized for power consumption and ROM and RAM sizes.
It provides only basic functions and is intended for applications such as cellular phones and
other small handheld devices. For such applications, the kernel typically requires only 4-8
kilobytes of ROM and 1 kilobyte of RAM.

Most noteworthy about VRTX is that it is the first commercial real-time operating sys-
tem certified by the Federal Aviation Agency (FAA) for mission- and life-critical systems,
such as avionics. (VRTX is compliant to the FAA RTCS/DO-178B level A standard. This is
a standard for software on board aircraft, and level A is for software whose failure would
cause or contribute to a catastrophic failure of the aircraft. The process of compliance certifi-
cation involves 100 percent code coverage in testing.) VRTX is used for the avionics on board
Boeing MD-11 aircraft.

Rather than providing users with a variety of optional components, VRTX provides
hooks for extensibility. For example, the TCB of a new task created by TCREATE() is ex-
tended to include application-specific information. An application can also add system calls.

Like the other operating systems described here, VRTX also has its own API functions.
An example is mailboxes, which can be used to transfer one long word of data at a time (as
opposed to queues for transferring multiple long words of data).

VRTX allocates memory in fixed-size blocks. For efficiency, free pool may be divided
into noncontiguous partitions with different size blocks.

554 Chapter 12 Operating Systems

12.6.5 VxWorks

A man on the street may not know VxWorks by name but most likely knows one of its appli-
cations, as it was the operating system used on Mars Pathfinder, which NASA sent to Mars
in 1997. You recall that after Pathfinder landed on Mars and started to respond to ground
commands and take science and engineering data, its computer repeatedly reset itself. This
frequent reset made worldwide news daily. Fortunately, JPL and VxWorks were able to pin-
point the problem. This was done with the aid of a trace generation and logging tool and
extensive instrumentation of major services (such as pipe, message queues, and interrupt han-
dling), which were used during debugging and testing and were left in the system. They fixed
the problem on the ground and thus saved the day for Pathfinder. According to Glenn Reeves,
the Mars Pathfinder flight software cognizant engineer [Reev],26 the cause was the classical
uncontrolled priority inversion problem. Although VxWorks provides priority inheritance, the
mechanism was disabled. The prolonged blocking experienced by a high-priority task caused
it to miss its deadline, and the computer was reset as a consequence. The fix was, of course,
to enable priority inheritance.

Before moving on, we want make a couple of parenthetical remarks on lessons learned
from this incident. First, we cannot rely on testing to determine whether tasks can complete in
time and how often a task may be late. (The computer reset behavior was observed only once
during the months of testing on the ground. It was deemed infrequent enough to not warrant
concern before Pathfinder left the ground.) Second, it is good practice to leave the instrumen-
tation code added for debugging and testing purposes in the deployed system. System and
software engineering experts can give you numerous reasons for doing so, not just so that you
can use it to debug the system after it is deployed.

Back to VxWorks, the Pathfinder incident highlights the fact that VxWorks allows us to
disable major function such as memory protection and priority inheritance. You can specify
what options are to be enabled and what options are to be disabled via global configuration
parameters. In the case of Pathfinder, the global configuration variable is the one that specifies
whether priority inheritance is enabled for mutual exclusion semaphores. Once this option is
set, priority inheritance is enabled or disabled as specified for all mutual exclusion semaphores
created afterwards.

26Just in case the Web page cited here is no longer available when you look for it, here is a brief description
of the problem. Pathfinder used a single computer to control both the cruise and lander parts. The CPU connected via
a VME bus with interfaces to the radio, the camera, and a MIL-STD-1553 bus. The 1553 bus in turn connected to the
flight controller and monitoring devices, as well as an instrument, called ASI/MET, for meteorological science. The
tasks of interest were the bus scheduler, the data distributor and the ASI/MET task.

The bus scheduler was the highest priority task in the system. It executed periodically to set up transactions
on the 1553 bus. During each period, data acquisition and compression took place and the ASI/MET task executed.
In the midst of each period, the data distributor was awakened to distribute data. Its deadline was the beginning of the
next scheduling period when the scheduling task began to execute; the scheduling task reset the computer whenever
it found the data distributor incomplete at the time.

The data distributor was the high-priority task involved in uncontrolled priority-inversion, and the ASI/MET
was the low-priority task, while data acquisition and compression tasks has medium priorities. Specifically, the data
distributor and ASI/MET shared a mutual exclusion semaphore, which is a binary semaphore that can have priority
inheritance. However, the priority inheritance option was disabled at the time, so while the data distributor was
blocked by ASI/MET, the medium priority tasks could execute, prolong the duration of priority inversion, and prevent
the data distributor from completing on time. This was what happened in Pathfinder on Mars.

Section 12.6 Capabilities of Commercial Real-Time Operating Systems 555

VxWorks is a monolithic system. It is not a UNIX system but provides most inter-
face functions defined by POSIX real-time extensions. As we mentioned earlier, an operating
system’s own API function may have more features than the corresponding POSIX func-
tion. An example is the timeout feature of Wind semaphores, the operating system’s own
semaphores. A parameter of the take-semaphore semTake() function is the amount time the
calling task is willing to wait for the semaphore. The value of this parameter can be NO WAIT,
WAIT FOREVER, or a positive timeout value. Indeed, many VxWorks API functions (e.g.,
message queues) have the timeout feature. Another feature of Wind semaphores is deletion
safety, that is, the prevention of a task from being deleted while it is in a critical section. A
task can prevent itself from being accidentally deleted while it is holding a semaphore by
specifying SEM DELETE SAFE in its take-semaphore call.

A VxWorks feature that was mentioned earlier is preemption lock. The operating system
also provides similar functions [i.e., intLock() and intUnlock()] which a task can call to
enable and disable interrupts. These functions makes the user-level implementation of the
NPCS protocol easy.

While VxWorks is not a multiprocessor operating system, it provides shared-memory
multiprocessing support as an option. Specifically, VxMP provides three types of shared-
memory objects: shared binary and counting semaphores, shared message queues, and shared-
memory partitions. They can be used for synchronization and communication among tasks in
static multiprocessor systems.

VxWorks virtual memory exemplifies the kind of memory management options typ-
ically found in modern real-time operating systems. In a system with an MMU, the basic
memory management provides virtual-to-physical address mapping. It allows you add new
mappings and make portions of the memory noncacheable. (An example where this capabil-
ity is needed is when we add memory boards to enlarge the shared memory for interprocessor
communication. We want the portions of memory that are accessed by multiple processors
and DMA devices to be noncacheable, that is, disallow any CPU to copy these portions into
its data cache. This way, you do not have to maintain cache consistency manually or turn off
caching globally.) Full-level memory management, including protection of text segments and
the exception vector table and interfaces to the MMU, is provided by VxVMI, which is an op-
tional component. By default, all tasks use a common context at system initiation time. A task
can create a private virtual memory for the sake of protection by calling VxVMI functions to
create a new virtual memory and update the address translation table. Thus an application can
control access to its data or code as needed.

Finally, while LynxOS is a self-host system, the Tornado environment for VxWorks
is a cross-development environment. Tornado provides an extensive set of development and
performance monitoring and analysis tools. These memory-demanding tools reside on a host
machine, separate from embedded applications, and therefore do not create the necessity of
memory protection and paging/swapping as in LynxOS. However, host resident tools cannot
access symbol tables on the target machine. For the purpose of creating a system that can be
dynamically configured at run time, you must use the target-resident shell for development
and you can configure module loader and unloader, symbol tables, and some debugging tools
into VxWorks.

556 Chapter 12 Operating Systems

12.7 PREDICTABILITY OF GENERAL-PURPOSE OPERATING SYSTEMS

Sometimes, we may choose to run real-time applications on a general-purpose operating sys-
tem despite its shortcomings. Reasons for this choice include the timing requirements of our
applications are not hard, the general-purpose operating system costs less, there is a large
user base, and so on. This section assumes that the choice of using a general-purpose operat-
ing system has already been made. As application developers, we must be fully aware of the
sources of unpredictability. By adopting an application software architecture that minimizes
the use of problematic features of the operating system and a scheduling and resource access-
control strategy that keeps the effect of priority inversion in check, we may achieve sufficient
predictability despite the operating system.

