Computer Networks 1
(Mang May Tinh 1)

Lectured by: Dr. Pham Tran Vii

COMPUTER rrmeomon
ChapTer‘ 3 NETWORKING

Transport Layer

computer Networking: A Top Down Approach ,
5th edition.
Jim Kurose, Keith Ross
Addison-Wesley, April 2009.

KUROSE « ROSS

All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved

Introduction 1-2

Chapter 3. Transport Layer

Our goals:

3 understand principles
behind transport
layer services:

O multiplexing/demultipl
exing

O reliable data transfer

o flow control

O congestion control

3 learn about transport
layer protocols in the
Internet:

O UDP: connectionless
transport

o TCP: connection-oriented
transport

O TCP congestion control

Transport Layer

3-3

Chapter 3 outline

0 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

7 3.5 Connection-oriented

transport: TCP

O segment structure
o reliable data transfer

o flow control

O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion

control

Transport Layer

3-4

Transport services and protocols

transhort
netwom
data li
hysicé
Py

O provide /ogical communication
between app processes
running on different hosts

3 transport protocols run in
end systems

O send side: breaks app
messages into segments,
passes to network layer

O rcv side: reassembles
segments into messages,
passes to app layer

O more than one transport
protocol available to apps

o Internet: TCP and UDP

Transport Layer 3-5

Transport vs. hetwork layer

3 network layer: logical
communication
between hosts

3 fransport layer: logical
communication
between processes

O relies on, enhances,
network layer services

Household analogy:

12 kids sending letters to
12 kids

O processes = kids

O app messages = letters
in envelopes

7 hosts = houses

3 transport protocol =
Ann and Bill

3 network-layer protocol
= postal service

Transport Layer

3-6

Internet transport-layer protocols

3 reliable, in-order 'f* -
delivery (TCP) S A~)
O congestion control .0, N K °‘=|
o flow control Y N
O cohnection setup ig B e
3 unreliable, unordered Tt e
delivery: UDP B Eoa
o no-frills extension of [netuwork - _

"best-effort” IP

0 services not available:
O delay guarantees
O bandwidth guarantees

physical N network

physical data link
physical

Transport Layer 3-7

Chapter 3 outline

3 3.1 Transport-layer
services

0 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

7 3.5 Connection-oriented

transport: TCP

O segment structure
o reliable data transfer

o flow control

O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion

control

Transport Layer

3-8

Multiplexing/demultiplexing

- Demultiplexing at rcv host: — Multiplexing at send host: _
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

delivering received segments
to correct socket

[] =socket Q = process

application application application
L |
transport '%mipo/pF transport
network ne‘l'\J(or'k hetwork
link link link
physical physical physical
host 1 host 2 host 3

Transport Layer 3-9

How demultiplexing works

O host receives IP datagrams

O each datagram has source
IP address, destination IP
address

O each datagram carries 1
transport-layer segment

O each segment has source,
destination port number

O host uses IP addresses & port
numbers to direct segment to
appropriate socket

A

32 bits >

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Transport Layer 3-10

Connectionless demultiplexing

O Create sockets with port
numbers:

DatagramSocket mySocketl = new
DatagramSocket (12534) ;
DatagramSocket mySocket2 = new

DatagramSocket (12535) ;

3 UDP socket identified by
two-tuple:
(des’r IP address, dest port number)

7 When host receives UDP
segment:

O checks destination port
humber in segment

O directs UDP segment to
socket with that port
humber

3 IP datagrams with
different source IP
addresses and/or source
port numbers directed
to same socket

Transport Layer 3-11

Connectionless demux (cont)

DatagramSocket serverSocket = new DatagramSocket (6428) ;
SP: 6428 SP: 6428
DP: 9157 DP: 5775
SP: 9157 SP: 5775
client DP: 6428 server DP: 6428 Client
IP: A IP: C IP:B

SP provides "return address”

Transport Layer 3-12

Connection-oriented demux

O TCP socket identified O Server host may support

by 4-tuple: many simultaneous TCP
o source IP address sockets:
O source port number O each socket identified by
o dest IP address its own 4-tuple
O dest port number 7 Web servers have
3 recv host uses all four different sockets for
values to direct each connecting client
segment to qppr-opr-iq'rg O non-persistent HTTP will

have different socket for

socket
each request

Transport Layer 3-13

Connhection-oriented demux

(cont)

client
IP: A

P4 H)(P5
ﬂOHO
SP: 5775
DP: 80
S-IP: B
D-IP:C
V4
SP: 9157 SP: 9157
DP: 80 server DP: 80
S-IP: A IP: C S-IP: B
D-IP:C D-IP:C

Transport Layer 3-14

Client
IP:B

Connhection-oriented demux:

Threaded Web Server

client
IP: A

—__m >
i I L, I
SP: 5775
DP: 80
S-IP: B
D-IP:C
V4
SP: 9157 SP: 9157
DP: 80 server DP: 80
S-IP: A IP: C S-IP: B
D-IP:C D-IP:C

Transport Layer 3-15

Client
IP:B

Chapter 3 outline

3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-16

UDP: User Datagram Protocol [RFC 768]

