
MPI-2: Extensions to the Message-Passing Interface

Message Passing Interface Forum

July 18, 1997

This work was supported in part by NSF and DARPA under NSF contract
CDA-9115428 and Esprit under project HPC Standards (21111).

Abstract

This document describes the MPI-1.2 and MPI-2 standards. They are both extensions
to the MPI-1.1 standard. The MPI-1.2 part of the document contains clari�cations and
corrections to the MPI-1.1 standard and de�nes MPI-1.2. The MPI-2 part of the document
describes additions to the MPI-1 standard and de�nes MPI-2. These include miscellaneous
topics, process creation and management, one-sided communications, extended collective
operations, external interfaces, I/O, and additional language bindings.

c1995, 1996, 1997 University of Tennessee, Knoxville, Tennessee. Permission to copy
without fee all or part of this material is granted, provided the University of Tennessee
copyright notice and the title of this document appear, and notice is given that copying is
by permission of the University of Tennessee.

i

Contents

Acknowledgments ix

1 Introduction to MPI-2 1

1.1 Background : 1
1.2 Organization of this Document : 2

2 MPI-2 Terms and Conventions 5
2.1 Document Notation : 5
2.2 Naming Conventions : 5
2.3 Procedure Speci�cation : 6
2.4 Semantic Terms : 7
2.5 Data Types : 8

2.5.1 Opaque Objects : 8
2.5.2 Array Arguments : 10
2.5.3 State : 10
2.5.4 Named Constants : 10
2.5.5 Choice : 11
2.5.6 Addresses : 11
2.5.7 File O�sets : 11

2.6 Language Binding : 11
2.6.1 Deprecated Names and Functions : 12
2.6.2 Fortran Binding Issues : 13
2.6.3 C Binding Issues : 14
2.6.4 C++ Binding Issues : 15

2.7 Processes : 18
2.8 Error Handling : 18
2.9 Implementation Issues : 19

2.9.1 Independence of Basic Runtime Routines : : : : : : : : : : : : : : : 20
2.9.2 Interaction with Signals : 20

2.10 Examples : 20

3 Version 1.2 of MPI 21

3.1 Version Number : 21
3.2 MPI-1.0 and MPI-1.1 Clari�cations : 22

3.2.1 Clari�cation of MPI INITIALIZED : 22
3.2.2 Clari�cation of MPI FINALIZE : 22
3.2.3 Clari�cation of status after MPI WAIT and MPI TEST : : : : : : : : 25
3.2.4 Clari�cation of MPI INTERCOMM CREATE : : : : : : : : : : : : : : 25

ii

3.2.5 Clari�cation of MPI INTERCOMM MERGE : : : : : : : : : : : : : : 26
3.2.6 Clari�cation of Binding of MPI TYPE SIZE : : : : : : : : : : : : : : 26
3.2.7 Clari�cation of MPI REDUCE : 26
3.2.8 Clari�cation of Error Behavior of Attribute Callback Functions : : : 26
3.2.9 Clari�cation of MPI PROBE and MPI IPROBE : : : : : : : : : : : : 26
3.2.10 Minor Corrections : 27

4 Miscellany 37

4.1 Portable MPI Process Startup : 37
4.2 Passing NULL to MPI Init : 39
4.3 Version Number : 39
4.4 Datatype Constructor MPI TYPE CREATE INDEXED BLOCK : : : : : : : : 40
4.5 Treatment of MPI Status : 40

4.5.1 Passing MPI STATUS IGNORE for Status : : : : : : : : : : : : : : : : : : : 40

4.5.2 Non-destructive Test of status : 41
4.6 Error Class for Invalid Keyval : 42
4.7 Committing a Committed Datatype : 42
4.8 Allowing User Functions at Process Termination : : : : : : : : : : : : : : : 42
4.9 Determining Whether MPI Has Finished : 43
4.10 The Info Object : 43
4.11 Memory Allocation : 47
4.12 Language Interoperability : 49

4.12.1 Introduction : 49
4.12.2 Assumptions : 50
4.12.3 Initialization : 50
4.12.4 Transfer of Handles : 51
4.12.5 Status : 54
4.12.6 MPI Opaque Objects : 54
4.12.7 Attributes : 57
4.12.8 Extra State : 59
4.12.9 Constants : 59
4.12.10Interlanguage Communication : 60

4.13 Error Handlers : 61
4.13.1 Error Handlers for Communicators : : : : : : : : : : : : : : : : : : : 62
4.13.2 Error Handlers for Windows : 63
4.13.3 Error Handlers for Files : 64

4.14 New Datatype Manipulation Functions : 65
4.14.1 Type Constructors with Explicit Addresses : : : : : : : : : : : : : : 66
4.14.2 Extent and Bounds of Datatypes : 68
4.14.3 True Extent of Datatypes : 69
4.14.4 Subarray Datatype Constructor : 70
4.14.5 Distributed Array Datatype Constructor : : : : : : : : : : : : : : : : 72

4.15 New Prede�ned Datatypes : 77
4.15.1 Wide Characters : 77
4.15.2 Signed Characters and Reductions : : : : : : : : : : : : : : : : : : : 77
4.15.3 Unsigned long long Type : 78

4.16 Canonical MPI PACK and MPI UNPACK : 78
4.17 Functions and Macros : 80

iii

4.18 Pro�ling Interface : 80

5 Process Creation and Management 81
5.1 Introduction : 81
5.2 The MPI-2 Process Model : 82

5.2.1 Starting Processes : 82
5.2.2 The Runtime Environment : 82

5.3 Process Manager Interface : 84
5.3.1 Processes in MPI : 84
5.3.2 Starting Processes and Establishing Communication : : : : : : : : : 84
5.3.3 Starting Multiple Executables and Establishing Communication : : 89
5.3.4 Reserved Keys : 91
5.3.5 Spawn Example : 92

5.4 Establishing Communication : 94
5.4.1 Names, Addresses, Ports, and All That : : : : : : : : : : : : : : : : 94
5.4.2 Server Routines : 95
5.4.3 Client Routines : 97
5.4.4 Name Publishing : 99
5.4.5 Reserved Key Values : 101
5.4.6 Client/Server Examples : 101

5.5 Other Functionality : 104
5.5.1 Universe Size : 104
5.5.2 Singleton MPI INIT : 104
5.5.3 MPI APPNUM : 105

5.5.4 Releasing Connections : 106
5.5.5 Another Way to Establish MPI Communication : : : : : : : : : : : : 107

6 One-Sided Communications 109
6.1 Introduction : 109
6.2 Initialization : 110

6.2.1 Window Creation : 110
6.2.2 Window Attributes : 112

6.3 Communication Calls : 113
6.3.1 Put : 114
6.3.2 Get : 116
6.3.3 Examples : 116
6.3.4 Accumulate Functions : 119

6.4 Synchronization Calls : 121
6.4.1 Fence : 126
6.4.2 General Active Target Synchronization : : : : : : : : : : : : : : : : : 127
6.4.3 Lock : 130
6.4.4 Assertions : 132
6.4.5 Miscellaneous Clari�cations : 134

6.5 Examples : 134
6.6 Error Handling : 136

6.6.1 Error Handlers : 136
6.6.2 Error Classes : 137

6.7 Semantics and Correctness : 137

iv

6.7.1 Atomicity : 140
6.7.2 Progress : 140
6.7.3 Registers and Compiler Optimizations : : : : : : : : : : : : : : : : : 142

7 Extended Collective Operations 145
7.1 Introduction : 145
7.2 Intercommunicator Constructors : 145
7.3 Extended Collective Operations : 149

7.3.1 Intercommunicator Collective Operations : : : : : : : : : : : : : : : 149
7.3.2 Operations that Move Data : 151
7.3.3 Reductions : 162
7.3.4 Other Operations : 163
7.3.5 Generalized All-to-all Function : 164
7.3.6 Exclusive Scan : 166

8 External Interfaces 169
8.1 Introduction : 169
8.2 Generalized Requests : 169

8.2.1 Examples : 173
8.3 Associating Information with Status : 175
8.4 Naming Objects : 177
8.5 Error Classes, Error Codes, and Error Handlers : : : : : : : : : : : : : : : : 181
8.6 Decoding a Datatype : 184
8.7 MPI and Threads : 193

8.7.1 General : 193
8.7.2 Clari�cations : 194
8.7.3 Initialization : 195

8.8 New Attribute Caching Functions : 198
8.8.1 Communicators : 199
8.8.2 Windows : 202
8.8.3 Datatypes : 204

8.9 Duplicating a Datatype : 207

9 I/O 209

9.1 Introduction : 209
9.1.1 De�nitions : 209

9.2 File Manipulation : 211
9.2.1 Opening a File : 211
9.2.2 Closing a File : 213
9.2.3 Deleting a File : 214
9.2.4 Resizing a File : 215
9.2.5 Preallocating Space for a File : 215
9.2.6 Querying the Size of a File : 216
9.2.7 Querying File Parameters : 216
9.2.8 File Info : 218

9.3 File Views : 221
9.4 Data Access : 223

9.4.1 Data Access Routines : 223

v

9.4.2 Data Access with Explicit O�sets : 226
9.4.3 Data Access with Individual File Pointers : : : : : : : : : : : : : : : 230
9.4.4 Data Access with Shared File Pointers : : : : : : : : : : : : : : : : : 235
9.4.5 Split Collective Data Access Routines : : : : : : : : : : : : : : : : : 240

9.5 File Interoperability : 246
9.5.1 Datatypes for File Interoperability : : : : : : : : : : : : : : : : : : : 248
9.5.2 External Data Representation: \external32" : : : : : : : : : : : : : : 250
9.5.3 User-De�ned Data Representations : : : : : : : : : : : : : : : : : : : 251
9.5.4 Matching Data Representations : 255

9.6 Consistency and Semantics : 255
9.6.1 File Consistency : 255
9.6.2 Random Access vs. Sequential Files : : : : : : : : : : : : : : : : : : 258
9.6.3 Progress : 259
9.6.4 Collective File Operations : 259
9.6.5 Type Matching : 259
9.6.6 Miscellaneous Clari�cations : 259
9.6.7 MPI O�set Type : 260
9.6.8 Logical vs. Physical File Layout : 260
9.6.9 File Size : 260
9.6.10 Examples : 261

9.7 I/O Error Handling : 265
9.8 I/O Error Classes : 265
9.9 Examples : 266

9.9.1 Double Bu�ering with Split Collective I/O : : : : : : : : : : : : : : 266
9.9.2 Subarray Filetype Constructor : 268

10 Language Bindings 271
10.1 C++ : 271

10.1.1 Overview : 271
10.1.2 Design : 271
10.1.3 C++ Classes for MPI : 272
10.1.4 Class Member Functions for MPI : 273
10.1.5 Semantics : 273
10.1.6 C++ Datatypes : 275
10.1.7 Communicators : 278
10.1.8 Exceptions : 280
10.1.9 Mixed-Language Operability : 281
10.1.10Pro�ling : 281

10.2 Fortran Support : 284
10.2.1 Overview : 284
10.2.2 Problems With Fortran Bindings for MPI : : : : : : : : : : : : : : : 284
10.2.3 Basic Fortran Support : 291
10.2.4 Extended Fortran Support : 291
10.2.5 Additional Support for Fortran Numeric Intrinsic Types : : : : : : : 292

Bibliography 301

vi

A Language Binding 303

A.1 Introduction : 303
A.2 De�ned Values and Handles : 303

A.2.1 De�ned Constants : 303
A.2.2 Info Keys : 307
A.2.3 Info Values : 308

A.3 MPI-1.2 C Bindings : 308
A.4 MPI-1.2 Fortran Bindings : 308
A.5 MPI-1.2 C++ Bindings : 309
A.6 MPI-2 C Bindings : 309

A.6.1 Miscellany : 309
A.6.2 Process Creation and Management : : : : : : : : : : : : : : : : : : : 311
A.6.3 One-Sided Communications : 312
A.6.4 Extended Collective Operations : 312
A.6.5 External Interfaces : 312
A.6.6 I/O : 314
A.6.7 Language Bindings : 316
A.6.8 User De�ned Functions : 317

A.7 MPI-2 Fortran Bindings : 317
A.7.1 Miscellany : 317
A.7.2 Process Creation and Management : : : : : : : : : : : : : : : : : : : 320
A.7.3 One-Sided Communications : 321
A.7.4 Extended Collective Operations : 322
A.7.5 External Interfaces : 323
A.7.6 I/O : 325
A.7.7 Language Bindings : 329
A.7.8 User De�ned Subroutines : 330

A.8 MPI-2 C++ Bindings : 331
A.8.1 Miscellany : 331
A.8.2 Process Creation and Management : : : : : : : : : : : : : : : : : : : 333
A.8.3 One-Sided Communications : 334
A.8.4 Extended Collective Operations : 334
A.8.5 External Interfaces : 336
A.8.6 I/O : 337
A.8.7 Language Bindings : 341
A.8.8 User De�ned Functions : 341

B MPI-1 C++ Language Binding 342
B.1 C++ Classes : 342
B.2 De�ned Constants : 342
B.3 Typedefs : 346
B.4 C++ Bindings for Point-to-Point Communication : : : : : : : : : : : : : : : 347
B.5 C++ Bindings for Collective Communication : : : : : : : : : : : : : : : : : 349
B.6 C++ Bindings for Groups, Contexts, and Communicators : : : : : : : : : : 351
B.7 C++ Bindings for Process Topologies : 352
B.8 C++ Bindings for Environmental Inquiry : : : : : : : : : : : : : : : : : : : 353
B.9 C++ Bindings for Pro�ling : 353
B.10 C++ Bindings for Status Access : 353

vii

B.11 C++ Bindings for New 1.2 Functions : 354
B.12 C++ Bindings for Exceptions : 354
B.13 C++ Bindings on all MPI Classes : 354

B.13.1 Construction / Destruction : 355
B.13.2 Copy / Assignment : 355
B.13.3 Comparison : 355
B.13.4 Inter-language Operability : 355
B.13.5 Function Name Cross Reference : 356

MPI Function Index 360

viii

Acknowledgments

This document represents the work of many people who have served on theMPI Forum.
The meetings have been attended by dozens of people from many parts of the world. It is
the hard and dedicated work of this group that has led to the MPI standard.

The technical development was carried out by subgroups, whose work was reviewed
by the full committee. During the period of development of the Message Passing Interface
(MPI-2), many people helped with this e�ort. Those who served as the primary coordinators
are:

� Ewing Lusk, Convener and Meeting Chair

� Steve Huss-Lederman, Editor

� Ewing Lusk, Miscellany

� Bill Saphir, Process Creation and Management

� Marc Snir, One-Sided Communications

� Bill Gropp and Anthony Skjellum, Extended Collective Operations

� Steve Huss-Lederman, External Interfaces

� Bill Nitzberg, I/O

� Andrew Lumsdaine, Bill Saphir, and Je� Squyres, Language Bindings

� Anthony Skjellum and Arkady Kanevsky, Real-Time

ix

The following list includes some of the active participants who attended MPI-2 Forum
meetings and are not mentioned above.

Greg Astfalk Robert Babb Ed Benson Rajesh Bordawekar
Pete Bradley Peter Brennan Ron Brightwell Maciej Brodowicz
Eric Brunner Greg Burns Margaret Cahir Pang Chen
Ying Chen Albert Cheng Yong Cho Joel Clark
Lyndon Clarke Laurie Costello Dennis Cottel Jim Cownie
Zhenqian Cui Suresh Damodaran-Kamal Raja Daoud Judith Devaney
David DiNucci Doug Doeer Jack Dongarra Terry Dontje
Nathan Doss Anne Elster Mark Fallon Karl Feind
Sam Fineberg Craig Fischberg Stephen Fleischman Ian Foster
Hubertus Franke Richard Frost Al Geist Robert George
David Greenberg John Hagedorn Kei Harada Leslie Hart
Shane Hebert Rolf Hempel Tom Henderson Alex Ho
Hans-Christian Hoppe Joefon Jann Terry Jones Karl Kesselman
Koichi Konishi Susan Kraus Steve Kubica Steve Landherr
Mario Lauria Mark Law Juan Leon Lloyd Lewins
Ziyang Lu Bob Madahar Peter Madams John May
Oliver McBryan Brian McCandless Tyce McLarty Thom McMahon
Harish Nag Nick Nevin Jarek Nieplocha Ron Old�eld
Peter Ossadnik Steve Otto Peter Pacheco Yoonho Park
Perry Partow Pratap Pattnaik Elsie Pierce Paul Pierce
Heidi Poxon Jean-Pierre Prost Boris Protopopov James Pruyve
Rolf Rabenseifner Joe Rieken Peter Rigsbee Tom Robey
Anna Rounbehler Nobutoshi Sagawa Arindam Saha Eric Salo
Darren Sanders Eric Sharakan Andrew Sherman Fred Shirley
Lance Shuler A. Gordon Smith Ian Stockdale David Taylor
Stephen Taylor Greg Tensa Rajeev Thakur Marydell Tholburn
Dick Treumann Simon Tsang Manuel Ujaldon David Walker
Jerrell Watts Klaus Wolf Parkson Wong Dave Wright

The MPI Forum also acknowledges and appreciates the valuable input from people via
e-mail and in person.

The following institutions supported the MPI-2 e�ort through time and travel support
for the people listed above.

Argonne National Laboratory
Bolt, Beranek, and Newman
California Institute of Technology
Center for Computing Sciences
Convex Computer Corporation
Cray Research
Digital Equipment Corporation
Dolphin Interconnect Solutions, Inc.
Edinburgh Parallel Computing Centre
General Electric Company
German National Research Center for Information Technology

x

Hewlett-Packard
Hitachi
Hughes Aircraft Company
Intel Corporation
International Business Machines
Khoral Research
Lawrence Livermore National Laboratory
Los Alamos National Laboratory
MPI Software Techology, Inc.
Mississippi State University
NEC Corporation
National Aeronautics and Space Administration
National Energy Research Scienti�c Computing Center
National Institute of Standards and Technology
National Oceanic and Atmospheric Adminstration
Oak Ridge National Laboratory
Ohio State University
PALLAS GmbH
Paci�c Northwest National Laboratory
Pratt & Whitney
San Diego Supercomputer Center
Sanders, A Lockheed-Martin Company
Sandia National Laboratories
Schlumberger
Scienti�c Computing Associates, Inc.
Silicon Graphics Incorporated
Sky Computers
Sun Microsystems Computer Corporation
Syracuse University
The MITRE Corporation
Thinking Machines Corporation
United States Navy
University of Colorado
University of Denver
University of Houston
University of Illinois
University of Maryland
University of Notre Dame
University of San Fransisco
University of Stuttgart Computing Center
University of Wisconsin

MPI-2 operated on a very tight budget (in reality, it had no budget when the �rst
meeting was announced). Many institutions helped the MPI-2 e�ort by supporting the
e�orts and travel of the members of the MPI Forum. Direct support was given by NSF and
DARPA under NSF contract CDA-9115428 for travel by U.S. academic participants and
Esprit under project HPC Standards (21111) for European participants.

xi

Chapter 1

Introduction to MPI-2

1.1 Background

Beginning in March 1995, the MPI Forum began meeting to consider corrections and exten-
sions to the original MPI Standard document [5]. The �rst product of these deliberations
was Version 1.1 of the MPI speci�cation, released in June of 1995 (see
http://www.mpi-forum.org for o�cial MPI document releases). Since that time, e�ort has
been focused in �ve types of areas.

1. Further corrections and clari�cations for the MPI-1.1 document.

2. Additions to MPI-1.1 that do not signi�cantly change its types of functionality (new
datatype constructors, language interoperability, etc.).

3. Completely new types of functionality (dynamic processes, one-sided communication,
parallel I/O, etc.) that are what everyone thinks of as \MPI-2 functionality."

4. Bindings for Fortran 90 and C++. This document speci�es C++ bindings for both
MPI-1 and MPI-2 functions, and extensions to the Fortran 77 binding of MPI-1 and
MPI-2 to handle Fortran 90 issues.

5. Discussions of areas in which the MPI process and framework seem likely to be useful,
but where more discussion and experience are needed before standardization (e.g.
0-copy semantics on shared-memory machines, real-time speci�cations).

Corrections and clari�cations (items of type 1 in the above list) have been collected in
Chapter 3 of this document, \Version 1.2 of MPI." This chapter also contains the function
for identifying the version number. Additions to MPI-1.1 (items of types 2, 3, and 4 in the
above list) are in the remaining chapters, and constitute the speci�cation for MPI-2. This
document speci�es Version 2.0 of MPI. Items of type 5 in the above list have been moved to
a separate document, the \MPI Journal of Development" (JOD), and are not part of the
MPI-2 Standard.

This structure makes it easy for users and implementors to understand what level of
MPI compliance a given implementation has:

� MPI-1 compliance will mean compliance with MPI-1.2. This is a useful level of com-
pliance. It means that the implementation conforms to the clari�cations of MPI-1.1
function behavior given in Chapter 3. Some implementations may require changes to
be MPI-1 compliant.

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 1. INTRODUCTION TO MPI-2

� MPI-2 compliance will mean compliance with all of MPI-2.

� The MPI Journal of Development is not part of the MPI Standard.

It is to be emphasized that forward compatibility is preserved. That is, a valid MPI-1.1
program is both a valid MPI-1.2 program and a valid MPI-2 program, and a valid MPI-1.2
program is a valid MPI-2 program.

1.2 Organization of this Document

This document is organized as follows:

� Chapter 2, MPI-2 Terms and Conventions, explains notational terms and conventions
used throughout the MPI-2 document.

� Chapter 3, Version 1.2 of MPI, contains the speci�cation of MPI-1.2, which has one
new function and consists primarily of clari�cations to MPI-1.1. It is expected that
some implementations will need modi�cation in order to become MPI-1 compliant, as
the result of these clari�cations.

The rest of this document contains the MPI-2 Standard Speci�cation. It adds substan-
tial new types of functionality to MPI, in most cases specifying functions for an extended
computational model (e.g., dynamic process creation and one-sided communication) or for
a signi�cant new capability (e.g., parallel I/O).

The following is a list of the chapters in MPI-2, along with a brief description of each.

� Chapter 4, Miscellany, discusses items that don't �t elsewhere, in particular language
interoperability.

� Chapter 5, Process Creation and Management, discusses the extension ofMPI to remove
the static process model inMPI. It de�nes routines that allow for creation of processes.

� Chapter 6, One-Sided Communications, de�nes communication routines that can be
completed by a single process. These include shared-memory operations (put/get)
and remote accumulate operations.

� Chapter 7, Extended Collective Operations, extends the semantics of MPI-1 collective
operations to include intercommunicators. It also adds more convenient methods of
constructing intercommunicators and two new collective operations.

� Chapter 8, External Interfaces, de�nes routines designed to allow developers to layer
on top of MPI. This includes generalized requests, routines that decode MPI opaque
objects, and threads.

� Chapter 9, I/O, de�nes MPI-2 support for parallel I/O.

� Chapter 10, Language Bindings, describes the C++ binding and discusses Fortran-90
issues.

The Appendices are:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.2. ORGANIZATION OF THIS DOCUMENT 3

� Annex A, Language Bindings, gives bindings for MPI-2 functions, and lists constants,
error codes, etc.

� Annex B, MPI-1 C++ Language Binding, gives C++ bindings for MPI-1.

The MPI Function Index is a simple index showing the location of the precise de�nition of
each MPI-2 function, together with C, C++, and Fortran bindings.

MPI-2 provides various interfaces to facilitate interoperability of distinct MPI imple-
mentations. Among these are the canonical data representation for MPI I/O and for
MPI PACK EXTERNAL and MPI UNPACK EXTERNAL. The de�nition of an actual binding
of these interfaces that will enable interoperability is outside the scope of this document.

A separate document consists of ideas that were discussed in the MPI Forum and
deemed to have value, but are not included in the MPI Standard. They are part of the
\Journal of Development" (JOD), lest good ideas be lost and in order to provide a starting
point for further work. The chapters in the JOD are

� Chapter 2, Spawning Independent Processes, includes some elements of dynamic pro-
cess management, in particular management of processes with which the spawning
processes do not intend to communicate, that the Forum discussed at length but
ultimately decided not to include in the MPI Standard.

� Chapter 3, Threads and MPI, describes some of the expected interaction between an
MPI implementation and a thread library in a multi-threaded environment.

� Chapter 4, Communicator ID, describes an approach to providing identi�ers for com-
municators.

� Chapter 5, Miscellany, discusses Miscellaneous topics in the MPI JOD, in particu-
lar single-copy routines for use in shared-memory environments and new datatype
constructors.

� Chapter 6, Toward a Full Fortran 90 Interface, describes an approach to providing a
more elaborate Fortran 90 interface.