Rather than talking about general-purpose operating systems in general, we focus here
on the two most widely used ones, Windows NT [Solo, Hart] and Linux [CaDM]. Windows
NT (NT for short) is the most popular, and there is a growing trend to use it for real-time
computing. This section discusses in turn each of the shortcomings of NT from a real-time
computing point of view and describes approaches to partially overcome the shortcomings.
Even more than NT, Linux is unsuitable for real-time applications. However, unlike NT, which
we must live with as it is, we are free to modify Linux. This section describes existing real-
time extensions of Linux for hard and soft real-time applications.

12.7.1 Windows NT Operating System

Windows NT provides many features (e.g., threads, priority interrupt, and events) that are
suitable for real-time applications. Its actual timer and clock resolutions are sufficiently fine
for all but the most time-stringent applications. However, its large memory footprint rules out
its use whenever size is a consideration. Even when its size is not a problem, its weak support
for real-time scheduling and resource-access control and unpredictable interrupt handling and
interprocess communication mechanisms can be problematic. It is essential for time-critical
applications to avoid system services that can introduce unpredictable and prolonged block-
ing. By keeping processor utilization sufficiently low and providing priority-inversion control
at the user level, these applications can get sufficient predictability out of NT.

Scheduling. The scheduling mechanisms provided by Windows NT are designed for
good average performance of time-shared applications. We should not be surprised to find
them less than ideal for real-time applications.

Limited Priority Levels. Windows NT provides only 32 thread priorities. The lowest
16 levels (i.e., 0–15) are for threads of time-shared applications. The operating system may
boost the priority and adjust the time slice (i.e., scheduling quantum) of a thread running at
one of these priority levels in order to speed up the progress of the thread. Levels 16–31 are
real-time priorities. The operating system never adjusts the priorities of threads running at
these levels.

The small number of system priority levels by itself is not a serious problem, even for
applications that should ideally be scheduled at a large number of distinct priorities, if we

Section 12.7 Predictability of General-Purpose Operating Systems 557

do not need to keep the processor utilization high. You recall that we can compensate for a
small number of available priority levels by keeping the processor (sufficiently) lightly loaded.
As an example, suppose that we assign priorities to threads according to the rate-monotonic
algorithm and use the constant-ratio mapping scheme described in Section 6.8.4 to map the
assigned priorities to system priority levels. Lehoczky et al. [LeSh] showed that if we keep
the processor load from exceeding 1/2, we can map at least 4098 assigned thread priorities
to the 16 available system priority levels.27 (You can find the schedulable utilization of a
rate-monotonic system as a function of mapping ratio in Section 6.8.4.)

Many kernel-mode system threads execute at real-time priority level 16. They should
affect only real-time threads with priority 16. However, higher-priority real-time threads may
delay system threads. This means that in the presence of real-time applications, memory man-
agers, local and network file systems, and so on, may not work well.

Jobs, Job Scheduling Classes, and FIFO Policy.28 Another problem with Windows
NT 4.0 is that it does not support FIFO with equal priority. As we will see shortly, the lack of
FIFO scheduling capability is more problematic than an insufficient number of priority levels.
In this respect, NT 5.0 offers a significant improvement over NT 4.0, as it is possible to choose
the FIFO option on NT 5.0.

To explain, we note that NT 5.0 introduces the concepts of jobs and scheduling classes.
A job may contain multiple processes but each process can belong to only one job. In an SMP
system, we can statically configure the system by setting a limit-affinity flag of each job and,
thus, bind all the processes in the job to a processor. Other features of the new job objects
include the ability to set limits of a job object that control all processes in the job. Examples
are user-mode execution time and memory usage limits on a per job or per process basis.
A process (or a job) is terminated when the system finds that the process has accumulated
more user-mode execution time than its previously set limit. A job containing periodic threads
can periodically reset its own execution time limits and thus turns its execution-time usage
limit into an execution rate limit. NT 5.0 simply terminates an offending job (or process)
when it exceeds any of its usage limits, rather than putting job in the background, so the per
job execution time and memory limit feature cannot be used as it is to implement the CPU
reservation scheme described in Section 12.4.

Like NT 4.0, NT 5.0 also offers different priority classes. Time-critical processes should
be in the real-time priority class. As stated earlier, on NT 5.0, all 16 real-time priority levels
are available to a user thread in the real-time priority class. In addition to priority classes,
NT 5.0 offers nine job scheduling classes; class 9 is for real-time applications. Whether all
processes in a job belong to the same job scheduling class depends on whether the scheduling
class limit is enabled or disabled. When this flag to set to enabled, all processes in the job use
the same scheduling class.

27A small complication is that in Windows NT 4.0, the API function SetThreadPriority() allows a user thread
to specify only 7 out of the 16 real-time priority levels. However, a kernel thread can set the priority of any real-time
thread to any of the 16 levels. Hence, we need to provide the priority mapping function in a device driver. We set
the priority of a thread by calling this function instead of SetThreadPriority(). This kluge will not be necessary in
NT 5.0 (also called Windows 2000) since all 16 real-time priority levels are available to user-level real-time threads.

28Here, the term job is overloaded: What NT 5.0 calls a job is not what we have meant by a job throughout
the book.

558 Chapter 12 Operating Systems

A combination of parameters allow us to choose either the FIFO or round-robin pol-
icy (within equal priority) for a process, and hence all threads in it. The operating system
schedules all processes according to the round-robin policy by default. However, a real-time
process (i.e., a process of real-time priority class) in a job whose scheduling class has value 9
and scheduling class limit enabled is scheduled according to the FIFO policy. In other words,
we choose the FIFO option for a process by putting the process in the real-time priority class,
giving the scheduling class of the job containing the process a value 9, and enabling the
scheduling class limits for the job.

Resource Access Control. NT does not support priority inheritance. There are two
ways to control priority inversion in a uniprocessor system without the help of this mechanism.
All of them are at the user level and do not completely control priority inversion.

User-Level NPCS. The simplest way to overcome the lack of priority inheritance is
to use the NPCS protocol described in Section 8.3. You recall that according to this protocol,
a thread executes nonpreemptively when it holds any resource (i.e., a lock, a mutex object,
or a semaphore). In the case of reader/writer locks and mutexes, it is simple to implement an
approximate version of this protocol as a library function. The function assumes that priority
level 31 is reserved for exclusive use by threads in their nonpreemptable sections. When a
thread calls the NPCS function to request a resource, the function stores the thread’s current
priority and sets the priority to 31 and then grants the resource to the thread. The function
restores the thread’s priority when the thread no longer holds any resource.

We say that this is an approximate implementation of the NPCS protocol because setting
the thread priority to 31 is not the same as making the thread nonpreemptive. The user-level
protocol cannot enforce the exclusive use of priority level 31 for the purpose of emulating
nonpreemption. Threads that do not use this library may have priority 31. In NT 4.0, these
threads are scheduled on the round-robin basis with the thread that is holding a lock. They can
delay its progress. Moreover, this delay is theoretically unbounded.

In contrast, this user-level NPCS protocol is effective in a uniprocessor system running
NT 5.0 when threads under the control of the protocol are scheduled on the FIFO basis. At
the time when a thread’s priority is raised to 31, no other thread with priority 31 is ready for
execution. Since the thread is scheduled on the FIFO basis, after its priority is raised to 31, no
other thread can preempt it until it releases all the resources it holds.

Ceiling Priority Protocol. An alternative is the Ceiling-Priority Protocol (CPP) de-
scribed in Section 8.6. You recall that the CPP requires prior information on the resources
required by each thread. Each resource has a priority ceiling, which was defined in Section
8.5 for single-unit resources and Section 8.9 for multiple-unit resources. According to the
CPP, a thread holding any resource executes at the highest priority ceiling of all the resources
it holds.

