

Introduction to Computing

Lectured by: Dr. Pham Tran Vu t.v.pham@cse.hcmut.edu.vn

Computer Hardware

Computer Systems
Computer Architecture
Input and Output Devices
Storage Systems

Computer Systems

- Functional components of a computer system
 - Input
 - Main memory
 - Central Processing Unit (CPU)
 - Output
 - Backing storage
 - Peripheral devices

- Take in data for processing by the computer
- Convert real-world data into a machine sensible format
- Examples: Keyboard, webcam, microphone

Main Memory

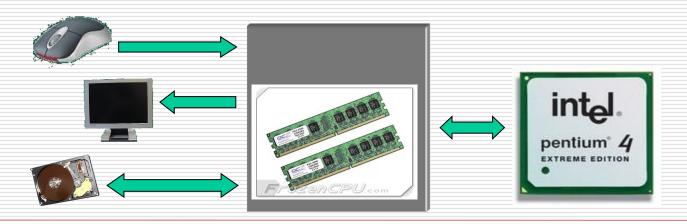
- Commonly known as RAM (Random Access Memory)
- Two main functions
 - To temporarily store programs currently in use for processing data
 - To temporarily store data
 - Entered through input devices
 - Currently being processing
 - Resulted from processing

- Often referred to as the processor
- Has two elements
 - Arithmetic/Logic unit (ALU): perform arithmetic operations, e.g. addition, multiplication, etc.
 - Control unit: control the operations of all hardware, including input and output devices, and the CPU

- Translate machine sensible data into human readable form
- Examples: Screens, printers, speakers

Backing Storage

- Performs a filing function within the computer system
- Important concepts:
 - Memory volatility: data will disappear when the power is switched off, e.g. RAM
 - Retrieval data: for permanent storage of programs and data files



Peripherals

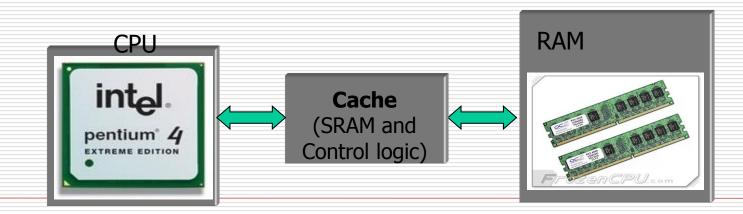
- Peripherals are devices that are external to CPU and main memory
- e.g. input and output devices, storage devices, etc.

Classification of Computer Systems

- Main frame computers
- Minicomputers
- Microcomputers
- Portable computers
- Pen-based computers

Computer Architecture

- Three basic components
 - Memory
 - Processor
 - Buses


Memory - RAM

- The working area of a computer
- Store programs and data currently in use
- Measured in Kb, Mb or Gb
- Volatile
- Directly accessed by the CPU
- Types of RAM
 - SRAM, DRAM, EDO RAM, SDRAM, DDR SDRAM

Cache Memory

- Located between CPU and RAM
- Hold copy of frequently used code and data
- Fast in speed but small in size
- Used to improve memory access times

Memory - ROM

- Read Only Memory
- Non-volatile
- Data in ROM cannot be changed by software
- Used in BIOS (Basic Input/Output System)
- CD-ROM

Processor

- The centre of machine power
- Control all the activities of the system
- Registers
 - Registers used in the fetch-execute cycle
 - Index registers: used to hold offset values or counters
 - Stack pointer register
 - Flag or status register

CPU Clock Speed

- Determine how quickly a processor can execute instructions
- Steps to execute a program (a set of instructions)
 - Fetch -> Decoding -> Execute
- Processor activity must be synchronised with clock cycle

Processor Architecture

- A processor consists of a complex collection of component units: registers, counters, arithmetic and logic circuits and memory elements
- All instructions available with a processor is called instruction set
- Two main approaches to computer design:
 - CISC: Complex Instruction Set Computer
 - RISC: Reduced Instruction Set Computer

CISC Architecture

- Longer memory word length should be used to create more complex instruction sets for more powerful processors
- Instructions are different in length
- Instruction execution times are also different

RISC Architecture

- Provide only a small number of different instructions
- Each instruction type can be executed in only one clock pulse
- More complex instructions can take several clock pulses
- Super scalar execution: can execute more than one instruction at a time
- Integral cache memory and branch prediction

Parallel Processing Architecture

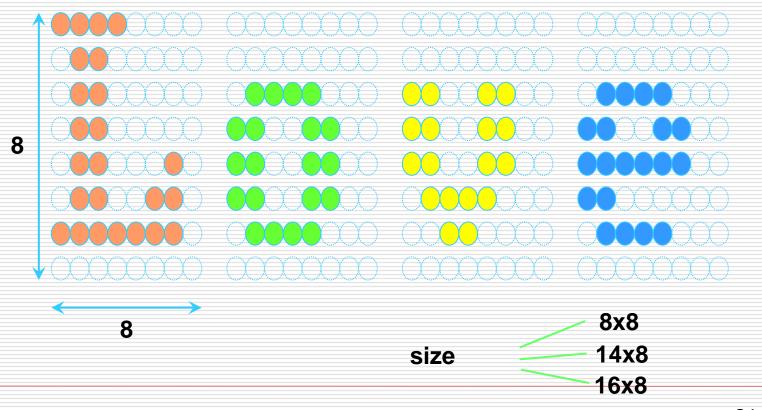
- Pipelining
- Processor arrays
- SIMD- Single Instruction Multiple Data
- MIMD Multiple Instruction Multiple Data
- Parallel processing applications:
 - Weather forecast, image processing, scientific simulations, etc.