� Chapter 7, Split Collective Communication, describes a speci�cation for certain non-
blocking collective operations.

� Chapter 8, Real-Time MPI, discusses MPI support for real time processing.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 1. INTRODUCTION TO MPI-2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 2

MPI-2 Terms and Conventions

This chapter explains notational terms and conventions used throughout the MPI-2 docu-
ment, some of the choices that have been made, and the rationale behind those choices. It
is similar to the MPI-1 Terms and Conventions chapter but di�ers in some major and minor
ways. Some of the major areas of di�erence are the naming conventions, some semantic
de�nitions, �le objects, Fortran 90 vs Fortran 77, C++, processes, and interaction with
signals.

2.1 Document Notation

Rationale. Throughout this document, the rationale for the design choices made in
the interface speci�cation is set o� in this format. Some readers may wish to skip
these sections, while readers interested in interface design may want to read them
carefully. (End of rationale.)

Advice to users. Throughout this document, material aimed at users and that
illustrates usage is set o� in this format. Some readers may wish to skip these sections,
while readers interested in programming inMPImaywant to read them carefully. (End
of advice to users.)

Advice to implementors. Throughout this document, material that is primarily
commentary to implementors is set o� in this format. Some readers may wish to skip
these sections, while readers interested in MPI implementations may want to read
them carefully. (End of advice to implementors.)

2.2 Naming Conventions

MPI-1 used informal naming conventions. In many cases, MPI-1 names for C functions are
of the form Class action subset and in Fortran of the form CLASS ACTION SUBSET, but
this rule is not uniformly applied. In MPI-2, an attempt has been made to standardize
names of new functions according to the following rules. In addition, the C++ bindings for
MPI-1 functions also follow these rules (see Section 2.6.4). C and Fortran function names
for MPI-1 have not been changed.

1. In C, all routines associated with a particular type of MPI object should be of the
form Class action subset or, if no subset exists, of the form Class action. In Fortran,

5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 2. MPI-2 TERMS AND CONVENTIONS

all routines associated with a particular type of MPI object should be of the form
CLASS ACTION SUBSET or, if no subset exists, of the form CLASS ACTION. For C
and Fortran we use the C++ terminology to de�ne the Class. In C++, the routine
is a method on Class and is named MPI::Class::Action subset. If the routine is
associated with a certain class, but does not make sense as an object method, it is a
static member function of the class.

2. If the routine is not associated with a class, the name should be of the form
Action subset in C and ACTION SUBSET in Fortran, and in C++ should be scoped
in the MPI namespace, MPI::Action subset.

3. The names of certain actions have been standardized. In particular, Create creates
a new object, Get retrieves information about an object, Set sets this information,
Delete deletes information, Is asks whether or not an object has a certain property.

C and Fortran names forMPI-1 functions violate these rules in several cases. The most
common exceptions are the omission of the Class name from the routine and the omission
of the Action where one can be inferred.

MPI identi�ers are limited to 30 characters (31 with the pro�ling interface). This is
done to avoid exceeding the limit on some compilation systems.

2.3 Procedure Speci�cation

MPI procedures are speci�ed using a language-independent notation. The arguments of
procedure calls are marked as IN, OUT or INOUT. The meanings of these are:

� the call may use the input value but does not update an argument is marked IN,

� the call may update an argument but does not use its input value is marked OUT,

� the call may both use and update an argument is marked INOUT.

There is one special case | if an argument is a handle to an opaque object (these
terms are de�ned in Section 2.5.1), and the object is updated by the procedure call, then
the argument is marked OUT. It is marked this way even though the handle itself is not
modi�ed | we use the OUT attribute to denote that what the handle references is updated.
Thus, in C++, IN arguments are either references or pointers to const objects.

Rationale. The de�nition of MPI tries to avoid, to the largest possible extent, the use
of INOUT arguments, because such use is error-prone, especially for scalar arguments.
(End of rationale.)

MPI's use of IN, OUT and INOUT is intended to indicate to the user how an argument
is to be used, but does not provide a rigorous classi�cation that can be translated directly
into all language bindings (e.g., INTENT in Fortran 90 bindings or const in C bindings).
For instance, the \constant" MPI BOTTOM can usually be passed to OUT bu�er arguments.
Similarly, MPI STATUS IGNORE can be passed as the OUT status argument.

A common occurrence for MPI functions is an argument that is used as IN by some
processes and OUT by other processes. Such an argument is, syntactically, an INOUT

argument and is marked as such, although, semantically, it is not used in one call both for
input and for output on a single process.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.4. SEMANTIC TERMS 7

Another frequent situation arises when an argument value is needed only by a subset
of the processes. When an argument is not signi�cant at a process then an arbitrary value
can be passed as an argument.

Unless speci�ed otherwise, an argument of type OUT or type INOUT cannot be aliased
with any other argument passed to an MPI procedure. An example of argument aliasing in
C appears below. If we de�ne a C procedure like this,

void copyIntBuffer(int *pin, int *pout, int len)

{ int i;

for (i=0; i<len; ++i) *pout++ = *pin++;

}

then a call to it in the following code fragment has aliased arguments.

int a[10];

copyIntBuffer(a, a+3, 7);

Although the C language allows this, such usage of MPI procedures is forbidden unless
otherwise speci�ed. Note that Fortran prohibits aliasing of arguments.

All MPI functions are �rst speci�ed in the language-independent notation. Immediately
below this, the ANSI C version of the function is shown followed by a version of the same
function in Fortran and then the C++ binding. Fortran in this document refers to Fortran
90; see Section 2.6.

2.4 Semantic Terms

When discussing MPI procedures the following semantic terms are used.

nonblocking A procedure is nonblocking if the procedure may return before the opera-
tion completes, and before the user is allowed to reuse resources (such as bu�ers)
speci�ed in the call. A nonblocking request is started by the call that initiates it,
e.g., MPI ISEND. The word complete is used with respect to operations, requests,
and communications. An operation completes when the user is allowed to reuse
resources, and any output bu�ers have been updated; i.e. a call to MPI TEST will
return ag = true. A request is completed by a call to wait, which returns, or a
test or get status call which returns ag = true. This completing call has two e�ects:
the status is extracted from the request; in the case of test and wait, if the request
was nonpersistent, it is freed. A communication completes when all participating
operations complete.

blocking A procedure is blocking if return from the procedure indicates the user is allowed
to reuse resources speci�ed in the call.

local A procedure is local if completion of the procedure depends only on the local executing
process.

non-local A procedure is non-local if completion of the operation may require the exe-
cution of some MPI procedure on another process. Such an operation may require
communication occurring with another user process.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 2. MPI-2 TERMS AND CONVENTIONS

collective A procedure is collective if all processes in a process group need to invoke the
procedure. A collective call may or may not be synchronizing. Collective calls over
the same communicator must be executed in the same order by all members of the
process group.

prede�ned A prede�ned datatype is a datatype with a prede�ned (constant) name (such
as MPI INT, MPI FLOAT INT, or MPI UB) or a datatype constructed with
MPI TYPE CREATE F90 INTEGER, MPI TYPE CREATE F90 REAL, or
MPI TYPE CREATE F90 COMPLEX. The former are named whereas the latter are
unnamed.

derived A derived datatype is any datatype that is not prede�ned.

portable A datatype is portable, if it is a prede�ned datatype, or it is derived from a
portable datatype using only the type constructors MPI TYPE CONTIGUOUS,
MPI TYPE VECTOR, MPI TYPE INDEXED, MPI TYPE INDEXED BLOCK,
MPI TYPE CREATE SUBARRAY,MPI TYPE DUP, andMPI TYPE CREATE DARRAY.
Such a datatype is portable because all displacements in the datatype are in terms of
extents of one prede�ned datatype. Therefore, if such a datatype �ts a data layout
in one memory, it will �t the corresponding data layout in another memory, if the
same declarations were used, even if the two systems have di�erent architectures. On
the other hand, if a datatype was constructed using MPI TYPE CREATE HINDEXED,
MPI TYPE CREATE HVECTOR or MPI TYPE CREATE STRUCT, then the datatype
contains explicit byte displacements (e.g., providing padding to meet alignment re-
strictions). These displacements are unlikely to be chosen correctly if they �t data
layout on one memory, but are used for data layouts on another process, running on
a processor with a di�erent architecture.

equivalent Two datatypes are equivalent if they appear to have been created with the same
sequence of calls (and arguments) and thus have the same typemap. Two equivalent
datatypes do not necessarily have the same cached attributes or the same names.

2.5 Data Types

2.5.1 Opaque Objects

MPI manages system memory that is used for bu�ering messages and for storing internal
representations of various MPI objects such as groups, communicators, datatypes, etc. This
memory is not directly accessible to the user, and objects stored there are opaque: their
size and shape is not visible to the user. Opaque objects are accessed via handles, which
exist in user space. MPI procedures that operate on opaque objects are passed handle
arguments to access these objects. In addition to their use by MPI calls for object access,
handles can participate in assignments and comparisons.

In Fortran, all handles have type INTEGER. In C and C++, a di�erent handle type is
de�ned for each category of objects. In addition, handles themselves are distinct objects
in C++. The C and C++ types must support the use of the assignment and equality
operators.

Advice to implementors. In Fortran, the handle can be an index into a table of
opaque objects in a system table; in C it can be such an index or a pointer to the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.5. DATA TYPES 9

object. C++ handles can simply \wrap up" a table index or pointer.

(End of advice to implementors.)

Opaque objects are allocated and deallocated by calls that are speci�c to each object
type. These are listed in the sections where the objects are described. The calls accept a
handle argument of matching type. In an allocate call this is an OUT argument that returns
a valid reference to the object. In a call to deallocate this is an INOUT argument which
returns with an \invalid handle" value. MPI provides an \invalid handle" constant for each
object type. Comparisons to this constant are used to test for validity of the handle.

A call to a deallocate routine invalidates the handle and marks the object for deal-
location. The object is not accessible to the user after the call. However, MPI need not
deallocate the object immediately. Any operation pending (at the time of the deallocate)
that involves this object will complete normally; the object will be deallocated afterwards.

An opaque object and its handle are signi�cant only at the process where the object
was created and cannot be transferred to another process.

MPI provides certain prede�ned opaque objects and prede�ned, static handles to these
objects. The user must not free such objects. In C++, this is enforced by declaring the
handles to these prede�ned objects to be static const.

Rationale. This design hides the internal representation used for MPI data struc-
tures, thus allowing similar calls in C, C++, and Fortran. It also avoids conicts with
the typing rules in these languages, and easily allows future extensions of functional-
ity. The mechanism for opaque objects used here loosely follows the POSIX Fortran
binding standard.

The explicit separation of handles in user space and objects in system space allows
space-reclaiming and deallocation calls to be made at appropriate points in the user
program. If the opaque objects were in user space, one would have to be very careful
not to go out of scope before any pending operation requiring that object completed.
The speci�ed design allows an object to be marked for deallocation, the user program
can then go out of scope, and the object itself still persists until any pending operations
are complete.

The requirement that handles support assignment/comparison is made since such
operations are common. This restricts the domain of possible implementations. The
alternative would have been to allow handles to have been an arbitrary, opaque type.
This would force the introduction of routines to do assignment and comparison, adding
complexity, and was therefore ruled out. (End of rationale.)

Advice to users. A user may accidently create a dangling reference by assigning to a
handle the value of another handle, and then deallocating the object associated with
these handles. Conversely, if a handle variable is deallocated before the associated
object is freed, then the object becomes inaccessible (this may occur, for example, if
the handle is a local variable within a subroutine, and the subroutine is exited before
the associated object is deallocated). It is the user's responsibility to avoid adding or
deleting references to opaque objects, except as a result of MPI calls that allocate or
deallocate such objects. (End of advice to users.)

Advice to implementors. The intended semantics of opaque objects is that opaque
objects are separate from one another; each call to allocate such an object copies

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 2. MPI-2 TERMS AND CONVENTIONS

all the information required for the object. Implementations may avoid excessive
copying by substituting referencing for copying. For example, a derived datatype
may contain references to its components, rather then copies of its components; a
call to MPI COMM GROUP may return a reference to the group associated with the
communicator, rather than a copy of this group. In such cases, the implementation
must maintain reference counts, and allocate and deallocate objects in such a way that
the visible e�ect is as if the objects were copied. (End of advice to implementors.)

2.5.2 Array Arguments

An MPI call may need an argument that is an array of opaque objects, or an array of
handles. The array-of-handles is a regular array with entries that are handles to objects
of the same type in consecutive locations in the array. Whenever such an array is used,
an additional len argument is required to indicate the number of valid entries (unless this
number can be derived otherwise). The valid entries are at the beginning of the array;
len indicates how many of them there are, and need not be the size of the entire array.
The same approach is followed for other array arguments. In some cases NULL handles are
considered valid entries. When a NULL argument is desired for an array of statuses, one
uses MPI STATUSES IGNORE.

2.5.3 State

MPI procedures use at various places arguments with state types. The values of such a data
type are all identi�ed by names, and no operation is de�ned on them. For example, the
MPI TYPE CREATE SUBARRAY routine has a state argument order with values
MPI ORDER C and MPI ORDER FORTRAN.

2.5.4 Named Constants

MPI procedures sometimes assign a special meaning to a special value of a basic type argu-
ment; e.g., tag is an integer-valued argument of point-to-point communication operations,
with a special wild-card value, MPI ANY TAG. Such arguments will have a range of regular
values, which is a proper subrange of the range of values of the corresponding basic type;
special values (such as MPI ANY TAG) will be outside the regular range. The range of regular
values, such as tag, can be queried using environmental inquiry functions (Chapter 7 of the
MPI-1 document). The range of other values, such as source, depends on values given by
other MPI routines (in the case of source it is the communicator size).

MPI also provides prede�ned named constant handles, such as MPI COMM WORLD.
All named constants, with the exceptions noted below for Fortran, can be used in

initialization expressions or assignments. These constants do not change values during
execution. Opaque objects accessed by constant handles are de�ned and do not change
value between MPI initialization (MPI INIT) and MPI completion (MPI FINALIZE).

The constants that cannot be used in initialization expressions or assignments in For-
tran are:

MPI_BOTTOM

MPI_STATUS_IGNORE

MPI_STATUSES_IGNORE

MPI_ERRCODES_IGNORE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.6. LANGUAGE BINDING 11

MPI_IN_PLACE

MPI_ARGV_NULL

MPI_ARGVS_NULL

Advice to implementors. In Fortran the implementation of these special constants
may require the use of language constructs that are outside the Fortran standard.
Using special values for the constants (e.g., by de�ning them through parameter

statements) is not possible because an implementation cannot distinguish these val-
ues from legal data. Typically, these constants are implemented as prede�ned static
variables (e.g., a variable in an MPI-declared COMMON block), relying on the fact that
the target compiler passes data by address. Inside the subroutine, this address can
be extracted by some mechanism outside the Fortran standard (e.g., by Fortran ex-
tensions or by implementing the function in C). (End of advice to implementors.)

2.5.5 Choice

MPI functions sometimes use arguments with a choice (or union) data type. Distinct calls
to the same routine may pass by reference actual arguments of di�erent types. The mecha-
nism for providing such arguments will di�er from language to language. For Fortran, the
document uses <type> to represent a choice variable; for C and C++, we use void *.

2.5.6 Addresses

Some MPI procedures use address arguments that represent an absolute address in the
calling program. The datatype of such an argument is MPI Aint in C,MPI::Aint in C++ and
INTEGER (KIND=MPI ADDRESS KIND) in Fortran. There is the MPI constant MPI BOTTOM

to indicate the start of the address range.

2.5.7 File O�sets

For I/O there is a need to give the size, displacement, and o�set into a �le. These quantities
can easily be larger than 32 bits which can be the default size of a Fortran integer. To
overcome this, these quantities are declared to be INTEGER (KIND=MPI OFFSET KIND) in
Fortran. In C one uses MPI O�set whereas in C++ one uses MPI::O�set.

2.6 Language Binding

This section de�nes the rules for MPI language binding in general and for Fortran, ANSI
C, and C++, in particular. (Note that ANSI C has been replaced by ISO C. References in
MPI to ANSI C now mean ISO C.) De�ned here are various object representations, as well
as the naming conventions used for expressing this standard. The actual calling sequences
are de�ned elsewhere.

MPI bindings are for Fortran 90, though they are designed to be usable in Fortran 77
environments.

Since the word PARAMETER is a keyword in the Fortran language, we use the word
\argument" to denote the arguments to a subroutine. These are normally referred to
as parameters in C and C++, however, we expect that C and C++ programmers will
understand the word \argument" (which has no speci�c meaning in C/C++), thus allowing
us to avoid unnecessary confusion for Fortran programmers.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 2. MPI-2 TERMS AND CONVENTIONS

Since Fortran is case insensitive, linkers may use either lower case or upper case when
resolving Fortran names. Users of case sensitive languages should avoid the \mpi " and
\pmpi " pre�xes.

2.6.1 Deprecated Names and Functions

A number of chapters refer to deprecated or replaced MPI-1 constructs. These are constructs
that continue to be part of the MPI standard, but that users are recommended not to
continue using, since MPI-2 provides better solutions. For example, the Fortran binding for
MPI-1 functions that have address arguments uses INTEGER. This is not consistent with the
C binding, and causes problems on machines with 32 bit INTEGERs and 64 bit addresses.
In MPI-2, these functions have new names, and new bindings for the address arguments.
The use of the old functions is deprecated. For consistency, here and a few other cases,
new C functions are also provided, even though the new functions are equivalent to the
old functions. The old names are deprecated. Another example is provided by the MPI-1
prede�ned datatypes MPI UB and MPI LB. They are deprecated, since their use is awkward
and error-prone, while the MPI-2 function MPI TYPE CREATE RESIZED provides a more
convenient mechanism to achieve the same e�ect.

The following is a list of all of the deprecated constructs. Note that the constants
MPI LB and MPI UB are replaced by the function MPI TYPE CREATE RESIZED; this is
because their principle use was as input datatypes to MPI TYPE STRUCT to create resized
datatypes. Also note that some C typedefs and Fortran subroutine names are included in
this list; they are the types of callback functions.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.6. LANGUAGE BINDING 13

Deprecated MPI-2 Replacement

MPI ADDRESS MPI GET ADDRESS
MPI TYPE HINDEXED MPI TYPE CREATE HINDEXED
MPI TYPE HVECTOR MPI TYPE CREATE HVECTOR
MPI TYPE STRUCT MPI TYPE CREATE STRUCT

MPI TYPE EXTENT MPI TYPE GET EXTENT
MPI TYPE UB MPI TYPE GET EXTENT
MPI TYPE LB MPI TYPE GET EXTENT
MPI LB MPI TYPE CREATE RESIZED
MPI UB MPI TYPE CREATE RESIZED

MPI ERRHANDLER CREATE MPI COMM CREATE ERRHANDLER
MPI ERRHANDLER GET MPI COMM GET ERRHANDLER
MPI ERRHANDLER SET MPI COMM SET ERRHANDLER
MPI Handler function MPI Comm errhandler fn

MPI KEYVAL CREATE MPI COMM CREATE KEYVAL
MPI KEYVAL FREE MPI COMM FREE KEYVAL
MPI DUP FN MPI COMM DUP FN
MPI NULL COPY FN MPI COMM NULL COPY FN
MPI NULL DELETE FN MPI COMM NULL DELETE FN
MPI Copy function MPI Comm copy attr function
COPY FUNCTION COMM COPY ATTR FN
MPI Delete function MPI Comm delete attr function
DELETE FUNCTION COMM DELETE ATTR FN

MPI ATTR DELETE MPI COMM DELETE ATTR
MPI ATTR GET MPI COMM GET ATTR
MPI ATTR PUT MPI COMM SET ATTR

2.6.2 Fortran Binding Issues

MPI-1.1 provided bindings for Fortran 77. MPI-2 retains these bindings but they are now
interpreted in the context of the Fortran 90 standard. MPI can still be used with most
Fortran 77 compilers, as noted below. When the term Fortran is used it means Fortran 90.

All MPI names have an MPI pre�x, and all characters are capitals. Programs must not
declare variables, parameters, or functions with names beginning with the pre�x MPI . To
avoid conicting with the pro�ling interface, programs should also avoid functions with the
pre�x PMPI . This is mandated to avoid possible name collisions.

All MPI Fortran subroutines have a return code in the last argument. A few MPI
operations which are functions do not have the return code argument. The return code value
for successful completion is MPI SUCCESS. Other error codes are implementation dependent;
see the error codes in Chapter 7 of theMPI-1 document and Annex A in theMPI-2 document.

Constants representing the maximum length of a string are one smaller in Fortran than
in C and C++ as discussed in Section 4.12.9.

Handles are represented in Fortran as INTEGERs. Binary-valued variables are of type
LOGICAL.

Array arguments are indexed from one.
The MPI Fortran binding is inconsistent with the Fortran 90 standard in several re-

spects. These inconsistencies, such as register optimization problems, have implications for
user codes that are discussed in detail in Section 10.2.2. They are also inconsistent with

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 2. MPI-2 TERMS AND CONVENTIONS

Fortran 77.

� An MPI subroutine with a choice argument may be called with di�erent argument
types.

� An MPI subroutine with an assumed-size dummy argument may be passed an actual
scalar argument.

� Many MPI routines assume that actual arguments are passed by address and that
arguments are not copied on entrance to or exit from the subroutine.

� An MPI implementation may read or modify user data (e.g., communication bu�ers
used by nonblocking communications) concurrently with a user program executing
outside MPI calls.

� Several named \constants," such as MPI BOTTOM, MPI STATUS IGNORE, and
MPI ERRCODES IGNORE, are not ordinary Fortran constants and require a special im-
plementation. See Section 2.5.4 on page 10 for more information.

Additionally, MPI is inconsistent with Fortran 77 in a number of ways, as noted below.

� MPI identi�ers exceed 6 characters.

� MPI identi�ers may contain underscores after the �rst character.

� MPI requires an include �le, mpif.h. On systems that do not support include �les,
the implementation should specify the values of named constants.

� Many routines in MPI-2 have KIND-parameterized integers (e.g., MPI ADDRESS KIND

and MPI OFFSET KIND) that hold address information. On systems that do not sup-
port Fortran 90-style parameterized types, INTEGER*8 or INTEGER should be used
instead.

� The memory allocation routine MPI ALLOC MEM can't be usefully used in Fortran
without a language extension that allows the allocated memory to be associated with
a Fortran variable.

2.6.3 C Binding Issues

We use the ANSI C declaration format. All MPI names have an MPI pre�x, de�ned con-
stants are in all capital letters, and de�ned types and functions have one capital letter after
the pre�x. Programs must not declare variables or functions with names beginning with
the pre�x MPI . To support the pro�ling interface, programs should not declare functions
with names beginning with the pre�x PMPI .

The de�nition of named constants, function prototypes, and type de�nitions must be
supplied in an include �le mpi.h.

Almost all C functions return an error code. The successful return code will be
MPI SUCCESS, but failure return codes are implementation dependent.

Type declarations are provided for handles to each category of opaque objects.
Array arguments are indexed from zero.
Logical ags are integers with value 0 meaning \false" and a non-zero value meaning

\true."

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.6. LANGUAGE BINDING 15

Choice arguments are pointers of type void *.
Address arguments are of MPI de�ned type MPI Aint. File displacements are of type

MPI O�set. MPI Aint is de�ned to be an integer of the size needed to hold any valid address
on the target architecture. MPI O�set is de�ned to be an integer of the size needed to hold
any valid �le size on the target architecture.

2.6.4 C++ Binding Issues

There are places in the standard that give rules for C and not for C++. In these cases,
the C rule should be applied to the C++ case, as appropriate. In particular, the values of
constants given in the text are the ones for C and Fortran. A cross index of these with the
C++ names is given in Annex A.

We use the ANSI C++ declaration format. All MPI names are declared within the
scope of a namespace called MPI and therefore are referenced with an MPI:: pre�x. De�ned
constants are in all capital letters, and class names, de�ned types, and functions have only
their �rst letter capitalized. Programs must not declare variables or functions in the MPI

namespace. This is mandated to avoid possible name collisions.
The de�nition of named constants, function prototypes, and type de�nitions must be

supplied in an include �le mpi.h.

Advice to implementors. The �le mpi.hmay contain both the C and C++ de�nitions.
Usually one can simply use the de�ned value (generally cplusplus, but not required)
to see if one is using C++ to protect the C++ de�nitions. It is possible that a C
compiler will require that the source protected this way be legal C code. In this case,
all the C++ de�nitions can be placed in a di�erent include �le and the \#include"
directive can be used to include the necessary C++ de�nitions in the mpi.h �le. (End
of advice to implementors.)

