Parallel Algorithms

Prepared by: Thoai Nam
Lectured by: Tran Vu Pham

Outline

Q Introduction to parallel algorithms
development

01 Reduction algorithms
Q Broadcast algorithms
Q Prefix sums algorithms

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM

Introduction to Parallel
< Algorithm Development

a Parallel algorithms mostly depend on destination
parallel platforms and architectures
a MIMD algorithm classification
- Pre-scheduled data-parallel algorithms
- Self-scheduled data-parallel algorithms
— Control-parallel algorithms

0 According to M.J.Quinn (1994), there are 7 design
strategies for parallel algorithms

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM 3.

Basic Parallel Algorithms

a 3 elementary problems to be considered
- Reduction
- Broadcast
— Prefix sums

Q Target Architectures

- Hypercube SIMD model
— 2D-mesh SIMD model

-~ UMA multiprocessor model
- Hypercube Multicomputer

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM

Reduction Problem

a Description: Given n values a,, a4, a,...a,.1, an
associative operation @, let's use p processors
to compute the sum:

Q Design strategy 1

- “If a cost optimal CREW PRAM algorithms exists
and the way the PRAM processors interact through
shared variables maps onto the target architecture, a
PRAM algorithm is a reasonable starting point”

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM

‘ Cost Optimal PRAM Algorithm
for the Reduction Problem

a Cost optimal PRAM algorithm complexity:
O(logn) (using n div 2 processors)
a Example for n=8 and p=4 processors
a, a, a, as g ay

J=

J=

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM 6-

‘Cost Optimal PRAM Algorithm for
the Reduction Problem(cont’d)

Using p= n div 2 processors to add n numbers:

Global a[0..n-1], n, i, |, p;
Begin
spawn(Pg, Py, ,Pp4);
for all P, where 0 <i < p-1do
for j=0 to ceiling(logp)-1 do
if i mod 2 =0 and 2i + 2/ < n then
a[2i] == a[2i] @ a[2i + 2];
endif;
endfor |;

endforall;
End.

Notes: the processors communicate in a biominal-tree pattern
Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM

Solving Reducing Problem on
€9 Hypercube SIMD Computer

P, Ps
./. / B . PO ,
P, P, P, P,
Ps P,
P / / . . p, ©
1
P3 P3
Step 1: Step 2: Step 3:

Reduce by dimension j=2 Reduce by dimension j=1 Reduce by dimension j=0

The total sum will be at P,

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM 8-

Solving Reducing Problem on
><% Hypercube SIMD Computer (cond’t)

Using p processors to add h nhumbers (p << h)
Global j;

Local local.set.size, local.value[1..n div p +1], sum,
tmp;

Begin
" for all P, where 0 <i< p-1do

Allocate If (i <nmod p) then local.set.size:=ndivp + 1
workload for y else local.set.size := ndiv p;
each endif;

Processors sum[i]:=0;

_endforall;

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM 9-

A Solving Re
Hypercube

Calculate the
partial sum for <
each processor

ducing Problem on
SIMD Computer (cond’t)

 for j:=1to (ndivp +1) do
for all P, where 0 <i < p-1do
If local.set.size > j then
sumli]:= sum @ local.value [1;
endforall;

\. endfor j;

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM

-10-

Solving Reducing Problem on
><% Hypercube SIMD Computer (cond’t)

Calculate the total
sum by reducing
for each
dimension of the
hypercube

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM

/ for j:=ceiling(logp)-1 downto 0 do
for all P, where 0 <i< p-1do

ifi <2 then
< tmp = [i + 2]sum;
sum := sum @ tmp;
endif;
endforall;
_endfor j;

11-

Solving Reducing Problem on
>< 2D-Mesh SIMD Computer

a A 2D-mesh with p*p processors need at least 2(p-1) steps to
send data between two farthest nodes

> The lower bound of the complexity of any reduction sum
algorithm is 0(n/p? + p)

O- & O
A

Example: a 4*4 mesh
need 2*3 steps to get
the subtotals from the o © 4

corner processors

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM 2.

