LAM MPI GUIDE
LAM is a simple yet powerful environment for running and monitoring MPI applications on clusters. The few essential steps in LAM operations are covered below. 



Booting LAM

The user creates a file listing the participating machines in the cluster. 

shell$ cat lamhosts

# a 2-node LAM

node1.cluster.example.com

node2.cluster.example.com

Each machine will be given a node identifier (nodeid) starting with 0 for the first listed machine, 1 for the second, etc.

The recon tool verifies that the cluster is bootable: 

shell$ recon -v lamhosts

recon: -- testing n0 (node1.cluster.example.com)

recon: -- testing n1 (node2.cluster.example.com)

The lamboot tool actually starts LAM on the specified cluster. 

shell% lamboot -v lamhosts

LAM 7.1.2 - Indiana University

Executing hboot on n0 (node1.cluster.example.com - 1 CPU)...

Executing hboot on n1 (node2.cluster.example.com - 1 CPU)...

lamboot returns to the UNIX shell prompt. LAM does not force a canned environment or a "LAM shell". The tping command builds user confidence that the cluster and LAM are running. 

shell$ tping -c1 N
1 byte from 1 remote node and 1 local node: 0.008 secs

1 message, 1 byte (0.001K), 0.008 secs (0.246K/sec)

roundtrip min/avg/max: 0.008/0.008/0.008

Compiling MPI Programs

Refer to MPI: It's Easy to Get Started to see a simple MPI program. mpicc (and mpiCC and mpif77) is a wrapper for the C (C++, and F77) compiler that includes all the necessary command line switches to the underlying compiler to find the LAM include files, the relevant LAM libraries, etc. 

shell$ mpicc -o foo foo.c

shell$ mpif77 -o foo foo.f

Executing MPI Programs

A MPI application is started by one invocation of the mpirun command. A SPMD application can be started on the mpirun command line. 

shell$ mpirun -v -np 2 foo

2445 foo running on n0 (o)

361 foo running on n1

An application with multiple programs must be described in an application schema, a file that lists each program and its target node(s). 

shell$ cat appfile

# 1 master, 2 slaves

n0 master 

n0-1 slave 

shell$ mpirun -v appfile

3292 master running on n0 (o)

3296 slave running on n0 (o)

412 slave running on n1

Monitoring MPI Applications

The full MPI synchronization status of all processes and messages can be displayed at any time. This includes the source and destination ranks, the message tag, count and datatype, the communicator, and the function invoked. 

shell$ mpitask

TASK (G/L)    FUNCTION      PEER|ROOT  TAG    COMM   COUNT   DATATYPE

0/0 master    Recv          ANY        ANY    WORLD  1       INT

1 slave       <running>

2 slave       <running>

Process rank 0 is blocked receiving a message consisting of a single integer from any source rank and any message tag, using the MPI_COMM_WORLD communicator. The other processes are running. 

shell$ mpimsg

SRC (G/L)   DEST (G/L)   TAG   COMM    COUNT   DATATYPE    MSG

0/0         1/1          7     WORLD   4       INT         n0,#0

Later, we see that a message sent by process rank 0 to process rank 1 is buffered and waiting to be received. It was sent with tag 7 using the MPI_COMM_WORLD communicator and contains 4 integers. 

Cleaning LAM

All user processes and messages can be removed, without rebooting. 

shell$ lamclean -v

killing processes, done      

sweeping messages, done      

closing files, done      

sweeping traces, done

It is typical for users to mpirun a program, lamclean when it finishes, and then mpirun another program. It is not necessary to lamboot to run each user MPI program. 

Terminating LAM

The lamhalt tool removes all traces of the LAM session on the network. This is only performed when LAM/MPI is no longer needed (i.e., no more mpirun/lamclean commands will be issued). 

shell$ lamhalt

In the case of a catastrophic failure (e.g., one or more LAM nodes crash), the lamhalt utility will hang. In this case, the wipe tool is necessary. The same boot schema that was used with lamboot is necessary to list each node where the LAM run-time environment is running: 

shell$ wipe -v lamhosts
Executing tkill on n0 (node1.cluster.example.com)...