3 “no frills," "bare bones"”
Internet transport Why is there a UDP?
E)ro’rocol S 7 no connection
O “best effort” service, UDP establishment (which can
segments may be: add delay)
O lost O simple: no connection state
o delivered out of order at sender, receiver
To app 7 small segment header
O connec 7"0’7/@55". 3 no congestion control: UDP
O no handshaking between can blast away as fast as
UDP sender, receiver desired
O each UDP segment

handled independently
of others

Transport Layer 3-17

UDP: more

0 often used for streaming
multimedia apps

32 bits >

A

O loss tolerant Length, in |Source port #| dest port #
O rate sensitive bytes of UDP [~ length checksum
segment
3 other UDP uses ing,”Jding’
O DNS header
O SNMP (Simple Network
Management Protocol) Application
O reliable transfer over UDP: data
add reliability at (message)
application layer

O application-specific
error recovery! UDP segment format

Transport Layer 3-18

UDP checksum

Goal: detect "errors” (e.g., flipped bits) in fransmitted
segment

Sender: Receiver:
7 treat segment contents O compute checksum of
as sequence of 16-bit received segment
integers O check if computed checksum
3 checksum: addition (1's equals checksum field value:
complement sum) of O NO - error detected
segment contents O YES - no error detected.
0 sender puts checksum But maybe errors
value into UDP checksum nonetheless? More later

field

Transport Layer 3-19

Internet Checksum Example

3 Note

O When adding numbers, a carryout from the
most significant bit needs to be added to the
result

0 Example: add two 16-bit integers

1110011 001100110
1101010101 010101

wr'apar'ound@IOI1101110111011

sum

1 1 00
checksum 0

1 11
O0O0O011

Transport Layer 3-20

011101110
1 00010001

Chapter 3 outline

3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-21

Principles of Reliable data transfer

O important in app., transport, link layers
top-10 list of important networking topics!

sending receiver I
process I process
| 1

L()relioble c:hcmnel)j

Q

application
layer

transport
layer

() provided service

[characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-22

Principles of Reliable data transfer

O important in app., transport, link layers
top-10 list of important networking topics!

sending receiver I
process I process
| 1

L()relioble c:hcmnel)j

Q

application
layer

transport
layer

Junreliable c:hcmnel)ik

(a) provided service (b) service implementation

[characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

Principles of Reliable data transfer

O important in app., transport, link layers
top-10 list of important networking topics!

senalngl receiver I
Process process
! 1

. rdt send()
L()relloble c:hcmnel)j =

Q

application
layer

deliver data()

=

S5 reliable data reliable data

@ > fransfer protocol transfer protocol

% O (sending side) (receiving side)

+ udt_ send ()i [packet | [packet| I rdt rev()

Junreliable c:hcmnel)ik

(a) provided service (b) service implementation

[characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-24

Religble data transfer: getting started

rdt send() : called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

\ rdt send()

reliable data
fransfer protocol
(sending side]

send
side

deliver data() : called by
rdt to deliver data to upper

/

data Tdeliver_data ()

udt_send ()} [packel

relioble data receive
fransfer protocol id
(receiving side) Side
packet Irdt_rcv ()

T—»()unrelicible channel)<T

udt send() : called by rdft,
to transfer packet over
unreliable channel to receiver

rdt rcv () : called when packet
arrives on rcv-side of channel

Transport Layer 3-25

Religble data transfer: getting started

we'll:
O incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

3 consider only unidirectional data transfer
o but control info will flow on both directions!

7 use finite state machines (FSM) to specify

sender, receiver
event causing state transition

actions taken on state transition

/ \
event @
actions)

Transport Layer 3-26

state: when in this
“state” next state
uniquely determined
by next event

Rdt1.0: reliable transfer over a reliable channel

3 underlying channel perfectly reliable
O ho bit errors
O no loss of packets

O separate FSMs for sender, receiver:

O sender sends data into underlying channel
O receiver read data from underlying channel

rdt_send(data) At for
call from
below

rdt_rcv(packet)

Wait for
call from
above

extract (packet,data)

packet = make_pkt(data) deliver_data(data)

udt_send(packet)
sender receiver

Transport Layer 3-27

Rdt2.0: channel with bit errors

0 underlying channel may flip bits in packet
o checksum to detect bit errors

O the question: how to recover from errors:

O acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

O negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

O sender retransmits pkt on receipt of NAK
3 new mechanisms in rdt2.0 (beyond rdt1.0):

O error detection
O receiver feedback: control msgs (ACK,NAK) rcvr->sender

Transport Layer 3-28

rdt2.0: FSM specification

rdt_send(data)

snkpkt = make_pkt(data, checksum) receiver
udt_send(sndpkt)
rdt_rcv(rcvpkt) &&

ISNAK(rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-29

rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&
ISNAK(rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
=
A

rdt rcv(rcvka &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-30

rdt2.0: error scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

dt send(NAK

call from
above

rdt_rcv(rcvpkt) && isACK(rcvpkt)
=
A

rdt_rcv(rcvp kQ &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-31

rdt2.0 has a fatal flaw!

