Processor Organization

Thoai Nam

Outline

- Criteria:
- Diameter, bisection width, etc.
- Processor Organizations:
- Mesh, binary tree, hypertree, pyramid, butterfly, hypercube, shuffle-exchange

Criteria

- Diameter
- The largest distance between two nodes
- Lower diameter is better
- Bisection width

The minimum number of edges that must be removed in order to divide the network into two halves (within one)

- Number of edges per node
- Maximum edge length
- Q-dimensional lattice
a Communication is allowed only between neighboring nodes. Interior nodes communicate with $2 q$ other nodes.

Khoa Công Nghệ Thông Tin - Đại Học Bách Khoa Tp.HCM

Mesh (2)

- Q-dimensional mesh with k^{9} nodes
- Diameter: q(k-1)
- Bisection width: $\mathrm{k}^{\mathrm{q}-1}$
- The maximum number of edges per node: 2 q
- The maximum edge length is a constant

Binary Tree

- Depth k-1: $2^{k}-1$ nodes
- Diameter: 2(k-1)
- Bisection width: 1
- Length of the longest edge: increasing

Fat Tree

- Bandwidth problem on binary tree

Hypertree (1)

a Hypertree of degree k and depth d: a complete k-ary tree of height d.

Khoa Công Nghệ Thông Tin - Đại Học Bách Khoa Tp.HCM

Hypertree (2)

- A 4-ary hypertree with depth d has 4^{d} leaves and $2^{d}\left(2^{d+1}-1\right)$ nodes in all
- Diameter: 2d
- Bisection width: $2^{\mathrm{d}+1}$
- The number of edges per node ≤ 6
- Length of the longest edge: increasing

Khoa Công Nghệ Thông Tin - Đại Học Bách Khoa Tp.HCM

Pyramid

- Size k²: base a 2D mesh network containing k^{2} processors, the total number of processors $=(4 / 3) \mathrm{k}^{2}-1 / 3$
- A pyramid of size k^{2} :
- Diameter: 2logk
- Bisection width: $2 k$
- Maximum of links per node: 9
- Length of the longest edge: increasing

- $(k+1) 2^{k}$ nodes divided into $k+1$ rows (rank), each contains $n=2^{k}$ nodes.
- Ranks are labeled 0 through k
- Node(i,j): j-th node on the i-th rank
- Node(i,j) is connected to two nodes on rank i-1: node(i-1,j) and node ($\mathrm{i}-1, \mathrm{~m}$), where m is the integer found by inverting the i -th most significant bit in the binary representation of j
- If node(i, j) is connected to node($\mathrm{i}-1, \mathrm{~m}$), then node (i, m) is connected to (i-1, j)
- Diameter=2k
- Bisection width=2 ${ }^{k-1}$
- Length of the longest edge: increasing

Butterfly (2)

Node(1,5): i=1, j=5
$\mathrm{j}=5=101$ (binary)

$$
001=1
$$

Node $(1,5)$ is connected to node(0,1)

- 2^{k} nodes form a k-dimensional hypercube
- Nodes are labeled 0, 1, 2,..., $2^{k}-1$
- Two nodes are adjacent if their labels differ in exactly one bit position
- Diameter=k
- Bisection width= 2^{k} - 1
- Number of edges per node is k
- Length of the longest edge: increasing

Hypercube (2)

Khoa Công Nghệ Thông Tin - Đại Học Bách Khoa Tp.HCM

Hypercube (3)

- 5 = 0101

ㅁ $1=0001$

- $4=0100$
- $13=1101$

Khoa Công Nghệ Thông Tin - Đại Học Bách Khoa Tp.HCM

Others

- Cube-Connected cycles
- Shuffle-Exchange
- De Bruijn