To implement this protocol on a uniprocessor running NT 4.0, we need to restrict real-
time threads to have even priority levels (i.e., 16, 18, . . . , 30). (The reason for this restriction
is again that NT 4.0 does not support FIFO among equal-priority policy.) If the highest priority

Section 12.7 Predictability of General-Purpose Operating Systems 559

of all threads requiring a resource is 2k, then the ceiling-priority of the resource is 2k + 1.
(The ceiling priority of a resource with multiple units can be defined analogously.) Like the
NPCS protocol, the user-level CCP cannot prevent unbounded priority inversion if there are
threads that have priorities higher than 16 and are not under its control

Again, we do not have this problem with NT 5.0. We can use all 16 real-time priorities.
By scheduling all threads under the control of CCP according to the FIFO policy, the protocol
keeps the duration of priority inversion among them bounded.

Deferred Procedure Calls. Interrupt handling is done in two steps in Windows NT.
As in good real-time operating systems, each interrupt service routine executed in the im-
mediate step is short. So interrupt latency in NT is comparable to the latencies of real-time
operating systems.

Unpredictability arising from interrupt handling is introduced in the second step. NT
device drivers are written such that an interrupt service routine queues a procedure, called a
Deferred Procedure Call (DPC), to handle the second step of interrupt handling. DPCs are
executed in FIFO order at a priority lower than all the hardware interrupt priorities but higher
than the priority of the scheduler/dispatcher. Consequently, a higher-priority thread can be
blocked by DPCs queued in response to interrupts caused by lower-priority threads. This
blocking time can be significant since the execution times of some DPCs can be quite large
(e.g., 1 millisecond or more). Worst yet, the blocking time is unbounded.

However, it is possible to do priority tracking within NT. We do so by using a kernel
thread to execute the DPC function. In other words, rather than having the Internet Service
Routine (ISR) part of a device driver queue a DPC, it wakes up a kernel mode thread to
execute the DPC function. This is similar to how the second step of interrupt handling is
done in LynxOS. Specifically, the initialization routine (i.e., DriverEntry routine), the DPC
function, and ISR of a device driver should be as follows.

• The initialization routine creates a kernel mode thread and sets the priority of the thread
at a level specified by the device driver. The thread blocks waiting to be signaled by the
ISR and, when signaled, it will execute the function provided by the device driver.

• The function provided by the driver does the remaining part of interrupt handling when
executed by the kernel thread.

• When the interrupt service routine runs, it wakes up the kernel thread after servicing the
device.

A question that remains is, what priority should the device driver thread have? The
correct priority of the thread may remain unknown until the thread has executed for a while.
(For example, suppose that when an incoming message causes an interrupt, the network driver
thread is to have the priority of the thread that will receive the message. The receiving thread
is not identified until the message header is processed.) A way is to give the driver thread
a high priority, say 30, initially. (We assume that priority 31 is used exclusively to emulate
preemption lock.) When it is awaked and executes, it sets its own priority to the priority of
the thread which caused the interrupt as soon as it identifies that thread. (This scheme was
suggested by Gallmeister [Gall] as a way to emulate priority inheritance by message passing.)

560 Chapter 12 Operating Systems

Asynchronous Procedure Calls and LPC Mechanism. In Section 12.3.2 we de-
scribed briefly NT events and Asynchronous Procedure Calls (APCs), which serve the same
purpose as signals in UNIX systems. Events are synchronous. Like Real-Time POSIX signals,
events are queued and hence will not be lost if not handled immediately. Unlike Real-Time
POSIX signals, however, they are delivered in FIFO order and do not carry data. APCs com-
plement events to provide asynchronous services to applications as well as the kernel. Each
(kernel or user) thread has its own APC queue, which enqueues the APCs that will be executed
by the thread. When called to do so, the kernel inserts an APC in the queue of the specified
thread and requests a software interrupt at the APC priority level, which is lower than the
priority of the dispatcher (i.e., the scheduler) but higher than the priorities of normal threads.
When the thread runs, it executes the enqueued APC. Since a thread is at the APC priority
level while it is executing an APC, the thread is nonpreemptable by other threads during this
time and may block higher-priority threads. Therefore, it is important that the execution times
of APCs be kept as small as possible.

Another source of unpredictability in Windows NT is Local Procedure Calls (LPCs).
This is an example of incorrect prioritization. LPCs provide the interprocess communication
mechanism by which environment subsystem Dynamic Link Libraries (DLLs) pass requests
to subsystem service providers. It is also used by remote procedure calls between processes
on the same machine, as well as by the WinLogin process and security reference monitor.

Specifically, the LPC mechanism provides three schemes to communicate data across
address space boundaries. Short messages are sent over an LPC connection when the sending
process or thread makes a LPC call which specifies the buffer containing the message. The
message is copied into the kernel space and from there into the address space of the receiving
process. The other schemes make use of shared memory sections and are for exchanges of
long messages between the sender and receiver.

Since the LPC queue is FIFO ordered, priority inversion can occur when a thread sends a
request over an LPC connection to a service provider. Furthermore, without priority tracking,
a service provider thread which was created to service a request from a high-priority thread
may execute at a nonreal-time or low real-time priority.

We can avoid this kind of priority inversion only by avoiding the use of the LPC mech-
anism. In NT 4.0, the Win32 API functions that use LPC to communicate with subsystem
service providers are (1) console (text) window support, (2) process and thread creation and
termination, (3) network drive letter mapping, and (4) creation of temporary files. This means
that a time-critical application should not write to the console, create and delete threads, and
create temporary files. A multimode application must create and initialize threads that may
run in all modes at initialization time. This restriction not only further increases the memory
demand of the system but also reduces the configurability of the system.

12.7.2 Real-Time Extensions of Linux Operating Systems

The adoption of Linux has increased steadily in recent years as the operating system becomes
increasingly more stable, its performance improves, and more and more Linux applications
become available. The remainder of this section describes two extensions that enable applica-
tions with firm or hard real-time requirements to run on Linux. As you will see shortly, these
extensions fall far short of making Linux compliant to POSIX real-time extensions. More

Section 12.7 Predictability of General-Purpose Operating Systems 561

seriously, applications written to run on these extensions are not portable to standard UNIX
machines or other commercial real-time operating systems.

Important Features. Like NT, Linux also has many shortcomings when used for
real-time applications. One of the most serious arises from the disabling of interrupts by Linux
subsystems when they are in critical sections. While most device drivers disable interrupts for
a few microseconds, the disk subsystem may disable interrupts for as long as a few hundred
microseconds at a time. The predictability of the system is seriously damaged when clock
interrupts can be blocked for such a long time. The solution to this problem is to rewrite all
the offending drivers to make their nonpreemptable sections as short as possible, as they are
in real-time operating systems. Neither extension described below attacked this problem head
on; rather, one tries to live with it, while the other avoids it.

Scheduling. Linux provides individual processes with the choices among SCHED
FIFO, SCHED RR, or SCHED OTHER policies. Processes using the SCHED FIFO and
SCHED RR policies are scheduled on a fixed-priority basis; these are real-time processes.
Processes using SCHED OTHER are scheduled on the time-sharing basis; they execute at
priorities lower than real-time processes.

There are 100 priority levels altogether. You can determine the maximum and minimum
priorities associated with a scheduling policy using the primitives sched get priority min()
and sched get priority max(). You can also find the size of the time slices given to processes
scheduled according to the round-robin policy using sched rr get interval(). Since you have
the source, you can also change these parameters.

Clock and Timer Resolutions. Like NT, Linux updates the system clock and checks
for timer expirations periodically, and the period is 10 milliseconds on most hardware plat-
forms. [In Linux, each clock interrupt period is called a jiffy, and time is expressed in terms of
(the number of) jiffies.] Consequently, the actual resolution of Linux timers is 10 milliseconds.

To improve the clock resolution on Pentium processors, the kernel reads and stores the
time stamp counter at each clock interrupt. In response to a gettimeofday call, it reads the
counter again and calculates from the difference in the two readings the number of microsec-
onds that have elapsed from the time of the previous timer interrupt to the current time. In this
way, it returns the current time to the caller in terms of jiffies and the number of microseconds
into the current jiffy.