C++ functions that create objects or return information usually place the object or
information in the return value. Since the language neutral prototypes of MPI functions
include the C++ return value as an OUT parameter, semantic descriptions of MPI functions
refer to the C++ return value by that parameter name (see Section B.13.5 on page 356).
The remaining C++ functions return void.

In some circumstances, MPI permits users to indicate that they do not want a return
value. For example, the user may indicate that the status is not �lled in. Unlike C and
Fortran where this is achieved through a special input value, in C++ this is done by having
two bindings where one has the optional argument and one does not.

C++ functions do not return error codes. If the default error handler has been set
to MPI::ERRORS THROW EXCEPTIONS, the C++ exception mechanism is used to signal an
error by throwing an MPI::Exception object.

It should be noted that the default error handler (i.e., MPI::ERRORS ARE FATAL) on a
given type has not changed. User error handlers are also permitted. MPI::ERRORS RETURN
simply returns control to the calling function; there is no provision for the user to retrieve
the error code.

User callback functions that return integer error codes should not throw exceptions;
the returned error will be handled by the MPI implementation by invoking the appropriate
error handler.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 2. MPI-2 TERMS AND CONVENTIONS

Advice to users. C++ programmers that want to handle MPI errors on their own
should use the MPI::ERRORS THROW EXCEPTIONS error handler, rather than
MPI::ERRORS RETURN, that is used for that purpose in C. Care should be taken
using exceptions in mixed language situations. (End of advice to users.)

Opaque object handles must be objects in themselves, and have the assignment and
equality operators overridden to perform semantically like their C and Fortran counterparts.

Array arguments are indexed from zero.
Logical ags are of type bool.
Choice arguments are pointers of type void *.
Address arguments are of MPI-de�ned integer type MPI::Aint, de�ned to be an integer

of the size needed to hold any valid address on the target architecture. Analogously,
MPI::O�set is an integer to hold �le o�sets.

Most MPI functions are methods of MPI C++ classes. MPI class names are generated
from the language neutral MPI types by dropping the MPI pre�x and scoping the type
within the MPI namespace. For example, MPI DATATYPE becomes MPI::Datatype.

The names of MPI-2 functions generally follow the naming rules given. In some cir-
cumstances, the new MPI-2 function is related to an MPI-1 function with a name that does
not follow the naming conventions. In this circumstance, the language neutral name is in
analogy to the MPI-1 name even though this gives an MPI-2 name that violates the naming
conventions. The C and Fortran names are the same as the language neutral name in this
case. However, the C++ names for MPI-1 do reect the naming rules and can di�er from
the C and Fortran names. Thus, the analogous name in C++ to the MPI-1 name is di�erent
than the language neutral name. This results in the C++ name di�ering from the language
neutral name. An example of this is the language neutral name of MPI FINALIZED and a
C++ name of MPI::Is �nalized.

In C++, function typedefs are made publicly within appropriate classes. However,
these declarations then become somewhat cumbersome, as with the following:
typedef MPI::Grequest::Query function();

would look like the following:

namespace MPI {

class Request {

// ...

};

class Grequest : public MPI::Request {

// ...

typedef Query_function(void* extra_state, MPI::Status& status);

};

};

Rather than including this sca�olding when declaring C++ typedefs, we use an abbreviated
form. In particular, we explicitly indicate the class and namespace scope for the typedef

of the function. Thus, the example above is shown in the text as follows:

typedef int MPI::Grequest::Query_function(void* extra_state,

MPI::Status& status)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.6. LANGUAGE BINDING 17

The C++ bindings presented in Annex B and throughout this document were generated
by applying a simple set of name generation rules to the MPI function speci�cations. While
these guidelines may be su�cient in most cases, they may not be suitable for all situations.
In cases of ambiguity or where a speci�c semantic statement is desired, these guidelines
may be superseded as the situation dictates.

1. All functions, types, and constants are declared within the scope of a namespace called
MPI.

2. Arrays of MPI handles are always left in the argument list (whether they are IN or
OUT arguments).

3. If the argument list of an MPI function contains a scalar IN handle, and it makes
sense to de�ne the function as a method of the object corresponding to that handle,
the function is made a member function of the corresponding MPI class. The member
functions are named according to the corresponding MPI function name, but without
the \MPI " pre�x and without the object name pre�x (if applicable). In addition:

(a) The scalar IN handle is dropped from the argument list, and this corresponds
to the dropped argument.

(b) The function is declared const.

4. MPI functions are made into class functions (static) when they belong on a class but
do not have a unique scalar IN or INOUT parameter of that class.

5. If the argument list contains a single OUT argument that is not of type MPI STATUS
(or an array), that argument is dropped from the list and the function returns that
value.

Example 2.1 The C++ binding forMPI COMM SIZE is int MPI::Comm::Get size(void)
const.

6. If there are multiple OUT arguments in the argument list, one is chosen as the return
value and is removed from the list.

7. If the argument list does not contain any OUT arguments, the function returns void.

Example 2.2 The C++ binding for MPI REQUEST FREE is
void MPI::Request::Free(void)

8. MPI functions to which the above rules do not apply are not members of any class,
but are de�ned in the MPI namespace.

Example 2.3 The C++ binding for MPI BUFFER ATTACH is
void MPI::Attach bu�er(void* bu�er, int size).

9. All class names, de�ned types, and function names have only their �rst letter capital-
ized. De�ned constants are in all capital letters.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 CHAPTER 2. MPI-2 TERMS AND CONVENTIONS

10. Any IN pointer, reference, or array argument must be declared const.

11. Handles are passed by reference.

12. Array arguments are denoted with square brackets ([]), not pointers, as this is more
semantically precise.

2.7 Processes

An MPI program consists of autonomous processes, executing their own code, in a MIMD
style. The codes executed by each process need not be identical. The processes communicate
via calls to MPI communication primitives. Typically, each process executes in its own
address space, although shared-memory implementations of MPI are possible.

This document speci�es the behavior of a parallel program assuming that only MPI
calls are used. The interaction of an MPI program with other possible means of commu-
nication, I/O, and process management is not speci�ed. Unless otherwise stated in the
speci�cation of the standard, MPI places no requirements on the result of its interaction
with external mechanisms that provide similar or equivalent functionality. This includes,
but is not limited to, interactions with external mechanisms for process control, shared and
remote memory access, �le system access and control, interprocess communication, process
signaling, and terminal I/O. High quality implementations should strive to make the results
of such interactions intuitive to users, and attempt to document restrictions where deemed
necessary.

Advice to implementors. Implementations that support such additional mechanisms
for functionality supported within MPI are expected to document how these interact
with MPI. (End of advice to implementors.)

The interaction of MPI and threads is de�ned in Section 8.7.

2.8 Error Handling

MPI provides the user with reliable message transmission. A message sent is always received
correctly, and the user does not need to check for transmission errors, time-outs, or other
error conditions. In other words,MPI does not provide mechanisms for dealing with failures
in the communication system. If the MPI implementation is built on an unreliable underly-
ing mechanism, then it is the job of the implementor of the MPI subsystem to insulate the
user from this unreliability, or to reect unrecoverable errors as failures. Whenever possible,
such failures will be reected as errors in the relevant communication call. Similarly, MPI
itself provides no mechanisms for handling processor failures.

Of course, MPI programs may still be erroneous. A program error can occur when
an MPI call is made with an incorrect argument (non-existing destination in a send oper-
ation, bu�er too small in a receive operation, etc.). This type of error would occur in any
implementation. In addition, a resource error may occur when a program exceeds the
amount of available system resources (number of pending messages, system bu�ers, etc.).
The occurrence of this type of error depends on the amount of available resources in the
system and the resource allocation mechanism used; this may di�er from system to system.
A high-quality implementation will provide generous limits on the important resources so
as to alleviate the portability problem this represents.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.9. IMPLEMENTATION ISSUES 19

In C and Fortran, almost allMPI calls return a code that indicates successful completion
of the operation. Whenever possible, MPI calls return an error code if an error occurred
during the call. By default, an error detected during the execution of the MPI library
causes the parallel computation to abort, except for �le operations. However,MPI provides
mechanisms for users to change this default and to handle recoverable errors. The user may
specify that no error is fatal, and handle error codes returned by MPI calls by himself or
herself. Also, the user may provide his or her own error-handling routines, which will be
invoked whenever an MPI call returns abnormally. The MPI error handling facilities are
described in Chapter 7 of the MPI-1 document and in Section 4.13 of this document. The
return values of C++ functions are not error codes. If the default error handler has been
set to MPI::ERRORS THROW EXCEPTIONS, the C++ exception mechanism is used to signal
an error by throwing an MPI::Exception object.

Several factors limit the ability of MPI calls to return with meaningful error codes
when an error occurs. MPI may not be able to detect some errors; other errors may be too
expensive to detect in normal execution mode; �nally some errors may be \catastrophic"
and may prevent MPI from returning control to the caller in a consistent state.

Another subtle issue arises because of the nature of asynchronous communications: MPI
calls may initiate operations that continue asynchronously after the call returned. Thus, the
operation may return with a code indicating successful completion, yet later cause an error
exception to be raised. If there is a subsequent call that relates to the same operation (e.g.,
a call that veri�es that an asynchronous operation has completed) then the error argument
associated with this call will be used to indicate the nature of the error. In a few cases, the
error may occur after all calls that relate to the operation have completed, so that no error
value can be used to indicate the nature of the error (e.g., an error on the receiver in a send
with the ready mode). Such an error must be treated as fatal, since information cannot be
returned for the user to recover from it.

This document does not specify the state of a computation after an erroneous MPI call
has occurred. The desired behavior is that a relevant error code be returned, and the e�ect
of the error be localized to the greatest possible extent. E.g., it is highly desirable that an
erroneous receive call will not cause any part of the receiver's memory to be overwritten,
beyond the area speci�ed for receiving the message.

Implementations may go beyond this document in supporting in a meaningful manner
MPI calls that are de�ned here to be erroneous. For example, MPI speci�es strict type
matching rules between matching send and receive operations: it is erroneous to send a
oating point variable and receive an integer. Implementations may go beyond these type
matching rules, and provide automatic type conversion in such situations. It will be helpful
to generate warnings for such non-conforming behavior.

MPI-2 de�nes a way for users to create new error codes as de�ned in Section 8.5.

2.9 Implementation Issues

There are a number of areas where an MPI implementation may interact with the operating
environment and system. While MPI does not mandate that any services (such as signal
handling) be provided, it does strongly suggest the behavior to be provided if those services
are available. This is an important point in achieving portability across platforms that
provide the same set of services.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 2. MPI-2 TERMS AND CONVENTIONS

2.9.1 Independence of Basic Runtime Routines

MPI programs require that library routines that are part of the basic language environment
(such as write in Fortran and printf and malloc in ANSI C) and are executed after
MPI INIT and before MPI FINALIZE operate independently and that their completion is
independent of the action of other processes in an MPI program.

Note that this in no way prevents the creation of library routines that provide paral-
lel services whose operation is collective. However, the following program is expected to
complete in an ANSI C environment regardless of the size of MPI COMM WORLD (assuming
that printf is available at the executing nodes).

int rank;

MPI_Init((void *)0, (void *)0);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) printf("Starting program\n");

MPI_Finalize();

The corresponding Fortran and C++ programs are also expected to complete.
An example of what is not required is any particular ordering of the action of these

routines when called by several tasks. For example, MPI makes neither requirements nor
recommendations for the output from the following program (again assuming that I/O is
available at the executing nodes).

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Output from task rank %d\n", rank);

In addition, calls that fail because of resource exhaustion or other error are not con-
sidered a violation of the requirements here (however, they are required to complete, just
not to complete successfully).

2.9.2 Interaction with Signals

MPI does not specify the interaction of processes with signals and does not require that MPI
be signal safe. The implementation may reserve some signals for its own use. It is required
that the implementation document which signals it uses, and it is strongly recommended
that it not use SIGALRM, SIGFPE, or SIGIO. Implementations may also prohibit the use of
MPI calls from within signal handlers.

In multithreaded environments, users can avoid conicts between signals and the MPI
library by catching signals only on threads that do not execute MPI calls. High quality
single-threaded implementations will be signal safe: an MPI call suspended by a signal will
resume and complete normally after the signal is handled.

2.10 Examples

The examples in this document are for illustration purposes only. They are not intended
to specify the standard. Furthermore, the examples have not been carefully checked or
veri�ed.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 3

Version 1.2 of MPI

This section contains clari�cations and minor corrections to Version 1.1 of theMPI Standard.
The only new function in MPI-1.2 is one for identifying which version of the MPI Standard
the implementation being used conforms to. There are small di�erences between MPI-1
and MPI-1.1. There are very few di�erences (only those discussed in this chapter) between
MPI-1.1 and MPI-1.2, but large di�erences (the rest of this document) between MPI-1.2 and
MPI-2.

3.1 Version Number

In order to cope with changes to the MPI Standard, there are both compile-time and run-
time ways to determine which version of the standard is in use in the environment one is
using.

The \version" will be represented by two separate integers, for the version and subver-
sion:

In C and C++,

#define MPI_VERSION 1

#define MPI_SUBVERSION 2

in Fortran,

INTEGER MPI_VERSION, MPI_SUBVERSION

PARAMETER (MPI_VERSION = 1)

PARAMETER (MPI_SUBVERSION = 2)

For runtime determination,

MPI GET VERSION(version, subversion)

OUT version version number (integer)

OUT subversion subversion number (integer)

int MPI Get version(int *version, int *subversion)

MPI GET VERSION(VERSION, SUBVERSION, IERROR)

INTEGER VERSION, SUBVERSION, IERROR

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 CHAPTER 3. VERSION 1.2 OF MPI

MPI GET VERSION is one of the few functions that can be called before MPI INIT and
after MPI FINALIZE. Its C++ binding can be found in the Annex, Section B.11.

3.2 MPI-1.0 and MPI-1.1 Clari�cations

As experience has been gained since the releases of the 1.0 and 1.1 versions of the MPI
Standard, it has become apparent that some speci�cations were insu�ciently clear. In
this section we attempt to make clear the intentions of the MPI Forum with regard to the
behavior of several MPI-1 functions. An MPI-1-compliant implementation should behave in
accordance with the clari�cations in this section.

3.2.1 Clari�cation of MPI INITIALIZED

MPI INITIALIZED returns true if the calling process has called MPI INIT. Whether
MPI FINALIZE has been called does not a�ect the behavior of MPI INITIALIZED.

3.2.2 Clari�cation of MPI FINALIZE

This routine cleans up all MPI state. Each process must call MPI FINALIZE before it exits.
Unless there has been a call to MPI ABORT, each process must ensure that all pending
non-blocking communications are (locally) complete before calling MPI FINALIZE. Further,
at the instant at which the last process calls MPI FINALIZE, all pending sends must be
matched by a receive, and all pending receives must be matched by a send.

For example, the following program is correct:

Process 0 Process 1

--------- ---------

MPI_Init(); MPI_Init();

MPI_Send(dest=1); MPI_Recv(src=0);

MPI_Finalize(); MPI_Finalize();

Without the matching receive, the program is erroneous:

Process 0 Process 1

----------- -----------

MPI_Init(); MPI_Init();

MPI_Send (dest=1);

MPI_Finalize(); MPI_Finalize();

A successful return from a blocking communication operation or from MPI WAIT or
MPI TEST tells the user that the bu�er can be reused and means that the communication
is completed by the user, but does not guarantee that the local process has no more work
to do. A successful return from MPI REQUEST FREE with a request handle generated by
an MPI ISEND nulli�es the handle but provides no assurance of operation completion. The
MPI ISEND is complete only when it is known by some means that a matching receive has
completed. MPI FINALIZE guarantees that all local actions required by communications
the user has completed will, in fact, occur before it returns.

MPI FINALIZE guarantees nothing about pending communications that have not been
completed (completion is assured only by MPI WAIT, MPI TEST, or MPI REQUEST FREE
combined with some other veri�cation of completion).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2. MPI-1.0 AND MPI-1.1 CLARIFICATIONS 23

Example 3.1 This program is correct:

rank 0 rank 1

===

... ...

MPI_Isend(); MPI_Recv();

MPI_Request_free(); MPI_Barrier();

MPI_Barrier(); MPI_Finalize();

MPI_Finalize(); exit();

exit();

Example 3.2 This program is erroneous and its behavior is unde�ned:

rank 0 rank 1

===

... ...

MPI_Isend(); MPI_Recv();

MPI_Request_free(); MPI_Finalize();

MPI_Finalize(); exit();

exit();

If no MPI BUFFER DETACH occurs between an MPI BSEND (or other bu�ered send)
and MPI FINALIZE, the MPI FINALIZE implicitly supplies the MPI BUFFER DETACH.

Example 3.3 This program is correct, and after the MPI Finalize, it is as if the bu�er had
been detached.

rank 0 rank 1

===

... ...

buffer = malloc(1000000); MPI_Recv();

MPI_Buffer_attach(); MPI_Finalize();

MPI_Bsend(); exit();

MPI_Finalize();

free(buffer);

exit();

Example 3.4 In this example, MPI Iprobe() must return a FALSE ag.
MPI Test cancelled() must return a TRUE ag, independent of the relative order of execution
of MPI Cancel() in process 0 and MPI Finalize() in process 1.

The MPI Iprobe() call is there to make sure the implementation knows that the \tag1"
message exists at the destination, without being able to claim that the user knows about
it.

rank 0 rank 1

==

MPI_Init(); MPI_Init();

MPI_Isend(tag1);

MPI_Barrier(); MPI_Barrier();

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

24 CHAPTER 3. VERSION 1.2 OF MPI

MPI_Iprobe(tag2);

MPI_Barrier(); MPI_Barrier();

MPI_Finalize();

exit();

MPI_Cancel();

MPI_Wait();

MPI_Test_cancelled();

MPI_Finalize();

exit();

Advice to implementors. An implementation may need to delay the return from
MPI FINALIZE until all potential future message cancellations have been processed.
One possible solution is to place a barrier inside MPI FINALIZE (End of advice to
implementors.)

OnceMPI FINALIZE returns, noMPI routine (not evenMPI INIT) may be called, except
for MPI GET VERSION, MPI INITIALIZED, and the MPI-2 function MPI FINALIZED. Each
process must complete any pending communication it initiated before it calls
MPI FINALIZE. If the call returns, each process may continue local computations, or exit,
without participating in further MPI communication with other processes. MPI FINALIZE
is collective on MPI COMM WORLD.

Advice to implementors. Even though a process has completed all the communication
it initiated, such communication may not yet be completed from the viewpoint of the
underlying MPI system. E.g., a blocking send may have completed, even though the
data is still bu�ered at the sender. The MPI implementation must ensure that a
process has completed any involvement in MPI communication before MPI FINALIZE
returns. Thus, if a process exits after the call to MPI FINALIZE, this will not cause
an ongoing communication to fail. (End of advice to implementors.)

Although it is not required that all processes return from MPI FINALIZE, it is required
that at least process 0 in MPI COMM WORLD return, so that users can know that the MPI
portion of the computation is over. In addition, in a POSIX environment, they may desire
to supply an exit code for each process that returns from MPI FINALIZE.

Example 3.5 The following illustrates the use of requiring that at least one process return
and that it be known that process 0 is one of the processes that return. One wants code
like the following to work no matter how many processes return.

...

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

...

MPI_Finalize();

if (myrank == 0) {

resultfile = fopen("outfile","w");

dump_results(resultfile);

fclose(resultfile);

}

exit(0);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2. MPI-1.0 AND MPI-1.1 CLARIFICATIONS 25

3.2.3 Clari�cation of status after MPI WAIT and MPI TEST

The �elds in a status object returned by a call to MPI WAIT,MPI TEST, or any of the other
derived functions (MPI fTEST,WAITgfALL,SOME,ANYg), where the request corresponds to
a send call, are unde�ned, with two exceptions: The error status �eld will contain valid
information if the wait or test call returned with MPI ERR IN STATUS; and the returned
status can be queried by the call MPI TEST CANCELLED.

Error codes belonging to the error class MPI ERR IN STATUS should be returned only by
theMPI completion functions that take arrays ofMPI STATUS. For the functions (MPI TEST,
MPI TESTANY, MPI WAIT, MPI WAITANY) that return a single MPI STATUS value, the
normal MPI error return process should be used (not the MPI ERROR �eld in the
MPI STATUS argument).

3.2.4 Clari�cation of MPI INTERCOMM CREATE

The Problem: TheMPI-1.1 standard says, in the discussion ofMPI INTERCOMM CREATE,
both that

The groups must be disjoint

and that

The leaders may be the same process.

To further muddy the waters, the reason given for \The groups must be disjoint" is based on
concerns about the implementation of MPI INTERCOMM CREATE that are not applicable
for the case where the leaders are the same process.

The Fix: Delete the text:

(the two leaders could be the same process)

from the discussion of MPI INTERCOMM CREATE.
Replace the text:

All inter-communicator constructors are blocking and require that the local and
remote groups be disjoint in order to avoid deadlock.

with

All inter-communicator constructors are blocking and require that the local and
remote groups be disjoint.

Advice to users. The groups must be disjoint for several reasons. Primar-
ily, this is the intent of the intercommunicators | to provide a communi-
cator for communication between disjoint groups. This is reected in the
de�nition of MPI INTERCOMM MERGE, which allows the user to control
the ranking of the processes in the created intracommunicator; this ranking
makes little sense if the groups are not disjoint. In addition, the natural
extension of collective operations to intercommunicators makes the most
sense when the groups are disjoint. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

26 CHAPTER 3. VERSION 1.2 OF MPI

3.2.5 Clari�cation of MPI INTERCOMM MERGE

The error handler on the new intercommunicator in each process is inherited from the com-
municator that contributes the local group. Note that this can result in di�erent processes
in the same communicator having di�erent error handlers.

3.2.6 Clari�cation of Binding of MPI TYPE SIZE

This clari�cation is needed in the MPI-1 description of MPI TYPE SIZE, since the issue
repeatedly arises. It is a clari�cation of the binding.

Advice to users. The MPI-1 Standard speci�es that the output argument of
MPI TYPE SIZE in C is of type int. The MPI Forum considered proposals to change
this and decided to reiterate the original decision. (End of advice to users.)

3.2.7 Clari�cation of MPI REDUCE

The current text on p. 115, lines 25{28, from MPI-1.1 (June 12, 1995) says:
The datatype argument of MPI REDUCE must be compatible with

op. Prede�ned operators work only with the MPI types listed in Section 4.9.2 and Section
4.9.3. User-de�ned operators may operate on general, derived datatypes.

This text is changed to:
The datatype argument of MPI REDUCE must be compatible with

op. Prede�ned operators work only with the MPI types listed in Section 4.9.2 and Section
4.9.3. Furthermore, the datatype and op given for prede�ned operators must be the same
on all processes.

Note that it is possible for users to supply di�erent user-de�ned operations to
MPI REDUCE in each process. MPI does not de�ne which operations are used on which
operands in this case.

Advice to users. Users should make no assumptions about how MPI REDUCE is
implemented. Safest is to ensure that the same function is passed to MPI REDUCE
by each process. (End of advice to users.)

Overlapping datatypes are permitted in \send" bu�ers. Overlapping datatypes in \re-
ceive" bu�ers are erroneous and may give unpredictable results.

3.2.8 Clari�cation of Error Behavior of Attribute Callback Functions

If an attribute copy function or attribute delete function returns other than MPI SUCCESS,
then the call that caused it to be invoked (for example, MPI COMM FREE), is erroneous.

3.2.9 Clari�cation of MPI PROBE and MPI IPROBE

Page 52, lines 1 thru 3 (of MPI-1.1, the June 12, 1995 version without changebars) become:
\A subsequent receive executed with the same communicator, and the source and tag

returned in status by MPI IPROBE will receive the message that was matched by the probe,
if no other intervening receive occurs after the probe, and the send is not successfully
cancelled before the receive."

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2. MPI-1.0 AND MPI-1.1 CLARIFICATIONS 27

Rationale.

The following program shows that the MPI-1 de�nitions of cancel and probe are in
conict:

Process 0 Process 1

---------- ----------

MPI_Init(); MPI_Init();

MPI_Isend(dest=1);

MPI_Probe();

MPI_Barrier(); MPI_Barrier();

MPI_Cancel();

MPI_Wait();

MPI_Test_cancelled();

MPI_Barrier(); MPI_Barrier();

MPI_Recv();

Since the send has been cancelled by process 0, the wait must be local (page 54, line
13) and must return before the matching receive. For the wait to be local, the send
must be successfully cancelled, and therefore must not match the receive in process 1
(page 54 line 29).

However, it is clear that the probe on process 1 must eventually detect an incoming
message. Page 52 line 1 makes it clear that the subsequent receive by process 1 must
return the probed message.