Executing tkill on n1 (node2.cluster.example.com)...

E-Z MPI Start: It's easy to get started
For basic applications, MPI is as easy to use as any other message-passing system. The sample code below contains the complete communications skeleton for a dynamically load balanced master/slave application. Following the code is a description of the few functions necessary to write typical parallel applications.



#include <mpi.h>

#define WORKTAG 1

#define DIETAG 2

/* Local functions */

static void master(void);

static void slave(void);

static unit_of_work_t get_next_work_item(void);

static void process_results(unit_result_t result);

static unit_result_t do_work(unit_of_work_t work);

int main(int argc, char **argv) {

  int myrank;

  /* Initialize MPI */

  MPI_Init(&argc, &argv);

  /* Find out my identity in the default communicator */

  MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

  if (myrank == 0) {

    master();

  } else {

    slave();

  }

  /* Shut down MPI */

  MPI_Finalize();

  return 0;

}

static void

master(void)

{

  int ntasks, rank;

  unit_of_work_t work;

  unit_result_t result;

  MPI_Status status;

  /* Find out how many processes there are in the default

     communicator */

  MPI_Comm_size(MPI_COMM_WORLD, &ntasks);

  /* Seed the slaves; send one unit of work to each slave. */

  for (rank = 1; rank < ntasks; ++rank) {

    /* Find the next item of work to do */

    work = get_next_work_item();

    /* Send it to each rank */

    MPI_Send(&work,             /* message buffer */

             1,                 /* one data item */

             MPI_INT,           /* data item is an integer */

             rank,              /* destination process rank */

             WORKTAG,           /* user chosen message tag */

             MPI_COMM_WORLD);   /* default communicator */

  }

  /* Loop over getting new work requests until there is no more work

     to be done */

  work = get_next_work_item();

  while (work != NULL) {

    /* Receive results from a slave */

    MPI_Recv(&result,           /* message buffer */

             1,                 /* one data item */

             MPI_DOUBLE,        /* of type double real */

             MPI_ANY_SOURCE,    /* receive from any sender */

             MPI_ANY_TAG,       /* any type of message */

             MPI_COMM_WORLD,    /* default communicator */

             &status);          /* info about the received message */

    /* Send the slave a new work unit */

    MPI_Send(&work,             /* message buffer */

             1,                 /* one data item */

             MPI_INT,           /* data item is an integer */

             status.MPI_SOURCE, /* to who we just received from */

             WORKTAG,           /* user chosen message tag */

             MPI_COMM_WORLD);   /* default communicator */

    /* Get the next unit of work to be done */

    work = get_next_work_item();

  }

  /* There's no more work to be done, so receive all the outstanding

     results from the slaves. */

  for (rank = 1; rank < ntasks; ++rank) {

    MPI_Recv(&result, 1, MPI_DOUBLE, MPI_ANY_SOURCE,

             MPI_ANY_TAG, MPI_COMM_WORLD, &status);

  }

  /* Tell all the slaves to exit by sending an empty message with the

     DIETAG. */

  for (rank = 1; rank < ntasks; ++rank) {

    MPI_Send(0, 0, MPI_INT, rank, DIETAG, MPI_COMM_WORLD);

  }

}

static void 

slave(void)

{

  unit_of_work_t work;

  unit_result_t results;

  MPI_Status status;

  while (1) {

    /* Receive a message from the master */

    MPI_Recv(&work, 1, MPI_INT, 0, MPI_ANY_TAG,

             MPI_COMM_WORLD, &status);

    /* Check the tag of the received message. */

    if (status.MPI_TAG == DIETAG) {

      return;

    }

    /* Do the work */

    result = do_work(work);