In addition to reading the time stamp counter at each clock interrupt, the timer interrupt
service routine checks the timer queue to determine whether any timer has expired and, for
each expired timer found, queues the timer function that is to be executed upon the expiration
of that timer. The timer functions thus queued are executed just before the kernel returns
control to the application. Timer error can be large and unpredictable because of the delay
thus introduced by the kernel and possibly large execution times of the timer functions.

Threads. Until recently, Linux did not offer a thread library. Rather, it offers only the
low-level system call clone(). Using this system call, one can create a process that shares the
address space of its parent process, as well as the other parts of the parent’s context (e.g., open
file descriptors, message managers, and signal handlers) as specified by the call.

562 Chapter 12 Operating Systems

Recently, X. Leroy developed LinuxThreads (http://pauillac.inria˜xleroy/linuxthreads/).
Each thread provided by this thread library is a UNIX process that is created using the clone()
system call. These threads are scheduled by the kernel scheduler just like UNIX processes.

LinuxThread provides most of the POSIX thread extension API functions and con-
forms to the standard except for signal handling.29 In particular, LinuxThreads uses signals
SIGUSR1 and SIGUSR2 for its own purpose. As a consequence, these signals are no longer
available to applications. Since Linux does not support POSIX real-time extensions, there
is no signal for application-defined use! Moreover, signals are not queued and may not be
delivered in priority order.

The major advantage of the one-thread-per process model of LinuxThreads is that it
simplifies the implementation of the thread library and increases its robustness. A disadvan-
tage is that context switches on mutex and condition operations must go through the kernel.
Fortunately, context switches in the Linux kernel are efficient.

UTIME High-Resolution Time Service. UTIME [HSPN] is a high-resolution time
service designed to provide microsecond clock and timer granularity in Linux. With UTIME,
system calls that have time parameters, such as select and poll, can specify time down to
microsecond granularity.

To provide microsecond resolution, UTIME makes use of both the hardware clock and
the Pentium time stamp counter. Rather than having the clock device programmed to interrupt
periodically, UTIME programs the clock to interrupt in one-shot mode. At any time, the next
timer interrupt will occur at the earliest of all future timer expiration times. Since the kernel
responds as soon as a timer expires, the actual timer resolution is only limited by the length of
time the kernel takes to service a timer interrupt, which is a few microseconds with UTIME.

Since the clock device no longer interrupts periodically, UTIME uses the Pentium time
stamp counter to maintain the software clock. When the system is booted, the clock is pro-
grammed to interrupt periodically. During initialization, UTIME reads and stores the time
stamp counter periodically and calculates the length of a jiffy in term of the number of time
stamp cycles in a jiffy and the number of time stamp cycles in a second. Having thus calibrated
the time stamp counter with respect to the clock and obtained the numbers of cycles per jiffy
and cycles per second, UTIME then reprograms the clock to run in one-shot mode.

Hereafter, whenever a timer interrupt occurs, the interrupt service routine first updates
the software clock based on the time stamp counter readings obtained at the current time and
at the previous timer interrupt. UTIME provides time in terms of jiffies, as well as jiffies u,
which give the number of microseconds that have elapsed since the beginning of the current
jiffy. It then queues the timer functions that are to be executed at the current timer interrupt,
finds the next timer expiration time from the timer queue, and sets the clock to interrupt at that
time. Because of the extra work to update the time and set the timer, the execution time of the

29According to POSIX, an asynchronous signal, for example, one that is sent via kill() or a tty interface,
is intended for the entire process, not only a thread within the process. If the thread to which the signal is sent is
blocking the signal, the signal is nevertheless handled immediately as long as some thread within the same process
is not blocking the signal. In other words, any thread within the process that is not blocking the signal can handle the
signal. This feature is not implemented in LinuxThreads. (It is not straightforward to implement this feature within
LinuxThread because each thread is a process and has its own process ID.) When such a signal is sent to a Linux
thread which is blocking the signal, the signal is queued and is handled only when the thread unblocks the signal.

Section 12.7 Predictability of General-Purpose Operating Systems 563

timer interrupt service routine in Linux with UTIME is several times larger than in standard
Linux.

If a jiffy has elapsed since the last timer interrupt, the kernel executes the standard Linux
heartbeat maintenance code, including decrementing the remaining quantum of the running
process. As in standard Linux, the execution of timer functions is postponed until the kernel
completes all these chores and gets ready to return control to the application.

KURT, Kansas University Real-Time System. KURT [HSPN] makes use of
UTIME and extends Linux for real-time applications. It is designed for firm real-time ap-
plications that can tolerate a few missed deadlines.

Real-Time Modes and Processes. KURT differentiates real-time processes from nor-
mal Linux processes. It has three operation modes: focused mode, normal mode, and mixed
mode. Only real-time processes can run when the system is in focused mode. Applications
with stringent real-time requirements should run in this mode.

All processes run as in standard Linux when the system is in normal mode. The system
starts in this mode. In the mixed mode, nonreal-time processes run in the background of real-
time processes.

Time-Driven Scheduling of Real-Time Processes. In the KURT model, a real-time
application consists of periodic and nonperiodic processes. The invocation times (i.e., the
release times) of all events (i.e., jobs or threads) in all these processes are known. Each process
starts as a nonreal-time process. To run in one of the real-time modes (i.e., focused or mixed
modes) as a real-time process, a process first registers itself with the system using a KURT
system call for this purpose, while it declares its parameters and chooses a scheduling policy.
(To return to be a nonreal-time process, it unregisters.) After all processes in the real-time
application have registered, the system can then be switched to one of real-time modes.

Mode switch is done under the control of an executive process. There is at least one
executive process. After all processes that are to run in a real-time mode have registered,
the executive process computes a schedule of all events based on the invocation times of all
events declared by real-time processes. Having thus prepared real-time processes to run, the
executive process calls switch to rt() to switch the system into one of the real-time modes:
SCHED KURT PROCS for the focused mode and SCHED KURT ALL for the mixed mode.
Once in a real-time mode, events in real-time processes are scheduled according to the pre-
computed schedule in the time-driven manner. (KURT says that they are explicitly scheduled.)

KURT Components. The KURT system consists of a core (i.e., a kernel) and real-
time modules called RTMods. The core contains the KURT time-driven scheduler. It sched-
ules all real-time events. Real-Time Modules are standard Linux kernel modules that run in
the same address space as the Linux kernel. Each module provides functionality and is load-
able. The only builtin real-time module is Process RTMod. This module provides the user
processes with system calls for registering and unregistering KURT real-time processes, as
well as a system call that suspends the calling process until the next time it is to be scheduled.

Source of Unpredictability. In Chapter 5, we assumed that the schedule table fits and
resides in memory. In contrast, KURT allows large schedule files that fit only partially in

564 Chapter 12 Operating Systems

memory and have to be read into memory from time to time. Moreover, KURT makes no
change in the disk device driver to minimize the length of time the driver may block timer
interrupts and to correctly prioritize file system processing. Consequently, KURT does not
provide sufficient predictability for hard real-time applications even when they run in the
focus mode.

RT Linux. RT Linux [Bara] is designed to provide hard real-time performance in
Linux. It assumes that the application system can be divided into two parts. The real-time part
runs on the RT kernel, while the nonreal-time part runs on Linux. The parts communicate
via FIFO buffers that are pinned down in memory in the kernel space. These FIFO buffers
are called RT-FIFOs. They appear to Linux user processes as devices. Reads and writes to
RT-FIFOs by real-time tasks are nonblocking and atomic.

RT Linux eliminates the problem of Linux kernel blocking clock interrupts by replac-
ing hardware interrupts by software emulated interrupts. Rather than letting Linux interface
interrupt control hardware directly, the RT kernel sits between the hardware and the Linux
kernel. Thus, the RT kernel intersects and attends to all interrupts. If an interrupt is to cause
a real-time task to run, the RT kernel preempts Linux if Linux is running at the time and lets
the real-time task run. In this way, the RT kernel puts Linux kernel and user processes in the
background of real-time tasks.