The above are clearly contradictory, and therefore the text \: : :and the send is not
successfully cancelled before the receive" must be added to line 3 of page 54.

An alternative solution (rejected) would be to change the semantics of cancel so that
the call is not local if the message has been probed. This adds complexity to im-
plementations, and adds a new concept of \state" to a message (probed or not). It
would, however, preserve the feature that a blocking receive after a probe is local.

(End of rationale.)

3.2.10 Minor Corrections

The following corrections to MPI-1.1 are (all page and line numbers are for the June 12,
1995 version without changebars):

� Page 11, line 36 reads
MPI ADDRESS
but should read
MPI ADDRESS TYPE

� Page 19, lines 1{2 reads
for (64 bit) C integers declared to be of type longlong int
but should read
for C integers declared to be of type long long

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

28 CHAPTER 3. VERSION 1.2 OF MPI

� Page 40, line 48 should have the following text added:

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in subsections
\Problems Due to Data Copying and Sequence Association," and \A Problem
with Register Optimization" in Section 10.2.2 of the MPI-2 Standard, pages 286
and 289. (End of advice to users.)

� Page 41, lines 16{18 reads
A empty status is a status which is set to return tag = MPI ANY TAG, source =
MPI ANY SOURCE, and is also internally con�gured so that calls toMPI GET COUNT
and MPI GET ELEMENTS return count = 0.
but should read
A empty status is a status which is set to return tag = MPI ANY TAG, source
= MPI ANY SOURCE, error = MPI SUCCESS, and is also internally con�gured so
that calls to MPI GET COUNT and MPI GET ELEMENTS return count = 0 and
MPI TEST CANCELLED returns false.

� Page 52, lines 46{48 read

100 CALL MPI_RECV(i, 1, MPI_INTEGER, 0, 0, status, ierr)

ELSE

200 CALL MPI_RECV(x, 1, MPI_REAL, 1, 0, status, ierr)

but should read

100 CALL MPI_RECV(i, 1, MPI_INTEGER, 0, 0, comm, status, ierr)

ELSE

200 CALL MPI_RECV(x, 1, MPI_REAL, 1, 0, comm, status, ierr)

� Page 53, lines 18{23 read

100 CALL MPI_RECV(i, 1, MPI_INTEGER, MPI_ANY_SOURCE,

0, status, ierr)

ELSE

200 CALL MPI_RECV(x, 1, MPI_REAL, MPI_ANY_SOURCE,

0, status, ierr)

but should read

100 CALL MPI_RECV(i, 1, MPI_INTEGER, MPI_ANY_SOURCE,

0, comm, status, ierr)

ELSE

200 CALL MPI_RECV(x, 1, MPI_REAL, MPI_ANY_SOURCE,

0, comm, status, ierr)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2. MPI-1.0 AND MPI-1.1 CLARIFICATIONS 29

� Page 59, line 3 should have the following text added:

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in subsections
\Problems Due to Data Copying and Sequence Association," and \A Problem
with Register Optimization" in Section 10.2.2 of the MPI-2 Standard, pages 286
and 289. (End of advice to users.)

� Page 59, lines 42{45 read
int MPI Sendrecv(void *sendbuf, int sendcount, MPI Datatype sendtype,

int dest, int sendtag, void *recvbuf, int recvcount,

MPI Datatype recvtype, int source, MPI Datatype recvtag,

MPI Comm comm, MPI Status *status)

but should read
int MPI Sendrecv(void *sendbuf, int sendcount, MPI Datatype sendtype,

int dest, int sendtag, void *recvbuf, int recvcount,

MPI Datatype recvtype, int source, int recvtag,

MPI Comm comm, MPI Status *status)

� Page 60, line 3 reads
SOURCE, RECV TAG, COMM, STATUS(MPI STATUS SIZE), IERROR

but should read
SOURCE, RECVTAG, COMM, STATUS(MPI STATUS SIZE), IERROR

� Page 70, line 16 should have the following text added:

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in subsections
\Problems Due to Data Copying and Sequence Association," and \A Problem
with Register Optimization" in Section 10.2.2 of the MPI-2 Standard, pages 286
and 289. (End of advice to users.)

� Page 71, line 10 reads
and do not a�ect the the content of a message
but should read
and do not a�ect the content of a message

� Page 74, lines 39{45 read
A datatype may specify overlapping entries. The use of such a datatype in a receive
operation is erroneous. (This is erroneous even if the actual message received is short
enough not to write any entry more than once.)

A datatype may specify overlapping entries. If such a datatype is used in a receive
operation, that is, if some part of the receive bu�er is written more than once by the
receive operation, then the call is erroneous.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

30 CHAPTER 3. VERSION 1.2 OF MPI

The �rst part was an MPI-1.1 addition. The second part overlaps with it. The old
text will be removed so it now reads
A datatype may specify overlapping entries. The use of such a datatype in a receive
operation is erroneous. (This is erroneous even if the actual message received is short
enough not to write any entry more than once.)

� Page 75, line 24 should have the following text added:
The datatype argument should match the argument provided by the receive call that
set the status variable.

� Page 85, line 36 reads
\speci�ed by outbuf and outcount"
but should read
\speci�ed by outbuf and outsize."

� Page 90, line 3 reads
MPI Pack size(count, MPI CHAR, &k2);
but should read
MPI Pack size(count, MPI CHAR, comm, &k2);

� Page 90, line 10 reads
MPI Pack(chr, count, MPI CHAR, &lbuf, k, &position, comm);
but should read
MPI Pack(chr, count, MPI CHAR, lbuf, k, &position, comm);

� Page 97, line 41 reads

MPI Recv(recvbuf+ disp[i] � extent(recvtype); recvcounts[i];recvtype;i; :::):

but should read

MPI Recv(recvbuf+ displs[i] � extent(recvtype); recvcounts[i];recvtype; i; :::):

� Page 109, lines 26{27 and page 110, lines 28{29 reads
The jth block of data sent from each process is received by every process and placed
in the jth block of the bu�er recvbuf.
but should read
The block of data sent from the jth process is received by every process and placed
in the jth block of the bu�er recvbuf.

� Page 117, lines 22{23 reads
MPI provides seven such prede�ned datatypes.
but should read
MPI provides nine such prede�ned datatypes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2. MPI-1.0 AND MPI-1.1 CLARIFICATIONS 31

� Page 121, line 1 reads

FUNCTION USER_FUNCTION(INVEC(*), INOUTVEC(*), LEN, TYPE)

but should read

SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, TYPE)

� Page 122, lines 35{36 read
MPI OP FREE(op)

IN op operation (handle)

but should read
MPI OP FREE(op)

INOUT op operation (handle)

� Page 125, line 1 reads
CALL MPI ALLREDUCE(sum, c, n, MPI REAL, MPI SUM, 0, comm, ierr)
but should read
CALL MPI ALLREDUCE(sum, c, n, MPI REAL, MPI SUM, comm, ierr)

� Page 141, lines 27{27 read

IN ranges an array of integer triplets, of the form (�rst

rank, last rank, stride) indicating ranks in group

of processes to be included in newgroup

but should read

IN ranges a one-dimensional array of integer triplets, of

the form (�rst rank, last rank, stride) indicating

ranks in group of processes to be included in

newgroup

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

32 CHAPTER 3. VERSION 1.2 OF MPI

� Page 142, line 10 reads

IN n number of elements in array ranks (integer)

but should read

IN n number of triplets in array ranges (integer)

� Page 194, lines 30{31 reads
to the greatest possible, extent,
but should read
to the greatest possible extent,

� Page 194, line 48 reads
MPI ERRHANDLER CREATE(FUNCTION, HANDLER, IERROR)
but should read
MPI ERRHANDLER CREATE(FUNCTION, ERRHANDLER, IERROR)

� Page 195, line 15 should have the following text added:
In the Fortran language, the user routine should be of the form:

SUBROUTINE HANDLER_FUNCTION(COMM, ERROR_CODE,)

INTEGER COMM, ERROR_CODE

Advice to users. Users are discouraged from using a Fortran
HANDLER FUNCTION since the routine expects a variable number of arguments.
Some Fortran systems may allow this but some may fail to give the correct result
or compile/link this code. Thus, it will not, in general, be possible to create
portable code with a Fortran HANDLER FUNCTION. (End of advice to users.)

� Page 196, lines 1{2 reads
MPI ERRHANDLER FREE(errhandler)

IN errhandler MPI error handler (handle)

but should read
MPI ERRHANDLER FREE(errhandler)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2. MPI-1.0 AND MPI-1.1 CLARIFICATIONS 33

INOUT errhandler MPI error handler (handle)

� Page 197, line 25 should have added:

An MPI error class is a valid MPI error code. Speci�cally, the values de�ned for MPI
error classes are valid MPI error codes.

� Page 201, line 28 reads
...of di�erent language bindings is is done
but should read
...of di�erent language bindings is done

� Page 203, line 1 reads
MPI PCONTROL(level)

but should read
MPI PCONTROL(LEVEL)

� Page 210, line 44 reads
MPI PENDING

but should read
MPI ERR PENDING

� Page 211, line 44 reads
MPI DOUBLE COMPLEX

but should be moved to Page 212, line 22 since it is an optional Fortran datatype.

� Page 212, add new lines of text at line 22 and line 25 to read:
etc.
Thus, the text will now read:

/* optional datatypes (Fortran) */

MPI_INTEGER1

MPI_INTEGER2

MPI_INTEGER4

MPI_REAL2

MPI_REAL4

MPI_REAL8

etc.

/* optional datatypes (C) */

MPI_LONG_LONG_INT

etc.

� Page 213, line 28. The following text should be added:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

34 CHAPTER 3. VERSION 1.2 OF MPI

/* Predefined functions in C and Fortran */

MPI_NULL_COPY_FN

MPI_NULL_DELETE_FN

MPI_DUP_FN

� Page 213, line 41. Add the line

MPI_Errhandler

� Page 214, line 9 reads

FUNCTION USER_FUNCTION(INVEC(*), INOUTVEC(*), LEN, TYPE)

but should read

SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, TYPE)

� Page 214, lines 14 and 15 read

PROCEDURE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERR)

but should read

SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERR)

� Page 214, line 21 reads

PROCEDURE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)

but should read

SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)

� Page 214, line 23 should have the following text added:
The handler-function for error handlers should be declared like this:

SUBROUTINE HANDLER_FUNCTION(COMM, ERROR_CODE,)

INTEGER COMM, ERROR_CODE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2. MPI-1.0 AND MPI-1.1 CLARIFICATIONS 35

� Page 216, lines 4{7 read
int MPI Sendrecv(void *sendbuf, int sendcount, MPI Datatype sendtype,

int dest, int sendtag, void *recvbuf, int recvcount,

MPI Datatype recvtype, int source, MPI Datatype recvtag,

MPI Comm comm, MPI Status *status)

but should read
int MPI Sendrecv(void *sendbuf, int sendcount, MPI Datatype sendtype,

int dest, int sendtag, void *recvbuf, int recvcount,

MPI Datatype recvtype, int source, int recvtag,

MPI Comm comm, MPI Status *status)

� Page 220, lines 19{20 reads
int double MPI Wtime(void)
int double MPI Wtick(void)
but should read
double MPI Wtime(void)
double MPI Wtick(void)

� Page 222, line 34 reads
INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR
but should read
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

� Page 222, line 38 reads
INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR
but should read
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

� Page 227, lines 19{20 reads
MPI INTERCOMM MERGE(INTERCOMM, HIGH, INTRACOMM, IERROR)
INTEGER INTERCOMM, INTRACOMM, IERROR
but should read
MPI INTERCOMM MERGE(INTERCOMM, HIGH, NEWINTRACOMM, IERROR)
INTEGER INTERCOMM, NEWINTRACOMM, IERROR

� Page 228, line 46 reads
MPI ERRHANDLER CREATE(FUNCTION, HANDLER, IERROR)
but should read
MPI ERRHANDLER CREATE(FUNCTION, ERRHANDLER, IERROR)

� Page 229, line 33 reads
MPI PCONTROL(level)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

36 CHAPTER 3. VERSION 1.2 OF MPI

but should read
MPI PCONTROL(LEVEL)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 4

Miscellany

This chapter contains topics that do not �t conveniently into other chapters.

4.1 Portable MPI Process Startup

A number of implementations of MPI-1 provide a startup command for MPI programs that
is of the form

mpirun <mpirun arguments> <program> <program arguments>

Separating the command to start the program from the program itself provides exibility,
particularly for network and heterogeneous implementations. For example, the startup
script need not run on one of the machines that will be executing the MPI program itself.

Having a standard startup mechanism also extends the portability ofMPI programs one
step further, to the command lines and scripts that manage them. For example, a validation
suite script that runs hundreds of programs can be a portable script if it is written using such
a standard starup mechanism. In order that the \standard" command not be confused with
existing practice, which is not standard and not portable among implementations, instead
of mpirun MPI speci�es mpiexec.

While a standardized startup mechanism improves the usability of MPI, the range of
environments is so diverse (e.g., there may not even be a command line interface) that MPI
cannot mandate such a mechanism. Instead, MPI speci�es an mpiexec startup command
and recommends but does not require it, as advice to implementors. However, if an im-
plementation does provide a command called mpiexec, it must be of the form described
below.

It is suggested that

mpiexec -n <numprocs> <program>

be at least one way to start <program> with an initial MPI COMM WORLD whose group
contains <numprocs> processes. Other arguments to mpiexec may be implementation-
dependent.

This is advice to implementors, rather than a required part ofMPI-2. It is not suggested
that this be the only way to start MPI programs. If an implementation does provide a
command called mpiexec, however, it must be of the form described here.

37

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

38 CHAPTER 4. MISCELLANY

Advice to implementors. Implementors, if they do provide a special startup command
for MPI programs, are advised to give it the following form. The syntax is chosen in
order that mpiexec be able to be viewed as a command-line version of
MPI COMM SPAWN (See Section 5.3.4).

Analogous to MPI COMM SPAWN, we have

mpiexec -n <maxprocs>

-soft < >

-host < >

-arch < >

-wdir < >

-path < >

-file < >

...

<command line>

for the case where a single command line for the application program and its arguments
will su�ce. See Section 5.3.4 for the meanings of these arguments. For the case
corresponding to MPI COMM SPAWN MULTIPLE there are two possible formats:

Form A:

mpiexec { <above arguments> } : { ... } : { ... } : ... : { ... }

As with MPI COMM SPAWN, all the arguments are optional. (Even the -n x argu-
ment is optional; the default is implementation dependent. It might be 1, it might be
taken from an environment variable, or it might be speci�ed at compile time.) The
names and meanings of the arguments are taken from the keys in the info argument
to MPI COMM SPAWN. There may be other, implementation-dependent arguments
as well.

Note that Form A, though convenient to type, prevents colons from being program
arguments. Therefore an alternate, �le-based form is allowed:

Form B:

mpiexec -configfile <filename>

where the lines of <filename> are of the form separated by the colons in Form A.
Lines beginning with `#' are comments, and lines may be continued by terminating
the partial line with `\'.

Example 4.1 Start 16 instances of myprog on the current or default machine:

mpiexec -n 16 myprog

Example 4.2 Start 10 processes on the machine called ferrari:

mpiexec -n 10 -host ferrari myprog

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.2. PASSING NULL TO MPI INIT 39

Example 4.3 Start three copies of the same program with di�erent command-line
arguments:

mpiexec myprog infile1 : myprog infile2 : myprog infile3

Example 4.4 Start the ocean program on �ve Suns and the atmos program on 10
RS/6000's:

mpiexec -n 5 -arch sun ocean : -n 10 -arch rs6000 atmos

It is assumed that the implementation in this case has a method for choosing hosts of
the appropriate type. Their ranks are in the order speci�ed.

Example 4.5 Start the ocean program on �ve Suns and the atmos program on 10
RS/6000's (Form B):

mpiexec -configfile myfile

where myfile contains

-n 5 -arch sun ocean

-n 10 -arch rs6000 atmos

(End of advice to implementors.)

4.2 Passing NULL to MPI Init

In MPI-1.1, it is explicitly stated that an implementation is allowed to require that the
arguments argc and argv passed by an application to MPI INIT in C be the same arguments
passed into the application as the arguments to main. In MPI-2 implementations are not
allowed to impose this requirement. Conforming implementations of MPI are required to
allow applications to pass NULL for both the argc and argv arguments of main. In C++,
there is an alternative binding for MPI::Init that does not have these arguments at all.

Rationale. In some applications, libraries may be making the call to MPI Init, and
may not have access to argc and argv from main. It is anticipated that applications
requiring special information about the environment or information supplied by
mpiexec can get that information from environment variables. (End of rationale.)

4.3 Version Number

The values for the MPI VERSION and MPI SUBVERSION for an MPI-2 implementation are 2
and 0 respectively. This applies both to the values of the above constants and to the values
returned by MPI GET VERSION.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

40 CHAPTER 4. MISCELLANY

4.4 Datatype Constructor MPI TYPE CREATE INDEXED BLOCK

This function is the same as MPI TYPE INDEXED except that the blocklength is the same
for all blocks. There are many codes using indirect addressing arising from unstructured
grids where the blocksize is always 1 (gather/scatter). The following convenience function
allows for constant blocksize and arbitrary displacements.

MPI TYPE CREATE INDEXED BLOCK(count, blocklength, array of displacements, oldtype,
newtype)

IN count length of array of displacements (integer)

IN blocklength size of block (integer)

IN array of displacements array of displacements (array of integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI Type create indexed block(int count, int blocklength,

int array of displacements[], MPI Datatype oldtype,

MPI Datatype *newtype)

MPI TYPE CREATE INDEXED BLOCK(COUNT, BLOCKLENGTH, ARRAY OF DISPLACEMENTS,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, ARRAY OF DISPLACEMENTS(*), OLDTYPE,

NEWTYPE, IERROR

MPI::Datatype MPI::Datatype::Create indexed block(int count,

int blocklength, const int array of displacements[]) const

4.5 Treatment of MPI Status

The following features add to, but do not change, the functionality associated with
MPI STATUS.

4.5.1 Passing MPI STATUS IGNORE for Status

Every call to MPI RECV includes a status argument, wherein the system can return details
about the message received. There are also a number of other MPI calls, particularly in
MPI-2, where status is returned. An object of type MPI STATUS is not an MPI opaque
object; its structure is declared in mpi.h and mpif.h, and it exists in the user's program.
In many cases, application programs are constructed so that it is unnecessary for them to
examine the status �elds. In these cases, it is a waste for the user to allocate a status
object, and it is particularly wasteful for the MPI implementation to �ll in �elds in this
object.

To cope with this problem, there are two prede�ned constants,MPI STATUS IGNORE and
MPI STATUSES IGNORE, which when passed to a receive, wait, or test function, inform the
implementation that the status �elds are not to be �lled in. Note that MPI STATUS IGNORE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.5. TREATMENT OF MPI STATUS 41

is not a special type of MPI STATUS object; rather, it is a special value for the argument.
In C one would expect it to be NULL, not the address of a special MPI STATUS.

MPI STATUS IGNORE, and the array version MPI STATUSES IGNORE, can be used every-
where a status argument is passed to a receive, wait, or test function. MPI STATUS IGNORE

cannot be used when status is an IN argument. Note that in Fortran MPI STATUS IGNORE

and MPI STATUSES IGNORE are objects like MPI BOTTOM (not usable for initialization or
assignment). See Section 2.5.4.

In general, this optimization can apply to all functions for which status or an array of
statuses is an OUT argument. Note that this converts status into an INOUT argument. The
functions that can be passed MPI STATUS IGNORE are all the various forms of MPI RECV,
MPI TEST, and MPI WAIT, as well as MPI REQUEST GET STATUS. When an array is
passed, as in the ANY and ALL functions, a separate constant, MPI STATUSES IGNORE, is
passed for the array argument. It is possible for an MPI function to return
MPI ERR IN STATUS even when MPI STATUS IGNORE or MPI STATUSES IGNORE has been
passed to that function.

MPI STATUS IGNORE and MPI STATUSES IGNORE are not required to have the same
values in C and Fortran.

It is not allowed to have some of the statuses in an array of statuses for ANY and
ALL functions set to MPI STATUS IGNORE; one either speci�es ignoring all of the statuses
in such a call with MPI STATUSES IGNORE, or none of them by passing normal statuses in
all positions in the array of statuses.

There are no C++ bindings forMPI STATUS IGNORE orMPI STATUSES IGNORE. To
allow an OUT or INOUT MPI::Status argument to be ignored, all MPI C++ bindings that
have OUT or INOUT MPI::Status parameters are overloaded with a second version that
omits the OUT or INOUT MPI::Status parameter.

Example 4.6 The C++ bindings for MPI PROBE are:
void MPI::Comm::Probe(int source, int tag, MPI::Status& status) const

void MPI::Comm::Probe(int source, int tag) const

4.5.2 Non-destructive Test of status

This call is useful for accessing the information associated with a request, without freeing
the request (in case the user is expected to access it later). It allows one to layer libraries
more conveniently, since multiple layers of software may access the same completed request
and extract from it the status information.

MPI REQUEST GET STATUS(request, ag, status)

IN request request (handle)

OUT ag boolean ag, same as from MPI TEST (logical)

OUT status MPI STATUS object if ag is true (Status)

int MPI Request get status(MPI Request request, int *flag,

MPI Status *status)

MPI REQUEST GET STATUS(REQUEST, FLAG, STATUS, IERROR)

INTEGER REQUEST, STATUS(MPI STATUS SIZE), IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

42 CHAPTER 4. MISCELLANY

LOGICAL FLAG

bool MPI::Request::Get status(MPI::Status& status) const

bool MPI::Request::Get status() const

Sets ag=true if the operation is complete, and, if so, returns in status the request
status. However, unlike test or wait, it does not deallocate or inactivate the request; a
subsequent call to test, wait or free should be executed with that request. It sets ag=false
if the operation is not complete.

4.6 Error Class for Invalid Keyval

Key values for attributes are system-allocated, byMPI fTYPE,COMM,WINg CREATE KEYVAL.
Only such values can be passed to the functions that use key values as input arguments.
In order to signal that an erroneous key value has been passed to one of these functions,
there is a new MPI error class: MPI ERR KEYVAL. It can be returned by
MPI ATTR PUT, MPI ATTR GET, MPI ATTR DELETE, MPI KEYVAL FREE,
MPI fTYPE,COMM,WINg DELETE ATTR, MPI fTYPE,COMM,WINg SET ATTR,
MPI fTYPE,COMM,WINg GET ATTR, MPI fTYPE,COMM,WINg FREE KEYVAL,
MPI COMM DUP, MPI COMM DISCONNECT, and MPI COMM FREE. The last three are
included because keyval is an argument to the copy and delete functions for attributes.

4.7 Committing a Committed Datatype

In MPI-1.2, the e�ect of calling MPI TYPE COMMIT with a datatype that is already com-
mitted is not speci�ed. For MPI-2, it is speci�ed that MPI TYPE COMMIT will accept a
committed datatype; in this case, it is equivalent to a no-op.

4.8 Allowing User Functions at Process Termination

There are times in which it would be convenient to have actions happen when anMPI process
�nishes. For example, a routine may do initializations that are useful until the MPI job (or
that part of the job that being terminated in the case of dynamically created processes) is
�nished. This can be accomplished in MPI-2 by attaching an attribute to MPI COMM SELF

with a callback function. When MPI FINALIZE is called, it will �rst execute the equivalent
of an MPI COMM FREE on MPI COMM SELF. This will cause the delete callback function
to be executed on all keys associated with MPI COMM SELF, in an arbitrary order. If no
key has been attached to MPI COMM SELF, then no callback is invoked. The \freeing" of
MPI COMM SELF occurs before any other parts of MPI are a�ected. Thus, for example,
calling MPI FINALIZED will return false in any of these callback functions. Once done with
MPI COMM SELF, the order and rest of the actions taken by MPI FINALIZE is not speci�ed.

Advice to implementors. Since attributes can be added from any supported language,
the MPI implementation needs to remember the creating language so the correct
callback is made. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.9. DETERMINING WHETHER MPI HAS FINISHED 43

4.9 Determining Whether MPI Has Finished

One of the goals of MPI was to allow for layered libraries. In order for a library to do this
cleanly, it needs to know if MPI is active. In MPI-1 the function MPI INITIALIZED was
provided to tell if MPI had been initialized. The problem arises in knowing if MPI has been
�nalized. Once MPI has been �nalized it is no longer active and cannot be restarted. A
library needs to be able to determine this to act accordingly. To achieve this the following
function is needed:

MPI FINALIZED(ag)

OUT ag true if MPI was �nalized (logical)

int MPI Finalized(int *flag)

MPI FINALIZED(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

bool MPI::Is finalized()

This routine returns true if MPI FINALIZE has completed. It is legal to call
MPI FINALIZED before MPI INIT and after MPI FINALIZE.

