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Scheduling on UMA 

Multiprocessors

� Schedule: 

allocation of tasks to processors

� Dynamic scheduling

– A single queue of ready processes

– A physical processor accesses the queue to run the next 
process

– The binding of processes to processors is not tight

� Static scheduling

– Only one process per processor

– Speedup can be predicted
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Deterministic model

� A parallel program is a 
collection of tasks, some 
of which must be 
completed before others 
begin

� Deterministic model:
The execution time needed 

by each task and the 
precedence relations 
between tasks are fixed 
and known before run time

� Task graph
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Gantt chart

� Gantt chart indicates the time each task 

spends in execution, as well as the 
processor on which it executes
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Optimal schedule

� If all of the tasks take unit time, and the task graph is a 

forest (i.e., no task has more than one predecessor), then a 
polynomial time algorithm exists to find an optimal schedule

� If all of the tasks take unit time, and the number of 
processors is two, then a polynomial time algorithm exists to 

find an optimal schedule

� If the task lengths vary at all, or if there are more than two 

processors, then the problem of finding an optimal schedule 
is NP-hard.
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Graham’s list scheduling algorithm

� T = {T1, T2,…, Tn} 

a set of tasks

� µµµµ: T → (0,∞) 

a function associates an execution time with each task

� A partial order < on T

� L is a list of task on T

� Whenever a processor has no work to do, it instantaneously 

removes from L the first ready task; that is, an unscheduled 

task whose predecessors under < have all completed 
execution. (The processor with the lower index is prior)
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Graham’s list scheduling algorithm 

- Example
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L = {T1, T2, T3, T4, T5, T6, T7}
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Graham’s list scheduling algorithm 

- Problem
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Coffman-Graham’s scheduling 

algorithm (1)

� Graham’s list scheduling algorithm depends upon a 
prioritized list of tasks to execute

� Coffman and Graham (1972) construct a list of tasks for the 

simple case when all tasks take the same amount of time.
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Coffman-Graham’s scheduling 

algorithm (2)

� Let T = T1, T2,…, Tn be a set of n unit-time tasks to be 
executed on p processors

� If Ti < Tj, then task is Ti an immediate predecessor of task Tj, 
and Tj is an immediate successor of task Ti

� Let S(Ti) denote the set of immediate successor of task Ti

� Let α(Ti) be an integer label assigned to Ti.

� N(T) denotes the decreasing sequence of integers formed 

by ordering of the set {α(T’)| T’ ∈ S(T)}
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Coffman-Graham’s scheduling 

algorithm (3)

1. Choose an arbitrary task Tk from T such that S(Tk) = 0, and define α(Tk) 
to be 1

2. for i ← 2 to n do

a. R be the set of unlabeled tasks with no unlabeled successors

b. Let T* be the task in R such that N(T*) is lexicographically smaller   
than N(T) for all T in R

c. Let α(T*) ← i

endfor

3. Construct a list of tasks L = {Un, Un-1,…, U2, U1} such that α(Ui) = i for all i 
where 1 ≤ i ≤ n

4. Given (T, <, L), use Graham’s list scheduling algorithm to schedule the 
tasks in T
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Coffman-Graham’s scheduling 

algorithm – Example (1)
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Coffman-Graham’s scheduling 

algorithm – Example (2)

Step1 of algorithm

task T9 is the only task with no immediate successor. Assign 1 to α(T9)

Step2 of algorithm

� i=2: R = {T7, T8}, N(T7)= {1} and N(T8)= {1} ⇒ Arbitrarily choose task T7

and assign 2 to α(T7)

� i=3: R = {T3, T4, T5, T8}, N(T3)= {2}, N(T4)= {2}, N(T5)= {2} and N(T8)= {1} ⇒
Choose task T8 and assign 3 to α(T8)

� i=4: R = {T3, T4, T5, T6}, N(T3)= {2}, N(T4)= {2}, N(T5)= {2} and N(T6)= {3} ⇒
Arbitrarily choose task T4 and assign 4 to α(T4)

� i=5: R = {T3, T5, T6}, N(T3)= {2}, N(T5)= {2} and N(T6)= {3} ⇒ Arbitrarily 
choose task T5 and assign 5 to α(T5)

� i=6: R = {T3, T6}, N(T3)= {2} and N(T6)= {3} ⇒ Choose task T3 and assign 6 
to α(T3)
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Coffman-Graham’s scheduling 

algorithm – Example (3)

