Chapter 2 Abstract Machine Models

Lectured by: Phạm Trần Vũ

Prepared by: Thoại Nam

Parallel Computer Models (1)

- □ A parallel machine model (also known as *programming* model, type architecture, conceptual model, or idealized model) is an abstract parallel computer from programmer's viewpoint, analogous to the von Neumann model for sequential computing.
- The abstraction need not imply any structural information, such as the number of processors and interprocessor communication structure, but it should capture implicitly the relative costs of parallel computation.
- Every parallel computer has a native model that closely reflects ist own architecture.

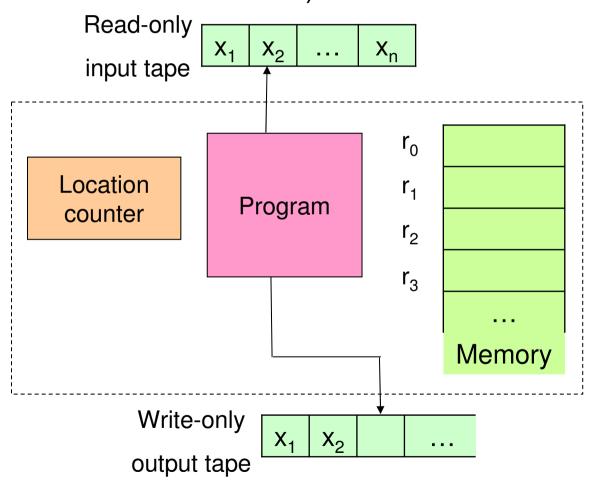
Parallel Computer Models (2)

□ Five semantic attributes

- Homogeneity: how alike the processors of a parallel computer behave
- Synchrony: how tightly synchronised the processes are
- Interaction mechanism: how parallel processes interact
- Address space: the set of memory locations accessible by a process
- Memory model: how to handle shared-memory and access conflict

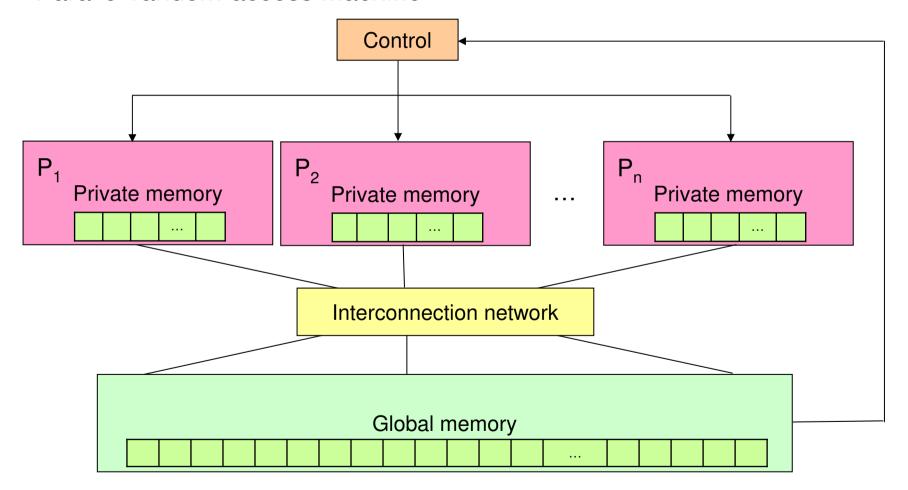
Parallel Computer Models (3)

- Several performance attributes
 - Machine size: number of processors
 - Clock rate: speed of processors (MHz)
 - Workload: number of computation operations (Mflop)
 - Speedup, efficiency, utilization
 - Startup time



Abstract Machine Models

- An abstract machine model is mainly used in the design and analysis of parallel algorithms without worry about the details of physics machines.
- □ Three abstract machine models:
 - PRAM
 - BSP
 - Phase Parallel



□ RAM (random access machine)

□ Parallel random-access machine

- A control unit
- An unbounded set of processors, each with its own private memory and an unique index
- Input stored in global memory or a single active processing element
- □ Step: (1) read a value from a single private/global memory location
 - (2) perform a RAM operation
 - (3) write into a single private/global memory location
- During a computation step: a processor may activate another processor
- All active, enabled processors must execute the same instruction (albeit on different memory location)
- Computation terminates when the last processor halts

□ Definition:

The **cost** of a PRAM computation is the product of the parallel time complexity and the number of processors used.