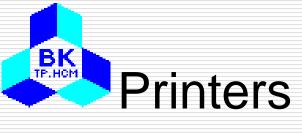
Buses

- For communications between parts of the computer system
- A bus is a group of parallel wires, one for each bit of a word
- The system bus connect a computer's processor and its associated components of memory, I/O devices
- A computer usually has several buses
- The width of a bus determines the length of the word can be handled at one time
- Some buses are bi-directional

Input and Output Devices (1)

- Input devices
 - Keyboard
 - Mouse
 - Tracker ball
 - Touch screen
 - Digitising tablet
 - Light pen
 - Scanners


Input and Output Devices

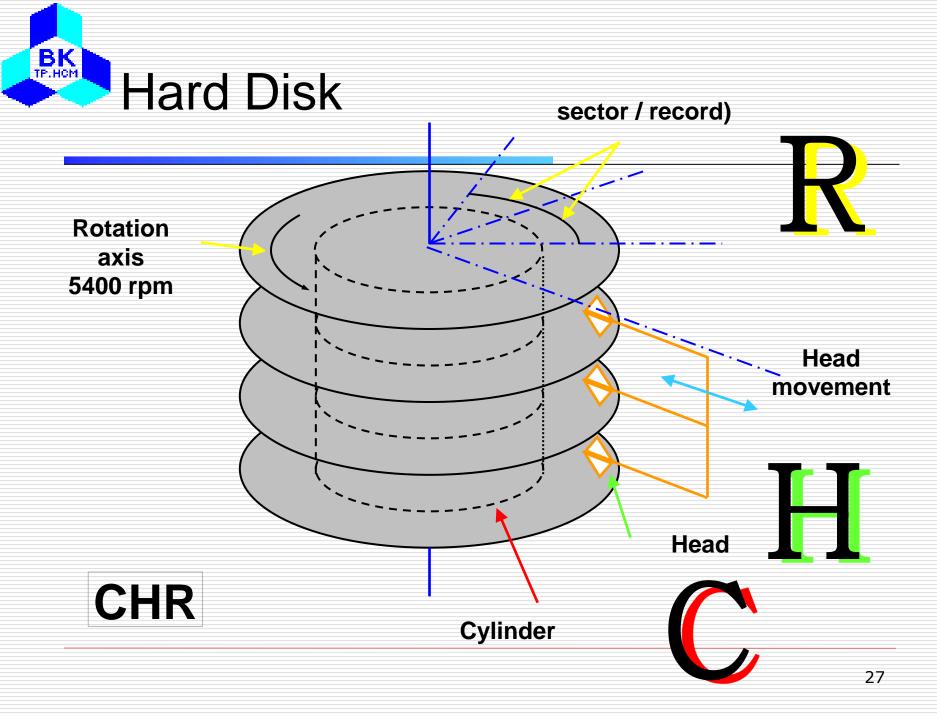

Output devices

- Visual display unit
 - Dumb and intelligent terminals
 - Text and graphics modes
 - Text mode and dot matrix characters
 - Screen resolution and size
- Printers
- Speakers

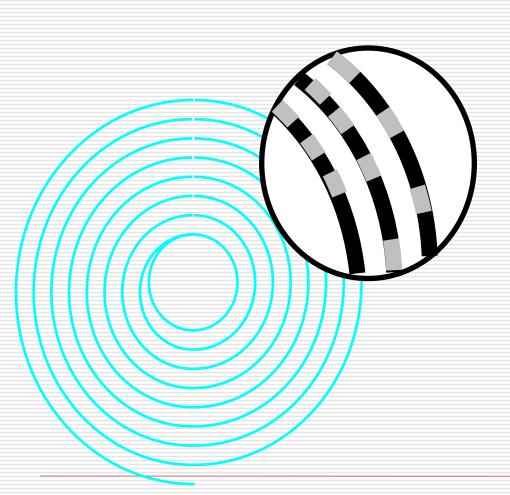
Dot Matrix Display

Dot matrix printer

Inkjet printer



Laser printer


Storage Systems

- For backing up data
- Magnetic tape
- Magnetic disk
 - Hard disk
 - Floppy disk
 - Zip disk
- Optical disk
- Flash memory

CD-ROM or DVD-ROM