What happens if Handling duplicates:
ACK/NAK corrupted? o sender retransmits current

O sender doesn't know what pkt if ACK/NAK garbled
happened at receiver! O sender adds seguence

7 can't just retransmit: number to each pkt
possible duplicate O receiver discards (doesn't

deliver up) duplicate pkt

—stop and wait
Sender sends one packet,
then waits for receiver
response

Transport Layer 3-32

rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISNAK(rcvpkt))

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

A A
Wait for Wait for
ACK or
rdt_rcv(rcvpkt) && NAK 1
(corrupt(rcvpkt) ||
iSNAK (rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-33

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
\ sndpkt = make_pkt(ACK, chksum)
. . \\ udt_send(sndpkt)
rdt_rcv(rcvpkt) && (corrupt(revpkt) \ rdt_rcv(rcvpkt) && (corrupt(rcvpkt)
sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \
udt_send(sndpkt)

rdt_rcv(rcvpkt) && rdt_rcv(rcvpkt) &&

not corrupt(rcvpkt) && (not corrupt(rcvpkt) &&
has_seql(rcvpkt) has seqO(rcvpkt)
sndpkt = make_pkt(ACK, chksum) sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt
B (sndpkt) rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) udt_send(sndpkt)

&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-34

rdt2.1: discussion

Sender: Receiver:
7 seq # added to pkt I must check if received
I two seq. #'s (0,1) will packet is duplicate
suffice. Why? O state indicates whether
3 must check if received gezrﬁlf 's expected pkt
AC.K/ NAK corrupted 3 note: receiver can noft
O twice as many states know if its last
O state must “remember” ACK/NAK received OK

whether “current” pkt

has O or 1 seq. # at sender

Transport Layer 3-35

rdt2.2: a NAK-free protocol

7 same functionality as rdt2.1, using ACKs only

7 instead of NAK, receiver sends ACK for last pkt
received OK
O receiver must explicitly include seq # of pkt being ACKed

O duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-36

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt) rdt_rcv(rcvpkt) &&

Sso — T
i Wait for (_corrupt(rcvpkt) ||
...................... call 0 from ACK ISACK(revpkt.1))
.................................... above 0 udt_send(sndpkt)
.. sender FSM
... fragment rdt_rcv(rcvpkt)
..................................... && notcorrupt(rcvpkt)
rdt_rov(revpkt) &8 el && ISACK(rcvpkt,0)
(corrupt(revpkt) || o~ e A
has_seql(rcvpkt)) receiver FSM "
udt_send(sndpkt) fr'agmen’r ..
-~ e

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) e
&& has_seql(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_ pkt(ACK1, chksum)
udt_send(sndpkt) Transport Layer 3-37

rdt3.0: channels with errors andloss

New assumption:
underlying channel can
also lose packets (data
or ACKs)

O checksum, seq. #, ACKs,
retransmissions will be
of help, but not enough

Approach: sender waits
“reasonable" amount of
time for ACK

A retransmits if ho ACK
received in this time

O if pkt (or ACK) just delayed
(not lost):

O retransmission will be
duplicate, but use of seq.
#'s already handles this

O receiver must specify seq
of pkt being ACKed

O requires countdown timer

Transport Layer 3-38

rdt3.0 sender

rdt_send(data) rdt_rcv(rcvpkt) &&

\ sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt) ||

\ udt_se_nd(sndpkt) iISACK(rcvpkt,1))
rdt_rcv(rcvpkt) \ start_timer A

A o

V\Illa(l)tffor timeout

CaabO\ZZm udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt) C
start_timer (_/

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISACK(rcvpkt,0))

A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer 3-39

rdt3.0 in action

sender receiver sender receiver
ok g
send pki0 e send pki0 v 0
> rcv pkio
M ACK send ACKO

send ACKO
y rcv ACKO
rcv ACKO send pkt1] kT]
send pki] \K (loss)
rcv pkil
ACK] y send ACKI
[CV.
send pki0 kt fimeout | kt
Q resend pki1 24
ACK v pkil \ oV pkt
send ACKO ACK send ACK

rcvACK] o
send pki0

d) operation with no loss rcv pki0
(@) op }G/ send ACKO

(b) lost packet

Transport Layer 3-40

rdt3.0 in action

sender receiver
oly
NP0 20 rov pug
ACK send ACKO
rcv ACKO
send pktl ka]
\ rcv pktl
ACK send ACK
(loss) Xl)/
fimeout = okt 4
resend pkil \rcv okt 1 |
ACK (detect duplicate)
send ACKI]
rCVACKT o
send pkt0
rcv pkto
ACK send ACKO
(c) lost ACK

sender receiver
kt
send) ~—200__ 1oy rug
ACK send ACKO

rcv ACKO _
send pki1
rCcv kil
send ACK
fimeout
resend pkil =
rcv pkil
rcvACK (detect duplicate)
send pkio send ACK1
rcv pkio
send ACKO

(d) premature timeout

Transport Layer 3-41

Performance of rdt3.0

7 rdt3.0 works, but performance stinks
0 ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

L 8000bits .
— = = 8microseconds

trans — R o 109 bpS

O U . pgers UTilization - fraction of time sender busy sending

U _ L/R _.008
Sender' RTT"‘ L / R B 30008

o 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
O network protocol limits use of physical resources!

