
Thái Duy Cường – 09070425
Nguyễn Văn Long – 09070450

GVHD: TS.Phạm Trần Vũ

 SOA – Service-Oriented Architecture

 Web Services

 Open Grid Services Architecture (OGSA)

 Web Service Resource Framework (WSRF)

 Architecture

 Service

 SOA

 A formal description of a system, defining its
purpose, functions, externally visible
properties, and interfaces. It also includes
the description of the system’s internal
components and their relationships, along
with the principles governing its design,
operation, and evolution.

 A software component that can be accessed
via a network to provide functionality to a
service requester.

 Services may be individually useful, or can be
integrated to provide higher-level services.

 Services communicate with their clients by
exchanging messages

 Services can participate in a workflow

 Services may be completely self-contained, or
they may depend on the availability of other
services, or on the existence of a resource such
as a data base.

 Services advertise details

 Implementation details are of no concern to
clients, and are not revealed

 In software engineering, a SOA is a set of
principles and methodologies for designing
and developing software in the form of
interoperable services.

 OASIS: A paradigm for organizing and utilizing
distributed capabilities that may be under the
control of different ownership domains. It
provides a uniform means to offer, discover,
interact with and use capabilities to produce
desired effects consistent with measurable
preconditions and expectations.

 Thomas Erl: SOA represents an open, agile,
extensible, federated, composable architecture
comprised of autonomous, QoS-capable, vendor
diverse, interoperable, discoverable, and
potentially reusable services, implemented as
Web services.

 SOA Elements

 Application frontends: are active elements of the
SOA, delivering the value of SOA to the end
users.
◦ They initiate and control all activity of the enterprise

system.
◦ Web application, application with GUI, or a batch

application.

 Service: a software component that encapsulates
a high level business concept.

 Contract: provides a specification of the purpose,
functionality, constraints, and usage of services.

 Interface: functionality of the service exposed by
the service to the clients that are connected to
the service.

 Implementation: provides the required business logic
and appropriate data. It contains one or more of the
artifacts: programs, configuration, data and databases.

 Business logic: business process represented by the
service.

 Data: data represented in the service/used by the
service.

 Service repository: it registers the services and their
attributes to facilitate the discovery of services;
operation, access rights, owner, qualities, etc.

 Service Bus (ESB): A flexible infrastructure for
integrating applications and services by : routing
messages, transforming protocols between requestor
and service, handling business events and delivering
them, providing QoS, mediation and security, and
managing the interaction among services.

 Benefits
◦ Loose Coupling
 Flexibility

 Scalability

 Replaceability

 Fault tolerance

◦ Distributed
 Manage load

 Failover for reliability

 May be geographically distributed

◦ Asset Management
 Leverages existing resources

 Creates assets

 Separate teams

 Disadvantage
◦ Overhead: using XML – easy to parse, but larger size

◦ Reliability:

 Multiple points of failure: machine, router, link, process

 Multiple points of infrastructure failure: power, physical
security, environment (storm, flood, earthquake)

◦ Security

◦ Programming Complexity : Programming SOA is
easy, but doing it well is hard.

◦ Configuration Management

◦ Governance

 Definitions

 XML

 SOAP

 WSDL

 Definitions
◦ Wiki: a method of communication between two

electronic devices over the web

◦ W3C: a software system designed to support
interoperable machine-to-machine interaction over
a network

◦ A standardized way of integrating Web-based
applications using the XML, SOAP, WSDL and UDDI
open standards over an Internet protocol backbone

 Web services architecture

 XML – eXtensible Markup Language
◦ a markup language for formatting and exchanging

structured data

◦ It allows designers to create their own customized
tags, enabling the definition, transmission,
validation, and interpretation of data between
applications and between organizations.

