
Assignment

Solving System of Linear Equations

Using MPI

Phạm Trần Vũ

-2-

Assignment (1)

 Develop an MPI program to solve system of linear equations

using MPI

 Requirements:

– The program must be able to solve various systems with different

numbers of variables

– Parallelization strategy must be able to run on different numbers of

processors

 Due date: 31 May 2010

-3-

Assignment 1 (2)

 Submission:

– Report on:

» parallelization strategy used in program

» Theoretical speed up of the strategy used in program (ignore the

cost of message passing)

» Practical speed up measured by experiments on the MPI

program and the sequential version

» Calculation of theoretical and practical efficiency

– Source code of the program

– Demonstration of the program in the lab

-4-

System of Linear Equations

 A general linear system of m equations and n unknown variables

 Usually expressed as Ax = b, where

 We are interested in systems with n equations and n unknown variables

(m=n)

-5-

Solving Systems of Linear Equations

 Solution of a linear system is a assignment of values to

variables x1, x2, …, xn that satisfies the system

 Two classes of methods for solving linear systems

– Direct

» Backward substitutions

» Gaussian elimination algorithm

– Indirect

» By approximation

» Jacobi algorithm

-6-

Backward Substitution

 Used to solve the system Ax = b where A is a upper

triangular matrix

 Example

1x1 + 1x2 – 1x3 + 4x4 = 8

–2x2 – 3x3 + 1x4 = 5

2x3 – 3x4 = 0

2x4 = 4

 The time to solve a linear system using backward

substitution is O(n2)

-7-

Backward Substitution Algorithm

n: size of system

a[1..n][1..n]: matrix A

b[1..n]: vector b

x[1..n]: vector x

begin

for i = n down to 1 do

x[i] = b[i]/a[i][i]

for j = 1 to i – 1 do

b[j] = b[j] – x[i]*a[j][i]

end for

end for

end

-8-

Parallelizing Backward

Substitution(1)

1x1 + 1x2 – 1x3 + 4x4 = 8

–2x2 – 3x3 + 1x4 = 5

2x3 – 3x4 = 0

2x4 = 4

begin

for i = n down to 1 do

x[i] = b[i]/a[i][i]

for j = 1 to i – 1 do

b[j] = b[j] – x[i]*a[j][i]

end for

end for

end

-9-

Parallelizing Backward

Substitution(2)

 A processor can be assigned with a number of equations

 Once a variable is solved, it is broadcasted to other

processors to calculate unsolved variables

 A good parallelization strategy is the one that can divide the

load on each processor equally and reduce the overhead of

message passing

-10-

Gaussian Elimination (1)

 Reduce a general Ax = b system to Tx = c system, where T

is an upper triangular matrix

 Using principle: a row can be replaced by the sum of that

row an a none zero multiple of any row of the system

 The selected row for multiplication is call pivot row

 Then, apply Backward substitution algorithm to solve the

system

 Example:

-11-

Gaussian Elimination (2)

 Original system

 Step 1

 Step 2

-12-

Gaussian Elimination (3)

 Complexity of Gaussian Elimination is O(n3)

 To have good numerical stability, partial pivoting is used

– At step i (drive to zero all nonezero values of column i of rows below

row i).

– Select the row from row i upward that has the largest absolute value

at column i

– Swap selected row with row i

-13-

Gaussian Elimination Sequential

Algorithm

i := 1

j := 1

while (i ≤ n and j ≤ n) do

Find pivot in column j, starting in row i:

maxi := i

for k := i+1 to n do

if abs(A[k,j]) > abs(A[maxi,j]) then

maxi := k

end if

end for

if A[maxi,j] ≠ 0 then

swap rows i and maxi, but do not change the value of i

divide each entry in row i by A[i,j]

for u := i+1 to n do

subtract A[u,j] * row i from row u

end for

i := i + 1

end if

j := j + 1

end while

-14-

Parallelize Gaussian Elimination

 Each processor can be assigned with a number of rows of

the system

 If partial pivoting is used

– The selection of pivoting row has to be done across processors

– The pivot row needs to be broadcasted to all other processors

 Assignment of rows to processors should be done in a way

that backward substitution algorithm can be used straight

away without re-allocating the work

-15-

Jacobi Algorithm

 An iterative method by estimating the values of
variables after a number of iterations

 At iterative t + 1, variable xi is estimated by the
following equation

 Stop iterating when the greatest difference of
newly estimated values of variables and the old
values is smaller than some threshold

 If the calculation does not converge, there is no
solution found

))((
1

)1(,

,

txab
a

tx
ji

ijii

ii

i 




-16-

Sequential Implementation of Jacobi

Algorithm (1)

 Input

n: size of the system

epsilon: convergence threshold

a[1..n][1..n]: matrix A

b[1..n]: vector b

 Output

x[1..n]: old estimate of solution vector

newx[1..n]: new estimate of solution vector

diff: maximum difference after one iteration

-17-

Sequential Implementation of Jacobi

Algorithm (2)

begin

for i=1 to n do

x[i] = b[i]/a[i][i] //initial estimation

end for

do

diff = 0

for i=1 to n do

newx[i] = b[i]

for j =1 to n do

if j !=i then

newx[i] = new[i] – a[i][j]*x[j]

end if

end for

newx[i] = newx[i]/a[i][i]

end for

for i=1 to n do

diff = max(diff, abs(x[i] – newx[i])

x[i] = newx[i]

end for

while diff > epsilon

end

-18-

Parallelize Jacobi Algorithm

 Each processor can be assigned with a number of variables

for estimation

 After each iteration, newly estimated values need to be

broadcasted to all processors

-19-

Conclusion

 For the assignment, either of direct or iterative methods can

be implemented

 Corresponding sequential algorithm has to be implemented

to calculate speed up and efficiency

 Read Chapter 9: Solving Linear Systems of “Parallel

Computing: Theory and Practice” of Michael J. Quinn for

more detail

