
Thoai Nam

-2-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Parallel programming paradigms
� Programmability Issues
� Parallel programming models

– Implicit parallelism
– Explicit parallel models
– Other programming models

-3-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Parallel programming paradigms/models are the
ways to

– Design a parallel program
– Structure the algorithm of a parallel program
– Deploy/run the program on a parallel computer system

� Commonly-used algorithmic paradigms
– Phase parallel
– Synchronous and asynchronous iteration
– Divide and conquer
– Pipeline
– Process farm
– Work pool

-4-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� The programmability of a parallel programming
models is
– How much easy to use this system for developing and

deploying parallel programs
– How much the system supports for various parallel

algorithmic paradigms
� Programmability is the combination of

– Structuredness
– Generality
– Portability

-5-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� A program is structured if it is comprised of
structured constructs each of which has these 3
properties
– Is a single-entry, single-exit construct
– Different semantic entities are clearly identified
– Related operations are enclosed in one construct

� The structuredness mostly depends on
– The programming language
– The design of the program

-6-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� A program class C is as general as or more general
than program class D if:
– For any program Q in D, we can write a program P in C
– Both P & Q have the same semantics
– P performs as well as or better than Q

-7-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� A program is portable across a set of computer
system if it can be transferred from one machine
to another with little effort

� Portability largely depends on
– The language of the program
– The target machine’s architecture

� Levels of portability
1. Users must change the program’s algorithm
2. Only have to change the source code
3. Only have to recompile and relink the program
4. Can use the executable directly

-8-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Widely-accepted programming models are
– Implicit parallelism
– Data-parallel model
– Message-passing model
– Shared-variable model (Shared Address Space model)

-9-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� The compiler and the run-time support system
automatically exploit the parallelism from the
sequential-like program written by users

� Ways to implement implicit parallelism
– Parallelizing Compilers
– User directions
– Run-time parallelization

-10-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� A parallelizing (restructuring) compiler must
– Performs dependence analysis on a sequential

program’s source code
– Uses transformation techniques to convert sequential

code into native parallel code
� Dependence analysis is the identifying of

– Data dependence
– Control dependence

-11-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Data dependence

� Control dependence

� When dependencies do exist, transformation
techniques/ optimizing techniques should be used
– To eliminate those dependencies or
– To make the code parallelizable, if possible

X = X + 1

Y = X + Y

X = X + 1

Y = X + Y

If f(X) = 1 then Y = Y + Z;

-12-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Privatization technique

Some Optimizing Techniques for
Eliminating Data Dependencies

Do i=1,N

P: A = …

Q: X(i)= A + …

…

End Do

ParDo i=1,N

P: A(i) = …

Q: X(i) = A(i) + …

…

End Do

Q needs the value A of
P, so N iterations of the
Do loop can not be
parallelized

Each iteration of the Do loop
have a private copy A(i), so
we can execute the Do loop in
parallel

-13-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Some Optimizing Techniques for
Eliminating Data Dependencies(cont’d)

� Reduction technique
Do i=1,N

P: X(i) = …

Q: Sum = Sum + X(i)

…

End Do

ParDo i=1,N

P: X(i) = …

Q: Sum = sum_reduce(X(i))

…

End Do

The Do loop can not be
executed in parallel since the
computing of Sum in the i-th
iteration needs the values of
the previous iteration

A parallel reduction function is used
to avoid data dependency

-14-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Users help the compiler in parallelizing by
– Providing additional information to guide the parallelization process
– Inserting compiler directives (pragmas) in the source code

� User is responsible for ensuring that the code is correct after
parallelization

� Example (Convex Exemplar C)

#pragma_CNX loop_parallel

for (i=0; i <1000;i++){

A[i] = foo (B[i], C[i]);

}

-15-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Parallelization involves both the compiler and the
run-time system
– Additional construct is used to decompose the sequential

program into multiple tasks and to specify how each task
will access data

– The compiler and the run-time system recognize and
exploit parallelism at both the compile time and run-time

� Example: Jade language (Stanford Univ.)
– More parallelism can be recognized
– Automatically exploit the irregular and dynamic

parallelism

-16-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Advantages of the implicit programming model
– Ease of use for users (programmers)
– Reusability of old-code and legacy sequential

applications
– Faster application development time

� Disadvantages
– The implementation of the underlying run-time systems

and parallelizing compilers is so complicated and
requires a lot of research and studies

– Research outcome shows that automatic parallelization
is not so efficient (from 4% to 38% of parallel code
written by experienced programmers)

