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Introduction to Parallel
< Algorithm Development

a Parallel algorithms mostly depend on destination
parallel platforms and architectures
a MIMD algorithm classification
- Pre-scheduled data-parallel algorithms
- Self-scheduled data-parallel algorithms
— Control-parallel algorithms

0 According to M.J.Quinn (1994), there are 7 design
strategies for parallel algorithms
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Basic Parallel Algorithms

a 3 elementary problems to be considered
- Reduction
- Broadcast
— Prefix sums

Q Target Architectures

- Hypercube SIMD model
— 2D-mesh SIMD model

-~ UMA multiprocessor model
- Hypercube Multicomputer
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Reduction Problem

a Description: Given n values a,, a4, a,...a,.1, an
associative operation @, let's use p processors
to compute the sum:

Q Design strategy 1

- “If a cost optimal CREW PRAM algorithms exists
and the way the PRAM processors interact through
shared variables maps onto the target architecture, a
PRAM algorithm is a reasonable starting point”
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‘ Cost Optimal PRAM Algorithm
for the Reduction Problem

a Cost optimal PRAM algorithm complexity:
O(logn) (using n div 2 processors)
a Example for n=8 and p=4 processors
a, a, a, as g ay

J=

J=

Khoa Khoa Hoc & Ky Thuat May Tinh — Trwong BPai Hoc Bach Khoa TP. HCM 6-



‘Cost Optimal PRAM Algorithm for
the Reduction Problem(cont’d)

Using p= n div 2 processors to add n numbers:

Global a[0..n-1], n, i, |, p;
Begin
spawn(Pg, Py, ,Pp4);
for all P, where 0 <i < p-1do
for j=0 to ceiling(logp)-1 do
if i mod 2 =0 and 2i + 2/ < n then
a[2i] == a[2i] @ a[2i + 2];
endif;
endfor |;

endforall;
End.

Notes: the processors communicate in a biominal-tree pattern
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Solving Reducing Problem on
€9 Hypercube SIMD Computer

P, Ps
./. / B . PO ,
P, P, P, P,
Ps P,
P / / . . p, ©
1
P3 P3
Step 1: Step 2: Step 3:

Reduce by dimension j=2 Reduce by dimension j=1  Reduce by dimension j=0

The total sum will be at P,
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Solving Reducing Problem on
><% Hypercube SIMD Computer (cond’t)

Using p processors to add h nhumbers ( p << h)
Global j;

Local local.set.size, local.value[1..n div p +1], sum,
tmp;

Begin
" for all P, where 0 <i< p-1do

Allocate If (i <nmod p) then local.set.size:=ndivp + 1
workload for y else local.set.size := ndiv p;
each endif;

Processors sum[i]:=0;

_endforall;
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A Solving Re
Hypercube

Calculate the
partial sum for <
each processor

ducing Problem on
SIMD Computer (cond’t)

 for j:=1to (ndivp +1) do
for all P, where 0 <i < p-1do
If local.set.size > j then
sumli]:= sum @ local.value [1;
endforall;

\. endfor j;
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Solving Reducing Problem on
><% Hypercube SIMD Computer (cond’t)

Calculate the total
sum by reducing
for each
dimension of the
hypercube
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/ for j:=ceiling(logp)-1 downto 0 do
for all P, where 0 <i< p-1do

ifi <2 then
< tmp = [i + 2]sum;
sum := sum @ tmp;
endif;
endforall;
\_endfor j;
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Solving Reducing Problem on
>< 2D-Mesh SIMD Computer

a A 2D-mesh with p*p processors need at least 2(p-1) steps to
send data between two farthest nodes

> The lower bound of the complexity of any reduction sum
algorithm is 0(n/p? + p)

O- & O
A

Example: a 4*4 mesh
need 2*3 steps to get
the subtotals from the o © 4

corner processors
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Solving Reducing Problem on
€< 2D-Mesh SIMD Computer(cont’d)

QO Example: compute the total sum on a 4*4 mesh

¢ o Q- ) O——O0—0—0 O O O
© o O~ O O—O0——0—0 0 0—oO
© o O~ 0 Q@ O+——=0 0 o—=0 0
O O O+ O O O—0 ® O—O0—0
Stage 1 Stage 1 Stage 1
Stepi=3 Stepi=2 Stepi=1
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Solving Reducing Problem on
€< 2D-Mesh SIMD Computer(cont’d)

QO Example: compute the total sum on a 4*4 mesh

¢— 06— —0 O—0—90 O—0—90

O—O0—0—°0 I O—O0—=0 I O—0—0
O—O0—0 O—O0 0 © O—o0 0

I 0—°0 O 0—o0 O O—0—0—=>»0
Stage 2 Stage 2 Stage 2
Stepi=3 Stepi=2 Step i =1

(the sumis at P, ;)
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Solving Reducing Problem on
€< 2D-Mesh SIMD Computer(cont’d)

Summation (2D-mesh SIMD with I*l processors
Global i;
Local tmp, sum;
Begin
{Each processor finds sum of its local value -
code not shown}
~ fori:=l-1 downto 1 do

Stage 1: for all P;; where 1 <i<ldo
{Processing elements in colum i active}
P; ; computes < tmp := right(sum);
the sum of all

, sum:= sum @ tmp;
Processors In end forall:

row i-th  \_ endfor:
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Solving Reducing Problem on
€< 2D-Mesh SIMD Computer(cont’d)

< fori:=1-1 downto 1 do

{Only a single processing element active}
Compute the < tmp:=down(sum);

total sum and

store it at P | sum:=sum @ tmp;

end forall;
\. endfor;
End.
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Solving Reducing Problem on
£<® UMA Multiprocessor Model(MIMD)

