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Introduction to Computing

Lectured by: Dr. Pham Tran Vu

t.v.pham@cse.hcmut.edu.vn



Assignment

 Research on the current issues in computing

 Assessment:

 Report: 30%

 Presentation: 10%

 Deadline: 29/3/2010
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Assignment Topics

 Web search engines: history and 

development

 Online games: benefits and social issues

 Software licensing and opportunities for 

open source software

 Internet in Vietnam: development history 

and its social impacts 
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Lecture 2: Fundamental Concepts 

(cont’)

History of computer

Number systems

Data representation

Computer logic
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Data Representation

 Data processed by computers has to be in 

binary form

 Main memory and external storage media, 

e.g. magnetic disk and tape, use 

electrical/magnetic patterns representing 

binary digits to record and handle data & 

instructions
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Character & Numeric Codes

 Character codes used to represent data processed 

by computers and stored data

 Numeric codes used to represent numeric data for 

processing purposes

 Characters may be:

 Alphabetic (upper and lower case)

 Numeric

 Special characters (apostrophe, comma, etc)

 Control characters and codes
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ASCII Character Set

 The range of characters which can be represented 

by a computer system is know as character set

 ASCII – American Standard Code for Information 

Interchange

 A character is represented by 7 binary digits

 Total of 128 characters in ASCII character set

 A additional bit, known as parity-bit, in left most 

position, is used to detect single bit error during 

data transfer
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Examples of ASCII Characters

Char ASCII Char ASCII Char ASCII Char ASCII

0 0110000 9 0111001 I 1001001 R 1010010

1 0110001 A 1000001 J 1001010 S 1010011

2 0110010 B 1000010 K 1001011 T 1010100

3 0110011 C 1000011 L 1001100 U 1010101

4 0110100 D 1000100 M 1001101 V 1010110

5 0110101 E 1000101 N 1001110 W 1010111

6 0110110 F 1000110 O 1001111 X 1011000

7 0110111 G 1000111 P 1010000 Y 1011001

8 0111000 H 1001000 Q 1010001 Z 1011010
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Structure of Main Memory (1)

 Main memory is divided into locations, each of which 

has a unique address

 Each location (an addressable unit) contains a 

memory word

 A memory word is a group of bits in memory, 

representing data or an instruction

 Memory word’s length is the number of bits can be 

stored at one location

 Word’s length can be different, depending on 

computer architecture (4, 8, 16, 32 or 64 bits)
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Structure of Main Memory (2)

 Large words may be composed of smaller 

units called byte, which is 8-bit length

 Example: structure of 16-bit word

High order byte Low order byte

MSB LSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



11

Internal Numbers

 Numbers are represented by bits

 An n-bit number has range from 0..2n – 1

 Examples

 1-bit: 2 values 0 and 1

 1 byte: from 0 to 28 - 1(255)

 2 bytes: 0 to 216 -1 (65535)
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Representation of Signed Integers

 Sign-magnitude

 Use the MSB as a sign bit

 One’s complement

 The inverse of a number formed by 

complementing each bit (0->1 and 1->0)

 Two’s complement

 One’s complement of a number add 1
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Sign and Magnitude

 Used in early computers

 Sign and magnitude of 8-

bit number

 Range: - 12710 -> +12710

MSB LSB

7 6 5 4 3 2 1 0

Sign Magnitude
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One’s Complement

 Have two representations of 0:

 +0: 00000000

 -0: 11111111

 An 8-bit byte has value ranging 

from -12710 to 12710
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Two’s Complement

• N-bit two’s complement 

number in the range: -2N-1

to 2N-1 -1

• 8-bit number ranging from 

-128 to 127
MSB

Place value
LSB

-27 26 25 24 23 22 21 20

+33 0 0 1 0 0 0 0 1

-33 1 1 0 1 1 1 1 1

bit 7 6 5 4 3 2 1 0
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Arithmetic Operations: Addition

 No need for special processing
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Arithmetic Operations: Subtraction

 Direct subtraction can be used

 Or negate the subtrahend and perform 

addition
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Arithmetic Overflow

 Overflow happens when result of an 

arithmetic operation is larger than the range 

permitted by a word

 Can be detected by comparing the two right 

most carry bits
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Real Numbers

 Computers also need to handle real 

numbers

 Two methods can be used:

 Fixed-point representation

 Floating-point representation
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Fixed-point Representation

 Fixed-point numbers use conventional formats

 The binary point can be placed any position within 

a memory word by the programmer

 Not commonly used

Integer part . Fractional part

Integer part . Fractional part

2.7510 000010 . 112

28.2510 011100 . 012
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Floating-point Representation

