Distributed System

Prepared by: Thoại Nam

Lectured by: Phạm Trần Vũ

□ Textbook:

Distributed Systems: Concepts and Design, Edition 4, ©
Addison Wesley 2005, by George Coulouris, Jean
Dillimore and Tim Kindberg

- Distributed Systems
- □ Hardware & software
- Transparency
- Scalability
- Distributed OS

Definition of a Distributed System

- □ A distributed system:
 - Multiple connected CPUs working together
 - A collection of independent computers that appears to its users as a single coherent system
- Examples: parallel machines, networked machines

Distributed System Examples: The Internet

Distributed Systems Examples: Intranets

Distributed System Examples: Systems of Portable and Handheld Devices

Computers vs. Web Servers in the Internet

Date	Computers	Web servers	Percentage
1993, July	1,776,000	130	0.008
1995, July	6,642,000	23,500	0.4
1997, July	19,540,000	1,203,096	6
1999, July	56,218,000	6,598,697	12
2001, July	125,888,197	31,299,592	25
		42,298,371	

Potentials and Challenges

Potentials

- Communication and resource sharing possible
- Economics price-performance ratio
- Reliability, scalability
- Potential for incremental growth

Challenges

- Heterogeneity of resources
- Distribution-aware PLs, OSs and applications
- Design of scalable systems
- Network connectivity essential
- Security and privacy
- Failure handling
- Concurrency

Transparency in a Distributed System

Transparency	Description
Access	Hide differences in data representation and how a resource is accessed
Location	Hide where a resource is located
Migration	Hide that a resource may move to another location
Relocation	Hide that a resource may be moved to another location while in use
Replication	Hide that a resource may be shared by several competitive users
Concurrency	Hide that a resource may be shared by several competitive users
Failure	Hide the failure and recovery of a resource
Persistence	Hide whether a (software) resource is in memory or on disk

Different forms of transparency in a distributed system.

Concept	Example	
Centralized services	A single server for all users	
Centralized data	A single on-line telephone book	
Centralized algorithms	Doing routing based on complete information	

Examples of scalability limitations.

Distributed Systems Models

- Minicomputer model
 - Each user has local machine
 - Local processing but can fetch remote data (files, databases)
- Workstation model
 - Processing can also migrate
- Client-server Model
 - User has local workstation
 - Powerful workstations serve as servers (file, print, DB servers)
- Peer-to-Peer
 - No distinction in the roles of servers and clients
- Processor pool model
 - Terminals are Xterms or diskless terminals
 - Pool of backend processors handle processing

Peer-to-Peer Model

Uniprocessor Operating Systems

- □ An OS acts as a resource manager or an arbitrator
 - Manages CPU, I/O devices, memory
- OS provides a virtual interface that is easier to use than hardware
- Structure of uniprocessor operating systems
 - Monolithic (e.g., MS-DOS, early UNIX)
 - » One large kernel that handles everything
 - Layered design
 - » Functionality is decomposed into N layers
 - » Each layer uses services of layer N-1 and implements new service(s) for layer N+1

Uniprocessor Operating Systems

Microkernel architecture

- Small kernel
- user-level servers implement additional functionality

Distributed Operating System

- Manages resources in a distributed system
 - Seamlessly and transparently to the user
- Looks to the user like a centralized OS
 - But operates on multiple independent CPUs
- Provides transparency
 - Location, migration, concurrency, replication,...
- Presents users with a virtual uniprocessor

Types of Distributed OSs

System	Description	Main Goal
DOS	Tightly-coupled operating system for multi-processors and homogeneous multicomputers	Hide and manage hardware resources
NOS	Loosely-coupled operating system for heterogeneous multicomputers (LAN and WAN)	Offer local services to remote clients
Middleware	Additional layer atop of NOS implementing general-purpose services	

Multiprocessor Operating Systems

- □ Like a uniprocessor operating system
- Manages multiple CPUs transparently to the user
- □ Each processor has its own hardware cache
 - Maintain consistency of cached data

Multicomputer Operating Systems

Network Operating System (1)

Network Operating System (2)

- Employs a client-server model
 - Minimal OS kernel
 - Additional functionality as user processes

Middleware-based Systems

General structure of a distributed system as middleware.

Comparison between Systems

Thomas	Distributed OS		Network	Middleware-
Item	Multiproc.	Multicomp.	os	based OS
Degree of transparency	Very High	High	Low	High
Same OS on all nodes	Yes	Yes	No	No
Number of copies of OS	1	N	N	N
Basis for communication	Shared memory	Messages	Files	Model specific
Resource management	Global, central	Global, distributed	Per node	Per node
Scalability	No	Moderately	Yes	Varies
Openness	Closed	Closed	Open	Open