-17-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Data-Parallel
� Message-Passing
� Shared-Variable

-18-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Applies to either SIMD or SPMD modes
� The same instruction or program segment executes

over different data sets simultaneously
� Massive parallelism is exploited at data set level
� Has a single thread of control
� Has a global naming space
� Applies loosely synchronous operation

-19-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

main() {

double local[N], tmp[N], pi, w;

long i, j, t, N=100000;

A: w=1.0/N;

B: forall(i=0; i<N; i++) {

P: local[i]=(i +0.5)*w;

Q: tmp[i]=4.0/(1.0+local[i]*local[i]);

}

C: pi=sum(tmp);

D: printf(“pi is %f\n”, pi*w);

} //end main

Data-parallel operations

Reduction operation

Example: a data-parallel program
to compute the constant “pi”

-20-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Multithreading: program consists of multiple
processes
– Each process has its own thread of control
– Both control parallelism (MPMD) and data parallelism

(SPMD) are supported
� Asynchronous Parallelism

– All process execute asynchronously
– Must use special operation to synchronize processes

� Multiple Address Spaces
– Data variables in one process is invisible to the others
– Processes interact by sending/receiving messages

-21-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Explicit Interactions
– Programmer must resolve all the interaction issues:

data mapping, communication, synchronization and
aggregation

� Explicit Allocation
– Both workload and data are explicitly allocated to the

process by the user

-22-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

#define N 1000000
main() {

double local, pi, w;
long i, taskid, numtask;

A: w=1.0/N;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
MPI_Comm_size(MPI_COMM_WORLD, &numtask);

B: for (i=taskid;i<N;i=i+numtask) {
P: local= (i +0.5)*w;
Q: local=4.0/(1.0+local*local); }
C: MPI_Reduce(&local, &pi, 1, MPI_DOUBLE,

MPI_SUM, 0, MPI_COMM_WORLD);
D: if (taskid==0) printf(“pi is %f\n”, pi*w);

MPI_Finalize();
} //end main

Example: a message-passing program to compute the constant “pi”

Message-Passing
operations

-23-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Has a single address space
� Has multithreading and asynchronous model
� Data reside in a single, shared address space, thus

does not have to be explicitly allocated
� Workload can be implicitly or explicitly allocated
� Communication is done implicitly

– Through reading and writing shared variables
� Synchronization is explicit

-24-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

#define N 1000000
main() {

double local, pi=0.0, w;
long i;

A: w=1.0/N;
B: #pragma parallel

#pragma shared (pi,w)
#pragma local(i,local)
{

#pragma pfor iterate (i=0;N;1)
for(i=0;i<N;i++){

P: local= (i +0.5)*w;
Q: local=4.0/(1.0+local*local);

}
C: #pragma critical

pi=pi+local;
}

D: if (taskid==0) printf(“pi is %f\n”, pi*w);
} //end main

-25-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

��� �� � � �Structuredness

�� �� � �� � � �Portability

� � �� � �� ��Generality

�� �� � �� � � �Correctness

�� �� � � �� � � �Determinacy

�� �� � � �� � � �Termination

� � �� �� �� � � �Irregularity

�� � � �� � �� � � �Aggregation

�� �� � � �� � � �Synchronization

� � ��� � �� � � �Communication

� � ��� �� � � �Allocation issues

� ��� � �� � � �Parallelism issues

Cray Craft,
SGI Power C

SP2 MPL,
Paragon Nx

CM C*Platform-dependent
examples

X3H5PVM, MPIFortran 90, HPF,
HPC++

Kap, ForgePlatform-independent
examples

Shared-VariableMessage-passingData-parallelImplicitIssues

-26-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Implicit parallelism
– Easy to use
– Can reuse existing sequential programs
– Programs are portable among different architectures

� Data parallelism
– Programs are always determine and free of

deadlocks/livelocks
– Difficult to realize some loosely sync. program

-27-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Message-passing model
– More flexible than the data-parallel model
– Lacks support for the work pool paradigm and applications

that need to manage a global data structure
– Be widely-accepted
– Expoit large-grain parallelism and can be executed on

machines with native shared-variable model (multiprocessors:
DSMs, PVPs, SMPs)

� Shared-variable model
– No widely-accepted standard � programs have low portability
– Programs are more difficult to debug than message-passing

programs

-28-Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

� Functional programming
� Logic programming
� Computing-by-learning
� Object-oriented programming

