Assignment
Solving System of Linear Equations
Using MPI

Pham Tran Vi

Assignment (1)

0 Develop an MPI program to solve system of linear equations
using MPI

0 Requirements:

— The program must be able to solve various systems with different
numbers of variables

— Parallelization strategy must be able to run on different numbers of
Processors

a Due date: 31 May 2010

Assignment 1 (2)

O Submission:
— Report on:
, parallelization strategy used in program

, Theoretical speed up of the strategy used in program (ignore the
cost of message passing)

, Practical speed up measured by experiments on the MPI
program and the sequential version

, Calculation of theoretical and practical efficiency
— Source code of the program
— Demonstration of the program in the lab

System of Linear Equations

0 A general linear system of m equations and n unknown variables

a1y + aprs +--+ i, = by
(31X, + AaaTs + -+ -+ Aoy = bo
(LT | (2 L2 | e | Andn = r!:-i:r'.r.t

0 Usually expressed as Ax = b, where

S T £ 5 5 B 4 5 P I '51

flgy dgp -+ gy I '52
A= . X = . b=

(1 (fn2 e nn Ly E-'i':m.

o We are interested in systems with n equations and n unknown variables
(m=n)

- - .]
Solving Systems of Linear Equations

a Solution of a linear system is a assignment of values to
variables x,, Xx,, ..., X, that satisfies the system

a Two classes of methods for solving linear systems
— Direct
, Backward substitutions
, Gaussian elimination algorithm
— Indirect
, By approximation
,Jacobi algorithm

Backward Substitution

0 Used to solve the system Ax = b where A is a upper
triangular matrix

o Example
X, + X, — 1X3 + 4%, =8
—2X, —3X3 + 1X, =5
2X3—3X,=0
2X, =4

a The time to solve a linear system using backward
substitution is O(n?)

Backward Substitution Algorithm

n: size of system
a[l..n][1..n]: matrix A
b[1..n]: vector b
X[1..n]: vector X

begin
fori=ndownto 1l do
X[i] = b[i)/a[i][i]
forj=1toi—1do
b[j] = b{j] — x[i*af][i]
end for
end for
end

Parallelizing Backward
- Substitution(1)

X, + 1X, — IX; + 4%, =8
—2X, —3Xg + 1x, =5
2X3— 3%, =0

2X, =4

begin
fori=ndownto 1l do
X[i] = b[i)/a[i][i]
forj=1toi—1do
blj] = b{j] — x[i]*af][i]
end for
end for
end

Parallelizing Backward
- Substitution(2)

a A processor can be assigned with a number of equations

a Once a variable is solved, it is broadcasted to other
processors to calculate unsolved variables

a A good parallelization strategy is the one that can divide the

load on each processor equally and reduce the overhead of
message passing

Gaussian Elimination (1)

0 Reduce a general Ax = b system to Tx = ¢ system, where T

IS an upper triangular matrix

a Using principle: a row can be replaced by the sum of that
row an a none zero multiple of any row of the system

a The selected row for multiplication is call pivot row
a Then, apply Backward substitution algorithm to solve the

system
o Example:

—
-4

R
Ty
SEAEY
b b b

]
-4

-10-

Gaussian Elimination (2)

a Original system

f ; . -
ry, + 2ry 4+ 2irg 2 Ly
{ © + Jdrg — 2 -1 L
| 3.]"1 T "l:'l-rg T E'rﬂ 8 !'3
o Stepl
[[+ 2-1":3 L 2!".} 2 "'I
{ Ty — lr; -3 -"-:3‘_’(-"_;1
! —ra -t Eur.} E "':ii_!i_iajl
a Step 2
ry + 2xy, + 24 2 Iy
T_E - 'lmrl’j _3 I.!
— E__[‘j —I I.;g — I-:! L f"ﬂ

-11-

Gaussian Elimination (3)

0 Complexity of Gaussian Elimination is O(n3)

0 To have good numerical stability, partial pivoting is used

— At step i (drive to zero all nonezero values of column i of rows below
row i).

— Select the row from row i upward that has the largest absolute value
at columnii

— Swap selected row with row |

-12-

Gaussian Elimination Sequential
23 Algorithm

=1
j=1
while (i < nandj < n) do
Find pivot in column j, starting in row i:
maxi ;=i
fork :=i+l1tondo
if abs(A[k,j]) > abs(A[maxi,j]) then
maxi := k
end if
end for
if Al[maxi,j] # 0 then
swap rows i and maxi, but do not change the value of i
divide each entry in row i by A[i,j]
foru:=i+ltondo
subtract A[u,j] * row i from row u
end for
=1+ 1
end if
ji=i+1
end while

13-

Parallelize Gaussian Elimination

0 Each processor can be assigned with a number of rows of
the system
a If partial pivoting Is used
— The selection of pivoting row has to be done across processors
— The pivot row needs to be broadcasted to all other processors

a Assignment of rows to processors should be done in a way
that backward substitution algorithm can be used straight
away without re-allocating the work

-14-

Jacobi Algorithm

a An iterative method by estimating the values of
variables after a number of iterations

a At

iterative t + 1, variable x; is estimated by the

following equation

X(t+1)__(b Zalj |(t))

Iij

0 Stop iterating When the greatest difference of
newly estimated values of variables and the old

va

o lft
SO

ues is smaller than some threshold
ne calculation does not converge, there is no

ution found

-15-

Seqguential Implementation of Jacobl
23 Algorithm (1)

Q Input
n: size of the system
epsilon: convergence threshold
a[l..n][1..n]: matrix A
b[1..n]: vector b

a Output
X[1..n]: old estimate of solution vector
newx[1..n]: new estimate of solution vector
diff: maximum difference after one iteration

-16-

Seqguential Implementation of Jacobl
23 Algorithm (2)

begin
fori=1to ndo
X[i] = b[i)/a[i][i] //initial estimation
end for
do
diff =0
fori=1to ndo
newx[i] = b[i]
forj=1tondo
if j =i then
newx[i] = newl[i] — a[i][j]1*x[j]
end if
end for
newx[i] = newx[i]/a[i][i]
end for
fori=1to ndo
diff = max(diff, abs(x[i] — newx]i])
X[i] = newx([i]
end for
while diff > epsilon
end

Parallelize Jacobi Algorithm

0 Each processor can be assigned with a number of variables

for estimation
Q After each iteration, newly estimated values need to be

broadcasted to all processors

-18-

Conclusion

a For the assignment, either of direct or iterative methods can
be implemented

a Corresponding sequential algorithm has to be implemented
to calculate speed up and efficiency

a Read Chapter 9: Solving Linear Systems of “Parallel
Computing: Theory and Practice” of Michael J. Quinn for
more detalil

-19-

