
-1-

Parallel Job Schedulings

Lectured by: Pham Tran Vu

Prepared by: Thoai Nam

-2-

Scheduling on UMA

Multiprocessors

� Schedule:

allocation of tasks to processors

� Dynamic scheduling

– A single queue of ready processes

– A physical processor accesses the queue to run the next
process

– The binding of processes to processors is not tight

� Static scheduling

– Only one process per processor

– Speedup can be predicted

-3-

Deterministic model

� A parallel program is a
collection of tasks, some
of which must be
completed before others
begin

� Deterministic model:
The execution time needed

by each task and the
precedence relations
between tasks are fixed
and known before run time

� Task graph

T1

2

T2

3

T3

1

T4

2

T5

3

T6

3

T7

1

-4-

Gantt chart

� Gantt chart indicates the time each task

spends in execution, as well as the
processor on which it executes

T7T5T2T1

T6T3

T4

1 2 3 4 5 6 7 8 9

T1

2

T2

3

T3

1

T4

2

T5

3

T6

3

T7

1

Time

P
ro

c
e
s
s
o
rs

-5-

Optimal schedule

� If all of the tasks take unit time, and the task graph is a

forest (i.e., no task has more than one predecessor), then a
polynomial time algorithm exists to find an optimal schedule

� If all of the tasks take unit time, and the number of
processors is two, then a polynomial time algorithm exists to

find an optimal schedule

� If the task lengths vary at all, or if there are more than two

processors, then the problem of finding an optimal schedule
is NP-hard.

-6-

Graham’s list scheduling algorithm

� T = {T1, T2,…, Tn}

a set of tasks

� µµµµ: T → (0,∞)

a function associates an execution time with each task

� A partial order < on T

� L is a list of task on T

� Whenever a processor has no work to do, it instantaneously

removes from L the first ready task; that is, an unscheduled

task whose predecessors under < have all completed
execution. (The processor with the lower index is prior)

-7-

Graham’s list scheduling algorithm

- Example

T7T5T2T1

T6T3

T4

T1

2

T2

3

T3

1

T4

2

T5

3

T6

3

T7

1

Time

P
ro

c
e
s
s
o
rs

L = {T1, T2, T3, T4, T5, T6, T7}

-8-

Graham’s list scheduling algorithm

- Problem

T8T6T3

T7T5T4T2

T9T1

T8T1

T7T4

T6T3

T9T5T2

T1

3

T9

9

T2

2

T3

2

T4

2

T5

4

T6

4

T7

4

T8

4 L = {T1, T2, T3, T4, T5, T6, T7, T8, T9}

-9-

Coffman-Graham’s scheduling

algorithm (1)

� Graham’s list scheduling algorithm depends upon a
prioritized list of tasks to execute

� Coffman and Graham (1972) construct a list of tasks for the

simple case when all tasks take the same amount of time.

-10-

Coffman-Graham’s scheduling

algorithm (2)

� Let T = T1, T2,…, Tn be a set of n unit-time tasks to be
executed on p processors

� If Ti < Tj, then task is Ti an immediate predecessor of task Tj,
and Tj is an immediate successor of task Ti

� Let S(Ti) denote the set of immediate successor of task Ti

� Let α(Ti) be an integer label assigned to Ti.

� N(T) denotes the decreasing sequence of integers formed

by ordering of the set {α(T’)| T’ ∈ S(T)}

-11-

Coffman-Graham’s scheduling

algorithm (3)

1. Choose an arbitrary task Tk from T such that S(Tk) = 0, and define α(Tk)
to be 1

2. for i ← 2 to n do

a. R be the set of unlabeled tasks with no unlabeled successors

b. Let T* be the task in R such that N(T*) is lexicographically smaller
than N(T) for all T in R

c. Let α(T*) ← i

endfor

3. Construct a list of tasks L = {Un, Un-1,…, U2, U1} such that α(Ui) = i for all i
where 1 ≤ i ≤ n

4. Given (T, <, L), use Graham’s list scheduling algorithm to schedule the
tasks in T

-12-

Coffman-Graham’s scheduling

algorithm – Example (1)

T1

T3

T4

T5

T7

T8

T9

T2

T6

T5

T8T3T1

T9T7T4T6T2

-13-

Coffman-Graham’s scheduling

algorithm – Example (2)

Step1 of algorithm

task T9 is the only task with no immediate successor. Assign 1 to α(T9)

Step2 of algorithm

� i=2: R = {T7, T8}, N(T7)= {1} and N(T8)= {1} ⇒ Arbitrarily choose task T7

and assign 2 to α(T7)

� i=3: R = {T3, T4, T5, T8}, N(T3)= {2}, N(T4)= {2}, N(T5)= {2} and N(T8)= {1} ⇒
Choose task T8 and assign 3 to α(T8)

� i=4: R = {T3, T4, T5, T6}, N(T3)= {2}, N(T4)= {2}, N(T5)= {2} and N(T6)= {3} ⇒
Arbitrarily choose task T4 and assign 4 to α(T4)