<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>

</note>

 SOAP - Simple Object Access Protocol
◦ an XML-based protocol for specifying envelope

information, contents and processing information
for a message

 SOAP - Simple Object Access Protocol
◦ A SOAP Request

POST /InStock HTTP/1.1
Host: www.example.org
Content-Type: application/soap+xml; charset=utf-8
<?xml version="1.0"?>
<soap:Envelope>

<soap:Body xmlns:m="http://www.example.org/stock">
 <m:GetStockPrice>
 <m:StockName>IBM</m:StockName>
 </m:GetStockPrice>
</soap:Body>

</soap:Envelope>

 SOAP - Simple Object Access Protocol
◦ A SOAP Response

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8

<?xml version="1.0"?>
<soap:Envelope>

<soap:Body xmlns:m="http://www.example.org/stock">
 <m:GetStockPriceResponse>
 <m:Price>34.5</m:Price>
 </m:GetStockPriceResponse>
</soap:Body>

</soap:Envelope>

 WSDL - Web Services Description Language
◦ an XML-based language that is used for describing

the functionality offered by a Web service

 UDDI - Universal Description, Discovery and
Integration
◦ a directory service where businesses can register

and search for Web services

◦ a platform-independent framework for describing
services, discovering businesses, and integrating
business services by using the Internet

 UDDI - Universal Description, Discovery and
Integration

 Service-orientation is an architectural style

 Web services are an implementation
technology

 The two can be used together, and they
frequently are, but they are not mutually
dependent

 OGSA have introduced by Globus and IBM,
2002

 The Open Grid Services Architecture (OGSA)
represents an evolution towards a Grid
system architecture based on Web services
concepts and technologies.

Open
Standards

Open
Source

Open
Infrastructure

Open
Grid

 Open Grid Service Architecture
◦ everything is represented as a service

◦ defines what is a Grid Service
 definition of standard service interfaces

 identification of the protocol(s)

Application

Fabric
“Controlling things locally”: Access
to, & control of, resources

Connectivity
“Talking to things”: communication
(Internet protocols) & security

Resource
“Sharing single resources”:
negotiating access, controlling use

Collective
“Coordinating multiple resources”:
ubiquitous infrastructure services,
app-specific distributed services

Internet

Transport

Application

Link

In
te

rn
e
t P

ro
to

c
o
l A

rc
h
ite

c
tu

re

Application

Fabric
“Controlling things locally”: Access
to, & control of, resources

Connectivity
“Talking to things”: communication
(Internet protocols) & security

Resource
“Sharing single resources”:
negotiating access, controlling use

Collective
“Coordinating multiple resources”:
ubiquitous infrastructure services,
app-specific distributed services

Internet

Transport

Application

Link

In
te

rn
e
t P

ro
to

c
o
l A

rc
h
ite

c
tu

re

 Trying to manage total system properties
◦ E.g. Dependability, end-to-end QoS

 “Resource” tends to connote a tangible entity
to be consumed: CPU, storage, bandwidth, …

 But many interesting services may be
decoupled from any particular resource
◦ E.g. virtual data service, data analysis service
◦ A service consumes resources, but how that

happens is irrelevant to the client

 “Service” forms a better base abstraction
◦ Can apply to physical or virtual

 Service-oriented architecture
◦ Key to virtualization, discovery, composition,

local-remote transparency

 Leverage industry standards
◦ Internet, Web services

 Distributed service management
◦ A “component model for Web services” (or: a

“service model for the Grid”)

 A framework for the definition of
composable, interoperable services

 A simple but powerful distributed system
paradigm, that allows one to:
◦ Describe a service (WSDL)

◦ Invoke a service (SOAP)

◦ Discover a service (various)

 Web services appears to offer a fighting
chance at ubiquity (unlike CORBA)
◦ Sophisticated tools emerging from industry

 But Web services does not go far enough to
serve a common base for the Grid …

 “Web services” address discovery & invocation of
persistent services
◦ Interface to persistent state of entire enterprise

 In Grids, must also support transient service
instances, created/destroyed dynamically
◦ Interfaces to the states of distributed activities
◦ E.g. workflow, video conf., dist. data analysis

 Significant implications for how services are
managed, named, discovered, and used
◦ In fact, much of Grid is concerned with the management

of service instances

 A standard substrate: the Grid service
◦ Standard interfaces and behaviors that address

key distributed system issues
◦ A refactoring and extension of the Globus

Toolkit protocol suite

 … supports standard service specifications
◦ Resource management, databases, workflow,

security, diagnostics, etc., etc.
◦ Target of current & planned GGF efforts

 … and arbitrary application-specific
services based on these & other definitions

Implementation

Hosting environment/runtime
(“C”, J2EE, .NET, …)