Q Easily to access data like PRAM

0 Processors execute asynchronously, so we must ensure
that no processor access an “unstable” variable

Q Variables used:
Global a[0..n-1],

P,

{values to be added}

{
flags[0..p-1],  {Setto 1 when partial sum available}

{

{

number of proeessor, a power of 2}

partial[0..p-1],
global _sum;
Local local sum;

Contains partial sum}
Result stored here}
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Solving Reducing Problem on
£<® UMA Multiprocessor Model(cont’d)

a Example for UMA multiprocessor with p=8 processors
Stage 2 Py P, P, Py P, P: Pq P,

/’

Step j=8 \

Step j=4

Step j=2 ./

Step j=1 i The total sum is at P,
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Solving Reducing Problem on UMA
e Multiprocessor Model(cont’d)

Summation (UMA multiprocessor model)
Begin
for k:=0 to p-1 do flags[k]:=0;
— for all P,where 0 <i<pdo

Stage 1:
J D local _sum :=0;
Each processor for j:=i to n-1 step p do
computes the - local_sum:=local_sum @ aj];
partial sum of n/p
values
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Solving Reducing Problem on UMA
e Multiprocessor Model(cont’d)

1-=P;
. while |>0 do begin
if i > j/2 then
partial[i]:=local_sum;
flagsl[i]:=1;
break;
else

while (flags[i+j/2]=0) do;
/local_sum::local_sum @ partial[i+j/2];
Each processor—"|  endif;
waits for the partial S J=112;
sum of its partner end while; | |
_ if i=0 then global _sum:=local _sum;
available  enq fora:
End.

Stage 2:

Compute the total sum <
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Solving Reducing Problem on UMA
e Multiprocessor Model(cont’d)

a Algorithm complexity 0(n/p+p)

0 What is the advantage of this algorithm compared
with another one using critical-section style to
compute the total sum?

Q Design strategy 2:

- Look for a data-parallel algorithm before considering a
control-parallel algorithm

= On MIMD computer, we should exploit both data
parallelism and control parallelism

(try to develop SPMD program if possible)
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Broadcast

a Description:

— Given a message of length M stored at one processor,
let’s send this message to all other processors

a Things to be considered:
- Length of the message
- Message passing overhead and data-transfer time
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Broadcast Algorithm on
>< Hypercube SIMD

Q If the amount of data is small, the best algorithm takes logp
communication steps on a p-node hypercube

0 Examples: broadcasting a number on a 8-node hypercube

P, Ps
@)
Po Po’ = ? ./. ‘/
2
P, 3
Ps P
P, ‘ P O ~© ‘/’ /
1 PS
3
Step 1: Step 2: Step 3:
Send the number viathe Send the number viathe Send the number via the
1st dimension of the 2nd dimension of the 3d dimension of the
hypercube hypercube hypercube
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Broadcast Algorithm on
>< Hypercube SIMD(cont’d)

Broadcasting a number from P, to all other processors
Local i, {Loop iteration}

P, {Partner processor}

position; {Position in broadcast tree}

value; {Value to be broadcast}

Begin
spawn(Py, Py, P 4);
for j:=0 to logp-1 do
for all P, where 0 <i< p-1do

ifi <2 then
partner := i+2;;
[partner]value:=value;
endif;
endforall;
end forj;

End.
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Broadcast Algorithm on
>< Hypercube SIMD(cont’d)

Q The previous algorithm
— Uses at most p/2 out of plogp links of the hypercube
- Requires time Mlogp to broadcast a length M msg
=>not efficient to broadcast long messages

a Johhsson and Ho (1989) have designed an
algorithm that executes logp times faster by:
— Breaking the message into logp parts

- Broadcasting each parts to all other nodes through a
different binominal spanning tree
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Johnsson and Ho’s Broadcast
<< Algorithm on Hypercube SIMD

AT AT A
e P el P e

a Time to broadcast a msg of length M is Mlogp/logp = M

0 The maxinum number of links used simultaneously is plogp,
much greater than that of the previous algorithm
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Johnsson and Ho’s Broadcast Algorithm
£3 on Hypercube SIMD(cont’d)

2 Design strategy 3

— As problem size grow, use the algorithm that
makes best use of the available resources
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Prefix SUMS Problem

a Description:

- Given an associative operation @ and an array A
containing n elements, let's compute the n quantities

o A
o A
o A

0]
0]
0]

® A[1]
® A[1] ® A[2]

s ;AltO] @ A[1]@A[2]® ... D A[n-1]

Q Cost-optimal PRAM algorithm:
— "Parallel Computing: Theory and Practice”, section 2.3.2, p. 32
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Prefix SUMS Problem on

Multicomputers
Q Finding the prefix sums of 16 values
Processor 0 Processor 1 Processor 2 Processor 3
(@) [3 |2 [7 |6 0 |5 |4 |8 2 [0 |1 |5 2 [3 |8 |6
(o) |18 17 8 19
(c) |18 [35]43 |62 18 | 35 | 43 | 62 18 | 35 | 43 | 62 18 | 35 | 43 | 62
(dy [3 |5 |12]18 18 |23 | 27 | 35 37|37 |38 |43 45 | 48 | 56 | 62
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Prefix SUMS Problem on
<< Multicomputers(cont’d)

Q Step (a)

- Each processor is allocated with its share of values
Q Step (b)

- Each processor computes the sum of its local elements
a Step (c)

- The prefix sums of the local sums are computed and
distributed to all processor

0 Step (d)

— Each processor computes the prefix sum of its own
elements and adds to each result the sum of the values
held in lower-numbered processors
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