Solving Reducing Problem on
€< 2D-Mesh SIMD Computer(cont’d)

QO Example: compute the total sum on a 4*4 mesh

¢ o Q-) O——O0—0—0 O O O
© o O~ O O—O0——0—0 0 0—oO
© o O~ 0 Q@ O+——=0 0 o—=0 0
O O O+ O O O—0 ® O—O0—0
Stage 1 Stage 1 Stage 1
Stepi=3 Stepi=2 Stepi=1

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM

Solving Reducing Problem on
€< 2D-Mesh SIMD Computer(cont’d)

QO Example: compute the total sum on a 4*4 mesh

¢— 06— —0 O—0—90 O—0—90

O—O0—0—°0 I O—O0—=0 I O—0—0
O—O0—0 O—O0 0 © O—o0 0

I 0—°0 O 0—o0 O O—0—0—=>»0
Stage 2 Stage 2 Stage 2
Stepi=3 Stepi=2 Step i =1

(the sumis at P, ;)

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM 14-

Solving Reducing Problem on
€< 2D-Mesh SIMD Computer(cont’d)

Summation (2D-mesh SIMD with I*l processors
Global i;
Local tmp, sum;
Begin
{Each processor finds sum of its local value -
code not shown}
~ fori:=l-1 downto 1 do

Stage 1: for all P;; where 1 <i<ldo
{Processing elements in colum i active}
P; ; computes < tmp := right(sum);
the sum of all

, sum:= sum @ tmp;
Processors In end forall:

row i-th _ endfor:

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM 15-

Solving Reducing Problem on
€< 2D-Mesh SIMD Computer(cont’d)

< fori:=1-1 downto 1 do

{Only a single processing element active}
Compute the < tmp:=down(sum);

total sum and

store it at P | sum:=sum @ tmp;

end forall;
\. endfor;
End.

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM 16-

Solving Reducing Problem on
£<® UMA Multiprocessor Model(MIMD)

Q Easily to access data like PRAM

0 Processors execute asynchronously, so we must ensure
that no processor access an “unstable” variable

Q Variables used:
Global a[0..n-1],

P,

{values to be added}

{
flags[0..p-1], {Setto 1 when partial sum available}

{

{

number of proeessor, a power of 2}

partial[0..p-1],
global _sum;
Local local sum;

Contains partial sum}
Result stored here}

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM 17-

Solving Reducing Problem on
£<® UMA Multiprocessor Model(cont’d)

a Example for UMA multiprocessor with p=8 processors
Stage 2 Py P, P, Py P, P: Pq P,

/’

Step j=8 \

Step j=4

Step j=2 ./

Step j=1 i The total sum is at P,

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM 18-

Solving Reducing Problem on UMA
e Multiprocessor Model(cont’d)

Summation (UMA multiprocessor model)
Begin
for k:=0 to p-1 do flags[k]:=0;
— for all P,where 0 <i<pdo

Stage 1:
J D local _sum :=0;
Each processor for j:=i to n-1 step p do
computes the - local_sum:=local_sum @ aj];
partial sum of n/p
values

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM 19-

Solving Reducing Problem on UMA
e Multiprocessor Model(cont’d)

1-=P;
. while |>0 do begin
if i > j/2 then
partial[i]:=local_sum;
flagsl[i]:=1;
break;
else

while (flags[i+j/2]=0) do;
/local_sum::local_sum @ partial[i+j/2];
Each processor—"| endif;
waits for the partial S J=112;
sum of its partner end while; | |
_ if i=0 then global _sum:=local _sum;
available enq fora:
End.

Stage 2:

Compute the total sum <

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM _20-

Solving Reducing Problem on UMA
e Multiprocessor Model(cont’d)

a Algorithm complexity 0(n/p+p)

0 What is the advantage of this algorithm compared
with another one using critical-section style to
compute the total sum?