    /* Send the result back */

    MPI_Send(&result, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);

  }

}

static unit_of_work_t 

get_next_work_item(void)

{

  /* Fill in with whatever is relevant to obtain a new unit of work

     suitable to be given to a slave. */

}

static void 

process_results(unit_result_t result)

{

  /* Fill in with whatever is relevant to process the results returned

     by the slave */

}

static unit_result_t

do_work(unit_of_work_t work)

{

  /* Fill in with whatever is necessary to process the work and

     generate a result */

}



The World of MPI

Processes are represented by a unique "rank" (integer) and ranks are numbered 0, 1, 2, ..., N-1. MPI_COMM_WORLD means "all the processes in the MPI application." It is called a communicator and it provides all information necessary to do message passing. Portable libraries do more with communicators to provide synchronization protection that most other systems cannot handle.

Enter and Exit MPI

As with other systems, two functions are provided to initialize and cleanup a MPI process: 

  MPI_Init(&argc, &argv);

  MPI_Finalize();

Who Am I? Who Are They?

Typically, a process in a parallel application needs to know who it is (its rank) and how many other processes exist. A process finds out its own rank by calling MPI_Comm_rank(): 

  int myrank;

  MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

The total number of processes is returned by MPI_Comm_size(): 

  int nprocs;

  MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

Sending Messages

A message is an array of elements of a given datatype. MPI supports all the basic datatypes and allows a more elaborate application to construct new datatypes at runtime.

A message is sent to a specific process and is marked by a tag (integer value) specified by the user. Tags are used to distinguish between different message types a process might send/receive. In the sample code above, the tag is used to distinguish between work and termination messages.

  MPI_Send(buffer, count, datatype, destination, tag,

           MPI_COMM_WORLD);

Receiving Messages

A receiving process specifies the tag and the rank of the sending process. MPI_ANY_TAG and MPI_ANY_SOURCE may be used optionally to receive a message of any tag and from any sending process.

  MPI_Recv(buffer, maxcount, datatype, source, tag,

           MPI_COMM_WORLD, &status);

Information about the received message is returned in a status variable. The received message tag is status.MPI_TAG and the rank of the sending process is status.MPI_SOURCE.

Another function, not used in the sample code, returns the number of datatype elements received. It is used when the number of elements received might be smaller than `maxcount'.

  MPI_Get_count(&status, datatype, &nelements);

With these few functions, you are ready to program almost any application. There are many other, more exotic functions in MPI, but all can be built upon those presented here so far.
Everyday datatypes

Heterogeneous computing requires that the data constituting a message be typed or described somehow so that its machine representation can be converted between computer architectures. MPI can thoroughly describe message datatypes, from the simple primitive machine types to complex structures, arrays and indices.

MPI messaging functions accept a datatype parameter, whose C typedef is MPI_Datatype: 

    MPI_Send(void* buf, int count, MPI_Datatype datatype,


    int dest, int tag, MPI_Comm comm);

Basic Datatypes

Everybody uses the primitive machine datatypes. Some C examples are listed below (with the corresponding C datatype in parentheses):

    MPI_CHAR (char)

    MPI_INT (int)

    MPI_FLOAT (float)

    MPI_DOUBLE (double)

The count parameter in MPI_Send( ) refers to the number of elements of the given datatype, not the total number of bytes.

For messages consisting of a homogeneous, contiguous array of basic datatypes, this is the end of the datatype discussion. For messages that contain more than one datatype or whose elements are not stored contiguously in memory, something more is needed.

Strided Vector

Consider a mesh application with patches of a 2D array assigned to different processes. The internal boundary rows and columns are transferred between north/south and east/west processes in the overall mesh. In C, the transfer of a row in a 2D array is simple - a contiguous vector of elements equal in number to the number of columns in the 2D array. Conversely, storage of the elements of a single column are dispersed in memory; each vector element separated from its next and previous indices by the size of one entire row.

