
1

Introduction to Computing

Lectured by: Dr. Pham Tran Vu

t.v.pham@cse.hcmut.edu.vn

2

Programming

- Programming languages

- Program design, testing, debugging and documenting

- Data structures

3

Programming Languages

� Machine language

� Assembly languages

� High-level programming languages

� Language processing

4

Machine Languages

� Machine languages are the languages that can be

understood directly by computer processors

� Code written using machine language (machine

code) can be executed directly by a computer’s

processor

� Also known as native code

� Each CPU model usually has its own machine

language or machine code instruction set

5

Machine Language (2)

� Each machine code instruction performs a very

basic operation such as arithmetic calculations or

disk read/write operations

� Each machine code instruction commonly has two

basic parts: opcode and operand, which are

expressed in binary

� It is difficult to remember and use machine

language directly to solve real world problems

6

Machine Language Example

� The following example code is written using Intel

80x86 machine code

� It performs two operations: i=5 and j=i+10

Binary Hex

10111000 00000101 00000000 b8 05 00

10100011 00000000 00000002 a3 00 02

10100001 00000000 00000002 a1 00 02

00000101 00001010 00000000 05 0a 00

10100011 00000010 00000010 a3 02 02

7

Assembly Languages

� Assembly languages are low-level programming

languages

� They are more readable than machine languages

� An assembly language uses a symbolic

representation of numeric machine codes and

constants

� Example: add, mov, sub, etc

� Assembly code is translated to machine code by a

utility program called assembler

8

Assembly Language Example

Machine language Assembly

10111000 00000101 00000000 b8 05 00 mov ax, 5

10100011 00000000 00000002 a3 00 02 mov [200], ax

10100001 00000000 00000002 a1 00 02 mov ax, [200]

00000101 00001010 00000000 05 0a 00 add ax, 10

10100011 00000010 00000010 a3 02 02 mov [202],ax

9

High-Level Programming Languages

� A high-level language provides a high level

abstraction of computer programs

� It is more natural to human languages

� It allows programmers to use many more data

types and complex data structures

� High-level languages are independent of computer

hardware

� Examples: Pascal, C/C++, Java, etc

10

High-Level Language Example

� A piece of C code

short i, j; // define two variables i and j

i = 5; // assign 5 to i

j = i +10; // calculate i+10 and store the result in j

11

Generations of Programming

Languages (1)

� First generation

� Machine languages

� Appeared in the 1960s

� Second generation

� Low-level languages, e.g. assembly languages

� Third generation

� High-level languages, e.g. C/C++, Pascal, Java

12

Generations of Programming

Languages (2)

� Fourth generation

� Easier to use than high level languages

� Quick solutions to data processing task

� Closer to natural languages

� Non-procedural

� E.g. Structured Query Languages

� Fifth generation

� More declarative

� E.g. PROLOG, LISP and Smalltalk

13

Components of Computer Programs

� Keywords

� Reserved words used by programming languages

� Identifiers

� Names created by programmers given to variables or

constants

� Scope of variables

� The degree of accessibility (validity) of a variable

� Global vs local scope

14

Components of Computer Programs

(2)

� Data structures

� Define the data types in a program

� E.g.: numeric, character, boolean, pointer, arrays,

record, file, etc.

� Operations on data

� Arithmetic operations: addition, subtraction, etc

� Logic operations: and, or, xor, nand, etc

� Input and output

15

Components of Computer Programs

(3)

� Control structures

� Selections: if … then … else

� Iterations: for, while

� File handling

� Open files

� Close files

� Read, write, delete

� Functions and procedures

� Subprograms

16

Components of Computer Programs

(4)

� Blocking structures

� Groups of statements

� Parameters

� Inputs to a function/procedure

� Call by value

� Call by reference

17

A Sample Program (1)

#include<stdio.h>

int cnt = 0;

void printRes(int [], int);

void findPer(int [], int, int);

void reOrder(int [], int , int, int);

void arrayCopy(int [], int [], int);

int main(){

int ars[] = {1, 2, 3, 4};

printf("test %d: \n", 4);

findPer(ars, 0, 4);

}

18

A Sample Program (2)

void arrayCopy(int ars1 [], int ars2[],

int size){

int i;

for (i =0; i < size; i++){

ars2[i] = ars1[i];

}

}

19

A Sample Program (3)

void reOrder(int ars[], int pick, int start, int size){

int temp;

int i;

if (pick == start){

return;

}

if (pick < start || pick >= size || pick < 0){

printf("Error, pick cannot be smaller than start\n");

return;

}

temp = ars[pick];

for (i = pick; i > start; i--){

ars[i] = ars[i-1];

}

ars[start] = temp;

}

20

A Sample Program (5)

void printRes(int ars[], int size){

int i;

printf("Cnt : %d \n", ++cnt);

for (i =0; i< size; i++){

printf("%d ", ars[i]);

}

printf("\n");

}

21

A Sample Program (4)

void findPer(int ars[], int start, int size){

int i;

int * temp = (int*)malloc(size*sizeof(int));

if (start == size - 1){

printRes(ars, size);

return;

}

arrayCopy(ars, temp, size);

for (i = start; i < size; i++){

reOrder(ars, i, start, size);

findPer(ars, start + 1, size);

arrayCopy(temp, ars, size);

}

free(temp);

}

22

Recursive Programming

� A recursion happens when a function/procedure calls
its self

� Example:
void findPer(int ars[], int start, int size){

...

for (i = start; i < size; i++){

reOrder(ars, i, start, size);

findPer(ars, start + 1, size);

arrayCopy(temp, ars, size);

}

free(temp);

}

23

Language Processing

� Programs written in high-level languages need

to be converted to machine code for execution

� A program written in a particular language

needs to be processed accordingly

� How do we ensure that a program is written

correctly following a programming language?

� How to define a language?

24

Computer Languages

� Every programming language has a set of

rules to govern the syntax of well-formed

statements and sentences

� This set of rules is called the grammar of the

languages

� Each different language needs a different

way to process its programs according to its

grammar

25

Language Syntax

� The syntax of a language describes possible
combination of symbols that forms a syntactically
correct program

� Syntax is usually defined using a combination of
regular expressions and Backus-Naur form

� Example:

expression ::= atom | list
atom ::= number | symbol
number ::= [+-]?['0'-'9']+
symbol ::= ['A'-'Z''a'-'z'].*
list ::= '(' expression* ') '

26

Compilers and Interpreters

� There are two ways to translate a program

written in high-level languages into machine

code:

� Using a compiler

� Using a interpreter

27

Compilers

� A compiler accept a source program written

in a high-level language and translate it into

an object program in a low-level language

� The object program can be in assembly

code, machine code or byte code (to be

executed by virtual machines)

� During compilation, a compiler often needs

to access to a run-time library

28

Steps in a Compilation Process

� Lexical analysis

� the source code is converted to a form which is more

convenient for subsequent processing

� Syntax analysis and semantic analysis

� Check for grammatical correctness (done by a parser)

� Intermediate code generation

� Code optimisation

� Code generation

29

Interpreters

� Object programs are not generated in this

form of translation

� Source code statements are translated and

executed separately, once after another

� Every time a program is run, the interpreter

has to read and translate the source code

again