If an interrupt is intended for Linux, the RT kernel relays it to the Linux kernel. To
emulate disabled interrupt for Linux, the RT kernel provides a flag. This flag is set when Linux
enables interrupts and is reset when Linux disables interrupts. The RT kernel checks this flag
and the interrupt mask whenever an interrupt occurs. It immediately relays the interrupt to the
Linux kernel only if the flag is set. For as long as the flag is reset, RT kernel queues all pending
interrupts to be handled by Linux and passes them to Linux when Linux enables interrupts
again.

The real-time part of the application system is written as one or more loadable kernel
modules. In essence, all real-time tasks run in the kernel space. Tasks in each module may
have their scheduler; the current version provides a rate-monotonic scheduler and an EDF
scheduler.

12.8 SUMMARY

This chapter gave an overview of several commercial and widely used operating systems. It
also described operating system services that should be provided but are not by these systems.

12.8.1 Commercial Operating Systems

The real-time operating systems described in Section 12.6 provide either all or most of the
Real-Time POSIX API functions. (It is no wonder many students in real-time systems classes
at Illinois said “they are practically the same” after hearing fellow students’ presentations on
these systems.) The systems typically offer their own API functions. Some of them are better
than the standard functions either in functionality or in performance or both. Nevertheless,
you may not want to use system-specific functions for the sake of portability.

Section 12.8 Summary 565

Best Features. Section 12.6 emphasized implementation features that are important
for real-time applications. Examples of best practices discussed in the section include priority
tracking in interrupt handling (Section 12.6.1), support for the MPCP model (Section 12.6.2),
message-based priority inheritance (Section 12.6.3), hooks for extensions in the user level
(Section 12.6.4), shared-memory multiprocessing support (Section 12.6.5), and modularity
and ability to disable unneeded mechanisms.

Performance Information. The chapter gave you no help in selecting an operating
system for your applications. In particular, it presented no performance data. The best source
of performance information, as well as distinguishing features, is the vendor’s own home
page. In addition to context-switch time, operating system vendors typically provide data on
interrupt latency and dispatch latency of their own systems. Interrupt latency is the time the
system takes to start the execution of an immediate interrupt routine. (It was defined more
precisely in Section 12.1.2.) Dispatch latency is the length of time between the completion
of an immediate interrupt service routine to the start of the thread released as a result of the
interrupt. Both delays are measured in the absence of higher-priority interrupts, as they should
be. The published data usually include both the vendor’s system and close competitors’, so
by looking at such data provided by several vendors, you can get a reasonably good sense of
how biased the data are.

Many other performance figures are also important. They include the amounts of time
the system takes to block and deliver a signal, to grant semaphores and mutexes, and so on,
as well as performance of file and networking systems. Such data are usually not published.
If you ask, the vendor may give you some, but without similar data on competing systems for
comparison. For this reason, you may need to measure candidate systems yourself, and you
can find what and how to measure in [Gall]. (A point made by Gallmeister is that determinism
is important for hard real-time applications. We have stressed here that determinism is not
necessary; predictability is. The algorithms described in earlier chapters allow us to predict
the real-time performance of the application system as long as the operating system allows us
to bound the time and resources it spends and to prioritize our jobs.)

General-Purpose Operating Systems. Section 12.7 discussed some of the reasons
that Windows NT and Linux are not ideal for real-time applications. The most recent version
of NT, NT 5.0 (Windows 2000), provides user threads with 16 real-time priority levels and
the FIFO with equal-priority policy. It can deliver reasonably predictable performance under
the conditions discussed in Section 12.6.1.

Like deferred procedure calls in NT, Linux interrupt handlers may prevent the scheduler
from carrying out its activities in a timely fashion. KURT and RTLinux are Linux extensions
designed to allow real-time applications to run with Linux applications. Section 12.7.2 de-
scribed these extensions. The major drawback of the extensions is their nonstandard API.

12.8.2 Desirable Operating System Primitives

Several services and mechanisms can significantly simplify the implementation of user-level
schedulers and resource managers. Section 12.2.2 described ones that are simple to imple-
ment within any operating system, have lower overhead, and do not introduce backward-
compatibility problems. They are not provided by existing real-time operating systems and,
hopefully, will be provided by future versions.

566 Chapter 12 Operating Systems

Dynamic Priority Scheduling. EDF scheduling was considered less desirable than
fixed-priority schemes because its implementation was thought to be more complex. More
importantly, it is unstable under overloads. However, the total bandwidth and weighted fair-
queueing algorithms can effectively keep individual tasks from interfering each other. They
provide one of the best approaches to scheduling soft real-time tasks with hard real-time tasks.
An operating system can easily support EDF scheduling (and therefore these bandwidth-
preserving server algorithms) without high overhead in the same framework as fixed-priority
scheduling.

Busy Interval Tracking. None of the existing operating systems provides busy in-
terval tracking service. Without the operating system’s help, it is impossible for a user thread
to determine the beginning and end of busy intervals of the system, or threads with priori-
ties above a specified level, without undue complexity and overhead. In contrast, it is simple
for the kernel to track of busy intervals and export the information on their endpoints. This
information is needed by many algorithms for scheduling aperiodic tasks, synchronizing end-
to-end tasks, and so on. Figure 12–7 shows a way for the kernel to provide this service.

Correct Interval Timers. The interval timers provided by many operating systems
may underestimate the amount of time a thread has executed. If such a timer is used to monitor
the budget (or slack) consumption of a bandwidth-preserving server (or a slack stealer), the
underestimation may cause periodic tasks to miss deadlines.

Support for Server Threads. The mechanism for round-robin scheduling can be
naturally extended to support user-level bandwidth-preserving servers or slack stealers. Also
needed is an API function for setting the time slice (scheduling quantum) of a thread.

*12.8.3 Resource Reservation and Open Environment

Section 12.4 presented the resource reservation and scheduling mechanisms of Real-Time
Mach and NT/RK resource kernel. While some experimental operating systems support re-
source reservation, usage monitoring, and enforcement, most commercial operating systems
still do not.

Most operating systems (even those that support multiple scheduling policies) schedule
all applications according to the same scheduling algorithm at any given time. Whether each
application can meet its timing requirements is determined by a global schedulability analysis
based on parameters of every task in the system. Section 12.5 presented an architecture of an
open system in which each application can be scheduled in a way best suited for the applica-
tion and the schedulability of the application determined independently of other applications
that may run with it on the same hardware platform.

EXERCISES

12.1 The following pseudocode shows a way to detect and handle overruns of a timed loop. During
each iteration, k functions, names function 1 through function k are executed. Each iteration is
never supposed to take more than MAX TIME units of time. At the start, a watchdog timer is set
using wdTimerSet(). The arguments include the ID of the timer and the delay to the expiration

Exercises 567

time. When the timer expires, the kernel interrupts the timed loop and invokes the overrun
handler, named by the third argument, and passes to the handler the name of the function being
executed when overrun occurs.

onTime: wdTimerSet (myTimerId, MAX TIME, overRunHandler, function name)
Call function 1()
Call function 2()
.

.

Call function k()
goto onTime

Discuss how promptly the overrun handler can respond and what factors affect its response.

12.2 If the timer sleep() function allows only the specification of a time interval for the calling thread
to sleep, a periodic task can be implemented as follows.

timer sleep (firstReleaseTime - clock);
nextReleaseTime = firstReleaseTime
do forever

nextReleaseTime = nextReleaseTime + period;
statements in the program of the thread
timer sleep (nextReleaseTime - clock);

enddo;

where the value of clock is equal to the current time and firstReleaseTime is the delay to the first
release time of the thread.
(a) Discuss the factor(s) that may introduce release-time jitters and how large the release-time

jitter can be?
(b) If the thread overruns, nextReleaseTime may be earlier than the current time and the argu-

ment of the timer sleep function is negative. What should be the semantic of the function?

