
1

Distributed
System

THOAI NAM

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Chapter 2: Communication

Issues in com m unication

M essage-oriented Com m unication

Rem ote Procedure Calls
– Transparency but poor for passing references

Rem ote M ethod Invocation
– RM Isare essentially RPCsbut specific to rem ote objects

– System wide references passed as param eters

Stream -oriented Com m unication

2

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Communication Protocols

Protocols are agreem ents/rules on com m unication

Protocols could be connection-oriented or
connectionless

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Layered Protocols

A typical m essage as it appears on the network.

2-2

3

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Client-Server TCP

a) Normal operation of TCP.
b) Transactional TCP.

2-4

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Middleware Protocols

M iddleware: layer that resides between an OS and
an application
– M ay im plem ent general-purpose protocols that warrant
their own layers. Ex: distributed com m it

4

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Client-Server Communication
Model

Structure: group of servers offering service to
clients

Based on a request/response paradigm

Techniques:
– Socket, rem ote procedure calls (RPC), Rem ote M ethod
Invocation (RM I)

kernel

client

kernel kernel kernel

file
server

process
server

terminal
server

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Issues in Client-Server
Communication

Addressing

Blocking versus non-blocking

Buffered versus unbuffered

Reliable versus unreliable

Server architecture: concurrent versus sequential

Scalability

5

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Addressing Issues

Question:how is the server
located?

Hard-wired address
– M achine address and process
address are known

Broadcast-based
– Server chooses address from a
sparse address space

– Client broadcasts request

– Can cache response for future

Locate address via nam e server

user server

user server

user serverNS

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Blocking versus Non-blocking

Blocking com m unication (synchronous)
– Send blocks until m essage is actually sent

– Receive blocks until m essage is actually
received

Non-blocking com m unication (asynchronous)
– Send returns im m ediately

– Return does not block either

Exam ples

6

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Buffering Issues

Unbuffered
communication
– Server must call receive

before client can call send

Buffered communication
– Client send to a mailbox
– Server receives from a

mailbox

user server

user server

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Reliability

Unreliable channel
– Need acknowledgem ents (ACKs)
– Applications handle ACKs
– ACKsfor both request and reply

Reliable channel
– Reply acts as ACK for request
– Explicit ACK for response

Reliable com m unication on unreliable
channels
– Transport protocol handles lost m essages

request
ACK
reply
ACK

U
se

r

Se
rv

er

request
reply
ACK

U
se

r

Se
rv

er

7

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Remote Procedure Calls

Goal: M ake distributed com puting look like
centralized com puting

Allow rem ote services to be called as procedures
– Transparency with regard to location, im plem entation,
language

Issues
– How to pass param eters

– Bindings

– Sem antics in face of errors

Two classes: integrated into prog, language and
separate

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Conventional Procedure Call

a) Param eter passing in a
local procedure call: the
stack before the call to
read

b) The stack while the called
procedure is active

8

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Parameter Passing

Local procedure parameter passing
– Call-by-value
– Call-by-reference: arrays, complex data

structures

Remote procedure calls simulate this
through:
– Stubs – proxies
– Flattening – marshalling

Related issue: global variables are not
allowed in RPCs

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Client and Server Stubs

Principle of RPC between a client and server
program .

9

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Stubs

Client m akes procedure call (just like a local
procedure call) to the client stub

Server is written as a standard procedure

Stubs take care of packaging argum ents and
sending m essages

Packaging param eters is called m arshalling

Stub com piler generates stub autom atically from
specs in an Interface Definition Language (IDL)
– Sim plifies program m er task

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Steps of a Remote Procedure
Call

1. Client procedure calls client stub in norm al way

2. Client stub builds m essage, calls local OS
3. Client's OS sends m essage to rem ote OS
4. Rem ote OS gives m essage to server stub
5. Server stub unpacks param eters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in m essage, calls local OS

8. Server's OS sends m essage to client's OS
9. Client's OS gives m essage to client stub
10. Stub unpacks result, returns to client

10

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Example of an RPC

2-8

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Marshalling

Problem : different m achines have different data
form ats
– Intel: little endian, SPARC: big endian

Solution: use a standard representation
– Exam ple: external data representation (XDR)

Problem : how do we pass pointers?
– If it points to a well-defined data structure, pass a copy and the
server stub passes a pointer to the local copy

W hat about data structures containing pointers?
– Prohibit
– Chase pointers over network