� i=5: R = {T3, T5, T6}, N(T3)= {2}, N(T5)= {2} and N(T6)= {3} ⇒ Arbitrarily
choose task T5 and assign 5 to α(T5)

� i=6: R = {T3, T6}, N(T3)= {2} and N(T6)= {3} ⇒ Choose task T3 and assign 6
to α(T3)

-14-

Coffman-Graham’s scheduling

algorithm – Example (3)

� i=7: R = {T1, T6}, N(T1)= {6, 5, 4} and N(T6)= {3} ⇒ Choose task T6 and
assign 7 to α(T6)

� i=8: R = {T1, T2}, N(T1)= {6, 5, 4} and N(T2)= {7} ⇒ Choose task T1 and
assign 8 to α(T1)

� i=9: R = {T2}, N(T2)= {7} ⇒ Choose task T2 and assign 9 to α(T2)

Step 3 of algorithm

L = {T2, T1, T6, T3, T5, T4, T8, T7, T9}

Step 4 of algorithm

Schedule is the result of applying Graham’s list-scheduling algorithm to

task graph T and list L

-15-

Classes of scheduling

� Static scheduling

– An application is modeled as an directed acyclic graph (DAG)

– The system is modeled as a set of homogeneous processors

– An optimal schedule: NP-complete

� Scheduling in the runtime system

– Multithreads: functions for thread creation, synchronization, and
termination

– Parallelizing compilers: parallelism from the loops of the sequential
programs

� Scheduling in the OS

– Multiple programs must co-exist in the same system

� Administrative scheduling

-16-

Current approaches

� Global queue

� Variable partitioning

� Dynamic partitioning with two-level scheduling

� Gang scheduling

-17-

Global queue

� A copy of uni-processor system on each node, while sharing
the main data structures, specifically the run queue

� Used in small-scale bus-based UMA shared memory

machines

� Automatic load sharing

� Cache corruption

� Preemption inside spinlock-controlled critical sections

-18-

Variable partitioning

� Processors are partitioned into disjoined sets and each job is
run only in a distinct partition

� Distributed memory machines

� Problem: fragmentation, big jobs

yesyesyesDynamic

noyesyesAdaptive

nonoyesVariable

nononoFixed

ChangesSystem loadUser request

Parameters taken into account

Scheme

-19-

Dynamic partitioning with

two-level scheduling

� Changes in allocation during execution

� Work-pile model:

– The work = an unordered pile of tasks or chores

– The computation = a set of worker threads, one per processor, that
take one chore at time from the work pile

– Allowing for the adjustment to different numbers of processors by
changing the number of the workers

– Two-level scheduling scheme: the OS deals with the allocation of
processors to jobs, while applications handle the scheduling of chores
on those processors

-20-

Gang scheduling

� Problem: Interactive response times ⇒ time slicing

– Global queue: uncoordinated manner

� Observation:

– Coordinated scheduling is only needed if the job’s threads interact
frequently

– The rate of interaction can be used to drive the grouping of threads
into gangs

� Samples:

– Co-scheduling

– Family scheduling: which allows more threads than processors and
uses a second level of internal time slicing

-21-

Several specific

scheduling methods

� Co-scheduling

� Smart scheduling [Zahorijan et al.]

� Scheduling in the NYU Ultracomputer [Elter et al.]

� Affinity based scheduling

� Scheduling in the Mach OS

-22-

Co-Scheduling

� Context switching between applications rather then between
tasks of several applications.

� Solving the problem of “preemption inside spinlock-controlled

critical sections”.

� Cache corruption???

-23-

Smart scheduling

� Advoiding:

(1) preempting a task when it is inside its critical section

(2) rescheduling tasks that were busy-waiting at the time of
their preemption until the task that is executing the

corresponding critical section releases it.

� The problem of “preemption inside spinlock-controlled critical
sections” is solved.

� Cache corruption???.

-24-

Scheduling in

the NYU Ultracomputer

� Tasks can be formed into groups

� Tasks in a group can be scheduled in any of the following

ways:

– A task can be scheduled or preempted in the normal manner

– All the tasks in a group are scheduled or preempted simultaneously

– Tasks in a group are never preempted.

� In addition, a task can prevent its preemption irrespective of

the scheduling policy (one of the above three) of its group.

-25-

Affinity based scheduling

� Policy: a tasks is scheduled on the processor where it last
executed [Lazowska and Squillante]

� Alleviating the problem of cache corruption

� Problem: load imbalance

-26-

� Threads

� Processor sets: disjoin

� Processors in a processor set is assigned a subset of threads
for execution.

– Priority scheduling: LQ, GQ(0),…,GQ(31)

– LQ and GQ(0-31) are empty: the processor executes an special idle

thread until a thread becomes ready.

– Preemption: if an equal or higher priority ready thread is present

Scheduling in the Mach OS

0

1

31

P0

P1

Pn

Global

queue

(GQ)

Local

queue

(LQ)