Advice to users. MPI is \active" and it is thus safe to call MPI functions if MPI INIT
has completed and MPI FINALIZE has not completed. If a library has no other way
of knowing whether MPI is active or not, then it can use MPI INITIALIZED and
MPI FINALIZED to determine this. For example, MPI is \active" in callback functions
that are invoked during MPI FINALIZE. (End of advice to users.)

4.10 The Info Object

Many of the routines in MPI-2 take an argument info. info is an opaque object with a
handle of type MPI Info in C, MPI::Info in C++, and INTEGER in Fortran. It consists of
(key,value) pairs (both key and value are strings). A key may have only one value. MPI
reserves several keys and requires that if an implementation uses a reserved key, it must
provide the speci�ed functionality. An implementation is not required to support these keys
and may support any others not reserved by MPI.

If a function does not recognize a key, it will ignore it, unless otherwise speci�ed. If
an implementation recognizes a key but does not recognize the format of the corresponding
value, the result is unde�ned.

Keys have an implementation-de�ned maximum length of MPI MAX INFO KEY, which
is at least 32 and at most 255. Values have an implementation-de�ned maximum length
of MPI MAX INFO VAL. In Fortran, leading and trailing spaces are stripped from both. Re-
turned values will never be larger than these maximum lengths. Both key and value are
case sensitive.

Rationale. Keys have a maximum length because the set of known keys will always
be �nite and known to the implementation and because there is no reason for keys

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

44 CHAPTER 4. MISCELLANY

to be complex. The small maximum size allows applications to declare keys of size
MPI MAX INFO KEY. The limitation on value sizes is so that an implementation is not
forced to deal with arbitrarily long strings. (End of rationale.)

Advice to users. MPI MAX INFO VAL might be very large, so it might not be wise to
declare a string of that size. (End of advice to users.)

When it is an argument to a non-blocking routine, info is parsed before that routine
returns, so that it may be modi�ed or freed immediately after return.

When the descriptions refer to a key or value as being a boolean, an integer, or a list,
they mean the string representation of these types. An implementation may de�ne its own
rules for how info value strings are converted to other types, but to ensure portability, every
implementation must support the following representations. Legal values for a boolean must
include the strings \true" and \false" (all lowercase). For integers, legal values must include
string representations of decimal values of integers that are within the range of a standard
integer type in the program. (However it is possible that not every legal integer is a legal
value for a given key.) On positive numbers, + signs are optional. No space may appear
between a + or � sign and the leading digit of a number. For comma separated lists, the
string must contain legal elements separated by commas. Leading and trailing spaces are
stripped automatically from the types of info values described above and for each element of
a comma separated list. These rules apply to all info values of these types. Implementations
are free to specify a di�erent interpretation for values of other info keys.

MPI INFO CREATE(info)

OUT info info object created (handle)

int MPI Info create(MPI Info *info)

MPI INFO CREATE(INFO, IERROR)

INTEGER INFO, IERROR

static MPI::Info MPI::Info::Create()

MPI INFO CREATE creates a new info object. The newly created object contains no
key/value pairs.

MPI INFO SET(info, key, value)

INOUT info info object (handle)

IN key key (string)

IN value value (string)

int MPI Info set(MPI Info info, char *key, char *value)

MPI INFO SET(INFO, KEY, VALUE, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) KEY, VALUE

void MPI::Info::Set(const char* key, const char* value)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.10. THE INFO OBJECT 45

MPI INFO SET adds the (key,value) pair to info, and overrides the value if a value for
the same key was previously set. key and value are null-terminated strings in C. In Fortran,
leading and trailing spaces in key and value are stripped. If either key or value are larger than
the allowed maximums, the errors MPI ERR INFO KEY or MPI ERR INFO VALUE are raised,
respectively.

MPI INFO DELETE(info, key)

INOUT info info object (handle)

IN key key (string)

int MPI Info delete(MPI Info info, char *key)

MPI INFO DELETE(INFO, KEY, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) KEY

void MPI::Info::Delete(const char* key)

MPI INFO DELETE deletes a (key,value) pair from info. If key is not de�ned in info,
the call raises an error of class MPI ERR INFO NOKEY.

MPI INFO GET(info, key, valuelen, value, ag)

IN info info object (handle)

IN key key (string)

IN valuelen length of value arg (integer)

OUT value value (string)

OUT ag true if key de�ned, false if not (boolean)

int MPI Info get(MPI Info info, char *key, int valuelen, char *value,

int *flag)

MPI INFO GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)

INTEGER INFO, VALUELEN, IERROR

CHARACTER*(*) KEY, VALUE

LOGICAL FLAG

bool MPI::Info::Get(const char* key, int valuelen, char* value) const

This function retrieves the value associated with key in a previous call to
MPI INFO SET. If such a key exists, it sets ag to true and returns the value in value,
otherwise it sets ag to false and leaves value unchanged. valuelen is the number of characters
available in value. If it is less than the actual size of the value, the value is truncated. In
C, valuelen should be one less than the amount of allocated space to allow for the null
terminator.

If key is larger than MPI MAX INFO KEY, the call is erroneous.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

46 CHAPTER 4. MISCELLANY

MPI INFO GET VALUELEN(info, key, valuelen, ag)

IN info info object (handle)

IN key key (string)

OUT valuelen length of value arg (integer)

OUT ag true if key de�ned, false if not (boolean)

int MPI Info get valuelen(MPI Info info, char *key, int *valuelen,

int *flag)

MPI INFO GET VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)

INTEGER INFO, VALUELEN, IERROR

LOGICAL FLAG

CHARACTER*(*) KEY

bool MPI::Info::Get valuelen(const char* key, int& valuelen) const

Retrieves the length of the value associated with key. If key is de�ned, valuelen is set
to the length of its associated value and ag is set to true. If key is not de�ned, valuelen is
not touched and ag is set to false. The length returned in C or C++ does not include the
end-of-string character.

If key is larger than MPI MAX INFO KEY, the call is erroneous.

MPI INFO GET NKEYS(info, nkeys)

IN info info object (handle)

OUT nkeys number of de�ned keys (integer)

int MPI Info get nkeys(MPI Info info, int *nkeys)

MPI INFO GET NKEYS(INFO, NKEYS, IERROR)

INTEGER INFO, NKEYS, IERROR

int MPI::Info::Get nkeys() const

MPI INFO GET NKEYS returns the number of currently de�ned keys in info.

MPI INFO GET NTHKEY(info, n, key)

IN info info object (handle)

IN n key number (integer)

OUT key key (string)

int MPI Info get nthkey(MPI Info info, int n, char *key)

MPI INFO GET NTHKEY(INFO, N, KEY, IERROR)

INTEGER INFO, N, IERROR

CHARACTER*(*) KEY

void MPI::Info::Get nthkey(int n, char* key) const

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.11. MEMORY ALLOCATION 47

This function returns the nth de�ned key in info. Keys are numbered 0 : : :N � 1 where
N is the value returned by MPI INFO GET NKEYS. All keys between 0 and N � 1 are
guaranteed to be de�ned. The number of a given key does not change as long as info is not
modi�ed with MPI INFO SET or MPI INFO DELETE.

MPI INFO DUP(info, newinfo)

IN info info object (handle)

OUT newinfo info object (handle)

int MPI Info dup(MPI Info info, MPI Info *newinfo)

MPI INFO DUP(INFO, NEWINFO, IERROR)

INTEGER INFO, NEWINFO, IERROR

MPI::Info MPI::Info::Dup() const

MPI INFO DUP duplicates an existing info object, creating a new object, with the same
(key,value) pairs and the same ordering of keys.

MPI INFO FREE(info)

INOUT info info object (handle)

int MPI Info free(MPI Info *info)

MPI INFO FREE(INFO, IERROR)

INTEGER INFO, IERROR

void MPI::Info::Free()

This function frees info and sets it to MPI INFO NULL. The value of an info argument is
interpreted each time the info is passed to a routine. Changes to an info after return from
a routine do not a�ect that interpretation.

4.11 Memory Allocation

In some systems, message-passing and remote-memory-access (RMA) operations run faster
when accessing specially allocated memory (e.g., memory that is shared by the other pro-
cesses in the communicating group on an SMP). MPI provides a mechanism for allocating
and freeing such special memory. The use of such memory for message passing or RMA is
not mandatory, and this memory can be used without restrictions as any other dynamically
allocated memory. However, implementations may restrict the use of the MPI WIN LOCK
and MPI WIN UNLOCK functions to windows allocated in such memory (see Section 6.4.3.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

48 CHAPTER 4. MISCELLANY

MPI ALLOC MEM(size, info, baseptr)

IN size size of memory segment in bytes (nonnegative integer)

IN info info argument (handle)

OUT baseptr pointer to beginning of memory segment allocated

int MPI Alloc mem(MPI Aint size, MPI Info info, void *baseptr)

MPI ALLOC MEM(SIZE, INFO, BASEPTR, IERROR)

INTEGER INFO, IERROR

INTEGER(KIND=MPI ADDRESS KIND) SIZE, BASEPTR

void* MPI::Alloc mem(MPI::Aint size, const MPI::Info& info)

The info argument can be used to provide directives that control the desired location
of the allocated memory. Such a directive does not a�ect the semantics of the call. Valid
info values are implementation-dependent; a null directive value of info = MPI INFO NULL
is always valid.

The function MPI ALLOC MEM may return an error code of class MPI ERR NO MEM

to indicate it failed because memory is exhausted.

MPI FREE MEM(base)

IN base initial address of memory segment allocated by

MPI ALLOC MEM (choice)

int MPI Free mem(void *base)

MPI FREE MEM(BASE, IERROR)

<type> BASE(*)

INTEGER IERROR

void MPI::Free mem(void *base)

The function MPI FREE MEM may return an error code of class MPI ERR BASE to
indicate an invalid base argument.

Rationale. The C and C++ bindings of MPI ALLOC MEM and MPI FREE MEM are
similar to the bindings for the malloc and free C library calls: a call to
MPI Alloc mem(..., &base) should be paired with a call to MPI Free mem(base) (one
less level of indirection). Both arguments are declared to be of same type void* so
as to facilitate type casting. The Fortran binding is consistent with the C and C++
bindings: the Fortran MPI ALLOC MEM call returns in baseptr the (integer valued)
address of the allocated memory. The base argument of MPI FREE MEM is a choice
argument, which passes (a reference to) the variable stored at that location. (End of
rationale.)

Advice to implementors. IfMPI ALLOC MEM allocates special memory, then a design
similar to the design of C malloc and free functions has to be used, in order to �nd
out the size of a memory segment, when the segment is freed. If no special memory is
used, MPI ALLOC MEM simply invokes malloc, and MPI FREE MEM invokes free.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.12. LANGUAGE INTEROPERABILITY 49

A call toMPI ALLOC MEM can be used in shared memory systems to allocate memory
in a shared memory segment. (End of advice to implementors.)

Example 4.7 Example of use of MPI ALLOC MEM, in Fortran with pointer support. We
assume 4-byte REALs, and assume that pointers are address-sized.

REAL A

POINTER (P, A(100,100)) ! no memory is allocated

CALL MPI_ALLOC_MEM(4*100*100, MPI_INFO_NULL, P, IERR)

! memory is allocated

...

A(3,5) = 2.71;

...

CALL MPI_FREE_MEM(A, IERR) ! memory is freed

Since standard Fortran does not support (C-like) pointers, this code is not Fortran 77
or Fortran 90 code. Some compilers (in particular, at the time of writing, g77 and Fortran
compilers for Intel) do not support this code.

Example 4.8 Same example, in C

float (* f)[100][100] ;

MPI_Alloc_mem(sizeof(float)*100*100, MPI_INFO_NULL, &f);

...

(*f)[5][3] = 2.71;

...

MPI_Free_mem(f);

4.12 Language Interoperability

4.12.1 Introduction

It is not uncommon for library developers to use one language to develop an applications
library that may be called by an application program written in a di�erent language. MPI
currently supports ISO (previously ANSI) C, C++, and Fortran bindings. It should be
possible for applications in any of the supported languages to call MPI-related functions in
another language.

Moreover, MPI allows the development of client-server code, with MPI communication
used between a parallel client and a parallel server. It should be possible to code the server
in one language and the clients in another language. To do so, communications should be
possible between applications written in di�erent languages.

There are several issues that need to be addressed in order to achieve interoperability.

Initialization We need to specify how the MPI environment is initialized for all languages.

Interlanguage passing of MPI opaque objects We need to specify howMPI object han-
dles are passed between languages. We also need to specify what happens when an
MPI object is accessed in one language, to retrieve information (e.g., attributes) set
in another language.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

50 CHAPTER 4. MISCELLANY

Interlanguage communication We need to specify how messages sent in one language
can be received in another language.

It is highly desirable that the solution for interlanguage interoperability be extendable
to new languages, should MPI bindings be de�ned for such languages.

4.12.2 Assumptions

We assume that conventions exist for programs written in one language to call functions
in written in another language. These conventions specify how to link routines in di�erent
languages into one program, how to call functions in a di�erent language, how to pass ar-
guments between languages, and the correspondence between basic data types in di�erent
languages. In general, these conventions will be implementation dependent. Furthermore,
not every basic datatype may have a matching type in other languages. For example,
C/C++ character strings may not be compatible with Fortran CHARACTER variables. How-
ever, we assume that a Fortran INTEGER, as well as a (sequence associated) Fortran array
of INTEGERs, can be passed to a C or C++ program. We also assume that Fortran, C, and
C++ have address-sized integers. This does not mean that the default-size integers are the
same size as default-sized pointers, but only that there is some way to hold (and pass) a C
address in a Fortran integer. It is also assumed that INTEGER(KIND=MPI OFFSET KIND) can
be passed from Fortran to C as MPI O�set.

4.12.3 Initialization

A call to MPI INIT or MPI THREAD INIT, from any language, initializes MPI for execution
in all languages.

Advice to users. Certain implementations use the (inout) argc, argv arguments of
the C/C++ version of MPI INIT in order to propagate values for argc and argv to
all executing processes. Use of the Fortran version of MPI INIT to initialize MPI may
result in a loss of this ability. (End of advice to users.)

The function MPI INITIALIZED returns the same answer in all languages.
The function MPI FINALIZE �nalizes the MPI environments for all languages.
The function MPI FINALIZED returns the same answer in all languages.
The function MPI ABORT kills processes, irrespective of the language used by the caller

or by the processes killed.
The MPI environment is initialized in the same manner for all languages by

MPI INIT. E.g., MPI COMM WORLD carries the same information regardless of language:
same processes, same environmental attributes, same error handlers.

Information can be added to info objects in one language and retrieved in another.

Advice to users. The use of several languages in one MPI program may require the
use of special options at compile and/or link time. (End of advice to users.)

Advice to implementors. Implementations may selectively link language speci�c MPI
libraries only to codes that need them, so as not to increase the size of binaries for codes
that use only one language. TheMPI initialization code need perform initialization for
a language only if that language library is loaded. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.12. LANGUAGE INTEROPERABILITY 51

4.12.4 Transfer of Handles

Handles are passed between Fortran and C or C++ by using an explicit C wrapper to
convert Fortran handles to C handles. There is no direct access to C or C++ handles in
Fortran. Handles are passed between C and C++ using overloaded C++ operators called
from C++ code. There is no direct access to C++ objects from C.

The type de�nition MPI Fint is provided in C/C++ for an integer of the size that
matches a Fortran INTEGER; usually, MPI Fint will be equivalent to int.

The following functions are provided in C to convert from a Fortran communicator
handle (which is an integer) to a C communicator handle, and vice versa.

MPI Comm MPI Comm f2c(MPI Fint comm)

If comm is a valid Fortran handle to a communicator, then MPI Comm f2c returns a
valid C handle to that same communicator; if comm = MPI COMM NULL (Fortran value),
then MPI Comm f2c returns a null C handle; if comm is an invalid Fortran handle, then
MPI Comm f2c returns an invalid C handle.

MPI Fint MPI Comm c2f(MPI Comm comm)

The function MPI Comm c2f translates a C communicator handle into a Fortran handle
to the same communicator; it maps a null handle into a null handle and an invalid handle
into an invalid handle.

Similar functions are provided for the other types of opaque objects.

MPI Datatype MPI Type f2c(MPI Fint datatype)

MPI Fint MPI Type c2f(MPI Datatype datatype)

MPI Group MPI Group f2c(MPI Fint group)

MPI Fint MPI Group c2f(MPI Group group)

MPI Request MPI Request f2c(MPI Fint request)

MPI Fint MPI Request c2f(MPI Request request)

MPI File MPI File f2c(MPI Fint file)

MPI Fint MPI File c2f(MPI File file)

MPI Win MPI Win f2c(MPI Fint win)

MPI Fint MPI Win c2f(MPI Win win)

MPI Op MPI Op f2c(MPI Fint op)

MPI Fint MPI Op c2f(MPI Op op)

MPI Info MPI Info f2c(MPI Fint info)

MPI Fint MPI Info c2f(MPI Info info)

Example 4.9 The example below illustrates how the Fortran MPI function
MPI TYPE COMMIT can be implemented by wrapping the C MPI function
MPI Type commit with a C wrapper to do handle conversions. In this example a Fortran-C

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

52 CHAPTER 4. MISCELLANY

interface is assumed where a Fortran function is all upper case when referred to from C and
arguments are passed by addresses.

! FORTRAN PROCEDURE

SUBROUTINE MPI_TYPE_COMMIT(DATATYPE, IERR)

INTEGER DATATYPE, IERR

CALL MPI_X_TYPE_COMMIT(DATATYPE, IERR)

RETURN

END

/* C wrapper */

void MPI_X_TYPE_COMMIT(MPI_Fint *f_handle, MPI_Fint *ierr)

{

MPI_Datatype datatype;

datatype = MPI_Type_f2c(*f_handle);

*ierr = (MPI_Fint)MPI_Type_commit(&datatype);

*f_handle = MPI_Type_c2f(datatype);

return;

}

The same approach can be used for all other MPI functions. The call to MPI xxx f2c
(resp. MPI xxx c2f) can be omitted when the handle is an OUT (resp. IN) argument, rather
than INOUT.

Rationale. The design here provides a convenient solution for the prevalent case,
where a C wrapper is used to allow Fortran code to call a C library, or C code to
call a Fortran library. The use of C wrappers is much more likely than the use of
Fortran wrappers, because it is much more likely that a variable of type INTEGER can
be passed to C, than a C handle can be passed to Fortran.

Returning the converted value as a function value rather than through the argument
list allows the generation of e�cient inlined code when these functions are simple
(e.g., the identity). The conversion function in the wrapper does not catch an invalid
handle argument. Instead, an invalid handle is passed below to the library function,
which, presumably, checks its input arguments. (End of rationale.)

C and C++ The C++ language interface provides the functions listed below for mixed-
language interoperability. The token <CLASS> is used below to indicate any valid MPI
opaque handle name (e.g., Group), except where noted. For the case where the C++ class
corresponding to <CLASS> has derived classes, functions are also provided for converting
between the derived classes and the C MPI <CLASS>.

The following function allows assignment from a C MPI handle to a C++ MPI handle.

MPI::<CLASS>& MPI::<CLASS>::operator=(const MPI <CLASS>& data)

The constructor below creates a C++ MPI object from a C MPI handle. This allows
the automatic promotion of a C MPI handle to a C++ MPI handle.

MPI::<CLASS>::<CLASS>(const MPI <CLASS>& data)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.12. LANGUAGE INTEROPERABILITY 53

Example 4.10 In order for a C program to use a C++ library, the C++ library must
export a C interface that provides appropriate conversions before invoking the underlying
C++ library call. This example shows a C interface function that invokes a C++ library
call with a C communicator; the communicator is automatically promoted to a C++ handle
when the underlying C++ function is invoked.

// C++ library function prototype

void cpp_lib_call(MPI::Comm& cpp_comm);

// Exported C function prototype

extern "C" {

void c_interface(MPI_Comm c_comm);

}

void c_interface(MPI_Comm c_comm)

{

// the MPI_Comm (c_comm) is automatically promoted to MPI::Comm

cpp_lib_call(c_comm);

}

The following function allows conversion from C++ objects to C MPI handles. In this
case, the casting operator is overloaded to provide the functionality.

MPI::<CLASS>::operator MPI <CLASS>() const

Example 4.11 A C library routine is called from a C++ program. The C library routine
is prototyped to take an MPI Comm as an argument.

// C function prototype

extern "C" {

void c_lib_call(MPI_Comm c_comm);

}

void cpp_function()

{

// Create a C++ communicator, and initialize it with a dup of

// MPI::COMM_WORLD

MPI::Intracomm cpp_comm(MPI::COMM_WORLD.Dup());

c_lib_call(cpp_comm);

}

Rationale. Providing conversion from C to C++ via constructors and from C++
to C via casting allows the compiler to make automatic conversions. Calling C from
C++ becomes trivial, as does the provision of a C or Fortran interface to a C++
library. (End of rationale.)

Advice to users. Note that the casting and promotion operators return new handles
by value. Using these new handles as INOUT parameters will a�ect the internal MPI
object, but will not a�ect the original handle from which it was cast. (End of advice
to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

54 CHAPTER 4. MISCELLANY

It is important to note that all C++ objects and their corresponding C handles can be
used interchangeably by an application. For example, an application can cache an attribute
on MPI COMM WORLD and later retrieve it from MPI::COMM WORLD.

4.12.5 Status

The following two procedures are provided in C to convert from a Fortran status (which is
an array of integers) to a C status (which is a structure), and vice versa. The conversion
occurs on all the information in status, including that which is hidden. That is, no status
information is lost in the conversion.

int MPI Status f2c(MPI Fint *f status, MPI Status *c status)

If f status is a valid Fortran status, but not the Fortran value of MPI STATUS IGNORE

or MPI STATUSES IGNORE, then MPI Status f2c returns in c status a valid C status with
the same content. If f status is the Fortran value of MPI STATUS IGNORE or
MPI STATUSES IGNORE, or if f status is not a valid Fortran status, then the call is erroneous.

The C status has the same source, tag and error code values as the Fortran status,
and returns the same answers when queried for count, elements, and cancellation. The
conversion function may be called with a Fortran status argument that has an unde�ned
error �eld, in which case the value of the error �eld in the C status argument is unde�ned.

Two global variables of type MPI Fint*, MPI F STATUS IGNORE and
MPI F STATUSES IGNORE are declared in mpi.h. They can be used to test, in C, whether
f status is the Fortran value of MPI STATUS IGNORE or MPI STATUSES IGNORE, respectively.
These are global variables, not C constant expressions and cannot be used in places where
C requires constant expressions. Their value is de�ned only between the calls to MPI INIT
and MPI FINALIZE and should not be changed by user code.

To do the conversion in the other direction, we have the following:
int MPI Status c2f(MPI Status *c status, MPI Fint *f status)

This call converts a C status into a Fortran status, and has a behavior similar to
MPI Status f2c. That is, the value of c status must not be either MPI STATUS IGNORE or
MPI STATUSES IGNORE.

Advice to users. There is not a separate conversion function for arrays of statuses,
since one can simply loop through the array, converting each status. (End of advice
to users.)

Rationale. The handling of MPI STATUS IGNORE is required in order to layer libraries
with only a C wrapper: if the Fortran call has passed MPI STATUS IGNORE, then the
C wrapper must handle this correctly. Note that this constant need not have the
same value in Fortran and C. If MPI Status f2c were to handle MPI STATUS IGNORE,
then the type of its result would have to be MPI Status**, which was considered an
inferior solution. (End of rationale.)

4.12.6 MPI Opaque Objects

Unless said otherwise, opaque objects are \the same" in all languages: they carry the same
information, and have the same meaning in both languages. The mechanism described
in the previous section can be used to pass references to MPI objects from language to

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.12. LANGUAGE INTEROPERABILITY 55

language. An object created in one language can be accessed, modi�ed or freed in another
language.

We examine below in more detail, issues that arise for each type of MPI object.

Datatypes

Datatypes encode the same information in all languages. E.g., a datatype accessor like
MPI TYPE GET EXTENT will return the same information in all languages. If a datatype
de�ned in one language is used for a communication call in another language, then the
message sent will be identical to the message that would be sent from the �rst language:
the same communication bu�er is accessed, and the same representation conversion is per-
formed, if needed. All prede�ned datatypes can be used in datatype constructors in any
language. If a datatype is committed, it can be used for communication in any language.

The function MPI GET ADDRESS returns the same value in all languages. Note that
we do not require that the constant MPI BOTTOM have the same value in all languages (see
4.12.9, page 59).