An MPI derived datatype is a good solution for a non-contiguous data structure. A code fragment to derive an appropriate datatype matching this strided vector and then transmit the last column is listed below:



#include <mpi.h>

{

    float

mesh[10][20];

    int


dest, tag;

    MPI_Datatype
newtype;

/*

 * Do this once.

 */

    MPI_Type_vector(10,

/* # column elements */


    1,


/* 1 column only */


    20,


/* skip 20 elements */


    MPI_FLOAT,

/* elements are float */


    &newtype);

/* MPI derived datatype */

    MPI_Type_commit(&newtype);

/*

 * Do this for every new message.

 */

    MPI_Send(&mesh[0][19], 1, newtype,


    dest, tag, MPI_COMM_WORLD);

}



MPI_Type_commit( ) separates the datatypes you really want to save and use from the intermediate ones that are scaffolded on the way to some very complex datatype.

A nice feature of MPI derived datatypes is that once created, they can be used repeatedly with no further set-up code. MPI has many other derived datatype constructors.

C Structure

Consider an imaging application that is transferring fixed length scan lines of eight bit color pixels. Coupled with the pixel array is the scan line number, an integer. The message might be described in C as a structure:

    struct {


int

lineno;


char

pixels[1024];

    } scanline;

In addition to a derived datatype, message packing is a useful method for sending non-contiguous and/or heterogeneous data. A code fragment to pack and send the above structure is listed below:



#include <mpi.h>

{

    unsigned int
membersize, maxsize;

    int


position;

    int


dest, tag;

    char

*buffer;

/*

 * Do this once.

 */

    MPI_Pack_size(1, 

/* one element */


    MPI_INT,

/* datatype integer */


    MPI_COMM_WORLD,
/* consistent comm. */


    &membersize);
/* max packing space req'd */

    maxsize = membersize;

    MPI_Pack_size(1024, MPI_CHAR, MPI_COMM_WORLD, &membersize);

    maxsize += membersize;

    buffer = malloc(maxsize);

/*

 * Do this for every new message.

 */

    position = 0;

    MPI_Pack(&scanline.lineno,
/* pack this element */


    1,


/* one element */


    MPI_INT,

/* datatype int */


    buffer,

/* packing buffer */


    maxsize,

/* buffer size */


    &position,

/* next free byte offset */


    MPI_COMM_WORLD);
/* consistent comm. */

    MPI_Pack(scanline.pixels, 1024, MPI_CHAR,


    buffer, maxsize, &position, MPI_COMM_WORLD);

    MPI_Send(buffer, position, MPI_PACKED,


    dest, tag, MPI_COMM_WORLD);

}



A buffer is allocated once to contain the size of the packed structure. The size must be computed because of implementation dependent overhead in the message. Variable sized messages can be handled by allocating a buffer large enough for the largest possible message. The position parameter to MPI_Pack( ) always returns the current size of the packed buffer.

A code fragment to unpack the message, assuming a receive buffer has been allocated, is listed below:



{

    int             src;

    int             msgsize;

    MPI_Status      status;

    MPI_Recv(buffer, maxsize, MPI_PACKED,


    src, tag, MPI_COMM_WORLD, &status);

    position = 0;

    MPI_Get_count(&status, MPI_PACKED, &msgsize);

    MPI_Unpack(buffer,

/* packing buffer */


    msgsize,

/* buffer size */


    &position,

/* next element byte offset */


    &scanline.lineno,
/* unpack this element */


    1,


/* one element */


    MPI_INT,

/* datatype int */


    MPI_COMM_WORLD);
/* consistent comm. */

    MPI_Unpack(buffer, msgsize, &position,


    scanline.pixels, 1024, MPI_CHAR, MPI_COMM_WORLD);

}



You should be able to modify the above code fragments for any structure. It is completely possible to alter the number of elements to unpack based on application information unpacked previously in the same message.