Ex: a PRAM algorithm that has time complexity O(log **p**) using **p** processors has cost O(**p** log **p**)

Time Complexity Problem

- □ Time complexity of a PRAM algorithm is often expressed in the big-O notation
- Machine size n is usually small in existing parallel computers
- □ Ex:
 - Three PRAM algorithms A, B and C have time complexities if 7n, $(n \log n)/4$, $n \log \log n$.
 - Big-O notation: $A(O(n)) < C(O(n \log \log n)) < B(O(n \log n))$
 - Machines with no more than 1024 processors: $\log n \le \log 1024 = 10$ and $\log \log n \le \log \log 1024 < 4$ and thus: B < C < A

Conflicts Resolution Schemes (1)

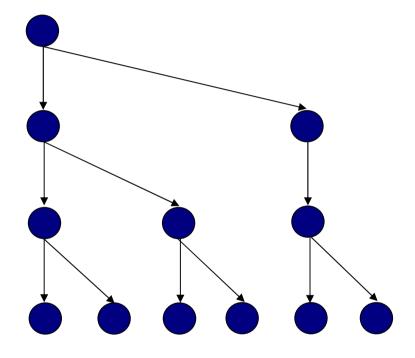
- □ PRAM execution can result in simultaneous access to the same location in shared memory.
 - Exclusive Read (ER)
 - » No two processors can simultaneously read the same memory location.
 - Exclusive Write (EW)
 - » No two processors can simultaneously write to the same memory location.
 - Concurrent Read (CR)
 - » Processors can simultaneously read the same memory location.
 - Concurrent Write (CW)
 - » Processors can simultaneously write to the same memory location, using some conflict resolution scheme.

Conflicts Resolution Schemes(2)

Common/Identical CRCW

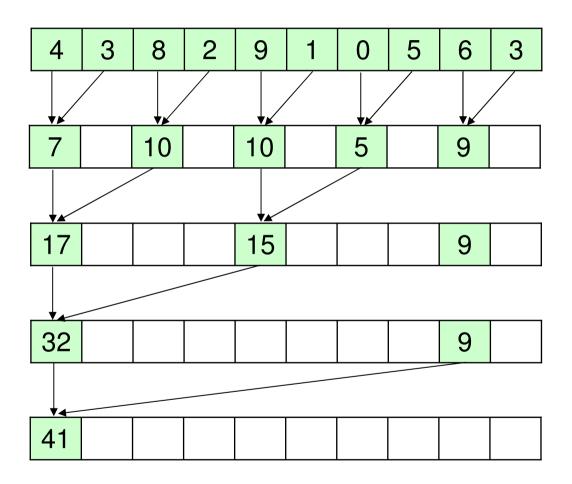
- All processors writing to the same memory location must be writing the same value.
- The software must ensure that different values are not attempted to be written.

Arbitrary CRCW


 Different values may be written to the same memory location, and an arbitrary one succeeds.

Priority CRCW

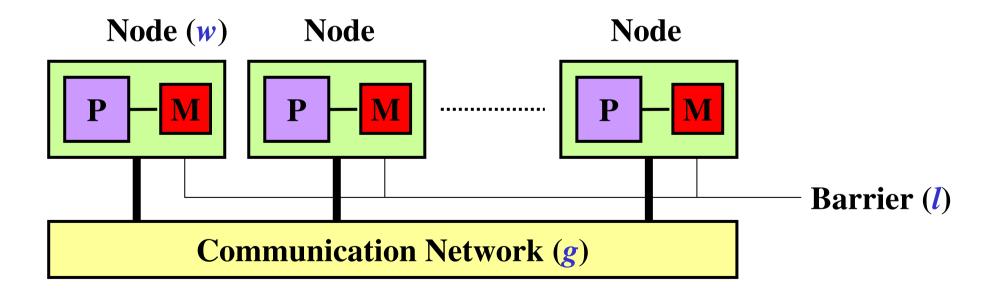
- An index is associated with the processors and when more than one processor write occurs, the lowest-numbered processor succeeds.
- The hardware must resolve any conflicts



- Begin with a single active processor active
- □ Two phases:
 - A sufficient number of processors are activated
 - These activated processors perform the computation in parallel
- $\square \lceil \log p \rceil$ activation steps: p processors to become active
- The number of active processors can be double by executing a single instruction

Parallel Reduction (1)