12.3 Consider two timer system calls: timer sleep() and timer notify(). Among the parameters of the
former is a time instant; the call puts the calling thread to sleep until the time instant. Among
the parameters of the latter are a time instant and a thread ID (or handle). At the specified
time instant, the kernel signals the thread thus identified by the call. Using these timer system
calls, rewrite the pseudocode of the cyclic executive in Figure 5-10 so it can steal the slack in
each frame to improve the response times of aperiodic tasks. State your assumptions on the
implementation of periodic and aperiodic tasks.

12.4 In an operating system, the resolution of the system clock and timers is x . The processor time
the scheduler takes to service each timer event is e, and a context switch to the kernel takes no
more than CS units of time. Suppose that the kernel executes and services timer events once
every y units of time.
(a) In this part, we want to know how the actual timer resolution depends on these system

parameters.
i. Suppose that x and y are large (i.e., in order of milliseconds) compared with e and CS

(e.g., in order of microseconds). What is the actual timer resolution?
ii. Suppose that x and y are comparable with e and CS. What is the actual timer resolution?

(b) We expect that the lengths of intervals returned to a user thread which repeatedly calls
timer sleep (z) to deviate from the nominal interval length z. Measurements of many real-
time operating systems have found that the maximum deviation can be as large as 20 percent

568 Chapter 12 Operating Systems

of the nominal value even when there is only one user thread. It was also observed that an
abnormally long interval is typically followed by an abnormally short interval, which may
in turn be followed by a long interval. Give an explanation of why the lengths of consecutive
intervals are correlated.

(c) Suppose that the number of timer events serviced by the kernel at each clock tick is never
greater than l. Derive a formula expressing the error in the time intervals returned by the
kernel. You may assume that there are no external interrupts or exceptions of higher priori-
ties while the kernel is servicing the timer calls.

12.5 In the literature you may have seen measurement data on response times of POSIX real-time
extension timer system calls nanosleep() and timer settime() in some UNIX operating systems.
(a) Suppose that an operating system does tick scheduling with a 10-millisecond tick size. It has

been reported that the calling thread may be suspended for almost 20 milliseconds when it
calls nanosleep(0.01) or nanosleep (0.005) to be suspended for 10 or 5 milliseconds, respec-
tively, even when there is no other thread in the system. Moreover, for all requested interval
lengths that are multiples of 10 milliseconds, the inaccuracy in the suspension interval is
approximately 10 milliseconds. Explain why we expect this behavior.

(b) Consider an operating system in which each timer event causes a context switch to the
kernel, which processes the event as soon as possible. Suppose that the time required to
complete this work is e and the context switch time is CS.

i. Suppose that during a time interval when there is only one user thread, the thread re-
peatedly calls nanosleep(t) i times. Estimate the error in the requested interval length
as a function of e, CS, t , and i for the cases where t > e + CS and t < e + CS.

ii. Suppose there are two threads in the system. Each repeatedly calls nanosleep(t) i times,
and suppose that when two timer events occur at the same time, the one belonging to
the higher-priority threads is processed first. Discusses the inaccuracy of the timers of
the threads.

12.6 As stated in Section 12.2.1 implementation 1 in Figure 12–5(a) neglected the fact that a
SIGALRM could have arrived before the thread calls sigwaitinfo() to wait for the signal again.
In that case, the signal would be blocked. In a Real-Time POSIX compliant system, the system
keeps track of this by incrementing the overrun count of the times. By examining the overrun
count, the thread can determine the number of times the timer has expired while it is executing.
Rewrite the pseudocode so the thread will be released the correct number of times within any
time interval. Make sure that the interrelease time is never less than 100.

12.7 In Section 12.2.2. it was stated that on a K -bit CPU, the scheduler makes at most �/2K − 1 +
log2 K comparisons to find the highest priority nonempty queue among� fixed-priority queues.
Describe in detail how this operation is done. (Hint: Consider the use of a bit vector containing
1 bit per priority queue to keep the empty/nonempty status of the queues.)

12.8 An application consisting of 11 periodic threads with relative deadlines 1, 2, 5, 6, 12, 19, 21, 27,
45, 75, and 150 is scheduled on EDF basis. Suppose that the operating system uses the queue
structure described in Figure 12–6 and supports four distinct relative deadlines, that is, �′ = 4.
Find a mapping from the relative deadlines of the threads to four relative deadlines supported
by the system. What is the schedulable utilization of the system?

12.9 An operating system provides 256 fixed priorities to threads in the system, but only 32 priorities
levels for their messages exchanged through message queues. Suppose that each sending thread
chooses the priority of its messages by mapping the 256 thread priority levels to 32 message
priority levels. Compare the uniform mapping and constant ratio mapping schemes. Which one
is better and why? Here, we measure the performance of a mapping scheme by the average
number of messages in each message queue found to have an identical priority; the fewer, the
better.

Exercises 569

12.10 The pseudocode description in Figure 12–8 makes the following assumptions. Give a brief ar-
gument to explain why these assumptions are true when there is only one processor and threads
never self-suspend,
(a) Immediately before it is denied a lock and becomes blocked, the priority of a thread is

higher than all the ready and blocked threads in the system. (For this reason, there is no
need to check whether the priority of each thread in the blocking chain is indeed lower than
the newly blocked thread.)

(b) If within one critical section while a thread TH is holding a resource R it has inherited
more than one priority through the resource, the priority it inherits later is higher. (Because
of this, the IL of a thread TH contains only one record on each resource R through which
the thread inherits a higher priority than its assigned priority.)

12.11 The pseudocode of restore pr() in Figure 12–8 does not detail how the new priority of a thread
is computed after the thread releases a resource. Give a pseudocode description of this compu-
tation.

12.12 Modify the pseudocode implementations of periodic threads in Figure 12–5 to add rule 1 of the
release-guard protocol. Assume that the synchronization notification from the predecessor task
is in the form of an incoming message.

12.13 Rather than making the kernel bigger, a seemingly better alternative is to implement the stack-
based priority ceiling and ceiling-priority protocols at the user level.
(a) Design a user-level resource manager that intersects lock requests from user threads and

allocates resources to threads according to one of these protocols. You may need to extend
to basic kernel for this purpose. In that case, describe and justify your extensions.

(b) Are the stack-based and ceiling-priority versions easier to implement than the basic priority-
ceiling protocol? Explain your answer.

12.14 In Section 12.2.2 we described the restore pr() function for restoring priority of a thread after
the thread releases a resource R through which it has inherited a higher priority than its assigned
priority. That function uses a circular link list to store the Inheritance Log (IL). The computation
of the new priority πr of the thread requires the scan of the entire list. A way to simplify this
computation is keep IL as a stack. Every time a thread inherits a new priority through a resource
R, inherit pr() pushes a record (R, current priority) on IL.
(a) Describe in psuedo code the new restore pr().
(b) Discuss the pros and cons of these two data structures.

12.15 To deliver a per process signal to a process containing a large number of threads, some of which
may have blocked the signal, the operating system must scan the signal masks of all threads to
find one that does not block the signal. If it finds none, it queues the signal until some thread
in the process unblocks the signal. The overhead of this search is undesirable. How can this
overhead be minimized?

APPENDIX

POSIX Thread and
Real-Time Extensions

This appendix presents a brief overview of the thread and real-time extensions of the POSIX
(Portable Operating System Interface) standard 1003.1 [IEEE90b, Zlot, IEEE98]. Throughout
this chapter, we referred to these extensions collectively as Real-Time POSIX. You can find
detailed descriptions of thread and real-time extensions, as well as how to program using
them, in [Bute] and [Gall].

POSIX is an API standard. Applications that conform to the standard are portable at the
source code level across operating systems that conform to the standard. An operating systems
is said to conform or compliant to the standard if it provides all the interface functions required
by the standard.30 An application is said to conform if it uses only the required functions to
access operating system services.

