Processor Organization

Lectured by: Pham Tran Vu

Prepared by: Thoai Nam

□ Criteria:

 Diameter, bisection width, number of edges per node, maximum edge length.

□ Processor Organizations:

Mesh, binary tree, hypertree, pyramid, butterfly, hypercube, shuffle-exchange

- □ Diameter
 - The largest distance between two nodes
 - Lower diameter is better
- □ Bisection width

The minimum number of edges that must be removed in order to divide the network into two halves (within one)

- Number of edges per node
- □ Maximum edge length

- Q-dimensional lattice
- Communication is allowed only between neighboring nodes. Interior nodes communicate with 2q other nodes.

- □ Q-dimensional mesh with kq nodes
 - Diameter: q(k-1)
 - Bisection width: k^{q-1}
 - The maximum number of edges per node: 2q
 - The maximum edge length is a constant

- □ Depth k-1: 2^k-1 nodes
- □ Diameter: 2(k-1)
- Bisection width: 1
- □ Length of the longest edge: increasing

□ Bandwidth problem on binary tree

 Hypertree of degree k and depth d: a complete k-ary tree of height d.

- □ A 4-ary hypertree with depth d has 4^d leaves and 2^d(2^{d+1}-1) nodes in all
 - Diameter: 2d
 - Bisection width: 2^{d+1}
 - The number of edges per node ≤ 6
 - Length of the longest edge: increasing

□ Size k²: base a 2D mesh network containing k² processors, the

total number of processors= $(4/3)k^2 - 1/3$

 \Box A pyramid of size k^2 :

Diameter: 2logk

- Bisection width: 2k

Maximum of links per node: 9

Length of the longest edge: increasing

Butterfly (1)

- \Box (k+1)2^k nodes divided into k+1 rows (rank), each contains n=2^k nodes.
- Ranks are labeled 0 through k
- □ Node(i,j): j-th node on the i-th rank
- Node(i,j) is connected to two nodes on rank i-1: node(i-1,j) and node (i-1,m), where m is the integer found by inverting the i-th most significant bit in the binary representation of j
- If node(i,j) is connected to node(i-1,m), then node (i,m) is connected to (i-1,j)
- □ Diameter=2k
- □ Bisection width=2^{k-1}
- □ Length of the longest edge: increasing

Hypercube (1)

- □ 2^k nodes form a k-dimensional hypercube
- □ Nodes are labeled 0, 1, 2,..., 2^{k-1}
- Two nodes are adjacent if their labels differ in exactly one bit position
- □ Diameter=k
- □ Bisection width= 2^{k-1}
- Number of edges per node is k
- Length of the longest edge: increasing

- $\Box 5 = 0101$
- $\Box 1 = 0001$
- $\Box 4 = 0100$
- □ 13 = **1101**

- □ Cube-Connected cycles
- □ Shuffle-Exchange
- □ De Bruijn

newer

Topologies in Real Machines

Red Storm (Opteron + Cray network, future)	3D Mesh	
Blue Gene/L	3D Torus	
SGI Altix	Fat tree	
Cray X1	4D Hypercube*	
Myricom (Millennium)	Arbitrary	
Quadrics (in HP Alpha server clusters)	Fat tree	
IBM SP	Fat tree (approx)	
SGI Origin	Hypercube	
Intel Paragon (old)	2D Mesh	
BBN Butterfly (really old)	Butterfly	

- □ The process of embedding a data structure (represented by a graph G) into the structure of processors (represented by graph G')
- Dilation: the largest distance between any two adjacent nodes of G in G' after mapping

Mapping a Ring into a 2D Mesh

□ Dilation: 1

Mapping a 2D Mesh into a 2D Mesh

□ Dilation: 1

Mapping a binary tree into a 2D Mesh

□ Dilation: 1

