
Thoai Nam

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Speedup & Efficiency
� Amdahl’s Law
� Gustafson’s Law
� Sun & Ni’s Law

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Speedup:
S = Time(the most efficient sequential

algorithm) / Time(parallel algorithm)
� Efficiency:

E = S / N with N is the number of processors

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Amdahl’s Law – Fixed Problem
Size (1)

� The main objective is to produce the results as
soon as possible
– (ex) video compression, computer graphics, VLSI

routing, etc
� Implications

– Upper-bound is
– Make Sequential bottleneck as small as possible
– Optimize the common case

� Modified Amdahl’s law for fixed problem size
including the overhead

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Amdahl’s Law – Fixed Problem
Size (2)

ParallelSequentialSequential

P5 P6 P7 P8P4P0 P1 P2 P3 P9SequentialParallel

T(1)

T(N)

Ts Tp

Ts=αT(1) ⇒ Tp= (1-α)T(1)
T(N) = αT(1)+ (1-α)T(1)/N

Number of
processors

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Amdahl’s Law – Fixed Problem
Size (3)

∞→→
−

+

=
−

+

= Nas

NN
TT

TSpeedup
αα

α

α

α

1
)1(

1
)1()1()1(

)1(

)(
)1(
NTime

TimeSpeedup =

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

∞→

+

→

+
−

+

= Nas

T
TT

N
TT

TSpeedup
overhead

overhead)1(

1
)1()1()1(

)1(

α

α

α

The overhead includes parallelism
and interaction overheads

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Gustafson’s Law – Fixed Time (1)

� User wants more accurate results within a time limit
– Execution time is fixed as system scales
– (ex) FEM for structural analysis, FDM for fluid dynamics

� Properties of a work metric
– Easy to measure
– Architecture independent
– Easy to model with an analytical expression
– No additional experiment to measure the work
– The measure of work should scale linearly with sequential

time complexity of the algorithm
� Time constrained seems to be most generally viable

model!

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Gustafson’s Law – Fixed Time (2)

Parallel

P5 P6 P7 P8P4P0 P1 P2 P3 P9Sequential

Sequential

P0Sequential

P9

.

.

.

W0Ws

α = Ws / W(N)
W(N) = αW(N) + (1-α)W(N)
⇒ W(1) = αW(N) + (1-α)W(N)N

W(N)

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Gustafson’s Law – Fixed Time
without overhead

N
W

NWW
kNW
kW

NT
TSpeedup)1(1(

).(
).1(

)(
)1(

αα

αα

−+=
)−+

===

Time = Work . k
W(N) = W

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Gustafson’s Law – Fixed Time
with overhead

W
W

N
WW
NWW

kNW
kW

NT
TSpeedup

00 1

1(1(
).(

).1(
)(

)1(

+

)−+
=

+

)−+
===

αααα

W(N) = W + W0

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Sun and Ni’s Law –
Fixed Memory (1)

� Scale the largest possible solution limited
by the memory space. Or, fix memory
usage per processor

� Speedup,
– Time(1)/Time(N) for scaled up problem is not

appropriate.
– For simple profile, and G(N) is the increase of

parallel workload as the memory capacity
increases n times.

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Sun and Ni’s Law –
Fixed Memory (2)

N
NG
NGSpeedupMC)()1(

)()1(

αα

αα

−+

−+
=

� W=αW+(1- α)W
� Let M be the memory capacity of a single

node
� N nodes:

– the increased memory nM
– The scaled work: W=αW+(1- α)G(N)W

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Definition:
A function is homomorphism if there exists a function

such that for any real number c and variable x,
.

� Theorem:
If W = for some homomorphism function ,

, then, with all data being shared by
all available processors, the simplified memory-
bounced speedup is

Sun and Ni’s Law –
Fixed Memory (3)

N
NG
NG

W
N
NgW

WNgWS
N

N
N)()1(

)()1(
)(
)(

1

1*

αα

αα

−+

−+
=

+

+
=

g

)()()(xgcgcxg =

g

)(Mg g
)()()(xgcgcxg =

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Proof:
Let the memory requirement of Wn be M, Wn = .
M is the memory requirement when 1 node is available.
With N nodes available, the memory capacity will

increase to NM.
Using all of the available memory, for the scaled parallel

portion :

.

Sun and Ni’s Law –
Fixed Memory (4)

NN WNgMgNgNMgW)()()()(*
===

)(Mg

*
NW

N

N

N

N
N

W
N
NgW

WNgW

N
WW

WWS)(
)(

1

1
*

*
1

**
1*

+

+
=

+

+
=

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

– When the problem size is independent of the system,
the problem size is fixed, G(N)=1⇒ Amdahl’s Law.

– When memory is increased N times, the workload also
increases N times, G(N)=N⇒ Gustafson’s Law

– For most of the scientific and engineering applications,
the computation requirement increases faster than the
memory requirement, G(N)>N.

N

N
N

W
N
NGW

WNGWS)(
)(

1

1*

+

+
=

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

0

2

4

6

8

10

Processors

S(Linear)
S(Normal)

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Parallelizing a code does not always result in a speedup;
sometimes it actually slows the code down! This can be
due to a poor choice of algorithm or to poor coding

� The best possible speedup is linear, i.e. it is proportional
to the number of processors: T(N) = T(1)/N where
N = number of processors, T(1) = time for serial run.

� A code that continues to speed up reasonably close to
linearly as the number of processors increases is said to
be scalable. Many codes scale up to some number of
processors but adding more processors then brings no
improvement. Very few, if any, codes are indefinitely
scalable.

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Software overhead
Even with a completely equivalent algorithm, software overhead
arises in the concurrent implementation. (e.g. there may be additional
index calculations necessitated by the manner in which data are "split
up" among processors.)
i.e. there is generally more lines of code to be executed in the parallel
program than the sequential program.

� Load balancing
� Communication overhead