Data
access

Implementation

Hosting environment/runtime
(“C”, J2EE, .NET, …)

Data
access

Grid Service
Handle

Grid Service
Reference

handle
resolution

Implementation

Hosting environment/runtime
(“C”, J2EE, .NET, …)

Service
data

element

Service
data

element

GridService
(required)

Data
access

Grid Service
Handle

Grid Service
Reference

handle
resolution

Implementation

Hosting environment/runtime
(“C”, J2EE, .NET, …)

Service
data

element

Service
data

element

GridService
(required)

Data
access

Lifetime management
• Explicit destruction
• Soft-state lifetime

Introspection:
• What port types?
• What policy?
• What state?

Client

Grid Service
Handle

Grid Service
Reference

handle
resolution

Implementation

Service
data

element

Other standard interfaces:
factory,

notification,
collections

Hosting environment/runtime
(“C”, J2EE, .NET, …)

Service
data

element

Service
data

element

GridService
(required)

Data
access

Lifetime management
• Explicit destruction
• Soft-state lifetime

Introspection:
• What port types?
• What policy?
• What state?

Client

Grid Service
Handle

Grid Service
Reference

handle
resolution

 A DBaccess Grid service will support at least
two portTypes
◦ GridService

◦ DBaccess

 Each has service data
◦ GridService: basic introspection information,

lifetime, …

◦ DBaccess: database type, query languages
supported, current load, …, …

Grid
Service DBaccess

DB info

Name, lifetime, etc.

 GS instances created by factory or manually;
destroyed explicitly or via soft state
◦ Negotiation of initial lifetime with a factory

(=service supporting Factory interface)

 GridService interface supports
◦ Destroy operation for explicit destruction

◦ SetTerminationTime operation for keepalive

 Soft state lifetime management avoids
◦ Explicit client teardown of complex state

◦ Resource “leaks” in hosting environments

 Factory interface’s CreateService operation
creates a new Grid service instance
◦ Reliable creation (once-and-only-once)

 CreateService operation can be extended to
accept service-specific creation parameters

 Returns a Grid Service Handle (GSH)
◦ A globally unique URL

◦ Uniquely identifies the instance for all time

◦ Based on name of a home handleMap service

 Create, name, manage, discover services?

 Render resources, data, sensors as services?

 Negotiate service level agreements?

 Express & negotiate policy?

 Organize & manage service collections?

 Establish identity, negotiate authentication?

 Manage VO membership & communication?

 Compose services efficiently?

 Achieve interoperability?

OGSI

Transport Protocol Hosting Environment Hosting Environment

Host. Env. & Protocol Bindings

OGSA Platform services: registry,
authorization, monitoring, data

access, etc., etc.

More specialized &
domain-specific

services M
o
d
e
ls

 fo
r re

s
o
u
rc

e
s

 &
 o

th
e
r e

n
titie

s

O
th

e
r

m
o
d
e
ls

Environment-
specific
profiles

Domain-
specific
profiles

OGSA

Platform

 Data Access and Integration

 Data Replication

 Security

 SLA Negotiation

 Common Management Model

 And others…

Technical specifications
◦ Open Grid Services Infrastructure is complete

◦ Security, data access, Java binding, common
management models, etc., in the pipeline

Implementations and compliant products
◦ OGSA-based Globus Toolkit v3, pyGlobus, …

◦ IBM, Avaki, Platform, Sun, NEC, Oracle, …

Rich set of service defns & implementations
◦ Time to start on OGSI-compliant services!