Example 4.12

! FORTRAN CODE

REAL R(5)

INTEGER TYPE, IERR

INTEGER (KIND=MPI_ADDRESS_KIND) ADDR

! create an absolute datatype for array R

CALL MPI_GET_ADDRESS(R, ADDR, IERR)

CALL MPI_TYPE_CREATE_STRUCT(1, 5, ADDR, MPI_REAL, TYPE, IERR)

CALL C_ROUTINE(TYPE)

/* C code */

void C_ROUTINE(MPI_Fint *ftype)

{

int count = 5;

int lens[2] = {1,1};

MPI_Aint displs[2];

MPI_Datatype types[2], newtype;

/* create an absolute datatype for buffer that consists */

/* of count, followed by R(5) */

MPI_Get_address(&count, &displs[0]);

displs[1] = 0;

types[0] = MPI_INT;

types[1] = MPI_Type_f2c(*ftype);

MPI_Type_create_struct(2, lens, displs, types, &newtype);

MPI_Type_commit(&newtype);

MPI_Send(MPI_BOTTOM, 1, newtype, 1, 0, MPI_COMM_WORLD);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

56 CHAPTER 4. MISCELLANY

/* the message sent contains an int count of 5, followed */

/* by the 5 REAL entries of the Fortran array R. */

}

Advice to implementors. The following implementation can be used: MPI addresses,
as returned by MPI GET ADDRESS, will have the same value in all languages. One
obvious choice is that MPI addresses be identical to regular addresses. The address
is stored in the datatype, when datatypes with absolute addresses are constructed.
When a send or receive operation is performed, then addresses stored in a datatype
are interpreted as displacements that are all augmented by a base address. This base
address is (the address of) buf, or zero, if buf = MPI BOTTOM. Thus, if MPI BOTTOM

is zero then a send or receive call with buf = MPI BOTTOM is implemented exactly
as a call with a regular bu�er argument: in both cases the base address is buf. On the
other hand, if MPI BOTTOM is not zero, then the implementation has to be slightly
di�erent. A test is performed to check whether buf = MPI BOTTOM. If true, then
the base address is zero, otherwise it is buf. In particular, if MPI BOTTOM does
not have the same value in Fortran and C/C++, then an additional test for buf =
MPI BOTTOM is needed in at least one of the languages.

It may be desirable to use a value other than zero for MPI BOTTOM even in C/C++,
so as to distinguish it from a NULL pointer. If MPI BOTTOM = c then one can still
avoid the test buf = MPI BOTTOM, by using the displacement from MPI BOTTOM,
i.e., the regular address - c, as the MPI address returned by MPI GET ADDRESS and
stored in absolute datatypes. (End of advice to implementors.)

Callback Functions

MPI calls may associate callback functions with MPI objects: error handlers are associated
with communicators and �les, attribute copy and delete functions are associated with at-
tribute keys, reduce operations are assciated with operation objects, etc. In a multilanguage
environment, a function passed in an MPI call in one language may be invoked by an MPI
call in another language. MPI implementations must make sure that such invocation will
use the calling convention of the language the function is bound to.

Advice to implementors. Callback functions need to have a language tag. This
tag is set when the callback function is passed in by the library function (which is
presumably di�erent for each language), and is used to generate the right calling
sequence when the callback function is invoked. (End of advice to implementors.)

Error Handlers

Advice to implementors. Error handlers, have, in C and C++, a \stdargs" argu-
ment list. It might be useful to provide to the handler information on the language
environment where the error occurred. (End of advice to implementors.)

Reduce Operations

Advice to users. Reduce operations receive as one of their arguments the datatype
of the operands. Thus, one can de�ne \polymorphic" reduce operations that work for
C, C++, and Fortran datatypes. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.12. LANGUAGE INTEROPERABILITY 57

Addresses

Some of the datatype accessors and constructors have arguments of type MPI Aint (in C) or
MPI::Aint in C++, to hold addresses. The corresponding arguments, in Fortran, have type
INTEGER. This causes Fortran and C/C++ to be incompatible, in an environment where
addresses have 64 bits, but Fortran INTEGERs have 32 bits.

This is a problem, irrespective of interlanguage issues. Suppose that a Fortran pro-
cess has an address space of � 4 GB. What should be the value returned in Fortran by
MPI ADDRESS, for a variable with an address above 232? The design described here ad-
dresses this issue, while maintaining compatibility with current Fortran codes.

The constant MPI ADDRESS KIND is de�ned so that, in Fortran 90,
INTEGER(KIND=MPI ADDRESS KIND)) is an address sized integer type (typically, but not
necessarily, the size of an INTEGER(KIND=MPI ADDRESS KIND) is 4 on 32 bit address machines
and 8 on 64 bit address machines). Similarly, the constant MPI INTEGER KIND is de�ned so
that INTEGER(KIND=MPI INTEGER KIND) is a default size INTEGER.

There are seven functions that have address arguments: MPI TYPE HVECTOR,
MPI TYPE HINDEXED, MPI TYPE STRUCT, MPI ADDRESS, MPI TYPE EXTENT
MPI TYPE LB and MPI TYPE UB.

Four new functions are provided to supplement the �rst four functions in this list.
These functions are described in Section 4.14, page 65. The remaining three functions
are supplemented by the new function MPI TYPE GET EXTENT, described in that same
section. The new functions have the same functionality as the old functions in C/C++,
or on Fortran systems where default INTEGERs are address sized. In Fortran, they accept
arguments of type INTEGER(KIND=MPI ADDRESS KIND), wherever arguments of type MPI Aint

are used in C. On Fortran 77 systems that do not support the Fortran 90 KIND notation,
and where addresses are 64 bits whereas default INTEGERs are 32 bits, these arguments
will be of an appropriate integer type. The old functions will continue to be provided, for
backward compatibility. However, users are encouraged to switch to the new functions, in
Fortran, so as to avoid problems on systems with an address range > 232, and to provide
compatibility across languages.

4.12.7 Attributes

Attribute keys can be allocated in one language and freed in another. Similarly, attribute
values can be set in one language and accessed in another. To achieve this, attribute keys
will be allocated in an integer range that is valid all languages. The same holds true for
system-de�ned attribute values (such as MPI TAG UB, MPI WTIME IS GLOBAL, etc.)

Attribute keys declared in one language are associated with copy and delete functions in
that language (the functions provided by the MPI fTYPE,COMM,WINg KEYVAL CREATE
call). When a communicator is duplicated, for each attribute, the corresponding copy
function is called, using the right calling convention for the language of that function; and
similarly, for the delete callback function.

Advice to implementors. This requires that attributes be tagged either as \C,"
\C++" or \Fortran," and that the language tag be checked in order to use the right
calling convention for the callback function. (End of advice to implementors.)

The attribute manipulation functions described in Section 5.7 of the MPI-1 standard
de�ne attributes arguments to be of type void* in C, and of type INTEGER, in Fortran. On

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

58 CHAPTER 4. MISCELLANY

some systems, INTEGERs will have 32 bits, while C/C++ pointers will have 64 bits. This is
a problem if communicator attributes are used to move information from a Fortran caller
to a C/C++ callee, or vice-versa.

MPI will store, internally, address sized attributes. If Fortran INTEGERs are smaller,
then the Fortran function MPI ATTR GET will return the least signi�cant part of the at-
tribute word; the Fortran function MPI ATTR PUT will set the least signi�cant part of the
attribute word, which will be sign extended to the entire word. (These two functions may
be invoked explicitly by user code, or implicitly, by attribute copying callback functions.)

As for addresses, new functions are provided that manipulate Fortran address sized
attributes, and have the same functionality as the old functions in C/C++. These functions
are described in Section 8.8, page 198. Users are encouraged to use these new functions.

MPI supports two types of attributes: address-valued (pointer) attributes, and integer
valued attributes. C and C++ attribute functions put and get address valued attributes.
Fortran attribute functions put and get integer valued attributes. When an integer valued
attribute is accessed from C or C++, then MPI xxx get attr will return the address of (a
pointer to) the integer valued attribute. When an address valued attribute is accessed from
Fortran, then MPI xxx GET ATTR will convert the address into an integer and return the
result of this conversion. This conversion is lossless if new style (MPI-2) attribute functions
are used, and an integer of kind MPI ADDRESS KIND is returned. The conversion may
cause truncation if old style (MPI-1)attribute functions are used.

Example 4.13 A. C to Fortran

C code

static int i = 5;

void *p;

p = &i;

MPI_Comm_put_attr(..., p);

....

Fortran code

INTEGER(kind = MPI_ADDRESS_KIND) val

CALL MPI_COMM_GET_ATTR(...,val,...)

IF(val.NE.5) THEN CALL ERROR

B. Fortran to C

Fortran code

INTEGER(kind=MPI_ADDRESS_KIND) val

val = 55555

CALL MPI_COMM_PUT_ATTR(...,val,ierr)

C code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.12. LANGUAGE INTEROPERABILITY 59

int *p;

MPI_Comm_get_attr(...,&p, ...);

if (*p != 55555) error();

The prede�ned MPI attributes can be integer valued or address valued. Prede�ned inte-
ger valued attributes, such as MPI TAG UB, behave as if they were put by a Fortran call. I.e.,
in Fortran, MPI COMM GET ATTR(MPI COMM WORLD, MPI TAG UB, val, ag, ierr) will
return in val the upper bound for tag value; in C,MPI Comm get attr(MPI COMM WORLD,
MPI TAG UB, &p, &ag) will return in p a pointer to an int containing the upper bound
for tag value.

Address valued prede�ned attributes, such as MPI WIN BASE behave as if they were
put by a C call. I.e., in Fortran, MPI WIN GET ATTR(win, MPI WIN BASE, val, ag,
ierror) will return in val the base address of the window, converted to an integer. In C,
MPI Win get attr(win, MPI WIN BASE, &p, &ag) will return in p a pointer to the window
base, cast to (void *).

Rationale. The design is consistent with the behavior speci�ed inMPI-1 for prede�ned
attributes, and ensures that no information is lost when attributes are passed from
language to language. (End of rationale.)

Advice to implementors. Implementations should tag attributes either as address
attributes or as integer attributes, according to whether they were set in C or in
Fortran. Thus, the right choice can be made when the attribute is retrieved. (End of
advice to implementors.)

4.12.8 Extra State

Extra-state should not be modi�ed by the copy or delete callback functions. (This is obvious
from the C binding, but not obvious from the Fortran binding). However, these functions
may update state that is indirectly accessed via extra-state. E.g., in C, extra-state can be
a pointer to a data structure that is modi�ed by the copy or callback functions; in Fortran,
extra-state can be an index into an entry in a COMMON array that is modi�ed by the copy
or callback functions. In a multithreaded environment, users should be aware that distinct
threads may invoke the same callback function concurrently: if this function modi�es state
associated with extra-state, then mutual exclusion code must be used to protect updates
and accesses to the shared state.

4.12.9 Constants

MPI constants have the same value in all languages, unless speci�ed otherwise. This does not
apply to constant handles (MPI INT, MPI COMM WORLD, MPI ERRORS RETURN, MPI SUM,
etc.) These handles need to be converted, as explained in Section 4.12.4. Constants that
specify maximum lengths of strings (see Section A.2.1 for a listing) have a value one less in
Fortran than C/C++ since in C/C++ the length includes the null terminating character.
Thus, these constants represent the amount of space which must be allocated to hold the
largest possible such string, rather than the maximum number of printable characters the
string could contain.

Advice to users. This de�nition means that it is safe in C/C++ to allocate a bu�er
to receive a string using a declaration like

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

60 CHAPTER 4. MISCELLANY

char name [MPI_MAX_NAME_STRING];

(End of advice to users.)

Also constant \addresses," i.e., special values for reference arguments that are not
handles, such as MPI BOTTOM or MPI STATUS IGNOREmay have di�erent values in di�erent
languages.

Rationale. The current MPI standard speci�es that MPI BOTTOM can be used in
initialization expressions in C, but not in Fortran. Since Fortran does not normally
support call by value, thenMPI BOTTOM must be in Fortran the name of a prede�ned
static variable, e.g., a variable in an MPI declared COMMON block. On the other
hand, in C, it is natural to take MPI BOTTOM = 0 (Caveat: De�ning MPI BOTTOM

= 0 implies that NULL pointer cannot be distinguished from MPI BOTTOM; it may be
that MPI BOTTOM = 1 is better : : :) Requiring that the Fortran and C values be the
same will complicate the initialization process. (End of rationale.)

4.12.10 Interlanguage Communication

The type matching rules for communications in MPI are not changed: the datatype speci�-
cation for each item sent should match, in type signature, the datatype speci�cation used to
receive this item (unless one of the types is MPI PACKED). Also, the type of a message item
should match the type declaration for the corresponding communication bu�er location,
unless the type is MPI BYTE or MPI PACKED. Interlanguage communication is allowed if it
complies with these rules.

Example 4.14 In the example below, a Fortran array is sent from Fortran and received in
C.

! FORTRAN CODE

REAL R(5)

INTEGER TYPE, IERR, MYRANK

INTEGER(KIND=MPI_ADDRESS_KIND) ADDR

! create an absolute datatype for array R

CALL MPI_GET_ADDRESS(R, ADDR, IERR)

CALL MPI_TYPE_CREATE_STRUCT(1, 5, ADDR, MPI_REAL, TYPE, IERR)

CALL MPI_TYPE_COMMIT(TYPE, IERR)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, MYRANK, IERR)

IF (MYRANK.EQ.0) THEN

CALL MPI_SEND(MPI_BOTTOM, 1, TYPE, 1, 0, MPI_COMM_WORLD, IERR)

ELSE

CALL C_ROUTINE(TYPE)

END IF

/* C code */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.13. ERROR HANDLERS 61

void C_ROUTINE(MPI_Fint *fhandle)

{

MPI_Datatype type;

MPI_Status status;

type = MPI_Type_f2c(*fhandle);

MPI_Recv(MPI_BOTTOM, 1, type, 0, 0, MPI_COMM_WORLD, &status);

}

MPI implementors may weaken these type matching rules, and allow messages to be sent
with Fortran types and received with C types, and vice versa, when those types match. I.e.,
if the Fortran type INTEGER is identical to the C type int, then an MPI implementation may
allow data to be sent with datatype MPI INTEGER and be received with datatype MPI INT.
However, such code is not portable.

4.13 Error Handlers

MPI-1 attached error handlers only to communicators. MPI-2 attaches them to three types
of objects: communicators, windows, and �les. The extension was done while maintaining
only one type of error handler opaque object. On the other hand, there are, in C and C++,
distinct typedefs for user de�ned error handling callback functions that accept, respectively,
communicator, �le, and window arguments. In Fortran there are three user routines.

An error handler object is created by a call toMPI XXX CREATE ERRHANDLER(function,
errhandler), where XXX is, respectively, COMM, WIN, or FILE.

An error handler is attached to a communicator, window, or �le by a call to
MPI XXX SET ERRHANDLER. The error handler must be either a prede�ned error handler,
or an error handler that was created by a call to MPI XXX CREATE ERRHANDLER, with
matching XXX. The prede�ned error handlers MPI ERRORS RETURN and
MPI ERRORS ARE FATAL can be attached to communicators, windows, and �les. In C++,
the prede�ned error handler MPI::ERRORS THROW EXCEPTIONS can also be attached to
communicators, windows, and �les.

The error handler currently associated with a communicator, window, or �le can be
retrieved by a call to MPI XXX GET ERRHANDLER.

The MPI-1 function MPI ERRHANDLER FREE can be used to free an error handler
that was created by a call to MPI XXX CREATE ERRHANDLER.

Advice to implementors. High quality implementation should raise an error when
an error handler that was created by a call to MPI XXX CREATE ERRHANDLER is
attached to an object of the wrong type with a call to MPI YYY SET ERRHANDLER.
To do so, it is necessary to maintain, with each error handler, information on the
typedef of the associated user function. (End of advice to implementors.)

The syntax for these calls is given below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

62 CHAPTER 4. MISCELLANY

4.13.1 Error Handlers for Communicators

MPI COMM CREATE ERRHANDLER(function, errhandler)

IN function user de�ned error handling procedure (function)

OUT errhandler MPI error handler (handle)

int MPI Comm create errhandler(MPI Comm errhandler fn *function,

MPI Errhandler *errhandler)

MPI COMM CREATE ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)

EXTERNAL FUNCTION

INTEGER ERRHANDLER, IERROR

static MPI::Errhandler

MPI::Comm::Create errhandler(MPI::Comm::Errhandler fn*

function)

Creates an error handler that can be attached to communicators. This function is
identical to MPI ERRHANDLER CREATE, whose use is deprecated.

The user routine should be, in C, a function of type MPI Comm errhandler fn, which is
de�ned as
typedef void MPI Comm errhandler fn(MPI Comm *, int *, : : :);

The �rst argument is the communicator in use, the second is the error code to be
returned. This typedef replaces MPI Handler function, whose use is deprecated.

In Fortran, the user routine should be of the form:
SUBROUTINE COMM ERRHANDLER FN(COMM, ERROR CODE, : : :)

INTEGER COMM, ERROR CODE

In C++, the user routine should be of the form:
typedef void MPI::Comm::Errhandler fn(MPI::Comm &, int *, : : :);

MPI COMM SET ERRHANDLER(comm, errhandler)

INOUT comm communicator (handle)

IN errhandler new error handler for communicator (handle)

int MPI Comm set errhandler(MPI Comm comm, MPI Errhandler errhandler)

MPI COMM SET ERRHANDLER(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

void MPI::Comm::Set errhandler(const MPI::Errhandler& errhandler)

Attaches a new error handler to a communicator. The error handler must be either
a prede�ned error handler, or an error handler created by a call to
MPI COMM CREATE ERRHANDLER. This call is identical toMPI ERRHANDLER SET, whose
use is deprecated.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.13. ERROR HANDLERS 63

MPI COMM GET ERRHANDLER(comm, errhandler)

IN comm communicator (handle)

OUT errhandler error handler currently associated with communicator

(handle)

int MPI Comm get errhandler(MPI Comm comm, MPI Errhandler *errhandler)

MPI COMM GET ERRHANDLER(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

MPI::Errhandler MPI::Comm::Get errhandler() const

Retrieves the error handler currently associated with a communicator. This call is
identical to MPI ERRHANDLER GET, whose use is deprecated.

4.13.2 Error Handlers for Windows

MPI WIN CREATE ERRHANDLER(function, errhandler)

IN function user de�ned error handling procedure (function)

OUT errhandler MPI error handler (handle)

int MPI Win create errhandler(MPI Win errhandler fn *function, MPI Errhandler

*errhandler)

MPI WIN CREATE ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)

EXTERNAL FUNCTION

INTEGER ERRHANDLER, IERROR

static MPI::Errhandler MPI::Win::Create errhandler(MPI::Win::Errhandler fn*

function)

The user routine should be, in C, a function of type MPI Win errhandler fn, which is
de�ned as
typedef void MPI Win errhandler fn(MPI Win *, int *, : : :);

The �rst argument is the window in use, the second is the error code to be returned.
In Fortran, the user routine should be of the form:

SUBROUTINE WIN ERRHANDLER FN(WIN, ERROR CODE, : : :)
INTEGER WIN, ERROR CODE

In C++, the user routine should be of the form:
typedef void MPI::Win::Errhandler fn(MPI::Win &, int *, : : :);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

64 CHAPTER 4. MISCELLANY

MPI WIN SET ERRHANDLER(win, errhandler)

INOUT win window (handle)

IN errhandler new error handler for window (handle)

int MPI Win set errhandler(MPI Win win, MPI Errhandler errhandler)

MPI WIN SET ERRHANDLER(WIN, ERRHANDLER, IERROR)

INTEGER WIN, ERRHANDLER, IERROR

void MPI::Win::Set errhandler(const MPI::Errhandler& errhandler)

Attaches a new error handler to a window. The error handler must be either a pre-
de�ned error handler, or an error handler created by a call to
MPI WIN CREATE ERRHANDLER.

MPI WIN GET ERRHANDLER(win, errhandler)

IN win window (handle)

OUT errhandler error handler currently associated with window (han-

dle)

int MPI Win get errhandler(MPI Win win, MPI Errhandler *errhandler)

MPI WIN GET ERRHANDLER(WIN, ERRHANDLER, IERROR)

INTEGER WIN, ERRHANDLER, IERROR

MPI::Errhandler MPI::Win::Get errhandler() const

Retrieves the error handler currently associated with a window.

4.13.3 Error Handlers for Files

MPI FILE CREATE ERRHANDLER(function, errhandler)

IN function user de�ned error handling procedure (function)

OUT errhandler MPI error handler (handle)

int MPI File create errhandler(MPI File errhandler fn *function,

MPI Errhandler *errhandler)

MPI FILE CREATE ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)

EXTERNAL FUNCTION

INTEGER ERRHANDLER, IERROR

static MPI::Errhandler

MPI::File::Create errhandler(MPI::File::Errhandler fn*

function)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.14. NEW DATATYPE MANIPULATION FUNCTIONS 65

The user routine should be, in C, a function of type MPI File errhandler fn, which is
de�ned as
typedef void MPI File errhandler fn(MPI File *, int *, : : :);

The �rst argument is the �le in use, the second is the error code to be returned.
In Fortran, the user routine should be of the form:

SUBROUTINE FILE ERRHANDLER FN(FILE, ERROR CODE, : : :)

INTEGER FILE, ERROR CODE

In C++, the user routine should be of the form:
typedef void MPI::File::Errhandler fn(MPI::File &, int *, : : :);

MPI FILE SET ERRHANDLER(�le, errhandler)

INOUT �le �le (handle)

IN errhandler new error handler for �le (handle)

int MPI File set errhandler(MPI File file, MPI Errhandler errhandler)

MPI FILE SET ERRHANDLER(FILE, ERRHANDLER, IERROR)

INTEGER FILE, ERRHANDLER, IERROR

void MPI::File::Set errhandler(const MPI::Errhandler& errhandler)

Attaches a new error handler to a �le. The error handler must be either a prede�ned
error handler, or an error handler created by a call to MPI FILE CREATE ERRHANDLER.

MPI FILE GET ERRHANDLER(�le, errhandler)

IN �le �le (handle)

OUT errhandler error handler currently associated with �le (handle)

int MPI File get errhandler(MPI File file, MPI Errhandler *errhandler)

MPI FILE GET ERRHANDLER(FILE, ERRHANDLER, IERROR)

INTEGER FILE, ERRHANDLER, IERROR

MPI::Errhandler MPI::File::Get errhandler() const

Retrieves the error handler currently associated with a �le.

4.14 New Datatype Manipulation Functions

New functions are provided to supplement the type manipulation functions that have ad-
dress sized integer arguments. The new functions will use, in their Fortran binding, address-
sized INTEGERs, thus solving problems currently encountered when the application address
range is > 232. Also, a new, more convenient type constructor is provided to modify the
lower bound and extent of a datatype. The deprecated functions replaced by the new
functions here are listed in Section 2.6.1.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

66 CHAPTER 4. MISCELLANY

4.14.1 Type Constructors with Explicit Addresses

The four functions below supplement the four corresponding type constructor functions from
MPI-1. The new functions are synonymous with the old functions in C/C++, or on For-
tran systems where default INTEGERs are address sized. (The old names are not available in
C++.) In Fortran, these functions accept arguments of type INTEGER(KIND=MPI ADDRESS KIND),
wherever arguments of type MPI Aint are used in C. On Fortran 77 systems that do not
support the Fortran 90 KIND notation, and where addresses are 64 bits whereas default
INTEGERs are 32 bits, these arguments will be of type INTEGER*8. The old functions will
continue to be provided for backward compatibility. However, users are encouraged to
switch to the new functions, in both Fortran and C.

The new functions are listed below. The use of the old functions is deprecated.

