Parallel Processing & Distributed Systems

Thoai Nam

Introduction

- What is parallel processing?
- Why do we use parallel processing?
- Applications
- Parallelism

- □ 1 CPU
- □ Simple
- □ Big problems???

Khoa Công Nghệ Thông Tin – Đại Học Bách Khoa Tp.HCM

Khoa Công Nghệ Thông Tin – Đại Học Bách Khoa Tp.HCM

- A grand challenge problem is one that cannot be solved in a reasonable amount of time with today's computers
- D Ex:
 - Modeling large DNA structures
 - Global weather forecasting
 - Modeling motion of astronomical bodies

- □ Power processor
 - 50 Hz -> 100 Hz -> 1 GHz -> 4 Ghz -> ... -> Upper bound?
- □ Smart worker
 - Better algorithms
- Parallel processing

\Box The N² algorithm:

- N bodies
- N-1 forces to calculate for each bodies
- N² calculations in total
- After the new positions of the bodies are determined, the calculations must be repeated
- □ A galaxy:
 - 10⁷ stars and so 10¹⁴ calculations have to be repeated
 - Each calculation could be done in $1\mu s$ (10⁻⁶s)
 - It would take **10 years** for one iteration
 - But it only takes 1 day for one iteration with 3650 processors

- □ Parallel processing
- Parallel computer
 - Multi-processor computer capable of parallel processing
- □ Throughput:
 - The throughput of a device is the number of results it produces per unit time.
- □ Speedup
 - S = Time(the most efficient sequential algorithm) / Time(parallel)
 - algorithm)

- □ Parallelism:
 - Pipeline
 - Data parallelism
 - Control parallelism

- □ A number of steps called **segments** or **stages**
- □ The output of one segment is the input of other segment

Applying the same operation simultaneously to elements of a data set

- □ Pipeline is a special case of control parallelism
- □ T(s): Sequential execution time

T(p): Pipeline execution time (with 3 stages)

T(dp): Data-parallelism execution time (with 3 processors)

S(p): Speedup of pipeline

S(dp): Speedup of data parallelism

widget	1	2	3	4	5	6	7	8	9	10
T(s)	3	6	9	12	15	18	21	24	27	30
T(p)	3	4	5	6	7	8	9	10	11	12
T(dp)	3	3	3	6	6	6	9	9	9	12
S(p)	1	1+1/2	1+4/5	2	2+1/7	2+1/4	2+1/3	2+2/5	2+5/11	2+1/2
S(dp)	1	2	3	2	2+1/2	3	2+1/3	2+2/3	3	2+1/2

Khoa Công Nghệ Thông Tin – Đại Học Bách Khoa Tp.HCM

 Applying different operations to different data elements simultaneously

- An algorithm is scalable if the level of parallelism increases at least linearly with the problem size.
- An architecture is scalable if it continues to yield the same performance per processor, albeit used in large problem size, as the number of processors increases.
- Data-parallelism algorithms are more scalable than controlparallelism algorithms