Parallel Reduction (2)


```
(EREW PRAM Algorithm in Figure 2-7, page 32, book [1])
         SUM(EREW)
Ex:
          Initial condition: List of n \ge 1 elements stored in A[0..(n-1)]
          Final condition: Sum of elements stored in A[0]
          Global variables: n, A[0..(n-1)], j
          begin
                    spawn (P_0, P_1, ..., P_{n/2})
                    for all P_i where 0 \le i \le \lfloor n/2 \rfloor -1 do
                              for j \leftarrow 0 to \lceil \log n \rceil - 1 do
                                         if i modulo 2^{i} = 0 and 2^{i} + 2^{j} < n the
                                                   A[2i] \leftarrow A[2i] + A[2i+2j]
                                         endif
                              endfor
                    endfor
          end
```

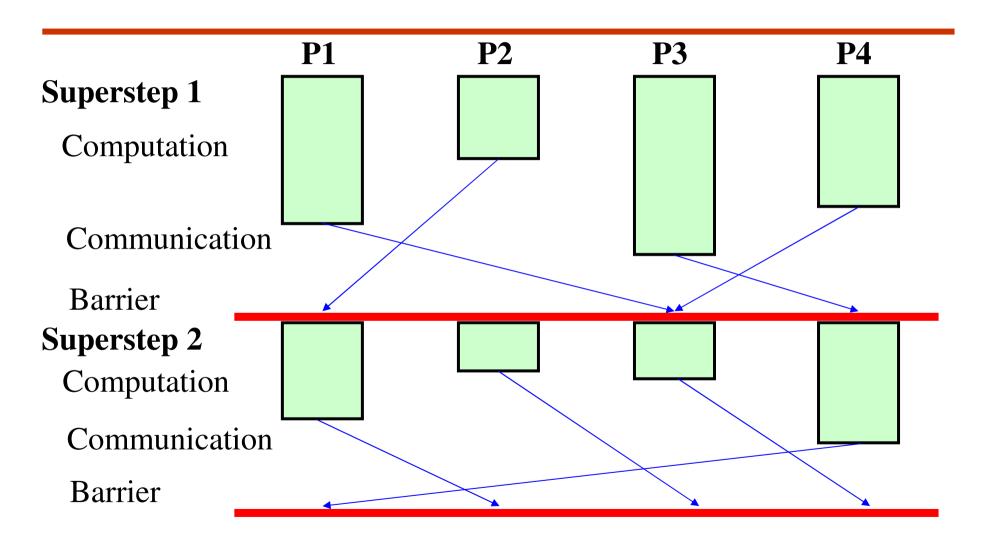

BSP – Bulk Synchronous Parallel

□ BSP Model

- Proposed by Leslie Valiant of Harvard University
- Developed by W.F.McColl of Oxford University

- □ A set of n nodes (processor/memory pairs)
- Communication Network
 - Point-to-point, message passing (or shared variable)
- Barrier synchronizing facility
 - All or subset
- Distributed memory architecture

□ A BSP program:


- n processes, each residing on a node
- Executing a strict sequence of supersteps
- In each superstep, a process executes:
 - » Computation operations: w cycles
 - » Communication: *gh* cycles
 - » Barrier synchronization: / cycles

Three Parameters

- □ The basic time unit is a cycle (or time step)
- w parameter
 - Maximum computation time within each superstep
 - Computation operation takes at most w cycles.
- g parameter
 - Number of cycles for communication of unit message when all processors are involved in communication - network bandwidth
 - (total number of local operations performed by all processors in one second) / (total number of words delivered by the communication network in one second)
 - h relation coefficient
 - Communication operation takes gh cycles.
- parameter
 - Barrier synchronization takes / cycles.

A Figure of BSP Programs

- □ Execution time of a superstep:
 - Sequence of the computation, the communication, and the synchronization operations: w + gh + I
 - Overlapping the computation, the communication, and the synchronization operations: max{w, gh, l}

- Proposed by Kai Hwang & Zhiwei Xu
- □ Similar to the BSP:
 - A parallel program: sequence of phases
 - Next phase cannot begin until all operations in the current phase have finished
 - Three types of phases:
 - » Parallelism phase: the overhead work involved in process management, such as process creation and grouping for parallel processing
 - » Computation phase: local computation (data are available)
 - » Interaction phase: communication, synchronization or aggregation (e.g., reduction and scan)
- Different computation phases may execute different workloads at different speed.