
Assignment

Solving System of Linear Equations

Using MPI

Phạm Trần Vũ

-2-

Assignment (1)

 Develop an MPI program to solve system of linear equations

using MPI

 Requirements:

– The program must be able to solve various systems with different

numbers of variables

– Parallelization strategy must be able to run on different numbers of

processors

 Due date: 31 May 2010

-3-

Assignment 1 (2)

 Submission:

– Report on:

» parallelization strategy used in program

» Theoretical speed up of the strategy used in program (ignore the

cost of message passing)

» Practical speed up measured by experiments on the MPI

program and the sequential version

» Calculation of theoretical and practical efficiency

– Source code of the program

– Demonstration of the program in the lab

-4-

System of Linear Equations

 A general linear system of m equations and n unknown variables

 Usually expressed as Ax = b, where

 We are interested in systems with n equations and n unknown variables

(m=n)

-5-

Solving Systems of Linear Equations

 Solution of a linear system is a assignment of values to

variables x1, x2, …, xn that satisfies the system

 Two classes of methods for solving linear systems

– Direct

» Backward substitutions

» Gaussian elimination algorithm

– Indirect

» By approximation

» Jacobi algorithm

-6-

Backward Substitution

 Used to solve the system Ax = b where A is a upper

triangular matrix

 Example

1x1 + 1x2 – 1x3 + 4x4 = 8

–2x2 – 3x3 + 1x4 = 5

2x3 – 3x4 = 0

2x4 = 4

 The time to solve a linear system using backward

substitution is O(n2)

-7-

Backward Substitution Algorithm

n: size of system

a[1..n][1..n]: matrix A

b[1..n]: vector b

x[1..n]: vector x

begin

for i = n down to 1 do

x[i] = b[i]/a[i][i]

for j = 1 to i – 1 do

b[j] = b[j] – x[i]*a[j][i]

end for

end for

end

-8-

Parallelizing Backward

Substitution(1)

1x1 + 1x2 – 1x3 + 4x4 = 8

–2x2 – 3x3 + 1x4 = 5

2x3 – 3x4 = 0

2x4 = 4

begin

for i = n down to 1 do

x[i] = b[i]/a[i][i]

for j = 1 to i – 1 do

b[j] = b[j] – x[i]*a[j][i]

end for

end for

end

-9-

Parallelizing Backward

Substitution(2)

 A processor can be assigned with a number of equations

 Once a variable is solved, it is broadcasted to other

processors to calculate unsolved variables

 A good parallelization strategy is the one that can divide the

load on each processor equally and reduce the overhead of

message passing

-10-

Gaussian Elimination (1)

 Reduce a general Ax = b system to Tx = c system, where T

is an upper triangular matrix

 Using principle: a row can be replaced by the sum of that

row an a none zero multiple of any row of the system

 The selected row for multiplication is call pivot row

 Then, apply Backward substitution algorithm to solve the

system

 Example:

-11-

Gaussian Elimination (2)

 Original system

 Step 1

 Step 2

-12-

Gaussian Elimination (3)

 Complexity of Gaussian Elimination is O(n3)

 To have good numerical stability, partial pivoting is used

– At step i (drive to zero all nonezero values of column i of rows below

row i).

– Select the row from row i upward that has the largest absolute value

at column i

– Swap selected row with row i

-13-

Gaussian Elimination Sequential

Algorithm

i := 1

j := 1

while (i ≤ n and j ≤ n) do

Find pivot in column j, starting in row i:

maxi := i

for k := i+1 to n do

if abs(A[k,j]) > abs(A[maxi,j]) then

maxi := k

end if

end for

if A[maxi,j] ≠ 0 then

swap rows i and maxi, but do not change the value of i

divide each entry in row i by A[i,j]

for u := i+1 to n do

subtract A[u,j] * row i from row u

end for

i := i + 1

end if

j := j + 1

end while

-14-

Parallelize Gaussian Elimination

 Each processor can be assigned with a number of rows of

the system

 If partial pivoting is used

– The selection of pivoting row has to be done across processors

– The pivot row needs to be broadcasted to all other processors

 Assignment of rows to processors should be done in a way

that backward substitution algorithm can be used straight

away without re-allocating the work

-15-

Jacobi Algorithm

 An iterative method by estimating the values of
variables after a number of iterations

 At iterative t + 1, variable xi is estimated by the
following equation

 Stop iterating when the greatest difference of
newly estimated values of variables and the old
values is smaller than some threshold

 If the calculation does not converge, there is no
solution found

))((
1

)1(,

,

txab
a

tx
ji

ijii

ii

i

-16-

Sequential Implementation of Jacobi

Algorithm (1)

 Input

n: size of the system

epsilon: convergence threshold

a[1..n][1..n]: matrix A

b[1..n]: vector b

 Output

x[1..n]: old estimate of solution vector

newx[1..n]: new estimate of solution vector

diff: maximum difference after one iteration

-17-

Sequential Implementation of Jacobi

Algorithm (2)

begin

for i=1 to n do

x[i] = b[i]/a[i][i] //initial estimation

end for

do

diff = 0

for i=1 to n do

newx[i] = b[i]

for j =1 to n do

if j !=i then

newx[i] = new[i] – a[i][j]*x[j]

end if

end for

newx[i] = newx[i]/a[i][i]

end for

for i=1 to n do

diff = max(diff, abs(x[i] – newx[i])

x[i] = newx[i]

end for

while diff > epsilon

end

-18-

Parallelize Jacobi Algorithm

 Each processor can be assigned with a number of variables

for estimation

 After each iteration, newly estimated values need to be

broadcasted to all processors

-19-

Conclusion

 For the assignment, either of direct or iterative methods can

be implemented

 Corresponding sequential algorithm has to be implemented

to calculate speed up and efficiency

 Read Chapter 9: Solving Linear Systems of “Parallel

Computing: Theory and Practice” of Michael J. Quinn for

more detail

