
The Proceedings of 8th SEATUC Symposium | 4-5 March 2014 
 

[OS02] 41 

OS02: Information and Communication Technology 

GPU-accelerated Branch-and-Bound Algorithm for Scheduling of 

Virtual Machines in Cloud datacenters 

Nguyen Quang-Hung, Duy Luong, Nam Thoai, Nguyen Thanh Son 

Faculty of Computer Science and Engineering, University of Technology, VNU-

HCM, Vietnam 

Abstract 

In this paper, we consider the problem of placement of 

virtual machines (VMs) in a cloud datacenters. Each 

VM requires a fixed number of processors (cores) 

andcomputing power. Each host has maximum capacity 

resources on processors and each core has limited 

ofcomputing power. Each placement of a VM onto a 

physical machine has an estimated cost (the cost may be 

variable from host to host). We want to minimize the 

total cost of the placements of VMs. We propose here a 

Branch-and-Bound (BnB) algorithm that is adaptively 

implemented in General Purpose Graphics Processing 

Unit (GPGPU) and CUDA framework. The proposed 

BnB has heuristics to bound and prune the huge search 

tree effectively on GPU-side processing, and copy 

massive nodes from/to host to/from device. In our 

experiments with NVIDIA® TESLA™ M2090 GPU, 

the GPU-accelerated BnB implementation has good 

speedup in comparing to a serial BnB implementation 

on CPU on same input problem size. 

1. INTRODUCTION 

Cloud computing has become more popular in 

provision of computing resources under virtual 

machine (VM) abstraction for cloud users to run their 

applications.We consider problem of placement of 

virtual machines in the cloud datacenters.  

Given a set of n virtual machines {VMj(pej, mipsj) |j 

=1,...,n} to be placed on a set of m physical machines 

{Mi(PEi, MIPSi) |i =1,...,m}. Each virtual machine VMj 

requires fixed pej processors (cores) and mipsj MIPS. 

Each host has maximum capacity resources on PEi 

processors (cores) and each core has MIPSi MIPS. Each 

placement of virtual machine onto a physical machine 

has an estimated cost (Tij) (the cost may be variable 

from host to host). We formulate the scheduling 

problem as following: 

            ∑        

       

       

 

Constraint 1: Total of allocated MIPS for assigned VMs 

is less than or equal to total maximum capacity of each 

host: 

∑              
 
                         (1) 

                                  (2) 

Constraint 2: Each j-th VM is assigned onto just one 

physical machine: 

∑       
                        (3) 

Binary:          , here xij= 1 iff the VMj is placed on 

the Mi. 

We want to minimize F - the total of the placements of 

virtual machines. Using serial branch-and-bound (BnB) 

program to solve the problem is time-consuming. 

Therefore, we propose here a BnB algorithm that is 

adaptively implemented in General Purpose Graphics 

Processing Unit (GPGPU) and CUDA SDK framework. 

In this paper, we proposed implementation of theBnB 

on GPU with CUDA framework that has some 

heuristics to: (i) bound and prune the huge search tree 

effectively on GPU-side processing; and (ii) considering 

transferring time on massive nodes from/to host to/from 

device. In our benchmarking with NVIDIA® TESLA™ 

M2090 GPU, the GPU-implemented BnB has speedup 

from x33 to x135 in comparing to a serial BnB 

implement on CPU on input problem size (nxm, n is 

number of virtual machines, m is number of physical 

machines) change from 20x20 to 100x20. 

2. RELATED WORKS 

A few previous works that have proposed using GPU in 

the branch-n-bound algorithm implementation that 

using a hybrid model of CPU and GPU to solve some 



The Proceedings of 8th SEATUC Symposium | 4-5 March 2014 
 

[OS02] 42 

classical optimization problems (e.g. Knapsack, Flow 

shop scheduling). Lalami & El-Baz (2012) proposed an 

implementation of the branch-n-bound (BnB) using a 

hybrid model of CPU and GPU to solve a Knapsack 

problem. Chakroun, et al. (2013) have also proposed an 

implementation of the branch-n-bound (BnB) using 

hybrid of multi-core CPU and GPU to solve the Flow-

shop Scheduling Problem (FSP). There is missing of an 

implementation of BnB on GPGPU for placement of 

virtual machines in cloud datacenter (Quang-Hung et al. 

2013) with consider on real constraints such as number 

of cores, computing power on each core, etc.. 

Using GPU to speedup the performance of simplex 

method is proposed by few previous studies. 