M arshalling: transform param eters/results into a byte
stream

11

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Binding

Problem: how does a client locate a server?
– Use Bindings

Server
– Export server interface during initialization
– Send name, version no, unique identifier, handle

(address) to binder

Client
– First RPC: send message to binder to import

server interface
– Binder: check to see if server has exported

interface
» Return handle and unique identifier to client

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Case Study: SUNRPC

One of the m ost widely used RPC system s

Developed for use with NFS

Built on top of UDP or TCP
– TCP: stream is divided into records

– UDP: m ax packet size < 8912 bytes

– UDP: tim eout plus lim ited num ber of retransm issions

– TCP: return error if connection is term inated by server

M ultiple argum ents m arshaled into a single structure
At-least-once sem antics if reply received, at-least-zero
sem antics if no reply. W ith UDP tries at-m ost-once

Use SUN’s eXternal Data Representation (XDR)
– Big endian order for 32 bit integers, handle arbitrarily large data
structures

12

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Binder: Port Mapper

Server start-up: create port

Server stub calls
svc_registerto register
prog. #, version # with local
port m apper

Port m apper stores prog #,
version #, and port

Client start-up: call
clnt_create to locate server
port

Upon return, client can call
procedures at the server

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Rpcgen: generating stubs

Q_xdr.c: do XDR conversion

Detailed exam ple: later in this course

13

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Lightweight RPCs

M any RPCs occur between client and server on
sam e m achine
– Need to optim ize RPCsfor this special case => use a
lightweight RPC m echanism (LRPC)

Server S exports interface to rem ote procedures

Client C on sam e m achine im ports interface

OS kernel creates data structures including an
argum ent stack shared between S and C

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Lightweight RPCs

RPC execution
– Push argum ents onto stack

– Trap to kernel

– Kernel changes m em m ap of client to server address
space

– Client thread executes procedure (OS upcall)

– Thread traps to kernel upon com pletion

– Kernel changes the address space back and returns
control to client

Called “doors”in Solaris

14

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Doors

W hich RPC to use? -run-tim e bit allows stub to choose
between LRPC and RPC

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Other RPC Models

Asynchronous RPC
– Request-reply behavior often not needed

– Server can reply as soon as request is received and
execute procedure later

Deferred-synchronous RPC
– Use two asynchronous RPCs

– Client needs a reply but can’t wait for it; server sends
reply via another asynchronous RPC

O ne-way RPC
– Client does not even wait for an ACK from the server

– Lim itation: reliability not guaranteed (Client does not
know if procedure was executed by the server).

15

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Asynchronous RPC

a) The interconnection between client and server in a
traditional RPC

b) The interaction using asynchronous RPC

2-12

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Deferred Synchronous RPC

A client and server interacting through two
asynchronous RPCs

2-13

16

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Remote Method Invocation
(RMI)

RPCs applied to objects, i.e., instances of a
class
– Class: object-oriented abstraction; module with

data and operations
– Separation between interface and implementation
– Interface resides on one machine, implementation

on another

RMIs support system-wide object references
– Parameters can be object references

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Distributed Objects

W hen a client binds to a distributed object, load the interface
(“proxy”) into client address space
– Proxy analogous to stubs

Server stub is referred to as a skeleton

17

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Proxies and Skeletons

Proxy: client stub
– M aintains server ID, endpoint, object ID

– Sets up and tears down connection with the server

– [Java:] does serialization of local object param eters

– In practice, can be downloaded/constructed on the fly
(why can’t this be done for RPCsin general?)

Skeleton: server stub
– Does deserialization and passes param eters to server
and sends result to proxy

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Java RMI

Server
– Defines interface and im plem ents interface m ethods

– Server program
» Creates server object and registers object with
“rem ote object”registry

Client
– Looks up server in rem ote object registry

– Uses norm al m ethod call syntax for rem ote m ethos

Java tools
– Rm iregistry: server-side nam e server
– Rm ic: uses server interface to create client and server
stubs

18

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Message-oriented Transient
Communication

M any distributed system s built on top of sim ple
m essage-oriented m odel
– Exam ple: Berkeley sockets

Khoa Coâng Ngheä Thoâng Tin – Ñaïi Hoïc Baùch Khoa Tp.HCM

Berkeley Socket Primitives

Release the connectionClose

Receive some data over the connectionReceive

Send some data over the connectionSend

Actively attempt to establish a connectionConnect

Block caller until a connection request arrivesAccept

Announce willingness to accept connectionsListen

Attach a local address to a socketBind

Create a new communication endpointSocket

MeaningPrimitive