= 0.00027

Transport Layer 3-42

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —sg-------------ooemee o
last packet bit transmitted, t =L/ R 17

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next|
packet, t =RTT+L/R

<«

U -__ L/R 008

dor= = 0.00027
sender RTT+L/R 30008

Transport Layer 3-43

Pipelined protocols

Pipelining: sender allows multiple, "in-flight", yet-to-
be-acknowledged pkts
O range of sequence numbers must be increased
o buffering at sender and/or receiver

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

7 Two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-44

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —fge------------oocooo
last bit transmitted, t=L/R

first packet bit arrives
. last packet bit arrives, send ACK

> last bit of 2" packet arrives, send ACK
last bit of 3 packet arrives, send ACK

RTT

ACK arrives, send next|
packet, t=RTT+L/R |

........................... Increase utilization
............................. ' / by a factor of 3!

U -_37L/R = 024 0.0008

Sender_ RTT"' L / R 30.008

Transport Layer 3-45

Pipelining Protocols

Go-back-N: big picture:

O Sender can have up to
N unacked packets in
pipeline

3 Rcvr only sends
cumulative acks

o Doesn't ack packet if
there's a gap

O Sender has timer for

oldest unacked packet

o If timer expires,
retransmit all unacked
packets

Selective Repeat: big pic

0 Sender can have up to
N unacked packets in
pipeline

3 Recvr acks individual
packets

[Sender maintains
timer for each
unacked packet

O When timer expires,
retransmit only unack
packet

Transport Layer 3-46

Selective repeat: big picture

0 Sender can have up to N unacked packets
in pipeline
3 Revr acks individual packets

7 Sender maintains timer for each unacked
packet

O When timer expires, retransmit only unack
packet

Transport Layer 3-47

Go-Back-N

Sender:
O k-bit seq # in pkt header
J "window" of up to N, consecutive unack'ed pkts allowed

send_base nhexfsegnum dlready Usable. nof
i i ack’ed yet sent
I VETEHTITO000000 | sceta [rores
+ __ window size —*%
N

