
MapReduce

Nguyen Quang Hung

Objectives

 This slides is used to introduce students about MapReduce

framework: programming model and implementation.

Outline

 Challenges

 Motivation

 Ideas

 Programming model

 Implementation

 Related works

 References

Introduction

 Challenges?

– Applications face with large-scale of data (e.g. multi-terabyte).

» High Energy Physics (HEP) and Astronomy.

» Earth climate weather forecasts.

» Gene databases.

» Index of all Internet web pages (in-house).

» etc

– Easy programming to non-CS scientists (e.g. biologists)

MapReduce

 Motivation: Large scale data processing

– Want to process huge datasets (>1 TB).

– Want to parallelize across hundreds/thousands of CPUs.

– Want to make this easy.

MapReduce: ideas

 Automatic parallel and data distribution

 Fault-tolerant

 Provides status and monitoring tools

 Clean abstraction for programmers

MapReduce: programming model

 Borrows from functional programming

 Users implement interface of two functions: map and

reduce:

 map (k1,v1) list(k2,v2)

 reduce (k2,list(v2)) list(v2)

map() function

 Records from the data source (lines out of files, rows of a

database, etc) are fed into the map function as key*value

pairs: e.g., (filename, line).

 map() produces one or more intermediate values along with

an output key from the input.

reduce() function

 After the map phase is over, all the intermediate values for a

given output key are combined together into a list

 reduce() combines those intermediate values into one or

more final values for that same output key

 (in practice, usually only one final value per key)

Parallelism

 map() functions run in parallel, creating different

intermediate values from different input data sets

 reduce() functions also run in parallel, each working on a

different output key

 All values are processed independently

 Bottleneck: reduce phase can’t start until map phase is

completely finished.

MapReduce: execution flows

Example: word counting

 map(String input_key, String input_doc):

// input_key: document name

// input_doc: document contents

for each word w in input_doc:

EmitIntermediate(w, "1"); // intermediate values

 reduce(String output_key, Iterator
intermediate_values):

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

result += ParseInt(v);

Emit(AsString(result));

 More examples: Distributed Grep, Count of URL access frequency, etc.

Locality

 Master program allocates tasks based on location of data:

tries to have map() tasks on same machine as physical file

data, or at least same rack (cluster rack)

 map() task inputs are divided into 64 MB blocks: same size

as Google File System chunks

Fault tolerance

 Master detects worker failures

– Re-executes completed & in-progress map() tasks

– Re-executes in-progress reduce() tasks

 Master notices particular input key/values cause crashes in

map(), and skips those values on re-execution.

Optimizations (1)

 No reduce can start until map is complete:

– A single slow disk controller can rate-limit the whole process

 Master redundantly executes “slow-moving” map tasks;

uses results of first copy to finish

Why is it safe to redundantly execute map tasks? Wouldn’t this mess up

the total computation?

Optimizations (2)

 “Combiner” functions can run on same machine as a

mapper

 Causes a mini-reduce phase to occur before the real reduce

phase, to save bandwidth

Under what conditions is it sound to use a combiner?

MapReduce: implementations

 Google MapReduce: C/C++

 Hadoop: Java

 Phoenix: C/C++ multithread

 Etc.

Google MapReduce evaluation (1)

 Cluster: approximately 1800 machines.

 Each machine: 2x2GHz Intel Xeon processors with Hyper-

Threading enabled, 4GB of memory, two 160GB IDE disks

and a gigabit Ethernet link.

 Network of cluster:

– Two-level tree-shaped switched network with approximately 100-200

Gbps of aggregate bandwidth available at the root.

– Round-trip time any pair of machines: < 1 msec.

Google MapReduce evaluation (2)

Data transfer rates over time for different executions of the sort program

(J.Dean and S.Ghemawat shows in their paper [1, page 9])

Google MapReduce evaluation (3)

J.Dean and S.Ghemawat shows in theirs paper [1]

Related works

 Bulk Synchronous Programming [6]

 MPI primitives [4]

 Condor [5]

 SAGA-MapReduce [8]

 CGL-MapReduce [7]

SAGA-MapReduce

High-level control flow diagram for SAGA-MapReduce. SAGA uses a

master-worker paradigm to implement the MapReduce pattern. The

diagram shows that there are several different infrastructure options to a

SAGA based application [8]

CGL-MapReduce

Components of the CGL-MapReduce , extracted from [8]

CGL-MapReduce: sample

applications

MapReduce for HEP MapReduce for Kmeans

CGL-MapReduce: evaluation

HEP data analysis, execution

time vs. the volume of data

(fixed compute resources)

Total Kmeans time against the

number of data points (Both

axes are in log scale)

J.Ekanayake, S.Pallickara, and G.Fox show in their paper [7]

Hadoop vs. CGL-MapReduce

Total time vs. the number of

compute nodes (fixed data)
Speedup for 100GB of HEP data

J.Ekanayake, S.Pallickara, and G.Fox show in their paper [7]

Hadoop vs. SAGA-MapReduce

C.Miceli, M.Miceli, S. Jha, H. Kaiser, A. Merzky show in [8]

Exercise

 Write again “word counting” program by using Hadoop

framework.

– Input: text files

– Result: show number of words in these inputs files

Conclusions

 MapReduce has proven to be a useful abstraction

 Simplifies large-scale computations on cluster of commodity
PCs

 Functional programming paradigm can be applied to large-
scale applications

 Focus on problem, let library deal w/ messy details

References

1. Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplied Data Processing on Large
Clusters, 2004

2. Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet, Distributed Computing
Seminar, Lecture 2: MapReduce Theory and Implementation, Summer 2007, © Copyright
2007 University of Washington and licensed under the Creative Commons Attribution 2.5
License.

3. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system. In 19th
Symposium on Operating Systems Principles, pages 29.43, Lake George, New York, 2003.

4. William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. MIT Press, Cambridge, MA, 1999.

5. Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in practice:
The Condor experience. Concurrency and Computation: Practice and Experience, 2004.

6. L. G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103.111, 1997.

7. Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox, MapReduce for Data Intensive
Scientific Analyses,

8. Chris Miceli12, Michael Miceli12, Shantenu Jha123, Hartmut Kaiser1, Andre Merzky,
Programming Abstractions for Data Intensive Computing on Clouds and Grids.