POSIX 1003.1 defines the basic functions of a Unix operating system, including pro-
cess management, device and file system I/O, and basic IPC and time services. All modern,
general-purpose operating systems support this standard. The real-time (1003.1b) and thread
(1003.1c) extensions of POSIX 1003.1 define a subset of POSIX interface functions that are
particularly suitable for multithreaded real-time applications. Specifically, 1003.1c extends
1003.1 to include the creation of threads and management of their execution. Real-time ex-
tensions defined by 1003.1b include prioritized scheduling, enhanced signals, IPC primitives,
high-resolution timer, memory locking, synchronized I/O, asynchronous I/O, and contiguous
files. Previous sections of this chapter described some of these functions: Specifically, Sec-
tions 12.2.2 described prioritized scheduling, Section 12.3.1 described message passing, and
Section 12.3.2 described real-time signals.

Threads. The POSIX API is based on the UNIX process model (i.e., a single thread
of control per process). This model is incompatible to the thread model of real-time appli-
cations. As we have seen earlier, an embedded application may have only one process but

30A compliant operating system may provide additional functions provided that the unrequired functions do
not conflict with the required functions.

571

572 Appendix POSIX Thread and Real-Time Extensions

have multiple threads of control. POSIX thread extension assumes that threads are the basic
units of concurrency. Among the interface functions defined by POSIX 1003.1c are those for
creating, initializing, and destroying threads; managing thread resources; and scheduling their
executions.

There are also functions for setting and reading attributes of a thread, as well as func-
tions for initializing and destroying the object used by the system to maintain all attributes
of each thread. Priority and scheduling policy are examples of thread attributes, as well as its
stack size and address.

The thread extension also redefines the semantics of basic POSIX process management
functions [i.e., fork(), exec(), wait(), exit()] so that they can be used by multithreaded
processes. Take fork() as an example. This function creates a duplicate process with its own
address space. The new process inherits all the threads in the parent process. Among the
threads in the child process, only the thread that called fork() is active. The states of the other
threads are undefined.

Similarly, the thread extension defines the rules for signals targeted at the thread and
process levels. For example, a signal is ignored if a thread in a multithreaded process ignores
the signal. On the other hand, signal mask is maintained at the thread level. Therefore, a
thread can mask signals independently of other threads in the same process. An unignored
signal targeted at a thread is blocked only when that thread blocks it. An unignored signal
targeted to a process is delivered to any thread that is not blocking the signal.

This chapter assumes that threads are handled by the kernel. This is true for most of the
operating systems described here. Threads may also be handled by library functions. Linux
thread library is an example.

Clocks and Timers. Clock and timer interface functions make time visible to the
application threads. POSIX real-time extensions assume that the system may have more than
one clock. The function clock settime(clock id, *timeval) allows a thread to set the value of a
specified clock, and the function clock gettime(clock id, *timeval) allows a thread to read the
time measured by the specified clock. Rather than only three timers in Unix, there can be 32
timers per process. Section 12.2 gave examples illustrating the use of functions that a thread
can call to create, set, cancel and destroy its timers. In addition, there are functions for getting
the resolution of a clock and time remaining of a timer.

The data structures used by timer interface functions allows for nanosecond resolution.
However, timer resolution supported by most operating systems is far more coarse for reasons
discussed in Section 12.2.

The system keeps an overrun count for each timer. When an overrun of the timer oc-
curs (i.e., when the SIGALRM signal delivered upon an expiration of the timer is blocked),
the system increments the overrun count. The timer getoverrun() function gives the overrun
count for a timer and allows the application to keep track of timer expirations reliably.

Scheduling Interface. Real-Time POSIX requires a compliant operating system to
support fixed priority scheduling with at least 32 priority levels. Priority levels are numbered
so that the larger the number, the higher the priority.

A thread (process) may choose the scheduling policy or policies for itself and other
threads (process). Specifically, a thread may (1) set and get its own priority and priorities of

Appendix POSIX Thread and Real-Time Extensions 573

other threads and (2) choose among FIFO (SCHED FIFO), round-robin (SCHED RR), and
implementation-specific (SCHED OTHER) policies.

In principle, a Real-Time POSIX compliant system can support the EDF algorithm
and other dynamic priority algorithms, since a user-level scheduler can use functions such
as pthread att setschedparam(*att, param) to set the priority of a thread according to the
deadline of the thread or some other attribute. However, the additional system calls at the re-
lease of each thread to get the current time and set thread priority adds considerable amount
of scheduling overhead, making the implementation of a EDF scheduler expensive and the
responsiveness of the scheduler poor.

Since threads may make independent choices of scheduling policies and priorities, it is
possible for different threads within the same process to be scheduled according to different
scheduling policies. The standard does not restrict the priority levels used by different schedul-
ing policies within a system. Rather, whether different scheduling policies have overlapping
priority levels is the choice of each implementation. In most real-time operating systems, the
ranges of priority levels completely overlap. So, at any priority level, some threads may be
scheduled according to the FIFO policy and some according to the round-robin policy.

Synchronization. Synchronization facilities provide semaphores, mutexes and con-
dition variables. POSIX semaphores are special objects. Once such an object is created and
opened, the semaphore it provides allows processes to synchronize with each other. POSIX
semaphores are simple and have very low overhead, especially when implemented in shared
memory. However, since priority inversion is uncontrolled, it is not ideal for real-time appli-
cations.31

In contrast, Real-time POSIX mutexes support both Priority Inheritance and Ceil-
ing Priority protocols. (Ceiling Priority Protocol is called Ceiling Protection Protocol in
Real-Time POSIX terms.) Specifically which protocol a mutex object supports depends on
whether the protocol attribute of the mutex is set to POSIX PTHREAD PRIO INHERIT or
POSIX PTHREAD PRIO -PROTECT. (A thread sets this attribute by calling the function
pthread mutexattr setprotocol () after it creates the mutex.) In the latter case, the mutex
has a priority ceiling: When a thread with current priority π(t) locks the mutex, it executes
at the priority ceiling of the mutex. An operating system can use the priority-inheritance
mechanisms described in Section 12.3.1 to support priority inheritance through mutexes.

Condition variables allow a thread to lock a mutex depending on one or more conditions
being true. This is done by associating the mutex with a condition variable which defines the
waited-for condition. (In general, a condition may be defined by a Boolean expression of
several condition variables.) When the thread locks the mutex and finds the condition not
true, it releases the mutex and returns to wait for the condition to become true. When we say
that the system supports condition variables, we mean that it makes the thread’s release of the
mutex and return to wait for the specified condition atomic. When another thread makes the

31Some semaphores are named, while those for synchronizing shared memory accesses are typically unnamed.
In the case of named semaphores, ceiling priority protocol can be implemented at the user level in the manner
described in Section 12.6.1.

574 Appendix POSIX Thread and Real-Time Extensions

condition true, the waiting thread is waken up to lock the mutex again and proceed to enter
the critical section guarded by the mutex.

Interprocess Communication, Event Notification, and Software Interrupt. Real-
Time POSIX improves predictability in interprocess communication by providing the appli-
cation with control over message passing. As discussed in Section 12.3.1, Real-Time POSIX
messages are prioritized, just like threads, and they are dequeued in priority order. Send and
receive are nonblocking. Moreover, receive notification makes it unnecessary for a receiver to
check for the arrival of a message to an empty queue.

Section 12.3.2 discussed the Real-Time POSIX signal facility for multithreaded real-
time applications. Signals are primarily for event notification and software interrupt. POSIX
provides only two application-defined signals. POSIX signals are delivered in FIFO order,
are not queued, and cannot pass data. In contrast, Real-Time POSIX provides at least eight
application-defined signals, are delivered in priority order, and can carry data. Moreover,
blocked signals are queued.

Shared Memory and Memory Locking. Real-Time POSIX compliant systems sup-
port shared memory, in addition to file mapping (i.e., mmap, using which an application can
map any file into its own address space and then access file as if it were in memory.) In such
a system, a process can create a shared memory object that is accessible by other processes.

Real-time application in a Real-Time POSIX compliant system that supports virtual
memory can control memory residency of their code and data using functions mlockall and
mlock. The former tells the operating system to lock the entire memory; the latter tells the
operating system to lock the specified range of address space of a process in memory.