Q Design strategy 2:

- Look for a data-parallel algorithm before considering a
control-parallel algorithm

= On MIMD computer, we should exploit both data
parallelism and control parallelism

(try to develop SPMD program if possible)

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM 1.

Broadcast

a Description:

— Given a message of length M stored at one processor,
let’s send this message to all other processors

a Things to be considered:
- Length of the message
- Message passing overhead and data-transfer time

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM

-22-

Broadcast Algorithm on
>< Hypercube SIMD

Q If the amount of data is small, the best algorithm takes logp
communication steps on a p-node hypercube

0 Examples: broadcasting a number on a 8-node hypercube

P, Ps
@)
Po Po’ = ? ./. ‘/
2
P, 3
Ps P
P, ‘ P O ~© ‘/’ /
1 PS
3
Step 1: Step 2: Step 3:
Send the number viathe Send the number viathe Send the number via the
1st dimension of the 2nd dimension of the 3d dimension of the
hypercube hypercube hypercube

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM 23

Broadcast Algorithm on
>< Hypercube SIMD(cont’d)

Broadcasting a number from P, to all other processors
Local i, {Loop iteration}

P, {Partner processor}

position; {Position in broadcast tree}

value; {Value to be broadcast}

Begin
spawn(Py, Py, P 4);
for j:=0 to logp-1 do
for all P, where 0 <i< p-1do

ifi <2 then
partner := i+2;;
[partner]value:=value;
endif;
endforall;
end forj;

End.

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM 24

Broadcast Algorithm on
>< Hypercube SIMD(cont’d)

Q The previous algorithm
— Uses at most p/2 out of plogp links of the hypercube
- Requires time Mlogp to broadcast a length M msg
=>not efficient to broadcast long messages

a Johhsson and Ho (1989) have designed an
algorithm that executes logp times faster by:
— Breaking the message into logp parts

- Broadcasting each parts to all other nodes through a
different binominal spanning tree

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM

25

Johnsson and Ho’s Broadcast
<< Algorithm on Hypercube SIMD

AT AT A
e P el P e

a Time to broadcast a msg of length M is Mlogp/logp = M

0 The maxinum number of links used simultaneously is plogp,
much greater than that of the previous algorithm

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM _26-

Johnsson and Ho’s Broadcast Algorithm
£3 on Hypercube SIMD(cont’d)

2 Design strategy 3

— As problem size grow, use the algorithm that
makes best use of the available resources

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM 7.

Prefix SUMS Problem

a Description:

- Given an associative operation @ and an array A
containing n elements, let's compute the n quantities

o A
o A
o A

0]
0]
0]

® A[1]
® A[1] ® A[2]

s ;AltO] @ A[1]@A[2]® ... D A[n-1]

Q Cost-optimal PRAM algorithm:
— "Parallel Computing: Theory and Practice”, section 2.3.2, p. 32

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM

_28-

Prefix SUMS Problem on

Multicomputers
Q Finding the prefix sums of 16 values
Processor 0 Processor 1 Processor 2 Processor 3
(@) [3 |2 [7 |6 0 |5 |4 |8 2 [0 |1 |5 2 [3 |8 |6
(o) |18 17 8 19
(c) |18 [35]43 |62 18 | 35 | 43 | 62 18 | 35 | 43 | 62 18 | 35 | 43 | 62
(dy [3 |5 |12]18 18 |23 | 27 | 35 37|37 |38 |43 45 | 48 | 56 | 62

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM _29.

Prefix SUMS Problem on
<< Multicomputers(cont’d)

Q Step (a)

- Each processor is allocated with its share of values
Q Step (b)

- Each processor computes the sum of its local elements
a Step (c)

- The prefix sums of the local sums are computed and
distributed to all processor

0 Step (d)

— Each processor computes the prefix sum of its own
elements and adds to each result the sum of the values
held in lower-numbered processors

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM _30-