� i=7: R = {T1, T6}, N(T1)= {6, 5, 4} and N(T6)= {3} ⇒ Choose task T6 and 
assign 7 to α(T6)

� i=8: R = {T1, T2}, N(T1)= {6, 5, 4} and N(T2)= {7} ⇒ Choose task T1 and 
assign 8 to α(T1)

� i=9: R = {T2}, N(T2)= {7} ⇒ Choose task T2 and assign 9 to α(T2)

Step 3 of algorithm

L = {T2, T1, T6, T3, T5, T4, T8, T7, T9}

Step 4 of algorithm

Schedule is the result of applying Graham’s list-scheduling algorithm to 

task graph T and list L
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Classes of scheduling 

� Static scheduling

– An application is modeled as an directed acyclic graph (DAG)

– The system is modeled as a set of homogeneous processors

– An optimal schedule: NP-complete

� Scheduling in the runtime system

– Multithreads: functions for thread creation, synchronization, and 
termination

– Parallelizing compilers: parallelism from the loops of the sequential 
programs

� Scheduling in the OS

– Multiple programs must co-exist in the same system

� Administrative scheduling
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Current approaches 

� Global queue

� Variable partitioning

� Dynamic partitioning with two-level scheduling

� Gang scheduling
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Global queue 

� A copy of uni-processor system on each node, while sharing 
the main data structures, specifically the run queue

� Used in small-scale bus-based UMA shared memory 

machines

� Automatic load sharing

� Cache corruption

� Preemption inside spinlock-controlled critical sections
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Variable partitioning 

� Processors are partitioned into disjoined sets and each job is 
run only in a distinct partition

� Distributed memory machines

� Problem: fragmentation, big jobs

yesyesyesDynamic

noyesyesAdaptive

nonoyesVariable

nononoFixed

ChangesSystem loadUser request

Parameters taken into account

Scheme
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Dynamic partitioning with 

two-level scheduling

� Changes in allocation during execution

� Work-pile model: 

– The work = an unordered pile of tasks or chores

– The computation = a set of worker threads, one per processor, that 
take one chore at time from the work pile

– Allowing for the adjustment to different numbers of processors by 
changing the number of the workers

– Two-level scheduling scheme: the OS deals with the allocation of 
processors to jobs, while applications handle the scheduling of chores 
on those processors
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Gang scheduling

� Problem: Interactive response times ⇒ time slicing

– Global queue: uncoordinated manner

� Observation:

– Coordinated scheduling is only needed if the job’s threads interact 
frequently

– The rate of interaction can be used to drive the grouping of threads 
into gangs

� Samples: 

– Co-scheduling

– Family scheduling: which allows more threads than processors and
uses a second level of internal time slicing
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Several specific 

scheduling methods

� Co-scheduling

� Smart scheduling [Zahorijan et al.]

� Scheduling in the NYU Ultracomputer [Elter et al.]

� Affinity based scheduling

� Scheduling in the Mach OS
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Co-Scheduling

� Context switching between applications rather then between  
tasks of several applications.

� Solving the problem of “preemption inside spinlock-controlled 

critical sections”.

� Cache corruption???
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Smart scheduling

� Advoiding:

(1) preempting a task when it is inside its critical section

(2) rescheduling tasks that were busy-waiting at the time of 
their preemption until the task that is executing the 

corresponding critical section releases it.

� The problem of “preemption inside spinlock-controlled critical 
sections” is solved.

� Cache corruption???.
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Scheduling in 

the NYU Ultracomputer

� Tasks can be formed into groups

� Tasks in a group can be scheduled in any of the following 

ways:

– A task can be scheduled or preempted in the normal manner

– All the tasks in a group are scheduled or preempted simultaneously

– Tasks in a group are never preempted.

� In addition, a task can prevent its preemption irrespective of 

the scheduling policy (one of the above three) of its group.
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Affinity based scheduling

� Policy: a tasks is scheduled on the processor where it last 
executed [Lazowska and Squillante]

� Alleviating the problem of cache corruption

� Problem: load imbalance
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� Threads

� Processor sets: disjoin

� Processors in a processor set is assigned a subset of threads 
for execution.

– Priority scheduling: LQ, GQ(0),…,GQ(31)

– LQ and GQ(0-31) are empty: the processor executes an special idle

thread until a thread becomes ready.

– Preemption: if an equal or higher priority ready thread is present

Scheduling in the Mach OS

0

1

31

P0

P1

Pn

Global 

queue

(GQ)

Local 

queue

(LQ)


