Assignment Solving System of Linear Equations Using MPI

Phạm Trần Vũ

Assignment (1)

- Develop an MPI program to solve system of linear equations using MPI
- Requirements:
- The program must be able to solve various systems with different numbers of variables
- Parallelization strategy must be able to run on different numbers of processors
- Due date: 31 May 2010

Assignment 1 (2)

- Submission:
- Report on:
, parallelization strategy used in program
" Theoretical speed up of the strategy used in program (ignore the cost of message passing)
, Practical speed up measured by experiments on the MPI program and the sequential version
, Calculation of theoretical and practical efficiency
- Source code of the program
- Demonstration of the program in the lab

System of Linear Equations

- A general linear system of m equations and n unknown variables

$$
\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+ & a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\vdots & \vdots & \vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}
$$

- Usually expressed as $\mathrm{Ax}=\mathrm{b}$, where

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right], \quad \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

- We are interested in systems with n equations and n unknown variables ($\mathrm{m}=\mathrm{n}$)

Solving Systems of Linear Equations

- Solution of a linear system is a assignment of values to variables $x_{1}, x_{2}, \ldots, x_{n}$ that satisfies the system
- Two classes of methods for solving linear systems
- Direct
, Backward substitutions
„ Gaussian elimination algorithm
- Indirect
, By approximation
, Jacobi algorithm

Backward Substitution

- Used to solve the system $A x=b$ where A is a upper triangular matrix
- Example

$$
\begin{array}{r}
1 x_{1}+1 x_{2}-1 x_{3}+4 x_{4}=8 \\
-2 x_{2}-3 x_{3}+1 x_{4}=5 \\
2 x_{3}-3 x_{4}=0 \\
2 x_{4}=4
\end{array}
$$

- The time to solve a linear system using backward substitution is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

Backward Substitution Algorithm

n : size of system
a[1..n][1..n]: matrix A
b[1..n]: vector b
x[1..n]: vector x

```
begin
    for i= n down to 1 do
        x[i] = b[i]/a[i][i]
        for j = 1 to i-1 do
            b[j] = b[j] - x[i]*a[j][i]
        end for
    end for
end
```


Parallelizing Backward Substitution(1)

$$
\begin{aligned}
& \begin{array}{r}
1 x_{1}+1 x_{2}-1 x_{3}+4 x_{4}=8 \\
-2 x_{2}-3 x_{3}+1 x_{4}=5 \\
2 x_{3}-3 x_{4}=0 \\
2 x_{4}=4
\end{array} \\
& \text { begin } \\
& \text { for } \mathrm{i}=\mathrm{n} \text { down to } 1 \text { do } \\
& x[i]=b[i] / a[i][i] \\
& \text { for } j=1 \text { to } i-1 \text { do } \\
& b[j]=b[j]-x[i]^{*} a[j][i] \\
& \text { end for } \\
& \text { end for } \\
& \text { end }
\end{aligned}
$$

Parallelizing Backward Substitution(2)

- A processor can be assigned with a number of equations
- Once a variable is solved, it is broadcasted to other processors to calculate unsolved variables
- A good parallelization strategy is the one that can divide the load on each processor equally and reduce the overhead of message passing

Gaussian Elimination (1)

- Reduce a general $\mathrm{Ax}=\mathrm{b}$ system to $\mathrm{T} x=\mathrm{c}$ system, where T is an upper triangular matrix
- Using principle: a row can be replaced by the sum of that row an a none zero multiple of any row of the system
- The selected row for multiplication is call pivot row
- Then, apply Backward substitution algorithm to solve the system
- Example:

$$
\left\{\begin{aligned}
& x_{1}+2 x_{2}+2 x_{3}=2 L_{1} \\
& x_{1}+3 x_{2}-2 x_{3}=-1 \\
& L_{2} \\
& 3 x_{1}+5 x_{2}+8 x_{3}=8 L_{3}
\end{aligned}\right.
$$

Gaussian Elimination (2)