Spampinato & Elstery (2013) proposed a revised 

simplex method and interior point method to solve the 

linear programming. Authors claimed the pros and cons 

of the two methods and choosing the revised simplex 

method to implement on two programs: serial and 

parallel (GPU). Results show that the GPU program is 

faster than the serial program.  

3. BRANCH-AND-BOUND IMPLEMENTATION 

ON CPU-GPU FOR VIRTUAL MACHINE 

ALLOCATION 

3.1. Example of the placement of virtual machines 

problem 

Given the following data as input of the BnB: 

- There are four types of hosts with {2, 4, 16, 2} of 

maximum cores and each core is {2660, 2993, 2660, 

2660} Millions Instructions Per Second (MIPS).  

- There are three types of virtual machines with required 

cores is {1, 3, 1}, and each required core needs {2500, 

2000, 1000} of required MIPS. 

Table 1: Cost of each placement of virtual machine 

onto a host 

Cost H0 H1 H2 H3 

VM0 19 34 20 31 

VM1 41 87 49 32 

VM2 8 89 97 29 

We show a search tree that is generated and explored by 

BnB algorithm for the placement of virtual machines on 

physical machines (hosts) as in Fig. 1. 

 

Figure 1: A search tree is generated and explored by 

BnB algorithm for the placement of virtual machines on 

physical machines (hosts) 

 

Figure 2: Brand-and-Bound (B&B) algorithm implementation on GPGPU

 



The Proceedings of 8th SEATUC Symposium | 4-5 March 2014 
 

[OS02] 43 

3.2. GPU-accelerated BnB: 

The idea of this algorithm is at the same time 

provide a certain amount of nodes are located in the 

CPU pool, copy and compute them in the GPU, 

those nodes will generate many child nodes in 

branching method, then the child node will be 

compute cost, estimate lower bounds and prune. 

Promising child nodes will be push back to CPU 

pool to continue the loop. The loop will finish when 

there is no node in CPU pool. If the size of the list 

nodes is small, it is not efficient to launch the 

branch and bound computation kernels on GPU 

since the GPU occupancy would be very small and 

computations on GPU would not cover 

communications between CPU and GPU, so we 

apply the algorithm proposed hybrid model between 

CPU-GPU as shown in Figure 2. In this study, GPU 

kernels are launched only when the size of the 

nodes is greater than 1000 nodes. We have noticed 

that this condition ensures 100% occupancy for the 

GPU. Besides that, we use Best-fit heuristic to find 

an upper bound (UB) and a solution that has cost 

nearly the optimal solution to reduce prune times. 

Branching 

Each thread will represent a parent node that is 

taken from the CPU, each parent node in this kernel 

will generate m child nodes corresponding to case: 

set up the virtual machine (k+1)-th respectively on 

hosts from 1 to m (where k is the level of the parent 

node) see Figure 1.  

Branching: 

 Int idx = blockIdx.x * blockDim.x + threadIdx.x; 

 IF (idx<GPU_Pool_Size)  THEN 

  FOR (inti=0; i<m; i++)   

  //Child node will be stored in (idx*m+i)-th address 

  write(idx*m + i, promising_nodes_pool);  

  END FOR 

 END IF 

Figure 3: Branching kernel on GPGPU 

Bounding 

Since each node in the GPU will generate m child 

nodes in the branching function so the number of 

child nodes will be generated equal m times of 

number of nodes copied to GPU. The task of this 

kernel are each thread will represent a child node 

which will be calculated cost and estimated the 

lower bound of the branch of that node is standing, 

the algorithm illustrated in Figure 4. 

Bounding: 

 Int idx = blockIdx.x * blockDim.x + threadIdx.x; 

 IF (idx<GPU_Pool_Size * m) THEN  

  cost[idx] = Compute_Cost_Node(idx); 

  

  LB’[idx] = Estimate_Lower_Bound(idx); 

  IF (LB’[idx] > UB) THEN 

   eliminate(idx, promising_nodes_pool); 

 END IF 

Figure 4: Bounding kernel on GPGPU 

Pruning 

GPU will give the number of nodes that each node 

can reach the optimal solution after comparing it 

with the UB (see Figure 5). Address of promising 

nodes will be put into array “outArray” to copy 

back to the CPU, variable “num_nodes_out” for 

counting the number of promising nodes. We use 

two CUDA methods that are available for 

processing synchronization among threads in the 

GPU: “atomicAdd” for putting promising nodes into 

“outArray” array and “atomicMin” for updating the 

newest UB. 

