

Introduction to Computing

Lectured by: Dr. Pham Tran Vu t.v.pham@cse.hcmut.edu.vn

Research on the current issues in computing

Assessment:

Report: 30%

- Presentation: 10%
- Deadline: 29/3/2010

- Web search engines: history and development
- Online games: benefits and social issues
- Software licensing and opportunities for open source software
- Internet in Vietnam: development history and its social impacts

Lecture 2: Fundamental Concepts (cont')

History of computer

Number systems

Data representation

Computer logic

- Data processed by computers has to be in binary form
- Main memory and external storage media, e.g. magnetic disk and tape, use electrical/magnetic patterns representing binary digits to record and handle data & instructions

Character & Numeric Codes

- Character codes used to represent data processed by computers and stored data
- Numeric codes used to represent numeric data for processing purposes
- Characters may be:
 - Alphabetic (upper and lower case)
 - Numeric

BP.HC

- Special characters (apostrophe, comma, etc)
- Control characters and codes

ASCII Character Set

- The range of characters which can be represented by a computer system is know as character set
- ASCII American Standard Code for Information Interchange
- A character is represented by 7 binary digits
 - Total of 128 characters in ASCII character set
- A additional bit, known as parity-bit, in left most position, is used to detect single bit error during data transfer

Examples of ASCII Characters

Char	ASCII	Char	ASCII	Char	ASCII	Char	ASCII
0	0110000	9	0111001	l	1001001	R	1010010
1	0110001	А	1000001	J	1001010	S	1010011
2	0110010	В	1000010	К	1001011	T	1010100
3	0110011	С	1000011	L	1001100	U	1010101
4	0110100	D	1000100	М	1001101	V	1010110
5	0110101	E	1000101	Ν	1001110	W	1010111
6	0110110	F	1000110	0	1001111	Х	1011000
7	0110111	G	1000111	Р	1010000	Y	1011001
8	0111000	Н	1001000	Q	1010001	Z	1011010

Structure of Main Memory (1)

BK TP.HC

- Main memory is divided into locations, each of which has a unique address
- Each location (an addressable unit) contains a memory word
- A memory word is a group of bits in memory, representing data or an instruction
- Memory word's length is the number of bits can be stored at one location
- Word's length can be different, depending on computer architecture (4, 8, 16, 32 or 64 bits)

- Large words may be composed of smaller units called byte, which is 8-bit length
- Example: structure of 16-bit word

High order byte										Lo	w ord	der b	yte		
MSB															LSB
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

- Numbers are represented by bits
- □ An n-bit number has range from 0..2ⁿ 1
- Examples
 - 1-bit: 2 values 0 and 1
 - 1 byte: from 0 to 2⁸ 1(255)
 - 2 bytes: 0 to 2¹⁶ -1 (65535)

Representation of Signed Integers

Sign-magnitude

- Use the MSB as a sign bit
- One's complement
 - The inverse of a number formed by complementing each bit (0->1 and 1->0)
- Two's complement
 - One's complement of a number add 1

Sign and Magnitude

	_	_						8	bit signed mag	nitude	
 Used in early computed in early computed in early computed in early computed in the second structure in the secon						puters de of 8-		Binary value	Signed magnitude interpretation	Unsigned interpretation	
bit	nu	mb	er					00000000	0	0	
ı Ra	ang	e: -	12	7 ₁₀	->	+12	27 ₁₀	0000001	1	1	
MSB							1 SB				
								01111111	127	127	
7	6	5	4	3	2	1	0	1000000	-0	128	
Sign			Ma	Ignitu	ıde						
								11111111	-127	255	

One's Complement

BK TP.HOM

8 bit ones' complement

Have two representations of 0:	Binary value	Ones' complement interpretation	Unsigned interpretation
+0: 0000000	0000000	0	0
_∩·1111111	0000001	1	1
An 8-bit byte has value ranging	01111101	125	125
from -127 ₁₀ to 127 ₁₀	01111110	126	126
	01111111	127	127
binary decimal	1000000	-127	128
	1000001	-126	129
+ 00000010 +2	10000010	-125	130
1 0000000 0 < not the correct answer 1 +1 < add carry			
I TI N add Cally	11111110	-1	254
00000001 1 < correct answer	11111111	-0	255

BK P.HCM	Τ\λ/	າ'ຕ	C	٦m	nnla	۵m	۱۵r	nt	8	bit two's compl	ement
_						Binary value	Two's complement interpretation	Unsigned interpretation			
• N	-bit t	WO	's c	om	ple	mei	nt		00000000	0	0
າເ	ımbe	er in	n the	e ra	nge	e: -2	2N-1		0000001	1	1
to	2^{N-1}	-1									
• 8-	bit n	um	ber	rar	ngir	ng f	ron	1	01111110	126	126
-1	28 to	o 12	27						01111111	127	127
	MSB		Ρ	lace	valu	le		LSB	1000000	-128	128
	-2 ⁷	2 ⁶	25	24	2 ³	2 ²	2 ¹	20	10000001	-127	129
+33	0	0	1	0	0	0	0	1	10000010	-126	130
-33	1	1	0	1	1	1	1	1			
hit	7	6	5		2	· 2	1		11111110	-2	254
		U	5	4	3	2		U	11111111	-1	255