Performance

 Policy

 Faults

service
data
elements

Pending

File
Transfer

Internal
State

Grid
Service

Notf’n
Source

Policy

interfaces Query &/or
subscribe

to service data

Fault
Monitor

Perf.
Monitor

Client Client Client

Request and manage file transfer operations

Data transfer operations

 Implement core OGSI interfaces

 Support primary GT2 interfaces
◦ High degree of backward compatibility

 Multiple platforms & hosting environments
◦ J2EE, Java, C, .NET, Python

 New services
◦ SLA negotiation (GRAM-2), registry, replica

location, community authorization, data, …

 Growing external contributions & adoption

 GT 1.0: 1998
◦ GRAM, MDS

 GT 2.0: 2001
◦ GridFTP, packaging, reliability

 GT3 Technology Preview: Apr-Dec 2002
◦ Tracking OGSI definition

 GT3.0 Alpha: Jan 2003
◦ OGSI Base, GT2 functionality

 GT3.0 Production: June 2003
◦ Tested, documented, etc.

 Grid Packaging Technology (GPT) NCSA
 Persistent GRAM Jobmanager Condor
 GSI/Kerberos interchangeability Sandia
 Documentation NASA, NCSA
 Ports IBM, HP, Sun, SDSC, …
 MDS stress testing EU DataGrid
 Support IBM, Platform, UK eScience
 Testing and patches Many!
 Interoperable tools Many!
 $$ DARPA, DOE, NSF, NASA, Microsoft, EU

 Replica location service EU DataGrid

 Python hosting environment LBNL

 Data access & integration UK eScience

 Data mediation services SDSC

 Tooling, Xindice, JMS IBM

 ...

 ...

 ...

 OGSA means you have to code in Java
◦ No: C client bindings now, C server side eventually

(but not needed for current apps)

 OGSA means all programs must be services
◦ No: You can write services if you want, but GT2-

style GRAM behavior is still supported (GRAM is just
a server)

 OGSA is a silver bullet for Grid computing
◦ No, it makes some things easier, but it’s only

interfaces and behaviors, after all!

 OGSA: standards-based Grid technology
◦ From Web services: standard IDL, discovery, binding

independence, other desirable features

◦ From Grid: naming, state, lifetime management, etc., etc.

 Rapid progress on definition & implementation
◦ OGSI is defined, GT3 implements it (and other things),

multiple groups coding to it

◦ Much more happening, much more to be done!

 No silver bullet, but a good incremental step
forward to our ultimate Grid software goals

 Introduction to WSRF

 What it is, why it was developed

 Relations to OGSI, OGSA

 Definitions

 announced at GlobusWorld 04 by the Globus Alliance, IBM
and HP

 WSRF is a set of five Web services specifications to model
and manage state in a Web services context
◦ ResourceLifetime

◦ ResourceProperties

◦ BaseFaults

◦ RenewableReferences

◦ ServiceGroup

 ... which together with the Notification Spec retain all of the
essential functional capabilities present in OGSI

WSRF effectively completes the convergence of

the Web service and Grid computing

communities

 Criticisms of OGSI from the Web services community:
◦ Too much stuff in one spec

 => functionality partitioned into a family of composable
specifications

◦ Does not work well with existing Web services tooling

 => WSRF tones down the usage of XML Schema

◦ Too object oriented: OGSI v1.0 models a stateful resource

as a Web service that encapsulates the resource’s state, with
the identity and lifecycle of the service and resource state
coupled

 => WSRF makes an explicit distinction between the “service”
and the stateful entities acted upon by that service

 OGSA: WSRF mechanisms will enable OGSA

 OGSI: WSRF restates OGSI concepts in WS
terms

OGSI WSRF

Grid Service Reference (GSR) WS-Addressing Endpoint Reference

Grid Service Handle (GSH) WS-Addressing Endpoint Reference

HandleResolver portType WS-RenewableReferences

Service data elements (SDE) WS-ResourceProperties

GridService lifetime managementt WS-ResourceLifeCycle

Notification portTypes WS-Notification

Factory portType Treated as a pattern

ServiceGroup portTypes WS-ServiceGroup

Base fault type WS-BaseFaults

 WS-Resource = Web Service + stateful resource which is
used in the execution of message exchanges

 Stateful resource:

◦ Specific set of state data expressible as XML doc

◦ Well defined lifecycle

◦ Known to and acted upon by one or more web services

 Implied resource pattern = specific kind of relationship
between web service and stateful resource