 Represented in the form: m × re

 m: mantissa, can be positive or negative

 r: radix or base

 e: exponent, can be positive or negative

 Examples:

 Denary: 6.8×106, 5.64×10-5

 Binary: 0.1010101×23, 0.11001×2-2
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Storage of Floating Point Numbers

 The length of mantissa determines the precision of 

a number

 The exponent determines the range, the length 

usually one-third or one-half of the mantissa

 The binary point is immediately to the right of the 

sign bit
sign Mantissa (fraction) Exponent (int)

bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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Positive and Negative Floating-point 

Forms – using Two’s Complement

 Positive form: the most significant digit to the right of 

binary point is 1, the sign bit is 0

 Negative form: the most significant digit to the right of 

binary point is 0, the sign bit is 1

 If the most significant digit and the sign-bit is the same, 

the number needs to be normalised
Positive floating form

12 bits 4 bits

0.1********** ****

mantissa exponent

Negative floating form

12 bits 4 bits

1.0********** ****

mantissa exponent
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Double Precision Numbers

 Using two contiguous memory words for 

storing a number to increase precision
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Computer Logic

 Boolean variables

 Have two values: 0 or 1

 Boolean operations
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Boolean Operations

Not

And

Nand

Or

XorNor

Boolean logic 
operations

Ex-Nor

(Not And)

(Not Or)

(Not Xor)

(Ex-Or)
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Not Operation

Symbol

x = 1011   x = 0100

 x = 1011 = x

01

10

xx

Truth table
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And Operation

Use dot symbol as 

in multiplication

y . 0 = 0

y . 1 = y

Truth table

x y x.y

0 0 0

0 1 0

1 0 0

1 1 1
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Or Operation

Use + symbol as in 

addition

y + 0 = y

y + 1 = 1

Truth table

x y x + y

0 0 0

0 1 1

1 0 1

1 1 1
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XOR (Exclusive OR) Operation

Use  symbol 

y  0 = y

Truth table

x y x  y

0 0 0

0 1 1

1 0 1

1 1 0
y  1 = y
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Summary 

XORORANDNOT

011011

110101

110010

000100

x xor yx or yx and ynot yyx

y and 0 = 0

y and 1 = y

y or 0 = y

y or 1 = 1

y xor 0 = y

y xor 1 = not y

Truth table



32

Laws of Boolean Algebra

 A Boolean expression

 A = X.Y.Z + X.Y.Z + X.Y.Z

 Laws:

 X + Y = Y + X;  X.Y = Y.X

 X + (Y+Z) = (X + Y) + Z; X.(Y.Z) = (X.Y).Z

 X.(Y+Z) = X.Y + X.Z; X + Y.Z = (X+Y).(X+Z)

 (X+Y)=X.Y; X.Y = X + Y

 X + X.Y = X ; X.(X+Y) = Y

 X + X = X; X.X = X

 X = X
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Gates (1)

NOT

AND

OR

XOR

BUFFER

NAND

NOR

EX-NOR
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Gates (2)

 Gates are basic electronic components can 

be used to perform logical and arithmetic 

operations

 A combination of gates can be used for 

complex operations

 A logic circuit is a combination of gates
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Circuit Logic Using Gates

 Logic circuits can be built from gates based 

directly on Boolean expressions

A

B

C

A.(B+C)
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An Application of Logic Gates

 Half adder circuit: perform addition operation 

for 2 binary digits

 Full adder circuit can add 3 binary digits

 Two numbers of larger numbers of digits 

can be added by using a combination of full 

adder circuits
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Half Adder Circuit

Half 

addery

S

C

x x

y
S

C

1011

0101

0110

0000

CSyx

ANDXOR

AND

XOR
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Full Adder Circuit

Full 

adder

y

S

C
x

C0

S = x + y + C0

S = (x + y) + C0

Tính: S1 = x + y

Tính: S2 = S1 + C0

Half adder 1

Half adder 2
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Mạch cộng toàn phần (tt.)

Half 

adder

S

Half 

addery

S1
x

C1

C2

gates

?

C

C0

When carry bit 

(C = 1)?
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Full adder (2)

1010111111

1101110011

1101110101

0000101001

1010010110

0001001010

0001001100

0000000000

CC2C1S1C0CSyxC0

C = 1 when C1 = 1 orC2 = 1
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Full adder (3)

C0

x

y

S1

S

C1

C2

C

Half 

adder

Half 

adder
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Adding Multiple Bits

y0

S0
x0

0

S1

S2

S3

C

x1

x2

x3

y1

y2

y3

Full 

adder 0

Full 

adder 1

Full 

adder 2

Full 

adder 3

x3x2x1x0

C S3S2S1S0

y3y2y1y0
+