Arithmetic Operations: Addition

No need for special processing

Arithmetic Operations: Subtraction

Direct subtraction can be used

BK TP.HCM

> (borrow) (borrow) 11110 000 11100 000 1111 0000 1111 (15)0000 (15)1111 1011 (-5)0010 0011 (35) -----(20)0001 0100 (-20)1110 -1100

Or negate the subtrahend and perform addition

- Overflow happens when result of an arithmetic operation is larger than the range permitted by a word
- Can be detected by comparing the two right most carry bits (01)11(carry) (11)111 111 (carry) (15)(7)0000 1111 0111 + 0011(3) (-5)1111 1011 invalid! 1010(-6) 0000 1010 (10)

Computers also need to handle real numbers

- Two methods can be used:
 - Fixed-point representation
 - Floating-point representation

Fixed-point Representation

Fixed-point numbers use conventional formats

Integer part . Fractional part

The binary point can be placed any position within a memory word by the programmer

	Integer part	•	Fractional part
2.75 ₁₀	000010	-	11 ₂
28.25 ₁₀	011100		01 ₂

Not commonly used

BK TP.HOM

Floating-point Representation

- Represented in the form: m × r^e
 - m: mantissa, can be positive or negative
 - r: radix or base
 - e: exponent, can be positive or negative
- Examples:
 - Denary: 6.8×10⁶, 5.64×10⁻⁵
 - Binary: 0.1010101×2³, 0.11001×2⁻²

Storage of Floating Point Numbers

BK TP.HO

- The length of mantissa determines the precision of a number
- The exponent determines the range, the length usually one-third or one-half of the mantissa
- The binary point is immediately to the right of the sign bit

	sign	Mar	Mantissa (fraction)										Exponent (int)			
bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Positive and Negative Floating-point Forms – using Two's Complement

- Positive form: the most significant digit to the right of binary point is 1, the sign bit is 0
- Negative form: the most significant digit to the right of binary point is 0, the sign bit is 1
- If the most significant digit and the sign-bit is the same, the number needs to be normalised

Positive floatin	g form	Negative floatir	ng form
12 bits	4 bits	12 bits	4 bits
0.1*******	****	1.0********	****
mantissa	exponent	mantissa	exponent

Using two contiguous memory words for storing a number to increase precision

- Boolean variables
 - Have two values: 0 or 1
- Boolean operations

$x = 1011 \implies \overline{x} = 0100$

$\Rightarrow \overline{\overline{x}} = 1011 = x$

XOR (Exclusive OR) Operation

y and 0 = 0 y or 0 = y y xor 0 = y y and 1 = y y or 1 = 1 y xor 1 = not y

	ble	NOT	AND	OR	XOR
X	y	not y	x and y	x or y	x xor y
0	0	1	0	0	0
0	1	0	0	1	1
1	0	1	0	1	1
1	1	0	1	1	0

Laws of Boolean Algebra

- A Boolean expression
 - A = X.Y.Z + X.Y.Z + X.Y.Z
- Laws:

BP.HC

- X + Y = Y + X; X Y = Y X
- X + (Y+Z) = (X + Y) + Z; X.(Y.Z) = (X.Y).Z
- X.(Y+Z) = X.Y + X.Z; X + Y.Z = (X+Y).(X+Z)
- (X+Y)=X.Y; X.Y = X + Y
- X + X.Y = X ; X.(X+Y) = Y
- $\underline{X} + X = X; X = X$

• X = X

- Gates are basic electronic components can be used to perform logical and arithmetic operations
- A combination of gates can be used for complex operations
- A logic circuit is a combination of gates

Logic circuits can be built from gates based directly on Boolean expressions

An Application of Logic Gates

- Half adder circuit: perform addition operation for 2 binary digits
- Full adder circuit can add 3 binary digits
- Two numbers of larger numbers of digits
 can be added by using a combination of full
 adder circuits

Mạch cộng toàn phần (tt.)

C ₀	X	У	S	С	C ₀	S ₁	C ₁	C ₂	С
0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	1	0	0	0
0	1	0	1	0	0	1	0	0	0
0	1	1	0	1	0	0	1	0	1
1	0	0	1	0	1	0	0	0	0
1	0	1	0	1	1	1	0	1	1
1	1	0	0	1	1	1	0	1	1
1	1	1	1	1	1	0	1	0	1

C = 1 when $C_1 = 1$ or $C_2 = 1$