0 ACK(n): ACKs all pkts up to, including seq # n - "cumulative ACK"
O may receive duplicate ACKs (see receiver)

3 timer for each in-flight pkt

O timeout(n): retransmit pkt n and all higher seq # pkts in window

Transport Layer 3-48

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextsegnumy)
if (base == nextsegnum)
start_timer
nextseqnum-++
~~~~~ }
A e else
refuse_data(data)

timeout

b start_timer
udt_send(sndpkt[base])
6‘ udt_send(sndpkt[base+1])

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)
udt_send(sndpkt[nextseqgnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else

start_timer Transport Layer 3-49



GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rev(revpkt)
T~ ( D && notcurrupt(rcvpkt)

A T~ a - && hassegnum(rcvpkt,expectedseqgnum)
= -

expectedsegnum=1 A:-Dextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum++

ACK-only: always send ACK for correctly-received pkt
with highest /n-order seq #

O may generate duplicate ACKs
O need only remember expectedseqnum

3 out-of-order pkt:
o discard (don't buffer) -> no receiver buffering!

O Re-ACK pkt with highest in-order seq #
Transport Layer 3-50



GBN in

action

sender

send pktO
send pkf

¥ send pki?2

send pkT3
(wdalif)

rcv ACKO
send pkt4

rcv ACK]

—pktZ timeout
send pki2
send pkt3
send pkt4
send pktd

receiver

\
\(Ea(ss)

A\

send pkts \

—
~

rcv pkto
send ACKO

rcv pkil
send ACK

rcv pkt3, discard
send ACK

rcv pktd, discard
send ACK

rcv pktd, discard
sencpj) ACK]

rcv pki2, deliver

send ACK?2
rcv pkt3, deliver

send ACK3

Transport Layer 3-51



Selective Repeat

O receiver /ndividually acknowledges all correctly
received pkts

O buffers pkts, as needed, for eventual in-order delivery
to upper layer

7 sender only resends pkts for which ACK not
received
O sender timer for each unACKed pkt

7 sender window
O N consecutive seq #'s
O again limits seq #s of sent, unACKed pkts

Transport Layer 3-52



Selective repeat: sender, receiver windows

send_base  hextsegnum dlready Lsable. not
L ¢ ack’ed yet sent
T | s e
L _ window size —2
N

(a) sender view of sequence numbers

out of order

acceptable
(buffered) but R (\ithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂl||||||||||||||]|]|] |ogecregaet [ o

t _ window size—#4

1 N

rcv_base

(b) receiver view of sequence numbers

Transport Layer 3-53



Selective repeat

—sender —receiver
data from above : ka nin [rcvbase, rcvbase+N-1]
O if next available seq # in 7 send ACK(n)
window, send pkt 3 out-of-order: buffer
timeout(n): 7 in-order: deliver (also
O resend pkt n, restart timer deliver buffered, in-order

pkts), advance window to
hext not-yet-received pkt

ka nin [rcvbase-N,rcvbase-1]

ACK(n) in [sendbase sendbase+N]:
O mark pkt n as received
O if n smallest unACKed pkt,

advance window base to = ACK(n.)
next unACKed seq # otherwise:
3 ighore

Transport Layer 3-54



Selective repeat in action

pktl =ent
o012 3

pktl =ent
o012 3

pkt:? =ent
o012 3

0123

pkt3 =ent.
4 5 6 7 89

4 56 7879

window full

ACKD rowd, pktd =e=nt

o1 2 3 4

Ee 7809

ACK1 rowd, pkti =ent

01

2 345

B 7 a8 9

—— pkt2 TIMEOUT, pkt2 resent

01

2 345

B 7 a8 9

ACK3 rowd, nothing sent

01

2 345

E 7 8 9

0

1 2 3 4|5

4 56 7 89 _—ﬁ_\m—‘_———* pktl rocwd, deliwvered. ACED =ent

E 7 8 9

pktl rocwd, delivered. ACKl =ent

01
456 789 Wy

(loss)

2345

B 7 8 9

pktd rovd., buffered. ACKI sent

01

2 345

B 7 89

pktd rcwd, buffered. ACK4 =ent

n1

plkth
n1

2 345

rowd,

2345

B 7 89

buf fered. ACKES =ent

B 7 89

pkt? rowd, pkt?. pkt3d, pltd plth
delivered, ACKZ? =e=nt

012345

B 7 89

rt Layer

3-55



sender window

Selective repeat:

dilemma

Example:
0 seq#'s:0,1,2,3
O window size=3

[ receiver sees ho
difference in two
scenarios!

O incorrectly passes
duplicate data as new

in (a)

Q: what relationship
between seq # size
and window size?

receiver window

(after receipt) (after receipt)
pktO

012130172 ol1 2 3l01 2

0121301 0123012

01230172 012130 1l2

timeout

retransmit pktﬁ(;)ktO _

012301 —p receive packet

sender window
(after receipt )

with seq number O

(a)

receiver window
(after receipt)

01

213 01

01

213 01

01

213 01

o] !

2 3]0 1

01

pktO

4

Ofl 2 3J0 1 2

01123 0]1 2

12430 1}2

receive packet
with seq number O

(0)

Transport Layer 3-56



Chapter 3 outline

3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-57



TCP: Overview rrcs: 793 1122, 1323, 2018, 2581

0 point-to-point: 0 full duplex data:
O ohe sender, one receiver O bi-directional data flow
O reliable, in-order byte In same connection
steam: O MSS: maximum segment
size

O no "message boundaries”
O pipelined:
o TCP congestion and flow
control set window size

3 connection-oriented:

O handshaking (exchange
of control msgs) init's
sender, receiver state

0O send & receive buffers before data exchange

3 flow controlled:
i O sender will not

door

B overwhelm receiver

socket
door —

TCP
send buffer

() segment] —» ()

Transport Layer 3-58



TCP segment structure

URG: urgent data

source port #

32 bits

dest port #

counting

(generally not used)\
ACK: ACK #

~

sequence humber

by bytes
of data

valid

(not segments!)

PSH: push data now
(generally not used)—|

cknowledgement number
h!ead o A[’JI}SF Receive window

Wm/

Urg data pnter

# bytes
rcvr willing

RST, SYN, FIN:—
connection estab

_—
Op% (variable length)

to accept

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-59



TCP seq. #'s and ACKs

Seq. #'s:
O byte stream
“number” of first User _ Seqs
byte i t fypes T 2ACkszg