Pruning: 

 idx = blockIdx.x * blockDim.x + threadIdx.x; 

 IF (idx<GPU_Pool_Size * m) THEN 

  check = Check_Node_Is_Sastified(idx); 

  IF ((check) && (cost[idx] < UB)) THEN 

   register int i= atomicAdd(num_nodes_out, 1); 

   outArray[i] = idx; 

   IF (Node(idx).level == leafNode_level) THEN 

    atomicMin(UB, cost[idx]); 

  

  END IF 

 END IF 

Figure 5: Pruning kernel on GPGPU 

4. EXPERIMENTS AND RESULT 

Both sequence and parallel version, we tested on 

server with CPU Intel ® Xeon ® E5-2630 2.3GHz, 

24GB RAM and NVIDIA Tesla M2090 GPU with 

512 cores. We have CUDA 5.5 for parallel version 

and gcc for serial version. The Table 2 shows result 

of computing time on serial and parallel versions of 

BnB algorithms and speedup. 

Input: 



The Proceedings of 8th SEATUC Symposium | 4-5 March 2014 
 

[OS02] 44 

 The number of hosts (m) and the number of 

virtual machines (n) are entered from the keyboard. 

                 , is randomly in 

[1,100] 

      ,    ,            are randomly generated 

from the sample of 4 types of hosts and 3 types of 

virtual machines in Sec. 3.1. 

Table 2: Computing time on serial and parallel 

versions of BnB algorithms and speedup 

Size of 

instance 

(mxn) 

Time on 

CPU – 

serial 

version(s) 

Time on 

CPU-GPU 

–parallel 

version(s) 

Speedup 

20x20 186.0 5.6 33.2 

40x20 1113.0 13.1 85.6 

60x20 3540.3 27.9 131.1 

80x20 4700.7 36.3 130.5 

100x20 8640.2 64.3 135.0 

For each problem, the displayed results correspond 

to an average of five instances. We have observed 

that the best number of threads per block is 256 and 

number of blocks of each loop is depended on GPU 

memory and number of nodes in CPU pool. The 

proposed parallel branch and bound algorithm 

permits one to reduce drastically the processing 

time at least 30 times. The speedup depends on the 

size of hosts and VMs. In the table 1, the speedup 

will increase if the number of hosts increases 

because one node always generates m child nodes 

(see Figure 3). We note that if we increase the 

number of VMs, the speedup will dramatically 

increase but the depth of algorithm will increase so 

we just tested on two versions on 20 virtual 

machines as the depth of algorithm equal 20. The 

pruning kernel is very important because the best 

upper bound UB is constantly updated then we will 

prune many non-promising nodes at the same time.  

We have noticed that both two versions are used 

Best-fit and estimate lower bound heuristic. 

5. CONCLUSION AND FUTURE WORKS 

In summary, we proposed here a GPU-accelerated 

branch-and-bound (BnB) for scheduling of virtual 

machines in cloud datacenters. The GPU-

accelerated BnB program is faster than the serial 

BnB program. 

At currently, we are improving the parallel BnB 

algorithm by keeping a number of child nodes after 

pruning process in GPU to forward to next iteration 

in GPU, instead of transfer out to host memory that 

means time-consuming. The forward heuristic can 

be feasible to apply to the application to reduce 

computing time. 

In future work, we consider each virtual machine 

required in a fixed start time and duration without 

pre-emption in the scheduling problem. Then we 

will propose heuristics on searching and exploring 

nodes on the GPU-accelerated BnB.   

REFERENCE 

Chakroun, I., Melab, N., Mezmaz, M., and 

Tuyttens, D., Combining multi-core and GPU 

computing for solving combinatorial optimization 

problems. Journal of Parallel and Distributed 

Computing Vol. 73, Issue 12, 2013, pp. 1563–1577. 

Lalami, M.E. and El-Baz, D., GPU Implementation 

of the Branch and Bound Method for Knapsack 

Problems. Proc. 2012 IEEE 26th International 

Parallel and Distributed Processing Symposium 

Workshops & PhD Forum, 2012, pp. 1769–1777. 

Spampinato, D.G. and Elstery, A.C., Linear 

optimization on modern GPUs, Proc. 2009 IEEE 

International Symposium on Parallel & Distributed 

Processing, IEEE, 2009, pp. 1–8.  

Quang-Hung, N., Thoai, N., and Son, N. T., 

EPOBF: Energy Efficient Allocation of Virtual 

Machines in High Performance Computing Cloud, 

J. Sci. Technol. Vietnamese Acad. Sci. Technol., 

vol. 51, No. 4B, no. Special on International 

Conference on Advanced Computing and 

Applications (ACOMP2013), pp. 173–182, Oct. 

2013. 


