

Grid applications

Computing GRID: the issue

□ Supercomputer, cluster,...

 How to extract the 99,999999% of the computing power of my limited powered expensive environment

GRID environment

 How to extract the very power I need from the theoretically infinite powered cheap environment

Consequence

BK TP. HCH

Speedup/efficiency curves are not any more relevant information..

Grid vs. Cluster computing from application view

Cluster

- Have applications, build a cluster for those applications
- High efficiency but expensive
- Grid infrastructure
 - Have existing platforms, find applications that can efficiently run on those platforms
 - Cheap but not well tailored to every application

Types of Grid applications

Type 1:

BK TP. HCH

- Traditional HPC applications running within a site (VO)
 - Using traditional models (MPI, PVM,...)
 - Ready-to-run, no need to modify/re-compile
 - Role of the Grid middleware
 - Resource discovery
 - Deploy and run the application remotely, securely on the discovered resource

Types of Grid applications

Type 2:

BK TP.HCH

- New HPC applications running across multiple sites (VOs)
 - Require new programming models/tools
 - Multiple level parallelism
 - Embracing parallelism
 - Example: bio-informatics, parameter sweeping
 - Huge speedup can be achieved
- Very few applications
- Role of the Grid middleware
 - Resource discovery
 - Resource allocation and co-allocation
 - Application supporting services
 - Dynamic deployments and executions of application components

- Missing high-level services
 - QoS of resources
- Heterogeneity
- Code portability
 - Binary/Byte code or source code?
- Resource connectivity
 - Firewall/NAT/ Virtual IP
- Fault tolerance
 - Resource volatility
- Data protection
 - Protect sensitive data from stealing

Grid in the world

Nederland

ВК

- □ Virtual Laboratory for e-science (VL-e), 55 M€ over 5 years
 - 21 partners in 19 institutions
- □ The mission of the VL-E project is:
 - To boost e-Science by the creation of an e-Science environment and doing research on methodologies.
- □ The strategy will be:
 - To carry out concerted research along the complete e-Science technology chain, ranging from applications to networking, focused on new methodologies and reusable components.
- The essential components of the total e-Science technology chain are:
 - e-Science development areas,
 - a Virtual Laboratory development area,
 - a Large Scale Distributed computing development area, consisting of high performance networking and grid parts.

- 10/11 geographically distributed sites, every site hosts a cluster (from 256 CPUs to 1K CPUs)
- All sites are connected by RENATER (French Academ. Network)
- RENATER hosts probes to trace network condition load
- Design and develop a system/middleware environment for safely test and repeat experiments
- Only experimental platform (no production)

DATAGRID 10M€, ended beginning 2004

- 21 partners
- Feasibility project, final test bed
 1000 computers, 15 Terabytes on 25 sites
- Followed by...
- EGEE, 4 years, 40 M€ for the first two years
 - 70 partners in 27 countries
 - To provide the necessary storage and computing infrastructure to LHC (and others..)

...and at HCMUT....

VN-Grid: toward a national-scale computing Grid

Main focus: infrastructure

- High-level services
 - Resource discovery and reservation
 - Scheduling
 - VO and policy management
- OGSA and WSRF compliance
- Programming support
 - D MPI
 - □ POP-C++

We do not develop from scratch!

Using GT for providing base services

Our first prototype-to-be-built

- Keep in mind the heterogeneity the dynamics
 - "Virtual site" concept (VSite)
 - Combine the flexibility of P2P technologies (partial view assumption) with the efficiency of centralized management on each VSite
 - Flexible to involve more resources
 - Flexible security management
 Multiple level authentication and authorization (VO, user,...)
- Programming supports
 - Parallel object model (POP-C++)
 - MPI

BK TP.HCH

- Applications
 - Oil exploitation (geo-physic data computation of oil fields)
 - Supraconductor study
 - Aviation
 - Chip Design