Synchronized I/O. POSIX real-time extension provides the application with more
control over file operations, specifically, over when data in the file are actually written to
the disk and file state information stored on the disk updated. For performance sake, most
operating systems hold output data to disk in a buffer cache. In response to a write, the system
moves the output data blocks to its own buffer. If the system receives a request to read the
blocks before it flushes them to the disk (i.e., writes the buffer to disk and frees the buffer
space), it can respond to the request without accessing the disk. The output data is safely
stored on disk only when the buffer is flushed. The system flushes the buffer when the buffer
is full or when the user requests the buffer be flushed. (The Unix system call for this purpose
is called sync.)

The Real-Time POSIX file synchronization facility is called synchronized I/O. If avail-
able (i.e., if POSIX SYNCHRONIZED IO in<unistd.h> is not defined as −1), synchronized
I/O supports two levels of file synchronization: data integrity and file integrity. Data integrity
is maintained when output data blocks are safely stored on disk. File integrity of a file is
maintained when both data in the file and state information on the file are stored on disk.
An application (e.g., a transaction to update a disk-resident database or a checkpointing pro-
cess) can maintain data and file integrity to a great extent by calling the Real-Time POSIX
synchronized I/O system calls fdatasync and fsync, respectively.

Appendix POSIX Thread and Real-Time Extensions 575

However, data (or file) can be inconsistent temporarily even when the application calls
fdatasync (or fsync) immediately after each write. (Because the application can be preempted
after a write but before the corresponding fdatasync, the duration of inconsistency can be arbi-
trarily long.) This may not be tolerable for some applications (e.g., a checkpointing process).
For applications which require immediate file synchronization, POSIX real-time extension
provides three file descriptor flags: O DSYNC, O SYNC, and O RSYNC. By setting one or
more of these flags, the application tells the operating system to synchronize I/O immediately
following each write (and read) operation.32 Specifically, when file descriptor flag O DSYNC
is set, the operating system flushes the data and state information immediately after each write.
When the flag O SYNC is set, the operating system also updates inode, in addition to flush-
ing data and state information, after each write. The most stringent flag is O RSYNC. When
this flag is set, the operating system carries out the synchronization operation immediately
following each read as well as each write.

Asynchronous I/O. Real-Time POSIX provides the asynchronous I/O (AIO) capa-
bility so that I/O operations can be carried out concurrently with computations. (For example,
a thread may send a video frame after compressing it. The thread can compress the subsequent
frame concurrently with the output of the compressed frame.) The functions for asynchronous
read and write are aio read() and aio write(), respectively. One of their arguments is a pointer
(or array of pointers) to an AIO control block, which is called aiocb (or an array of aiocbs).
This data structure specifies the I/O operation requested by the system call. Its elements in-
clude the descriptor of the file to be read or written, the address of buffer to read to or write
from, the number of bytes, and the notification signal to be delivered upon completion.

A thread or process that uses one of the real-time scheduling policies (i.e., SCHED RR
or SCHED FIFO) can prioritize its I/O request, and the priority of the request is specified
by the aio reqprio element in the aiocb of the request. A Real-Time POSIX compliant oper-
ating system orders asynchronous I/O requests with respect to themselves according to their
specified priorities. In order to safeguard incorrect prioritization, the priority aio reqprio of
an I/O request gives the number of priority levels by which the request priority is lower than
the current priority of the caller. Therefore, the standard prevents a caller from requesting an
asynchronuous I/O of a priority higher than its own current priority.

A thread or process can suspend itself to wait for the completion of an asynchronous
I/O operation by calling the aio suspend(). This function provided by the POSIX real-time
extension has a two-fold advantage over sigsuspend(). First, we note that at any time, multiple
asynchronous I/O operations requested by the caller may be outstanding; any of them may
complete first and causes the delivery of a notification signal. aio suspend() enables the caller
to wait for the signal that notifies the completion of a specific operation. In contrast, the caller
of sigsuspend() may be awaken by the notification signal of any outstanding asynchronous
I/O operation. Second, like the real-time signal sigwaitinfo(), aio suspend() is a synchronous
wait function. When the waited-for signal is delivered, aio suspend() returns without having
to wait for a signal handler to complete.

32Gallmeister [Gall] warned that a file may still not be written to disk platter when it is written to the disk by
the operating system. The reason is that the disk may have internal cache and output data blocks may be held there
temporarily.

576 Appendix POSIX Thread and Real-Time Extensions

Real-Time files. Real-time applications typically prefer preallocation of fixed-size
files in order to avoid the unpredictable delay introduced by dynamic allocation. Moreover,
they often access files sequentially. For this access pattern, seek time is minimized (and re-
peated setting of DMA devices eliminated) when each file consists of contiguous disk blocks.
POSIX real-time extension allows the applications to provide advisories to the operating sys-
tem; that file allocation should be optimized for sequential access is an example. Since the
system is not required to follow advisories, applications have only limited control on file lay-
outs.

	Chapter 1:
Typical Real-Time Applications
	1.1 Digital Control
	1.2 High-Level Controls
	1.3 Signal Processing
	1.4 Other Real-Time Applications

	Chapter 2: Hard versus Soft Real-Time Systems

	2.1 Jobs and Processors
	2.2 Release Times, Deadlines, and Timing Constraints
	2.3 Hard and Soft Timing Constraints
	2.4 Hard Real-Time Systems
	2.5 Soft Real-Time Systems
	2.6 Summary

	Chapter
3: A Reference Model of Real-Time Systems
	3.1 Processors and Resources
	3.2 Temporal parameters of Real-Time Workload
	3.3 Periodic Task Model
	3.4 Precedence Constraints and Data Dependency
	3.5 Other Types of Dependencies
	3.6 Functional Parameters
	3.7 Resource Parameters of Jobs and Parameters of Resources
	3.8 Scheduling Hierarchy

	Chapter 4: Commonly Used Approaches to Real-Time Scheduling

	4.1 Clock-Driven Approach
	4.2 Weighted Round-Robin Approach
	4.3 Priority-Driven Approach
	4.4 Dynamic Versus Static Systems
	4.5 Effective Release Times and Deadlines
	4.6 Optimality of the EDF and LST Algorithms
	4.7 Non-Optimality of the EDF and the LST Algorithms
	4.8 Challenges in Validating Timing Constraints in Priority-Driven Systems
	4.9 Off-line versus Online Scheduling

	Chapter 5: Clock-Driven Scheduling

	5.1 Notations and Assumptions
	5.2 Static, Timer-Driven Scheduler
	5.3 General Structure of Cyclic Schedules
	5.4 Cyclic Executives
	5.5 Improving the Average Response Time of Aperiodic Jobs
	5.6 Scheduling Sporadic Jobs
	5.7 Practical Considerations and Generalizations

	Chapter 6: Priority-Driven Scheduling of Periodic Tasks

	6.1 Static Assumption
	6.2 Fixed-Priority Versus Dynamic-Priority Algorithms
	6.3 Maximum Schedulable Utilization
	6.4 Optimality of the RM and DM Algorithms
	6.5 A Schedulability Test for Fixed-Priority Tasks with Short Response Times
	6.6 Schedulability Test for Fixed-Priority Tasks with Arbitrary Response Times
	6.7 Sufficient Schedulability Conditions for the RM and DM Algorithms

	Chapter 7: Scheduling Aperiodic and Sporadic Jobs in Priority-Driven Systems

	7.1 Assumptions and Approaches
	7.2 Deferrable Servers
	7.3 Sporadic Servers
	7.4 Constraint Utilization, Total Bandwidth, and Weighted Fair-Queueing Servers

	Chapter 8: Resources and Resource Access Control
	8.1 Assumptions on Resources and Thier Usage
	8.2 Effective Resource Contention and Resource Access Control
	8.3 Non-Preemptive Critical Sections
	8.4 Basic Priority-Inheritance Protocol
	8.5 Basic Priority-Ceiling Protocol
	8.6 Stack-Based, Priority-Ceiling Protocol
	8.7 Use of Priority-Ceiling Protocol in Dynamic-Priority Systems
	8.8 Preemption-Ceiling Protocol

	Chapter 12: Operating Systems