y ein Segmen S |C: » datg = ‘C
data host ACKs
: _ receipt of
Acks: A3 da\a“o 'C', echoes
O seq # of next byte Seqﬂg,,\o\&f ’ back 'C
expected from
O cumulative ACK ';ecepi\p‘rd Seq=43 4
:  ACK=
out-of-order segments
O A: TCP spec doesn't .
say, - up to . . time
) simple telnet scenario
implementor '

Transport Layer 3-60



TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

3 longer than RTT
O but RTT varies

3 too short: premature
Timeout

O uhnecessary
retransmissions

3 too long: slow reaction
to segment loss

Q: how to estimate RTT?

7 SampleRTT: measured time from
segment transmission until ACK
receipt

O ighore retransmissions

0 SampleRTT will vary, want

estimated RTT "smoother”

O average several recent

measurements, not just
current SampleRTT

Transport Layer 3-61



TCP Round Trip Time and Timeout

EstimatedRTT = (1- o) *EstimatedRTT + oa*SampleRTT
O Exponential weighted moving average

3 influence of past sample decreases exponentially fast
O typical value: o =0.125

Transport Layer 3-62



Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

300

N

al

o
—
—
>
—

RTT (milliseconds)

N

o

o
I

150

100 T T T T T T T T T T T T

1 8 15 22 29 36 43 50 57 64 71 78 85

time (seconnds)

—o— SampleRTT —&— Estimated RTT

92 99 106

Transport Layer 3-63



TCP Round Trip Time and Timeout

Setting the timeout

7 EstimtedRTT plus "safety margin”
O large variation in EstimatedRTT -> larger safety margin

O first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-PB)*DevRTT +
B* | SampleRTT-EstimatedRTT |

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval EstimatedRTT + 4*DevRTT

Transport Layer 3-64



Chapter 3 outline

3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

1 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-65



TCP reliable data transfer

3 TCP creates rdt 3 Retransmissions are
service on top of IP's triggered by:
unreliable service O timeout events

3 Pipelined segments O duplicate acks

] Cumulafive CleS H IanlCl”y CO”Sider'

simplified TCP sender:
O ignore duplicate acks

O ignore flow control,
congestion control

3 TCP uses single
retransmission timer

Transport Layer 3-66



TCP sender events:

data rcvd from app:

O Create segment with
seq #
0 seq # is byte-stream

number of first data
byte in segment

3 start timer if not
already running (think
of timer as for oldest
unacked segment)

0 expiration interval:
TimeOutInterval

timeout:

O retransmit segment
that caused timeout

3 restart timer
Ack rcvd:

O If acknowledges
previously unacked
segments

O update what is known to
be acked

o start timer if there are
outstanding segments

Transport Layer 3-67



NextSeqNum = InitialSeqNum
SendBase = InitialSegNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum = NextSegNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

} /* end of loop forever */

TCP

sender

(simplified)

Comment:

- SendBase-1: last
cumulatively
ack'ed byte
Example:

- SendBase-1=71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

Transport Layer 3-68



TCP: retransmission scenharios

SendBase

= 100

«— timeout ——

v

time

loss

Seq=

lost ACK scenario

Sendbase
= 100
SendBase
=120

SendBase
=120

92 ‘rimeouT—»l

92 timeout —+— Seq

eq=

VD]
3
v

time

premature timeout

Transport Layer 3-69



TCP retransmission scenarios (more)

= 120

A

?<
SendBase ,P\C“/

time '
Cumulative ACK scenario

Transport Layer 3-70



TCP ACK generation [RFc 1122, RFC 2581]

Event at Receiver TCP Receiver action

Arrival of in-order segment with Delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

Arrival of in-order segment with Immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

Arrival of out-of-order segment Immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

Arrival of segment that Immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-71



Fast Retransmit

OJ Time-out period often O If sender receives 3

relatively long: ACKs for the same
o long delay before data, it supposes that
resending lost packet segment after ACKed
O Detect lost segments data was lost:
via duplicate ACKs. o fast retransmit: resend
O Sender often sends segment before timer
many segments back-to- expires
back

o If segment is lost,
there will likely be many
duplicate ACKs.

Transport Layer 3-72



Host A

timeout

%
S€gme
nt

—_

v v

time

Figure 3.37 Resending a segment after triple duplicaftr%,@&)tsr Layer 3-73



Fast retransmit algorithm:

event: ACK received, with ACK field value of y
If (y > SendBase) {
SendBase =y
iIf (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKSs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

)
' \

a duplicate ACK for fast retransmit
already ACKed segment

Transport Layer 3-74



Chapter 3 outline

3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

1 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-75



TCP Flow Control

7 receive side of TCP
conhection has a
receive buffer:

k— RevWindow —f

7

data from
IP

7, / 7, /
'|l— RevBuffer —I‘*

T app process may be
slow at reading from

buffer

-flow control

sender won't overflow
receiver's buffer by

transmitting too much,

too fast

application

/ //_,_

7 speed-matching

service: matching the
send rate to the
receiving app's drain
rate

Transport Layer 3-76



TCP Flow control: how it works

k— RevWindow —f

007 O Revr advertises spare
/ ¢ | pwleion  1OOM by including value

data from

o 7 B of RevWindow in
Z / 22 segments
po 0 Sender limits unACKed
(Suppose TCP receiver data to RevWindow