MPI TYPE CREATE HVECTOR(count, blocklength, stride, oldtype, newtype)

IN count number of blocks (nonnegative integer)

IN blocklength number of elements in each block (nonnegative inte-

ger)

IN stride number of bytes between start of each block (integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI Type create hvector(int count, int blocklength, MPI Aint stride,

MPI Datatype oldtype, MPI Datatype *newtype)

MPI TYPE CREATE HVECTOR(COUNT, BLOCKLENGTH, STIDE, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI ADDRESS KIND) STRIDE

MPI::Datatype MPI::Datatype::Create hvector(int count, int blocklength,

MPI::Aint stride) const

MPI TYPE CREATE HINDEXED(count, array of blocklengths, array of displacements, old-
type, newtype)

IN count number of blocks | also number of entries in

array of displacements and array of blocklengths (inte-

ger)

IN array of blocklengths number of elements in each block (array of nonnega-

tive integers)

IN array of displacements byte displacement of each block (array of integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI Type create hindexed(int count, int array of blocklengths[],

MPI Aint array of displacements[], MPI Datatype oldtype,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.14. NEW DATATYPE MANIPULATION FUNCTIONS 67

MPI Datatype *newtype)

MPI TYPE CREATE HINDEXED(COUNT, ARRAY OF BLOCKLENGTHS,

ARRAY OF DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*), OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ARRAY OF DISPLACEMENTS(*)

MPI::Datatype MPI::Datatype::Create hindexed(int count,

const int array of blocklengths[],

const MPI::Aint array of displacements[]) const

MPI TYPE CREATE STRUCT(count, array of blocklengths, array of displacements,
array of types, newtype)

IN count number of blocks (integer) | also number of entries

in arrays array of types, array of displacements and

array of blocklengths

IN array of blocklength number of elements in each block (array of integer)

IN array of displacements byte displacement of each block (array of integer)

IN array of types type of elements in each block (array of handles to

datatype objects)

OUT newtype new datatype (handle)

int MPI Type create struct(int count, int array of blocklengths[],

MPI Aint array of displacements[],

MPI Datatype array of types[], MPI Datatype *newtype)

MPI TYPE CREATE STRUCT(COUNT, ARRAY OF BLOCKLENGTHS, ARRAY OF DISPLACEMENTS,

ARRAY OF TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*), ARRAY OF TYPES(*), NEWTYPE,

IERROR

INTEGER(KIND=MPI ADDRESS KIND) ARRAY OF DISPLACEMENTS(*)

static MPI::Datatype MPI::Datatype::Create struct(int count,

const int array of blocklengths[], const MPI::Aint

array of displacements[], const MPI::Datatype array of types[])

MPI GET ADDRESS(location, address)

IN location location in caller memory (choice)

OUT address address of location (integer)

int MPI Get address(void *location, MPI Aint *address)

MPI GET ADDRESS(LOCATION, ADDRESS, IERROR)

<type> LOCATION(*)

INTEGER IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

68 CHAPTER 4. MISCELLANY

INTEGER(KIND=MPI ADDRESS KIND) ADDRESS

MPI::Aint MPI::Get address(void* location)

Advice to users. Current Fortran MPI codes will run unmodi�ed, and will port
to any system. However, they may fail if addresses larger than 232 � 1 are used
in the program. New codes should be written so that they use the new functions.
This provides compatibility with C/C++ and avoids errors on 64 bit architectures.
However, such newly written codes may need to be (slightly) rewritten to port to old
Fortran 77 environments that do not support KIND declarations. (End of advice to
users.)

4.14.2 Extent and Bounds of Datatypes

The following function replaces the three functions MPI TYPE UB, MPI TYPE LB and
MPI TYPE EXTENT. It also returns address sized integers, in the Fortran binding. The use
of MPI TYPE UB, MPI TYPE LB and MPI TYPE EXTENT is deprecated.

MPI TYPE GET EXTENT(datatype, lb, extent)

IN datatype datatype to get information on (handle)

OUT lb lower bound of datatype (integer)

OUT extent extent of datatype (integer)

int MPI Type get extent(MPI Datatype datatype, MPI Aint *lb,

MPI Aint *extent)

MPI TYPE GET EXTENT(DATATYPE, LB, EXTENT, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI ADDRESS KIND) LB, EXTENT

void MPI::Datatype::Get extent(MPI::Aint& lb, MPI::Aint& extent) const

Returns the lower bound and the extent of datatype (as de�ned by the MPI-1 standard,
Section 3.12.2).

MPI allows one to change the extent of a datatype, using lower bound and upper
bound markers (MPI LB and MPI UB). This is useful, as it allows to control the stride of
successive datatypes that are replicated by datatype constructors, or are replicated by the
count argument in a send or recieve call. However, the current mechanism for achieving
it is painful; also it is restrictive. MPI LB and MPI UB are \sticky": once present in a
datatype, they cannot be overridden (e.g., the upper bound can be moved up, by adding
a new MPI UB marker, but cannot be moved down below an existing MPI UB marker). A
new type constructor is provided to facilitate these changes. The use of MPI LB and MPI UB

is deprecated.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.14. NEW DATATYPE MANIPULATION FUNCTIONS 69

MPI TYPE CREATE RESIZED(oldtype, lb, extent, newtype)

IN oldtype input datatype (handle)

IN lb new lower bound of datatype (integer)

IN extent new extent of datatype (integer)

OUT newtype output datatype (handle)

int MPI Type create resized(MPI Datatype oldtype, MPI Aint lb, MPI Aint

extent, MPI Datatype *newtype)

MPI TYPE CREATE RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE, IERROR)

INTEGER OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI ADDRESS KIND) LB, EXTENT

MPI::Datatype MPI::Datatype::Resized(const MPI::Aint lb,

const MPI::Aint extent) const

Returns in newtype a handle to a new datatype that is identical to oldtype, except that
the lower bound of this new datatype is set to be lb, and its upper bound is set to be lb
+ extent. Any previous lb and ub markers are erased, and a new pair of lower bound and
upper bound markers are put in the positions indicated by the lb and extent arguments.
This a�ects the behavior of the datatype when used in communication operations, with
count > 1, and when used in the construction of new derived datatypes.

Advice to users. It is strongly recommended that users use these two new functions,
rather than the old MPI-1 functions to set and access lower bound, upper bound and
extent of datatypes. (End of advice to users.)

4.14.3 True Extent of Datatypes

Suppose we implement gather as a spanning tree implemented on top of point-to-point
routines. Since the receive bu�er is only valid on the root process, one will need to allocate
some temporary space for receiving data on intermediate nodes. However, the datatype
extent cannot be used as an estimate of the amount of space that needs to be allocated, if
the user has modi�ed the extent using the MPI UB and MPI LB values. A new function is
provided which returns the true extent of the datatype.

MPI TYPE GET TRUE EXTENT(datatype, true lb, true extent)

IN datatype datatype to get information on (handle)

OUT true lb true lower bound of datatype (integer)

OUT true extent true size of datatype (integer)

int MPI Type get true extent(MPI Datatype datatype, MPI Aint *true lb,

MPI Aint *true extent)

MPI TYPE GET TRUE EXTENT(DATATYPE, TRUE LB, TRUE EXTENT, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI ADDRESS KIND) TRUE LB, TRUE EXTENT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

70 CHAPTER 4. MISCELLANY

void MPI::Datatype::Get true extent(MPI::Aint& true lb,

MPI::Aint& true extent) const

true lb returns the o�set of the lowest unit of store which is addressed by the datatype,
i.e., the lower bound of the corresponding typemap, ignoring MPI LB markers. true extent
returns the true size of the datatype, i.e., the extent of the corresponding typemap, ignoring
MPI LB and MPI UB markers, and performing no rounding for alignment. If the typemap
associated with datatype is

Typemap = f(type0; disp0); : : : ; (typen�1; dispn�1)g

Then

true lb(Typemap) = minjfdispj : typej 6= lb;ubg;

true ub(Typemap) =maxjfdispj + sizeof(typej) : typej 6= lb;ubg;

and

true extent(Typemap) = true ub(Typemap)� true lb(typemap):

(Readers should compare this with the de�nitions in Section 3.12.3 of the MPI-1 standard,
which describes the function MPI TYPE EXTENT.)

The true extent is the minimum number of bytes of memory necessary to hold a
datatype, uncompressed.

4.14.4 Subarray Datatype Constructor

MPI TYPE CREATE SUBARRAY(ndims, array of sizes, array of subsizes, array of starts, or-
der, oldtype, newtype)

IN ndims number of array dimensions (positive integer)

IN array of sizes number of elements of type oldtype in each dimension

of the full array (array of positive integers)

IN array of subsizes number of elements of type oldtype in each dimension

of the subarray (array of positive integers)

IN array of starts starting coordinates of the subarray in each dimension

(array of nonnegative integers)

IN order array storage order ag (state)

IN oldtype array element datatype (handle)

OUT newtype new datatype (handle)

int MPI Type create subarray(int ndims, int array of sizes[],

int array of subsizes[], int array of starts[], int order,

MPI Datatype oldtype, MPI Datatype *newtype)

MPI TYPE CREATE SUBARRAY(NDIMS, ARRAY OF SIZES, ARRAY OF SUBSIZES,

ARRAY OF STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.14. NEW DATATYPE MANIPULATION FUNCTIONS 71

INTEGER NDIMS, ARRAY OF SIZES(*), ARRAY OF SUBSIZES(*),

ARRAY OF STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERROR

MPI::Datatype MPI::Datatype::Create subarray(int ndims,

const int array of sizes[], const int array of subsizes[],

const int array of starts[], int order) const

The subarray type constructor creates an MPI datatype describing an n-dimensional
subarray of an n-dimensional array. The subarray may be situated anywhere within the
full array, and may be of any nonzero size up to the size of the larger array as long as it
is con�ned within this array. This type constructor facilitates creating �letypes to access
arrays distributed in blocks among processes to a single �le that contains the global array.

This type constructor can handle arrays with an arbitrary number of dimensions and
works for both C and Fortran ordered matrices (i.e., row-major or column-major). Note
that a C program may use Fortran order and a Fortran program may use C order.

The ndims parameter speci�es the number of dimensions in the full data array and
gives the number of elements in array of sizes, array of subsizes, and array of starts.

The number of elements of type oldtype in each dimension of the n-dimensional array
and the requested subarray are speci�ed by array of sizes and array of subsizes, respectively.
For any dimension i, it is erroneous to specify array of subsizes[i] < 1 or array of subsizes[i]
> array of sizes[i].

The array of starts contains the starting coordinates of each dimension of the subarray.
Arrays are assumed to be indexed starting from zero. For any dimension i, it is erroneous
to specify array of starts[i] < 0 or array of starts[i] > (array of sizes[i] � array of subsizes[i]).

Advice to users. In a Fortran program with arrays indexed starting from 1, if the
starting coordinate of a particular dimension of the subarray is n, then the entry in
array of starts for that dimension is n-1. (End of advice to users.)

The order argument speci�es the storage order for the subarray as well as the full array.
It must be set to one of the following:

MPI ORDER C The ordering used by C arrays, (i.e., row-major order)

MPI ORDER FORTRAN The ordering used by Fortran arrays, (i.e., column-major order)

A ndims-dimensional subarray (newtype) with no extra padding can be de�ned by the
function Subarray() as follows:

newtype = Subarray(ndims; fsize0; size1; : : : ; sizendims�1g;

fsubsize0; subsize1; : : : ; subsizendims�1g;

fstart0; start1; : : : ; startndims�1g; oldtype)

Let the typemap of oldtype have the form:

f(type0; disp0); (type1; disp1); : : : ; (typen�1; dispn�1)g

where typei is a prede�nedMPI datatype, and let ex be the extent of oldtype. Then we de�ne
the Subarray() function recursively using the following three equations. Equation 4.1 de�nes
the base step. Equation 4.2 de�nes the recursion step when order = MPI ORDER FORTRAN,
and Equation 4.3 de�nes the recursion step when order = MPI ORDER C.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

72 CHAPTER 4. MISCELLANY

Subarray(1; fsize0g; fsubsize0g; fstart0g; (4.1)

f(type0; disp0); (type1; disp1); : : : ; (typen�1; dispn�1)g)

= f(MPI LB; 0);

(type0; disp0+ start0 � ex); : : : ; (typen�1; dispn�1 + start0 � ex);

(type0; disp0+ (start0 + 1)� ex); : : : ; (typen�1;

dispn�1 + (start0 + 1)� ex); : : :

(type0; disp0+ (start0 + subsize0 � 1)� ex); : : : ;

(typen�1; dispn�1 + (start0 + subsize0 � 1)� ex);

(MPI UB; size0 � ex)g

Subarray(ndims; fsize0; size1; : : : ; sizendims�1g; (4.2)

fsubsize0; subsize1; : : : ; subsizendims�1g;

fstart0; start1; : : : ; startndims�1g; oldtype)

= Subarray(ndims� 1; fsize1; size2; : : : ; sizendims�1g;

fsubsize1; subsize2; : : : ; subsizendims�1g;

fstart1; start2; : : : ; startndims�1g;

Subarray(1; fsize0g; fsubsize0g; fstart0g; oldtype))

Subarray(ndims; fsize0; size1; : : : ; sizendims�1g; (4.3)

fsubsize0; subsize1; : : : ; subsizendims�1g;

fstart0; start1; : : : ; startndims�1g; oldtype)

= Subarray(ndims� 1; fsize0; size1; : : : ; sizendims�2g;

fsubsize0; subsize1; : : : ; subsizendims�2g;

fstart0; start1; : : : ; startndims�2g;

Subarray(1; fsizendims�1g; fsubsizendims�1g; fstartndims�1g; oldtype))

For an example use of MPI TYPE CREATE SUBARRAY in the context of I/O see Sec-
tion 9.9.2.

4.14.5 Distributed Array Datatype Constructor

The distributed array type constructor supports HPF-like [12] data distributions. However,
unlike in HPF, the storage order may be speci�ed for C arrays as well as for Fortran arrays.

Advice to users. One can create an HPF-like �le view using this type constructor as
follows. Complementary �letypes are created by having every process of a group call
this constructor with identical arguments (with the exception of rank which should
be set appropriately). These �letypes (along with identical disp and etype) are then
used to de�ne the view (via MPI FILE SET VIEW). Using this view, a collective data
access operation (with identical o�sets) will yield an HPF-like distribution pattern.
(End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.14. NEW DATATYPE MANIPULATION FUNCTIONS 73

MPI TYPE CREATE DARRAY(size, rank, ndims, array of gsizes, array of distribs,
array of dargs, array of psizes, order, oldtype, newtype)

IN size size of process group (positive integer)

IN rank rank in process group (nonnegative integer)

IN ndims number of array dimensions as well as process grid

dimensions (positive integer)

IN array of gsizes number of elements of type oldtype in each dimension

of global array (array of positive integers)

IN array of distribs distribution of array in each dimension (array of state)

IN array of dargs distribution argument in each dimension (array of pos-

itive integers)

IN array of psizes size of process grid in each dimension (array of positive

integers)

IN order array storage order ag (state)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI Type create darray(int size, int rank, int ndims,

int array of gsizes[], int array of distribs[], int

array of dargs[], int array of psizes[], int order,

MPI Datatype oldtype, MPI Datatype *newtype)

MPI TYPE CREATE DARRAY(SIZE, RANK, NDIMS, ARRAY OF GSIZES, ARRAY OF DISTRIBS,

ARRAY OF DARGS, ARRAY OF PSIZES, ORDER, OLDTYPE, NEWTYPE,

IERROR)

INTEGER SIZE, RANK, NDIMS, ARRAY OF GSIZES(*), ARRAY OF DISTRIBS(*),

ARRAY OF DARGS(*), ARRAY OF PSIZES(*), ORDER, OLDTYPE, NEWTYPE, IERROR

MPI::Datatype MPI::Datatype::Create darray(int size, int rank, int ndims,

const int array of gsizes[], const int array of distribs[],

const int array of dargs[], const int array of psizes[],

int order) const

MPI TYPE CREATE DARRAY can be used to generate the datatypes corresponding to
the distribution of an ndims-dimensional array of oldtype elements onto an ndims-dimensional
grid of logical processes. Unused dimensions of array of psizes should be set to 1. (See
Example 4.15, page 76.) For a call to MPI TYPE CREATE DARRAY to be correct, the
equation

Qndims�1
i=0 array of psizes[i] = size must be satis�ed. The ordering of processes

in the process grid is assumed to be row-major, as in the case of virtual Cartesian process
topologies in MPI-1.

Advice to users. For both Fortran and C arrays, the ordering of processes in the
process grid is assumed to be row-major. This is consistent with the ordering used in
virtual Cartesian process topologies in MPI-1. To create such virtual process topolo-
gies, or to �nd the coordinates of a process in the process grid, etc., users may use
the corresponding functions provided in MPI-1. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

74 CHAPTER 4. MISCELLANY

Each dimension of the array can be distributed in one of three ways:

� MPI DISTRIBUTE BLOCK - Block distribution

� MPI DISTRIBUTE CYCLIC - Cyclic distribution

� MPI DISTRIBUTE NONE - Dimension not distributed.

The constant MPI DISTRIBUTE DFLT DARG speci�es a default distribution argument.
The distribution argument for a dimension that is not distributed is ignored. For any
dimension i in which the distribution is MPI DISTRIBUTE BLOCK, it erroneous to specify
array of dargs[i] � array of psizes[i] < array of gsizes[i].

For example, the HPF layout ARRAY(CYCLIC(15)) corresponds to
MPI DISTRIBUTE CYCLIC with a distribution argument of 15, and the HPF layout AR-
RAY(BLOCK) corresponds to MPI DISTRIBUTE BLOCK with a distribution argument of
MPI DISTRIBUTE DFLT DARG.

The order argument is used as in MPI TYPE CREATE SUBARRAY to specify the stor-
age order. Therefore, arrays described by this type constructor may be stored in Fortran
(column-major) or C (row-major) order. Valid values for order are MPI ORDER FORTRAN

and MPI ORDER C.
This routine creates a new MPI datatype with a typemap de�ned in terms of a function

called \cyclic()" (see below).
Without loss of generality, it su�ces to de�ne the typemap for the

MPI DISTRIBUTE CYCLIC case where MPI DISTRIBUTE DFLT DARG is not used.
MPI DISTRIBUTE BLOCK and MPI DISTRIBUTE NONE can be reduced to the

MPI DISTRIBUTE CYCLIC case for dimension i as follows.
MPI DISTRIBUTE BLOCK with array of dargs[i] equal to MPI DISTRIBUTE DFLT DARG is

equivalent to MPI DISTRIBUTE CYCLIC with array of dargs[i] set to

(array of gsizes[i] + array of psizes[i]� 1)=array of psizes[i]:

If array of dargs[i] is not MPI DISTRIBUTE DFLT DARG, then MPI DISTRIBUTE BLOCK and
MPI DISTRIBUTE CYCLIC are equivalent.

MPI DISTRIBUTE NONE is equivalent to MPI DISTRIBUTE CYCLIC with array of dargs[i]
set to array of gsizes[i].

Finally, MPI DISTRIBUTE CYCLIC with array of dargs[i] equal to
MPI DISTRIBUTE DFLT DARG is equivalent to MPI DISTRIBUTE CYCLIC with array of dargs[i]
set to 1.

For MPI ORDER FORTRAN, an ndims-dimensional distributed array (newtype) is de�ned
by the following code fragment:

oldtype[0] = oldtype;

for (i = 0; i < ndims; i++) {

oldtype[i+1] = cyclic(array_of_dargs[i],

array_of_gsizes[i],

r[i],

array_of_psizes[i],

oldtype[i]);

}

newtype = oldtype[ndims];

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.14. NEW DATATYPE MANIPULATION FUNCTIONS 75

For MPI ORDER C, the code is:

oldtype[0] = oldtype;

for (i = 0; i < ndims; i++) {

oldtype[i + 1] = cyclic(array_of_dargs[ndims - i - 1],

array_of_gsizes[ndims - i - 1],

r[ndims - i - 1],

array_of_psizes[ndims - i - 1],

oldtype[i]);

}

newtype = oldtype[ndims];

where r[i] is the position of the process (with rank rank) in the process grid at dimension i.
The values of r[i] are given by the following code fragment:

t_rank = rank;

t_size = 1;

for (i = 0; i < ndims; i++)

t_size *= array_of_psizes[i];

for (i = 0; i < ndims; i++) {

t_size = t_size / array_of_psizes[i];

r[i] = t_rank / t_size;

t_rank = t_rank % t_size;

}

Let the typemap of oldtype have the form:

f(type0; disp0); (type1; disp1); : : : ; (typen�1; dispn�1)g

where typei is a prede�ned MPI datatype, and let ex be the extent of oldtype.
Given the above, the function cyclic() is de�ned as follows:

cyclic(darg; gsize; r; psize; oldtype)

= f(MPI LB; 0);

(type0; disp0+ r � darg � ex); : : : ;

(typen�1; dispn�1 + r � darg � ex);

(type0; disp0+ (r� darg + 1)� ex); : : : ;

(typen�1; dispn�1 + (r � darg + 1)� ex);

: : :

(type0; disp0+ ((r+ 1)� darg � 1)� ex); : : : ;

(typen�1; dispn�1 + ((r + 1)� darg � 1)� ex);

(type0; disp0+ r � darg � ex + psize� darg � ex); : : : ;

(typen�1; dispn�1 + r � darg � ex+ psize� darg � ex);

(type0; disp0+ (r� darg + 1)� ex+ psize� darg � ex); : : : ;

(typen�1; dispn�1 + (r � darg + 1)� ex+ psize � darg � ex);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

76 CHAPTER 4. MISCELLANY

: : :

(type0; disp0+ ((r+ 1)� darg � 1)� ex+ psize � darg � ex); : : : ;

(typen�1; dispn�1 + ((r + 1)� darg � 1)� ex + psize� darg � ex);

...

(type0; disp0+ r � darg � ex + psize� darg � ex� (count� 1)); : : : ;

(typen�1; dispn�1 + r � darg � ex+ psize� darg � ex� (count� 1));

(type0; disp0+ (r� darg + 1)� ex+ psize� darg � ex� (count � 1)); : : : ;

(typen�1; dispn�1 + (r � darg + 1)� ex

+psize � darg � ex � (count� 1));

: : :

(type0; disp0+ (r� darg + darglast � 1)� ex

+psize � darg � ex � (count� 1)); : : : ;

(typen�1; dispn�1 + (r � darg + darglast � 1)� ex

+psize � darg � ex � (count� 1));

(MPI UB; gsize � ex)g

where count is de�ned by this code fragment:

nblocks = (gsize + (darg - 1)) / darg;

count = nblocks / psize;

left_over = nblocks - count * psize;

if (r < left_over)

count = count + 1;

Here, nblocks is the number of blocks that must be distributed among the processors.
Finally, darglast is de�ned by this code fragment:

if ((num_in_last_cyclic = gsize % (psize * darg)) == 0)

darg_last = darg;

else

darg_last = num_in_last_cyclic - darg * r;

if (darg_last > darg)

darg_last = darg;

if (darg_last <= 0)

darg_last = darg;

Example 4.15 Consider generating the �letypes corresponding to the HPF distribution:

<oldtype> FILEARRAY(100, 200, 300)

!HPF$ PROCESSORS PROCESSES(2, 3)

!HPF$ DISTRIBUTE FILEARRAY(CYCLIC(10), *, BLOCK) ONTO PROCESSES

This can be achieved by the following Fortran code, assuming there will be six processes
attached to the run:

ndims = 3

array_of_gsizes(1) = 100

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.15. NEW PREDEFINED DATATYPES 77

array_of_distribs(1) = MPI_DISTRIBUTE_CYCLIC

array_of_dargs(1) = 10

array_of_gsizes(2) = 200

array_of_distribs(2) = MPI_DISTRIBUTE_NONE

array_of_dargs(2) = 0

array_of_gsizes(3) = 300

array_of_distribs(3) = MPI_DISTRIBUTE_BLOCK

array_of_dargs(3) = MPI_DISTRIBUTE_DFLT_ARG

array_of_psizes(1) = 2

array_of_psizes(2) = 1

array_of_psizes(3) = 3

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

call MPI_TYPE_CREATE_DARRAY(size, rank, ndims, array_of_gsizes, &

array_of_distribs, array_of_dargs, array_of_psizes, &

MPI_ORDER_FORTRAN, oldtype, newtype, ierr)

4.15 New Prede�ned Datatypes

4.15.1 Wide Characters

A new datatype, MPI WCHAR, is added, for the purpose of dealing with international
character sets such as Unicode.

MPI WCHAR is a C type that corresponds to the type wchar t de�ned in <stddef.h>.
There are no prede�ned reduction operations for MPI WCHAR.

Rationale. The fact that MPI CHAR is associated with the C datatype char, which
in turn is often used as a substitute for the \missing" byte datatype in C makes it
most natural to de�ne this as a new datatype speci�cally for multi-byte characters.
(End of rationale.)

4.15.2 Signed Characters and Reductions

MPI-1 doesn't allow reductions on signed or unsigned chars. Since this restriction (formally)
prevents a C programmer from performing reduction operations on such types (which could
be useful, particularly in an image processing application where pixel values are often rep-
resented as \unsigned char"), we now specify a way for such reductions to be carried out.

MPI-1.2 already has the C typesMPI CHAR andMPI UNSIGNED CHAR. However there
is a problem here in thatMPI CHAR is intended to represent a character, not a small integer,
and therefore will be translated between machines with di�erent character representations.

