
MapReduce

Nguyen Quang Hung



Objectives

 This slides is used to introduce students about MapReduce 

framework: programming model and implementation.
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Introduction

 Challenges?

– Applications face with large-scale of data (e.g. multi-terabyte).

» High Energy Physics (HEP) and Astronomy.

» Earth climate weather forecasts. 

» Gene databases.

» Index of all Internet web pages (in-house).

» etc

– Easy programming to non-CS scientists (e.g. biologists)



MapReduce

 Motivation: Large scale data processing

– Want to process huge datasets (>1 TB).

– Want to parallelize across hundreds/thousands of CPUs. 

– Want to make this easy. 



MapReduce: ideas

 Automatic parallel and data distribution

 Fault-tolerant

 Provides status and monitoring tools

 Clean abstraction for programmers



MapReduce: programming model

 Borrows from functional programming

 Users implement interface of two functions: map and 

reduce:

 map (k1,v1)  list(k2,v2)

 reduce (k2,list(v2))  list(v2)



map() function

 Records from the data source (lines out of files, rows of a 

database, etc) are fed into the map function as key*value 

pairs: e.g., (filename, line).

 map() produces one or more intermediate values along with 

an output key from the input.



reduce() function

 After the map phase is over, all the intermediate values for a 

given output key are combined together into a list

 reduce() combines those intermediate values into one or 

more final values for that same output key

 (in practice, usually only one final value per key)



Parallelism

 map() functions run in parallel, creating different 

intermediate values from different input data sets

 reduce() functions also run in parallel, each working on a 

different output key

 All values are processed independently

 Bottleneck: reduce phase can’t start until map phase is 

completely finished.



MapReduce: execution flows



Example: word counting

 map(String input_key, String input_doc):

// input_key: document name 

// input_doc: document contents 

for each word w in input_doc: 

EmitIntermediate(w, "1"); // intermediate values 

 reduce(String output_key, Iterator
intermediate_values): 

// output_key: a word 

// output_values: a list of counts 

int result = 0; 

for each v in intermediate_values: 

result += ParseInt(v);

Emit(AsString(result)); 

 More examples: Distributed Grep, Count of URL access frequency, etc. 



Locality

 Master program allocates tasks based on location of data: 

tries to have map() tasks on same machine as physical file 

data, or at least same rack (cluster rack)

 map() task inputs are divided into 64 MB blocks: same size 

as Google File System chunks



Fault tolerance

 Master detects worker failures

– Re-executes completed & in-progress map() tasks

– Re-executes in-progress reduce() tasks

 Master notices particular input key/values cause crashes in 

map(), and skips those values on re-execution.



Optimizations (1)

 No reduce can start until map is complete:

– A single slow disk controller can rate-limit the whole process

 Master redundantly executes “slow-moving” map tasks; 

uses results of first copy to finish

Why is it safe to redundantly execute map tasks? Wouldn’t this mess up 

the total computation?



Optimizations (2)

 “Combiner” functions can run on same machine as a 

mapper

 Causes a mini-reduce phase to occur before the real reduce 

phase, to save bandwidth

Under what conditions is it sound to use a combiner?



MapReduce: implementations

 Google MapReduce: C/C++

 Hadoop: Java

 Phoenix: C/C++ multithread

 Etc.



Google MapReduce evaluation (1)

 Cluster: approximately 1800 machines. 

 Each machine: 2x2GHz Intel Xeon processors with Hyper-

Threading enabled, 4GB of memory, two 160GB IDE disks 

and a gigabit Ethernet link. 

 Network of cluster: 

– Two-level tree-shaped switched network with approximately 100-200 

Gbps of aggregate bandwidth available at the root. 

– Round-trip time any pair of machines: < 1 msec.



Google MapReduce evaluation (2)

Data transfer rates over time for different executions of the sort program 

(J.Dean and S.Ghemawat shows in their paper [1, page 9])



Google MapReduce evaluation (3)

J.Dean and S.Ghemawat shows in theirs paper [1]



Related works

 Bulk Synchronous Programming [6]

 MPI primitives [4]

 Condor [5]

 SAGA-MapReduce [8]

 CGL-MapReduce [7]



SAGA-MapReduce

High-level control flow diagram for SAGA-MapReduce. SAGA uses a 

master-worker paradigm to implement the MapReduce pattern. The 

diagram shows that there are several different infrastructure options to a 

SAGA based application [8]



CGL-MapReduce

Components of the CGL-MapReduce , extracted from [8]



CGL-MapReduce: sample 

applications

MapReduce for HEP MapReduce for Kmeans 



CGL-MapReduce: evaluation

HEP data analysis, execution 

time vs. the volume of data 

(fixed compute resources) 

Total Kmeans time against the 

number of data points (Both 

axes are in log scale) 

J.Ekanayake, S.Pallickara, and G.Fox show in their paper [7]



Hadoop vs. CGL-MapReduce

Total time vs. the number of 

compute nodes (fixed data) 
Speedup for 100GB of HEP data 

J.Ekanayake, S.Pallickara, and G.Fox show in their paper [7]



Hadoop vs. SAGA-MapReduce

C.Miceli, M.Miceli, S. Jha, H. Kaiser, A. Merzky show in [8]



Exercise

 Write again “word counting” program by using Hadoop 

framework.

– Input: text files

– Result: show number of words in these inputs files



Conclusions

 MapReduce has proven to be a useful abstraction 

 Simplifies large-scale computations on cluster of commodity 
PCs

 Functional programming paradigm can be applied to large-
scale applications

 Focus on problem, let library deal w/ messy details
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