discards out-of-order 5 guarantees receive
segments) buffer doesn't overflow
0 spare room in buffer
= RcvWindow
= RcvBuffer-[LastByteRcvd -
LastByteRead]

Transport Layer 3-77



Chapter 3 outline

3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-78



TCP Connection Management

Recall: TCP sender, receiver Three way handshake:
establish "connection”

before exchanging data Step 1: client host sends TCP
segments SYN segment to server
O initialize TCP variables: O specifies initial seq #
O seq. #s O no data
O buffers, flow control Step 2: server host receives
info (e.g. ReviWindow) SYN, replies with SYNACK
O client: connection initiator segment

Socket clientSocket = new

o server allocates buffers
Socket ("hostname" , "port

O specifies server initial

number") ;
J s tacted by client seq. #
erver. contacre clien . .
. Y Step 3: client receives SYNACK,
Socket connectionSocket = : .
welcomeSocket.accept() ; replles W'Th ACK segmean

which may contain data

Transport Layer 3-79



TCP Connection Management (cont.)

Closing a connection:

client closes socket: FIN
clientSocket.close() ;

Step 1: client end system poK
sends TCP FIN control eW

segment fo server

close

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

d wait

2 time

close

Transport Layer 3-80



TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

closing

o Enters "timed wait” -
will respond with ACK

to received FINs pCK .
closing

Step 4: server, receives
ACK. Connection closed. —

+
Note: with small _%
modification, can handle 9
simultaneous FINSs. g

d

closed

Transport Layer 3-81



TCP Connection Management (cont)

wait 30 seconds

/

CLOSED

TIME_WAIT

3

receive FIN
send ACK

FIN_WAIT_2

receive ACK
send nathing

TCP client
lifecycle

client application
initiates a TCP connection

send SYN

SYN_SENT

receive SYN & ACK
send ACK

h 4

ESTABLISHED

FIN_WAIT_1

client application
initiates close connection

send FIN CLOSED

receive ACK
send nothing

LAST_ACK
A

send FIN

CLOSE_WAIT
A

TCP server
lifecycle

server application

creates a listen socket

LISTEN

receive SYN
send SYN & ACK

h 4

SYN_RCVD

receive FIN

send ACK ESTABLISHED

receive ACK
send nothing

Transport Layer

3-82



Chapter 3 outline

3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-83



Principles of Congestion Control

Congestion:

3 informally: "too many sources sending too much
data too fast for network to handle"

3 different from flow control!
3 manifestations:
O lost packets (buffer overflow at routers)
0 long delays (queueing in router buffers)
3 a top-10 problem!

Transport Layer 3-84



Causes/costs of congestion: scenario 1

Host A Y
A original data out

3 two senders, two
receivers

3 ohe router,
infinite buffers

[ no retransmission

unlimited shared
output link buffers

Host B

O large delays
when congested

O maximum
achievable
throughput

Cl2+

7\'ou’r
delay

1
'y C/2
in
Transport Layer 3-85



Causes/costs of congestion: scenario 2

3 one router, finite buffers
7 sender retransmission of lost packet

Host A Ain - original Mo

data
A’y . original data, plus A
retransmitted data

finite shared output
link buffers

Transport Layer 3-86



7\'0ut

Causes/costs of congestion: scenario 2

J always: A = Kout (goodput)
in
3 “perfect” retransmission only when loss: )" > )

out

in /
O retransmission of delayed (not lost) packet makes }\'in larger

(than perfect case) for same ko

Rf2 f----mmcmmmmmmnoeee :

kout

, R/2
Xin

d.
“costs” of congestion:

R/2

R/3

ut

R/2

R/2

O more work (retrans) for given "goodput”
O unneeded retransmissions: link carries multiple copies of pkt

R/2

Transport Layer 3-87



Causes/costs of congestion: scenario 3

3 four senders Q: what happens as kl
and A’ increase ?

J multihop paths
3 timeout/retransmit

Host A

18

A, - original data

B—

Ay, - original data, plus
retransmitted data

finite shared output

Host B

7

link buffe

Transport Layer 3-88



Causes/costs of congestion: scenario 3

C/2

5
QO
<<

k!
N
Another "cost” of congestion:

3 when packet dropped, any "upstream transmission
capacity used for that packet was wasted!

Transport Layer 3-89



Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion Network-assisted
control: congestion control:

3 no explicit feedback from O routers provide feedback
network to end systems

7 congestion inferred from O single bit indicating
end-system observed loss, congestion (SNA,
delay DECbit, TCP/IP ECN,

3 approach taken by TCP ATM)

O explicit rate sender
should send at

Transport Layer 3-90



Case study: ATM ABR congestion control

ABR: available bit rate:

7 “elastic service"

O if sender's path
"underloaded":

O sender should use
available bandwidth

O if sender's path
congested:

O sender throttled to
minimum guaranteed
rate

RM (resource management)

O

O

cells:

sent by sender, interspersed
with data cells

bits in RM cell set by switches
("network-assisted”)

o NI bit: no increase in rate
(mild congestion)

O CI bit: congestion
indication
RM cells returned to sender by
receiver, with bits intact

Transport Layer 3-91



Case study: ATM ABR congestion control

I RM cells
source I:l data cells destination

Switch Switch

S J0ON

3 two-byte ER (explicit rate) field in RM cell

O congested switch may lower ER value in cell
O sender’ send rate thus maximum supportable rate on path

J EFCI bit in data cells: set to 1 in congested switch

o if data cell preceding RM cell has EFCI set, sender sets CI
bit in returned RM cell