- Original system
- Step 1

$$
\left\{\begin{aligned}
& x_{1}+2 x_{2}+2 x_{3}=2 \\
& L_{1} \\
& x_{1}+3 x_{2}-2 x_{3}=-1 \\
& 3 x_{1}+5 x_{2}+8 x_{3}=8 \\
& L_{3}
\end{aligned}\right.
$$

$$
\left\{\begin{aligned}
& x_{1}+2 x_{2}+2 x_{3}=2 \quad L_{1} \\
& x_{2}-4 x_{3}=-3 \\
&-L_{2} \leftarrow L_{2}-L_{1} \\
&-x_{2}+2 x_{3}=2 \quad L_{3} \leftarrow L_{3}-3 L_{1}
\end{aligned}\right.
$$

- Step 2

$$
\left\{\begin{array}{rl}
x_{1}+2 x_{2}+2 x_{3} & =2 \\
L_{1} \\
x_{2} & -4 x_{3}
\end{array}=-3 L_{2} .\right.
$$

Gaussian Elimination (3)

- Complexity of Gaussian Elimination is $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- To have good numerical stability, partial pivoting is used
- At step i (drive to zero all nonezero values of column i of rows below row i).
- Select the row from row i upward that has the largest absolute value at column i
- Swap selected row with row i

Gaussian Elimination Sequential Algorithm

```
i := 1
j := 1
while (i\leqn and j \leq n) do
    Find pivot in column j, starting in row i:
    maxi := i
        for k := i+1 to n do
        if abs(A[k,j]) > abs(A[maxi,j]) then
            maxi := k
        end if
    end for
    if A[maxi,j] = 0 then
        swap rows i and maxi, but do not change the value of i
        divide each entry in row i by A[i,j]
        for u := i+1 to n do
            subtract A[u,j] * row i from row u
        end for
        i := i + 1
    end if
    j := j + 1
end while
```


Parallelize Gaussian Elimination

- Each processor can be assigned with a number of rows of the system
- If partial pivoting is used
- The selection of pivoting row has to be done across processors
- The pivot row needs to be broadcasted to all other processors
- Assignment of rows to processors should be done in a way that backward substitution algorithm can be used straight away without re-allocating the work

BK
 Jacobi Algorithm

- An iterative method by estimating the values of variables after a number of iterations
- At iterative $t+1$, variable x_{i} is estimated by the following equation

$$
x_{i}(t+1)=\frac{1}{a_{i, i}}\left(b_{i}-\sum_{i \neq j} a_{i, j} x_{i}(t)\right)
$$

\square Stop iterating when the greatest difference of newly estimated values of variables and the old values is smaller than some threshold

- If the calculation does not converge, there is no solution found

Sequential Implementation of Jacobi Algorithm (1)

- Input
n : size of the system
epsilon: convergence threshold
a[1..n][1..n]: matrix A
b[1..n]: vector b
- Output
x[1..n]: old estimate of solution vector
newx[1..n]: new estimate of solution vector diff: maximum difference after one iteration

Sequential Implementation of Jacobi Algorithm (2)

```
begin
for i=1 to n do
    x[i] = b[i]/a[i][i] //initial estimation
end for
do
diff = 0
for i=1 to n do
            newx[i] = b[i]
            for j=1 to n do
                    if j !=i then
                        newx[i] = new[i] -a[i][j]*x[j]
                    end if
            end for
            newx[i] = newx[i]/a[i][i]
            end for
            for i=1 to n do
            diff = max(diff, abs(x[i] - newx[i])
            x[i] = newx[i]
            end for
while diff > epsilon
end
```


Parallelize Jacobi Algorithm

- Each processor can be assigned with a number of variables for estimation
- After each iteration, newly estimated values need to be broadcasted to all processors

Conclusion

- For the assignment, either of direct or iterative methods can be implemented
- Corresponding sequential algorithm has to be implemented to calculate speed up and efficiency
- Read Chapter 9: Solving Linear Systems of "Parallel Computing: Theory and Practice" of Michael J. Quinn for more detail

