

Computer Networks 1 (Mạng Máy Tính 1)

Lectured by: Dr. Phạm Trần Vũ

Lecture 3: Networking Technologies

Reference:

Chapter 4 - "*Computer Networks*", Andrew S. Tanenbaum, 4th Edition, Prentice Hall, 2003.

- Channel allocation problem
- Multiple access protocols
- Ethernet LAN
- Wireless LAN

Static Channel Allocation in LANs and MANs

- Each user is assigned with a equal-portion of the bandwidth
- No interference between users
- Simple

BK TP.HCH

> In efficient if there are a lot of users in the network

Dynamic Channel Allocation in

LANs and MANs

- Five key assumptions
 - Station Model:

BK TP. HCH

- The model consists of N stations
- Once a frame is generated, the station blocks until the frame has been successfully transmitted
- Single Channel Assumption
- Collision Assumption
 - Collision happens when two frames are transmitted simultaneously and overlap in time
- (a) Continuous Time vs (b) Slotted Time
- (a) Carrier Sense vs (b) No Carrier Sense

Multiple Access Protocols

ALOHA

BK TP. HCH

- Carrier Sense Multiple Access Protocols
- Collision-Free Protocols
- Limited-Contention Protocols
- Wavelength Division Multiple Access Protocols
- Wireless LAN Protocols

Developed by Norman Abramson, in 1970s

- Used ground-based radio broadcast
- Pure ALOHA
 - Use continuous time
 - No need for global time
- Slotted ALOHA
 - Need global time synchronisation

- Users can transmit whenever they have data to send
- If there is a collision, colliding frames will be damaged and will be destroyed
- Senders need to wait for some time to know if there is a collision
- Senders wait for a random time to transmit destroyed frames

Pure	Pure ALOHA (2)					
In pure A	In pure ALOHA, frames are transmitted at completely					
User —	aibiliary lines.					
Α						
В						
с _						
D						
E [
	Time —					
		10				

Carrier Sense Multiple Access Protocols

- When there is data to send, a station senses carrier first
- If the carrier is free, it starts sending
- Else, it waits until the carrier becomes free
- Common carrier sense protocols
 - 1-Persistent
 - Nonpersistent
 - p-Persistent

Persistent and Nonpersistent CSMA

BK TP. HCH

Comparison of the channel utilization versus load for various random access protocols.

CSMA/CD can be in one of three states: contention, transmission, or idle.

17

The binary countdown protocol. A dash indicates silence.

- Ethernet Cabling
- Manchester Encoding
- The Ethernet MAC Sublayer Protocol
- Switched Ethernet
- Fast Ethernet
- Gigabit Ethernet

The most common kinds of Ethernet cabling.

Name	Cable	Max. seg.	Nodes/seg.	Advantages
10Base5	Thick coax	500 m	100	Original cable; now obsolete
10Base2	Thin coax	185 m	30	No hub needed
10Base-T	Twisted pair	100 m	1024	Cheapest system
10Base-F	Fiber optics	2000 m	1024	Best between buildings

(a) Binary encoding, (b) Manchester encoding,
(c) Differential Manchester encoding.

24

Collision detection can take as long as 2τ .

The original fast Ethernet cabling.

Name	Cable	Max. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duplex at 100 Mbps
100Base-FX	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs

(a) A two-station Ethernet. (b) A multistation Ethernet.

Gigabit Ethernet cabling.

Name	Cable	Max. segment	Advantages
1000Base-SX	Fiber optics	550 m	Multimode fiber (50, 62.5 microns)
1000Base-LX	Fiber optics	5000 m	Single (10 μ) or multimode (50, 62.5 μ)
1000Base-CX	2 Pairs of STP	25 m	Shielded twisted pair
1000Base-T	4 Pairs of UTP	100 m	Standard category 5 UTP

(b) B responding with a CTS to A.

The 802.11 data frame.

802.11 Services

Distribution Services

- Association
- Disassociation
- Reassociation
- Distribution
- Integration

802.11 Services

Intracell Services

- Authentication
- Deauthentication
- Privacy
- Data Delivery