Transport Layer 3-92



Chapter 3 outline

3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

1 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-93



TCP congestion control: additive increase,
multiplicative decrease
O Approach:increase transmission rate (window size),
probing for usable bandwidth, until loss occurs

O additive increase. increase CongWin by 1 MSS
every RTT until loss detected

o multiplicative decrease: cut CongWin in half after
loss

24 Kbytes —

Saw tooth
behavior: probing
for bandwidth

16 Kbytes —

8 Kbytes —

congestion window size

time

Transport Layer 3-94



TCP Congestion Control: details

O sender limits transmission:
LastByteSent-LastByteAcked
< CongWin

3 Roughly,

How does sender

CongWin
RTT

rate = Bytes/sec

O CongWin is dynamic, function
of perceived network
conhgestion

perceive congestion?

7 loss event = timeout or
3 duplicate acks

7 TCP sender reduces
rate (CongWin) after
loss event

three mechanisms:

o AIMD
O slow start

O conservative after
timeout events

Transport Layer 3-95



TCP Slow Start

3 When connection begins, O When connection begins,

CongWin = 1 MSS increase rate
o Example: MSS = 500 exponentially fast until
bytes & RTT = 200 msec first loss event

O initial rate = 20 kbps

O available bandwidth may
be >> MSS/RTT

O desirable to quickly ramp
up to respectable rate

Transport Layer 3-96



TCP Slow Start (more)

3 When connection
begins, increase rate
exponentially until
first loss event:

O double CongWin every
RTT

O done by incrementing
CongWin for every ACK

received
7 Summary: initial rate
is slow but ramps up
exponentially fast

time

\ |

Transport Layer 3-97



Refinement: inferring loss

J After 3 dup ACKs:

O CongWin is cut in half —_ Philosophy:

O window then grows
linearly 3 3 dup ACKs indicates

network capable of

3 But after timeout event: e
delivering some segments

O CongWin instead set to | o 8o dicates a

IMSS; “more alarming”

O window ’rhen grows congestion scenario
exponentially

O to a threshold, then
grows linearly

Transport Layer 3-98



Refinement

Q: When should the
exponential
increase switch to 49 TCP Series 2 Reno
linear?

A: When CongWin
gets to 1/2 of its
value before
timeout. 2-

_;
P
|

_| Threshold

Threshold

Transmission round

TCP Series 1 Tahoe

rFr Tt +r 1> 1 ©° 17 [ 7T
01 2 3 4 5 6 7 8 9 10111213 14 15

ImplemenTGTlon: Transrrission round
3 Variable Threshold

A At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

Transport Layer 3-99



Summary: TCP Congestion Control

7 When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

7 When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

3 When a triple duplicate ACK occurs, Threshold
set fo CongWin/2 and CongWin set to
Threshold.

3 When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

Transport Layer 3-100



TCP sender congestion control

State Event TCP Sender Action Commentary
Slow Start ACK receipt | CongWin = CongWin + MSS, Resulting in a doubling of
(SS) for previously | If (CongWin > Threshold) CongWin every RTT
unacked set state to “Congestion
data Avoidance”
Congestion ACK receipt | CongWin = CongWin+MSS * Additive increase, resulting
Avoidance for previously | (MSS/CongWin) in increase of CongWin by
(CA) unacked 1 MSS every RTT
data
SS or CA Loss event Threshold = CongWin/2, Fast recovery,
detected by CongWin = Threshold, implementing multiplicative
triple Set state to “Congestion decrease. CongWin will not
duplicate Avoidance” drop below 1 MSS.
ACK
SS or CA Timeout Threshold = CongWin/2, Enter slow start
CongWin =1 MSS,
Set state to “Slow Start”
SS or CA Duplicate Increment duplicate ACK count | CongWin and Threshold not
ACK for segment being acked changed

Transport Layer 3-101



TCP throughput

7 What's the average throughout of TCP as a
function of window size and RTT?

O Ignore slow start
7 Let W be the window size when loss occurs.
3 When window is W, throughput is W/RTT

3 Just after loss, window drops to W/2,
throughput to W/2RTT.

3 Average throughout: .75 W/RTT

Transport Layer 3-102



TCP Futures: TCP over "long, fat pipes”

0 Example: 1500 byte segments, 100ms RTT, want 10
Gbps throughput

O Requires window size W = 83,333 in-flight
segments

3 Throughput in ferms of loss rate:
1.22- MSS
RTT/L

d = L=210° Wow
3 New versions of TCP for high-speed

Transport Layer 3-103



TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck
router
capacity R

connection 2

Transport Layer 3-104



Why is TCP fair?

Two competing sessions:
J Additive increase gives slope of 1, as throughout increases
O multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput

Connection 1 throughput R

Transport Layer 3-105



Fairness (more)

Fairness and UDP Fairness and parallel TCP
7 Multimedia apps often ~ connections
do not use TCP 3 nothing prevents app from
O do not want rate opening parallel
throttled by congestion connections between 2
control hosts.
0 Instead use UDP: 7 Web browsers do this
> pump ausio/video st 3 Example: lnk of rafe R
packet loss supporting 9k <:fonnle§:_’;>or\sir
J Research area: TCP R ¢ -l  9ers
friendly O new app asks for 11 TCPs,

gets R/2 |

Transport Layer 3-106



Chapter 3. Summary

0 principles behind transport
layer services:

o multiplexing,
demultiplexing

o reliable data transfer

o flow control Next:
O congestion control 3 leaving the network
7 instantiation and “edge” (application,
implementation in the transport layers)
Internet 7 into the network
o UDP “core”
o TCP

Transport Layer 3-107