◦ Stateful resource implicit input for the execution of the
message request (static or dynamic)

◦ Pattern means that relationship is codified by a set of
conventions – in particular XML, WSDL and WS-Addressing

 WSRF Concepts in Detail
◦ how WS-Addressing is used

◦ have a closer look on the specs

<wsa:EndpointReference>

 <wsa:Address>

 http://someOrg.com/aWebService

 </wsa:Address>

 <wsa:ReferenceProperties>

 <tns:resourceID> C </tns:resourceID>

 </wsa:ReferenceProperties>

</wsa:EndpointReference>

Service Requestor

WS

request

response

C
A B

<soap:Envelope>

 <soap:Header>

 <tns:resourceID> C </tns:resourceID>

 </soap:Header>

 <soap:Body>

 … some message

 </soap:Body>

</soap:Envelope>

Service Requestor

WS

C

message

A B

C

 The lifecycle of a WS-Resource is defined as the period

between its instantiation and its destruction.
 Creation of a WS-Resource:

◦ trough any Web service capable of bringing one or more
WS-Resources into existence

◦ response message typically contains at least one
endpoint reference that refers to the new WS-Resource or
places it into a registry for later retrival

◦ a message exchange is only considered a WS-Resource
factory operation if it results in the actual creation of the
WS-Resource referred to in the returned WSResource-
qualified endpoint reference

 immediate destruction

 request message: <wsrl:DestroyRequest />

 response message: <wsrl:DestroyResponse />

 scheduled destruction mechanisms uses
properties of the WS-Resource to
◦ query current time

◦ Determine current termination time

 Setting initial termination Time
◦ via special XML element in the creation request message

 Requesting Change to Termination Time
◦ SetTerminationTimeRequest message

 Notification of Resource Destruction
◦ via subscription to topic ResourceTermination

 All time specifications are in UTC

 notification using a topic-based
publication/subscription pattern

 standard set of message exchanges that define
the roles of NotificationProducer and
NotificationConsumer

 standard way to name and describe Topics

 Topic = categorize Notifications and their
related NotificationMessage schemas

◦ part of the matching process

 A

B

C

WS with topics:
goingOffLine
SystemError

Subscribe C to
SystemError

Subscribe B to
goingOffLine

Producer

Consumer

A

B

C

WS with topics:
goingOffLine
SystemError

Broker

Consumer

msg1

msg2

Publisher A

Publisher B

Publish msg1 to
topic SystemError

Publish msg2 to
topic SystemError

 Broker interface:

◦ intermediary Web Service that decouples
NotificationConsumers from Publishers

 Demand-based publishing:

◦ producing notifications may be costly

◦ Broker subscribes to the Publisher

◦ When no subscribers for the messages

 it pauses its subscription

 resumes when there are subscribers

 defines the type and values of a WS-Resource’s
state that can be viewed and modified

 Resource properties document acts as a view on
the actual state

 Described using XML Schema

 Defined Messages:
◦ GetResourceProperty

◦ GetMultipleResourceProperties

◦ SetResourceProperties

 Insert,update,delete

◦ QueryResourceProperties

 Using a query expression such as Xpath

 Target: specifying Web services fault messages in
a common way

 defines an XML Schema type for a base fault,

along with rules for how this fault type is used

<BaseFault>

 <Timestamp>xsd:dateTime</Timestamp>

 <OriginatorReference>

 wsa:EndpointReferenceType

 </OriginatorReference> ?

 <ErrorCode

dialect="anyURI">xsd:string</ErrorCode> ?

 <Description>xsd:string</Description> *

 <FaultCause>wsbf:BaseFault</FaultCause> *

</BaseFault>

 defines means by which WS can be grouped together for a
domain specific purpose

 ServiceGroup is a WS-Resource, which represents a
collection of other Web services

 MembershipContentRule: constraints on membership of the
service group

◦ E.g. membership can be restricted to members that implement
a particular interface

◦ no MembershipContentRule elements are specified, the
members of the ServiceGroup are unconstrained.