Everyday Collective Communication
Collective communication means all processes within a communicator call the same routine. Portable applications should assume that collective routines include a global synchronization.

The following simple code fragment employs four basic collective routines to manipulate a statically partitioned regular domain (one-dimensional in this case). The full domain length is broadcast from a root process to all others. The initial dataset is distributed (scattered) among the processes. After each compute step, a global maximum is determined for use by the root. The root then gathers the final dataset.

#include <mpi.h> 

void main() {

    int

i;

    int

myrank;

    int

size;

    int

root;

    int

full_domain_length;

    int

sub_domain_length;

    double
global_max;

    double
local_max;

    double
*full_domain;

    double
*sub_domain;

    MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

    MPI_Comm_size(MPI_COMM_WORLD, &size);

    root = 0;

/*

 * Root obtains full domain and broadcasts its length.

 */

    if (myrank == root) {


get_full_domain(&full_domain, &full_domain_length);

    }

    MPI_Bcast(&full_domain_length, 1, MPI_INT, root, MPI_COMM_WORLD);

/*

 * Allocate subdomain memory.

 * Scatter the initial dataset among the processes.

 */

    sub_domain_length = full_domain_length / size;

    sub_domain = (double *) malloc(sub_domain_length * sizeof(double));

    MPI_Scatter(full_domain, sub_domain_length, MPI_DOUBLE,

   
    sub_domain, sub_domain_length, MPI_DOUBLE,

    
    root, MPI_COMM_WORLD);

/*

 * Loop computing and determining max values.

 */

    for (i = 0; i < NSTEPS; ++i) {

    
compute(sub_domain, sub_domain_length, &local_max);

    
MPI_Reduce(&local_max, &global_max, 1, MPI_DOUBLE,



MPI_MAX, root, MPI_COMM_WORLD);

    }

/*

 * Gather final dataset.

 */

    MPI_Gather(sub_domain, sub_domain_length, MPI_DOUBLE,


    full_domain, sub_domain_length, MPI_DOUBLE,


    root, MPI_COMM_WORLD);

}



Broadcast

    MPI_Bcast(void *buffer, int count, MPI_Datatype datatype,


    int root, MPI_Comm comm);

All processes use the same count, datatype, root, and communicator. Before the operation, the root buffer contains a message. After the operation, all buffers contain the message from the root process.

Scatter

    MPI_Scatter(void *sndbuf, int sndcnt, MPI_Datatype sndtype,


    void *rcvbuf, int rcvcnt, MPI_Datatype rcvtype,


    int root, MPI_Comm comm);

All processes use the same send and receive counts, datatypes, root and communicator. Before the operation, the root send buffer contains a message of length `sndcnt * N', where N is the number of processes. After the operation, the message is divided equally and dispersed to all processes (including the root) following rank order.

Reduce

    MPI_Reduce(void *sndbuf, void *rcvbuf, int count,


    MPI_Datatype datatype, MPI_Op op,


    int root, MPI_Comm comm);

All processes use the same count, datatype, reduction operation, root and communicator. After the operation, the root process has in its receive buffer the result of the pair-wise reduction of the send buffers of all processes, including its own. MPI predefines reduction operations, including: MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD, MPI_LAND, MPI_BAND, MPI_LOR, MPI_BOR, MPI_LXOR, MPI_BXOR.

Gather

    MPI_Gather(void *sndbuf, int sndcnt, MPI_Datatype sndtype,


    void *rcvbuf, int rcvcnt, MPI_Datatype rcvtype,


    int root, MPI_Comm comm);

All processes use the same send and receive counts, datatypes, root and communicator. This routine is the reverse of MPI_Scatter(): after the operation the root process has in its receive buffer the concatenation of the send buffers of all processes (including its own), with a total message length of `rcvcnt * N', where N is the number of processes. The message is gathered following rank order. 
