Distributed System

THOAI NAM

- Distributed Systems
- Hardware & software
- □ Transparency
- □ Scalability
- Distributed OS

- □ A distributed system:
 - Multiple connected CPUs working together
 - A collection of independent computers that appears to its users as a single coherent system
- □ Examples: parallel machines, networked machines

Advantages

- Communication and resource sharing possible
- Economics price-performance ratio
- Reliability, scalability
- Potential for incremental growth

Disadvantages

- Distribution-aware PLs, OSs and applications
- Network connectivity essential
- Security and privacy

Transparency	Description
Access	Hide differences in data representation and how a resource is accessed
Location	Hide where a resource is located
Migration	Hide that a resource may move to another location
Relocation	Hide that a resource may be moved to another location while in use
Replication	Hide that a resource may have many copies
Concurrency	Hide that a resource may be shared by several competitive users
Failure	Hide the failure and recovery of a resource
Persistence	Hide whether a (software) resource is in memory or on disk

Different forms of transparency in a distributed system.

Khoa Công Nghệ Thông Tin – Đại Học Bách Khoa Tp.HCM

Concept	Example		
Centralized services	A single server for all users		
Centralized data	A single on-line telephone book		
Centralized algorithms	Doing routing based on complete information		

Examples of scalability limitations.

Hardware Concepts: Multiprocessors (1)

Multiprocessor dimensions

- Memory: could be shared or be private to each CPU
- Interconnect: could be shared (bus-based) or switched
- □ A bus-based multiprocessor.

a) A crossbar switch b) An omega switching network

a) Grid

b) Hypercube

- □ Minicomputer model
 - Each user has local machine
 - Local processing but can fetch remote data (files, databases)
- Workstation model
 - Processing can also migrate
- Client-server Model
 - User has local workstation
 - Powerful workstations serve as servers (file, print, DB servers)
- Processor pool model
 - Terminals are Xterms or diskless terminals
 - Pool of backend processors handle processing

- An OS acts as a resource manager or an arbitrator
 - Manages CPU, I/O devices, memory
- OS provides a virtual interface that is easier to use than hardware
- Structure of uniprocessor operating systems
 - Monolithic (e.g., MS-DOS, early UNIX)
 - » One large kernel that handles everything
 - Layered design
 - » Functionality is decomposed into N layers
 - » Each layer uses services of layer N-1 and implements new service(s) for layer N+1

Microkernel architecture

- Small kernel
- user-level servers implement additional functionality

- Manages resources in a distributed system
 - Seamlessly and transparently to the user
- Looks to the user like a centralized OS
 - But operates on multiple independent CPUs
- Provides transparency
 - Location, migration, concurrency, replication,...
- Presents users with a virtual uniprocessor

System	Description	Main Goal
DOS	Tightly-coupled operating system for multi-processors and homogeneous multicomputers	Hide and manage hardware resources
NOS	Loosely-coupled operating system for heterogeneous multicomputers (LAN and WAN)	Offer local services to remote clients
Middleware	Additional layer atop of NOS implementing general-purpose services	Provide distribution transparency

- □ Like a uniprocessor operating system
- Manages multiple CPUs transparently to the user
- □ Each processor has its own hardware cache
 - Maintain consistency of cached data

Employs a client-server model

- Minimal OS kernel
- Additional functionality as user processes

□ General structure of a distributed system as middleware.

Thomas	Distributed OS		Network	Middleware-	
Item	Multiproc.	Multicomp.	OS	based OS	
Degree of transparency	Very High	High	Low	High	
Same OS on all nodes	Yes	Yes	No	No	
Number of copies of OS	1	N	N	Ν	
Basis for communication	Shared memory	Messages	Files	Model specific	
Resource management	Global, central	Global, distributed	Per node	Per node	
Scalability	No	Moderately	Yes	Varies	
Openness	Closed	Closed	Open	Open	