<wssg:MembershipContentRule

 MemberInterface="QName"?

 ContentElements="list of QName"

 />

 ServiceGroupRegistration interface defines the message
exchanges allow a requestor to add entries to a
ServiceGroup (Add Operation)

 Notification of ServiceGroup Modification
◦ Topic ServiceGroupModification

◦ Notification Messages

 EntryAdditionNotification

 EntryRemovalNotification

 No specification yet!

 define mechanisms that can be used to renew an
endpoint reference that has become invalid
◦ reference may contain not only addressing but also policy

information concerning interactions with the service

 How?
◦ Decorating endpoint references with information

necessary to retrieve a new endpoint reference

 early preview of the Java WSRF Core
implementation
◦ none of the higher-level services

 GT 4.0 based on WSRF should become
available in Quartal 4 of 2004

 What is required to implement a new service?
◦ WSDL
◦ Service impl.
◦ Resource impl.
◦ ResourceHome
◦ Client
◦ Configuration/Installation

 <types>
 <xsd:schema targetNamespace="http://counter.com"
 xmlns:tns="http://counter.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 …
 <xsd:element name="Value" type="xsd:int"/>

 <xsd:element name="CounterRP">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="tns:Value"
 minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 </xsd:schema>
 </types>

<portType name="CounterPortType"
 gtwsdl:implements="wsnt:NotificationProducer
 wsrl:ImmediateResourceTermination"
 wsrp:ResourceProperties ="tns:CounterRP">

 <operation name="createCounter">
 <input message="tns:CreateCounterRequest"/>
 <output message="tns:CreateCounterResponse"/>
 </operation>

 <operation name="add">
 <input message="tns:AddInputMessage"/>
 <output message="tns:AddOutputMessage"/>
 </operation>

 </portType>

public _createCounterResponse createCounter(_createCounterRequest request)

{

 ResourceContext ctx = null;
 CounterHome home = null;
 ResourceKey key = null;

 ctx = ResourceContext.getResourceContext();
 home = (CounterHome) ctx.getResourceHome();
 key = home.create();

 EndpointReferenceType epr = AddressingUtils.createEndpointReference(ctx,

key);

 _createCounterResponse response = new _createCounterResponse();
 response.setEndpointReference(epr);
 return response;
}

public int add(int arg0) throws RemoteException
{
 Object resource =
 ResourceContext.getResourceContext().getResource();

 Counter counter = (Counter) resource;
 int result = counter.getValue();
 result += arg0;
 counter.setValue(result);
 return result;
 }

public class PersistentCounter
 extends Counter implements PersistentResource {

 public void setValue(int value) {
 super.setValue(value);
 store();
 }

 public Object create() throws Exception {
 Object key = super.create();
 store();
 return key;
 }
 public void load(ResourceKey key) throws ResourceException { …}
 public void store() throws ResourceException { … }
 public void remove() throws ResourceException { … }
}

public class CounterHome extends PersistentResourceHome {

 public ResourceKey create() throws Exception {
 Counter counter = (Counter)createNewInstance();
 counter.create();
 ResourceKey key =
 new SimpleResourceKey(keyTypeName, counter.getID());
 this.resources.put(key, counter);
 return key;
 }
}

 WSRF refactors OGSA concepts
◦ some parts are still missing

◦ Grid and Web communities can move forward on a
common base

 WS-Resource:

Web service that acts upon stateful resources

 An Overview of Service-oriented Architecture, Web
Services and Grid Computing

 Web Services Implementation Methodology for SOA
Application

 Elements of Service-Oriented Architecture - B.
Ramamurthy

 wikipedia.org
 www.w3.org
 www.webservices.org

 IBM: http://www.ibm.com/developerworks/library/ws-

resource/
 Globus Java WSRF Core 3.9.1
 http://www.globus.org/toolkit/

http://www.wikipedia.org/
http://www.w3.org/
http://www.webservices.org/
http://www.ibm.com/developerworks/library/ws-resource/
http://www.ibm.com/developerworks/library/ws-resource/
http://www.ibm.com/developerworks/library/ws-resource/
http://www.globus.org/toolkit/