To overcome this, a new MPI prede�ned datatype,MPI SIGNED CHAR, is added to the
prede�ned datatypes of MPI-2, which corresponds to the ANSI C and ANSI C++ datatype
signed char.

Advice to users.

The types MPI CHAR and MPI CHARACTER are intended for characters, and so will
be translated to preserve the printable representation, rather than the bit value, if sent
between machines with di�erent character codes. The types MPI SIGNED CHAR and
MPI UNSIGNED CHAR should be used in C if the integer value should be preserved.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

78 CHAPTER 4. MISCELLANY

(End of advice to users.)

The types MPI SIGNED CHAR and MPI UNSIGNED CHAR can be used in reduction
operations. MPI CHAR (which represents printable characters) cannot be used in reduction
operations. This is an extension to MPI-1.2, since MPI-1.2 does not allow the use of
MPI UNSIGNED CHAR in reduction operations (and does not have the MPI SIGNED CHAR
type).

In a heterogeneous environment, MPI CHAR and MPI WCHAR will be translated so as
to preserve the printable charater, whereas MPI SIGNED CHAR andMPI UNSIGNED CHAR
will be translated so as to preserve the integer value.

4.15.3 Unsigned long long Type

A new type,MPI UNSIGNED LONG LONG in C andMPI::UNSIGNED LONG LONG in C++
is added as an optional datatype.

Rationale. The ISO C9X committee has voted to include long long and unsigned

long long as standard C types. (End of rationale.)

4.16 Canonical MPI PACK and MPI UNPACK

These functions read/write data to/from the bu�er in the \external32" data format speci�ed
in Section 9.5.2, and calculate the size needed for packing. Their �rst arguments specify
the data format, for future extensibility, but for MPI-2 the only valid value of the datarep
argument is \external32."

Advice to users. These functions could be used, for example, to send typed data in a
portable format from one MPI implementation to another. (End of advice to users.)

The bu�er will contain exactly the packed data, without headers.

MPI PACK EXTERNAL(datarep, inbuf, incount, datatype, outbuf, outsize, position)

IN datarep data representation (string)

IN inbuf input bu�er start (choice)

IN incount number of input data items (integer)

IN datatype datatype of each input data item (handle)

OUT outbuf output bu�er start (choice)

IN outsize output bu�er size, in bytes (integer)

INOUT position current position in bu�er, in bytes (integer)

int MPI Pack external(char *datarep, void *inbuf, int incount,

MPI Datatype datatype, void *outbuf, MPI Aint outsize,

MPI Aint *position)

MPI PACK EXTERNAL(DATAREP, INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE,

POSITION, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.16. CANONICAL MPI PACK AND MPI UNPACK 79

INTEGER INCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI ADDRESS KIND) OUTSIZE, POSITION

CHARACTER*(*) DATAREP

<type> INBUF(*), OUTBUF(*)

void MPI::Datatype::Pack external(const char* datarep, const void* inbuf,

int incount, void* outbuf, MPI::Aint outsize,

MPI::Aint& position) const

MPI UNPACK EXTERNAL(datarep, inbuf, incount, datatype, outbuf, outsize, position)

IN datarep data representation (string)

IN inbuf input bu�er start (choice)

IN insize input bu�er size, in bytes (integer)

INOUT position current position in bu�er, in bytes (integer)

OUT outbuf output bu�er start (choice)

IN outcount number of output data items (integer)

IN datatype datatype of output data item (handle)

int MPI Unpack external(char *datarep, void *inbuf, MPI Aint insize,

MPI Aint *position, void *outbuf, int outcount,

MPI Datatype datatype)

MPI UNPACK EXTERNAL(DATAREP, INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT,

DATATYPE, IERROR)

INTEGER OUTCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI ADDRESS KIND) INSIZE, POSITION

CHARACTER*(*) DATAREP

<type> INBUF(*), OUTBUF(*)

void MPI::Datatype::Unpack external(const char* datarep, const void* inbuf,

MPI::Aint insize, MPI::Aint& position, void* outbuf,

int outcount) const

MPI PACK EXTERNAL SIZE(datarep, incount, datatype, size)

IN datarep data representation (string)

IN incount number of input data items (integer)

IN datatype datatype of each input data item (handle)

OUT size output bu�er size, in bytes (integer)

int MPI Pack external size(char *datarep, int incount,

MPI Datatype datatype, MPI Aint *size)

MPI PACK EXTERNAL SIZE(DATAREP, INCOUNT, DATATYPE, SIZE, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

80 CHAPTER 4. MISCELLANY

INTEGER INCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI ADDRESS KIND) SIZE

CHARACTER*(*) DATAREP

MPI::Aint MPI::Datatype::Pack external size(const char* datarep,

int incount) const

4.17 Functions and Macros

An implementation is allowed to implement MPI WTIME, MPI WTICK, PMPI WTIME,
PMPI WTICK, and the handle-conversion functions (MPI Group f2c, etc.) in Section 4.12.4,
and no others, as macros in C.

Advice to implementors. Implementors should document which routines are imple-
mented as macros. (End of advice to implementors.)

Advice to users. If these routines are implemented as macros, they will not work
with the MPI pro�ling interface. (End of advice to users.)

4.18 Pro�ling Interface

The pro�ling interface, as described in Chapter 8 of MPI-1.1, must be supported for all
MPI-2 functions, except those allowed as macros (See Section 4.17). This requires, in C and
Fortran, an alternate entry point name, with the pre�x PMPI for each MPI function. The
pro�ling interface in C++ is described in Section 10.1.10.

For routines implemented as macros, it is still required that the PMPI version be
supplied and work as expected, but it is not possible to replace at link time the MPI
version with a user-de�ned version. This is a change from MPI-1.2.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 5

Process Creation and
Management

5.1 Introduction

MPI-1 provides an interface that allows processes in a parallel program to communicate
with one another. MPI-1 speci�es neither how the processes are created, nor how they
establish communication. Moreover, an MPI-1 application is static; that is, no processes
can be added to or deleted from an application after it has been started.

MPI users have asked that the MPI-1 model be extended to allow process creation and
management after an MPI application has been started. A major impetus comes from the
PVM [7] research e�ort, which has provided a wealth of experience with process management
and resource control that illustrates their bene�ts and potential pitfalls.

The MPI Forum decided not to address resource control in MPI-2 because it was not
able to design a portable interface that would be appropriate for the broad spectrum of
existing and potential resource and process controllers. Resource control can encompass a
wide range of abilities, including adding and deleting nodes from a virtual parallel machine,
reserving and scheduling resources, managing compute partitions of an MPP, and returning
information about available resources. MPI-2 assumes that resource control is provided
externally | probably by computer vendors, in the case of tightly coupled systems, or by
a third party software package when the environment is a cluster of workstations.

The reasons for adding process management to MPI are both technical and practical.
Important classes of message passing applications require process control. These include
task farms, serial applications with parallel modules, and problems that require a run-time
assessment of the number and type of processes that should be started. On the practical
side, users of workstation clusters who are migrating from PVM to MPI may be accustomed
to using PVM's capabilities for process and resource management. The lack of these features
is a practical stumbling block to migration.

While process management is essential, adding it to MPI should not compromise the
portability or performance of MPI applications. In particular:

� The MPI-2 process model must apply to the vast majority of current parallel envi-
ronments. These include everything from tightly integrated MPPs to heterogeneous
networks of workstations.

� MPI must not take over operating system responsibilities. It should instead provide a

81

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

82 CHAPTER 5. PROCESS CREATION AND MANAGEMENT

clean interface between an application and system software.

� MPI must continue to guarantee communication determinism, i.e., process manage-
ment must not introduce unavoidable race conditions.

� MPI must not contain features that compromise performance.

� MPI-1 programs must work under MPI-2, i.e., the MPI-1 static process model must be
a special case of the MPI-2 dynamic model.

The MPI-2 process management model addresses these issues in two ways. First, MPI
remains primarily a communication library. It does not manage the parallel environment
in which a parallel program executes, though it provides a minimal interface between an
application and external resource and process managers.

Second, MPI-2 does not change the concept of communicator. Once a communicator
is built, it behaves as speci�ed in MPI-1. A communicator is never changed once created,
and it is always created using deterministic collective operations.

5.2 The MPI-2 Process Model

The MPI-2 process model allows for the creation and cooperative termination of processes
after an MPI application has started. It provides a mechanism to establish communication
between the newly created processes and the existing MPI application. It also provides a
mechanism to establish communication between two existing MPI applications, even when
one did not \start" the other.

5.2.1 Starting Processes

MPI applications may start new processes through an interface to an external process man-
ager, which can range from a parallel operating system (CMOST) to layered software (POE)
to an rsh command (p4).

MPI COMM SPAWN starts MPI processes and establishes communication with them,
returning an intercommunicator. MPI COMM SPAWN MULTIPLE starts several di�erent
binaries (or the same binary with di�erent arguments), placing them in the same
MPI COMM WORLD and returning an intercommunicator.

MPI uses the existing group abstraction to represent processes. A process is identi�ed
by a (group, rank) pair.

5.2.2 The Runtime Environment

TheMPI COMM SPAWN andMPI COMM SPAWN MULTIPLE routines provide an interface
between MPI and the runtime environment of an MPI application. The di�culty is that
there is an enormous range of runtime environments and application requirements, and MPI
must not be tailored to any particular one. Examples of such environments are:

� MPP managed by a batch queueing system. Batch queueing systems generally
allocate resources before an application begins, enforce limits on resource use (CPU
time, memory use, etc.), and do not allow a change in resource allocation after a
job begins. Moreover, many MPPs have special limitations or extensions, such as a
limit on the number of processes that may run on one processor, or the ability to
gang-schedule processes of a parallel application.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.2. THE MPI-2 PROCESS MODEL 83

� Network of workstations with PVM. PVM (Parallel Virtual Machine) allows a
user to create a \virtual machine" out of a network of workstations. An application
may extend the virtual machine or manage processes (create, kill, redirect output,
etc.) through the PVM library. Requests to manage the machine or processes may
be intercepted and handled by an external resource manager.

� Network of workstations managed by a load balancing system. A load balanc-
ing system may choose the location of spawned processes based on dynamic quantities,
such as load average. It may transparently migrate processes from one machine to
another when a resource becomes unavailable.

� Large SMP with Unix. Applications are run directly by the user. They are
scheduled at a low level by the operating system. Processes may have special schedul-
ing characteristics (gang-scheduling, processor a�nity, deadline scheduling, processor
locking, etc.) and be subject to OS resource limits (number of processes, amount of
memory, etc.).

MPI assumes, implicitly, the existence of an environment in which an application runs.
It does not provide \operating system" services, such as a general ability to query what
processes are running, to kill arbitrary processes, to �nd out properties of the runtime
environment (how many processors, how much memory, etc.).

Complex interaction of an MPI application with its runtime environment should be
done through an environment-speci�c API. An example of such an API would be the PVM
task and machine management routines | pvm addhosts, pvm config, pvm tasks, etc.,
possibly modi�ed to return an MPI (group,rank) when possible. A Condor or PBS API
would be another possibility.

At some low level, obviously, MPI must be able to interact with the runtime system,
but the interaction is not visible at the application level and the details of the interaction
are not speci�ed by the MPI standard.

In many cases, it is impossible to keep environment-speci�c information out of the MPI
interface without seriously compromising MPI functionality. To permit applications to take
advantage of environment-speci�c functionality, many MPI routines take an info argument
that allows an application to specify environment-speci�c information. There is a tradeo�
between functionality and portability: applications that make use of info are not portable.

MPI does not require the existence of an underlying \virtual machine" model, in which
there is a consistent global view of an MPI application and an implicit \operating system"
managing resources and processes. For instance, processes spawned by one task may not
be visible to another; additional hosts added to the runtime environment by one process
may not be visible in another process; tasks spawned by di�erent processes may not be
automatically distributed over available resources.

Interaction between MPI and the runtime environment is limited to the following areas:

� A process may start new processes with MPI COMM SPAWN and
MPI COMM SPAWN MULTIPLE.

� When a process spawns a child process, it may optionally use an info argument to tell
the runtime environment where or how to start the process. This extra information
may be opaque to MPI.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

84 CHAPTER 5. PROCESS CREATION AND MANAGEMENT

� An attribute MPI UNIVERSE SIZE on MPI COMM WORLD tells a program how \large"
the initial runtime environment is, namely how many processes can usefully be started
in all. One can subtract the size of MPI COMM WORLD from this value to �nd out
how many processes might usefully be started in addition to those already running.

5.3 Process Manager Interface

5.3.1 Processes in MPI

A process is represented in MPI by a (group, rank) pair. A (group, rank) pair speci�es a
unique process but a process does not determine a unique (group, rank) pair, since a process
may belong to several groups.

5.3.2 Starting Processes and Establishing Communication

The following routine starts a number ofMPI processes and establishes communication with
them, returning an intercommunicator.

Advice to users. It is possible in MPI to start a static SPMD or MPMD appli-
cation by starting �rst one process and having that process start its siblings with
MPI COMM SPAWN. This practice is discouraged primarily for reasons of perfor-
mance. If possible, it is preferable to start all processes at once, as a single MPI-1
application. (End of advice to users.)

MPI COMM SPAWN(command, argv, maxprocs, info, root, comm, intercomm,
array of errcodes)

IN command name of program to be spawned (string, signi�cant

only at root)

IN argv arguments to command (array of strings, signi�cant

only at root)

IN maxprocs maximum number of processes to start (integer, sig-

ni�cant only at root)

IN info a set of key-value pairs telling the runtime system

where and how to start the processes (handle, signi�-

cant only at root)

IN root rank of process in which previous arguments are ex-

amined (integer)

IN comm intracommunicator containing group of spawning pro-

cesses (handle)

OUT intercomm intercommunicator between original group and the

newly spawned group (handle)

OUT array of errcodes one code per process (array of integer)

int MPI Comm spawn(char *command, char *argv[], int maxprocs, MPI Info info,

int root, MPI Comm comm, MPI Comm *intercomm,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.3. PROCESS MANAGER INTERFACE 85

int array of errcodes[])

MPI COMM SPAWN(COMMAND, ARGV, MAXPROCS, INFO, ROOT, COMM, INTERCOMM,

ARRAY OF ERRCODES, IERROR)

CHARACTER*(*) COMMAND, ARGV(*)

INTEGER INFO, MAXPROCS, ROOT, COMM, INTERCOMM, ARRAY OF ERRCODES(*),

IERROR

MPI::Intercomm MPI::Intracomm::Spawn(const char* command,

const char* argv[], int maxprocs, const MPI::Info& info,

int root, int array of errcodes[]) const

MPI::Intercomm MPI::Intracomm::Spawn(const char* command,

const char* argv[], int maxprocs, const MPI::Info& info,

int root) const

MPI COMM SPAWN tries to start maxprocs identical copies of the MPI program spec-
i�ed by command, establishing communication with them and returning an intercommu-
nicator. The spawned processes are referred to as children. The children have their own
MPI COMM WORLD, which is separate from that of the parents. MPI COMM SPAWN is
collective over comm, and also may not return until MPI INIT has been called in the chil-
dren. Similarly, MPI INIT in the children may not return until all parents have called
MPI COMM SPAWN. In this sense, MPI COMM SPAWN in the parents and MPI INIT in
the children form a collective operation over the union of parent and child processes. The
intercommunicator returned by MPI COMM SPAWN contains the parent processes in the
local group and the child processes in the remote group. The ordering of processes in the
local and remote groups is the same as the as the ordering of the group of the comm in the
parents and of MPI COMM WORLD of the children, respectively. This intercommunicator
can be obtained in the children through the function MPI COMM GET PARENT.

Advice to users. An implementation may automatically establish communication
before MPI INIT is called by the children. Thus, completion of MPI COMM SPAWN
in the parent does not necessarily mean that MPI INIT has been called in the children
(although the returned intercommunicator can be used immediately). (End of advice
to users.)

The command argument The command argument is a string containing the name of a pro-
gram to be spawned. The string is null-terminated in C. In Fortran, leading and trailing
spaces are stripped. MPI does not specify how to �nd the executable or how the working
directory is determined. These rules are implementation-dependent and should be appro-
priate for the runtime environment.

Advice to implementors. The implementation should use a natural rule for �nding
executables and determining working directories. For instance, a homogeneous sys-
tem with a global �le system might look �rst in the working directory of the spawning
process, or might search the directories in a PATH environment variable as do Unix
shells. An implementation on top of PVM would use PVM's rules for �nding exe-
cutables (usually in $HOME/pvm3/bin/$PVM ARCH). An MPI implementation running
under POE on an IBM SP would use POE's method of �nding executables. An imple-
mentation should document its rules for �nding executables and determining working

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

86 CHAPTER 5. PROCESS CREATION AND MANAGEMENT

directories, and a high-quality implementation should give the user some control over
these rules. (End of advice to implementors.)

If the program named in command does not call MPI INIT, but instead forks a process
that calls MPI INIT, the results are unde�ned. Implementations may allow this case to work
but are not required to.

Advice to users. MPI does not say what happens if the program you start is a
shell script and that shell script starts a program that calls MPI INIT. Though some
implementations may allow you to do this, they may also have restrictions, such as
requiring that arguments supplied to the shell script be supplied to the program, or
requiring that certain parts of the environment not be changed. (End of advice to
users.)

The argv argument argv is an array of strings containing arguments that are passed to
the program. The �rst element of argv is the �rst argument passed to command, not, as
is conventional in some contexts, the command itself. The argument list is terminated by
NULL in C and C++ and an empty string in Fortran. In Fortran, leading and trailing spaces
are always stripped, so that a string consisting of all spaces is considered an empty string.
The constant MPI ARGV NULL may be used in C, C++ and Fortran to indicate an empty
argument list. In C and C++, this constant is the same as NULL.

Example 5.1 Examples of argv in C and Fortran
To run the program \ocean" with arguments \-grid�le" and \ocean1.grd" in C:

char command[] = "ocean";

char *argv[] = {"-gridfile", "ocean1.grd", NULL};

MPI_Comm_spawn(command, argv, ...);

or, if not everything is known at compile time:

char *command;

char **argv;

command = "ocean";

argv=(char **)malloc(3 * sizeof(char *));

argv[0] = "-gridfile";

argv[1] = "ocean1.grd";

argv[2] = NULL;

MPI_Comm_spawn(command, argv, ...);

In Fortran:

CHARACTER*25 command, argv(3)

command = ' ocean '

argv(1) = ' -gridfile '

argv(2) = ' ocean1.grd'

argv(3) = ' '

call MPI_COMM_SPAWN(command, argv, ...)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.3. PROCESS MANAGER INTERFACE 87

Arguments are supplied to the program if this is allowed by the operating system.
In C, the MPI COMM SPAWN argument argv di�ers from the argv argument of main in
two respects. First, it is shifted by one element. Speci�cally, argv[0] of main is provided
by the implementation and conventionally contains the name of the program (given by
command). argv[1] of main corresponds to argv[0] in MPI COMM SPAWN, argv[2] of
main to argv[1] of MPI COMM SPAWN, etc. Second, argv of MPI COMM SPAWN must be
null-terminated, so that its length can be determined. Passing an argv of MPI ARGV NULL

to MPI COMM SPAWN results in main receiving argc of 1 and an argv whose element 0 is
(conventionally) the name of the program.

If a Fortran implementation supplies routines that allow a program to obtain its ar-
guments, the arguments may be available through that mechanism. In C, if the operating
system does not support arguments appearing in argv of main(), the MPI implementation
may add the arguments to the argv that is passed to MPI INIT.

The maxprocs argument MPI tries to spawn maxprocs processes. If it is unable to spawn
maxprocs processes, it raises an error of class MPI ERR SPAWN.

An implementation may allow the info argument to change the default behavior, such
that if the implementation is unable to spawn all maxprocs processes, it may spawn a
smaller number of processes instead of raising an error. In principle, the info argument
may specify an arbitrary set fmi : 0 � mi � maxprocsg of allowed values for the number
of processes spawned. The set fmig does not necessarily include the value maxprocs. If
an implementation is able to spawn one of these allowed numbers of processes,
MPI COMM SPAWN returns successfully and the number of spawned processes, m, is given
by the size of the remote group of intercomm. If m is less than maxproc, reasons why the
other processes were not spawned are given in array of errcodes as described below. If it is
not possible to spawn one of the allowed numbers of processes, MPI COMM SPAWN raises
an error of class MPI ERR SPAWN.

A spawn call with the default behavior is called hard. A spawn call for which fewer
than maxprocs processes may be returned is called soft. See Section 5.3.4 on page 91 for
more information on the soft key for info.

Advice to users. By default, requests are hard and MPI errors are fatal. This means
that by default there will be a fatal error if MPI cannot spawn all the requested
processes. If you want the behavior \spawn as many processes as possible, up to N ,"
you should do a soft spawn, where the set of allowed values fmig is f0 : : :Ng. However,
this is not completely portable, as implementations are not required to support soft
spawning. (End of advice to users.)

The info argument The info argument to all of the routines in this chapter is an opaque
handle of typeMPI Info in C,MPI::Info in C++ and INTEGER in Fortran. It is a container for
a number of user-speci�ed (key,value) pairs. key and value are strings (null-terminated char*

in C, character*(*) in Fortran). Routines to create and manipulate the info argument are
described in Section 4.10 on page 43.

For the SPAWN calls, info provides additional (and possibly implementation-dependent)
instructions to MPI and the runtime system on how to start processes. An application may
pass MPI INFO NULL in C or Fortran. Portable programs not requiring detailed control over
process locations should use MPI INFO NULL.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

88 CHAPTER 5. PROCESS CREATION AND MANAGEMENT

MPI does not specify the content of the info argument, except to reserve a number of
special key values (see Section 5.3.4 on page 91). The info argument is quite exible and
could even be used, for example, to specify the executable and its command-line arguments.
In this case the command argument to MPI COMM SPAWN could be empty. The ability to
do this follows from the fact that MPI does not specify how an executable is found, and the
info argument can tell the runtime system where to \�nd" the executable \" (empty string).
Of course a program that does this will not be portable across MPI implementations.

The root argument All arguments before the root argument are examined only on the
process whose rank in comm is equal to root. The value of these arguments on other
processes is ignored.

The array of errcodes argument The array of errcodes is an array of length maxprocs in
whichMPI reports the status of each process thatMPI was requested to start. If all maxprocs
processes were spawned, array of errcodes is �lled in with the value MPI SUCCESS. If only m
(0 � m < maxprocs) processes are spawned,m of the entries will containMPI SUCCESS and
the rest will contain an implementation-speci�c error code indicating the reason MPI could
not start the process. MPI does not specify which entries correspond to failed processes.
An implementation may, for instance, �ll in error codes in one-to-one correspondence with
a detailed speci�cation in the info argument. These error codes all belong to the error
class MPI ERR SPAWN if there was no error in the argument list. In C or Fortran, an
application may pass MPI ERRCODES IGNORE if it is not interested in the error codes. In
C++ this constant does not exist, and the array of errcodes argument may be omitted from
the argument list.

Advice to implementors. MPI ERRCODES IGNORE in Fortran is a special type of
constant, like MPI BOTTOM. See the discussion in Section 2.5.4 on page 10. (End of
advice to implementors.)

MPI COMM GET PARENT(parent)

OUT parent the parent communicator (handle)

int MPI Comm get parent(MPI Comm *parent)

MPI COMM GET PARENT(PARENT, IERROR)

INTEGER PARENT, IERROR

static MPI::Intercomm MPI::Comm::Get parent()

If a process was started with MPI COMM SPAWN or MPI COMM SPAWN MULTIPLE,
MPI COMM GET PARENT returns the \parent" intercommunicator of the current process.
This parent intercommunicator is created implicitly inside of MPI INIT and is the same
intercommunicator returned by SPAWN in the parents.

If the process was not spawned, MPI COMM GET PARENT returns MPI COMM NULL.
After the parent communicator is freed or disconnected, MPI COMM GET PARENT

returns MPI COMM NULL.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.3. PROCESS MANAGER INTERFACE 89

Advice to users. MPI COMM GET PARENT returns a handle to a single intercom-
municator. Calling MPI COMM GET PARENT a second time returns a handle to
the same intercommunicator. Freeing the handle with MPI COMM DISCONNECT or
MPI COMM FREE will cause other references to the intercommunicator to become
invalid (dangling). Note that calling MPI COMM FREE on the parent communicator
is not useful. (End of advice to users.)

Rationale. The desire of the Forum was to create a constant MPI COMM PARENT

similar to MPI COMM WORLD. Unfortunately such a constant cannot be used (syn-
tactically) as an argument to MPI COMM DISCONNECT, which is explicitly allowed.
(End of rationale.)

5.3.3 Starting Multiple Executables and Establishing Communication

While MPI COMM SPAWN is su�cient for most cases, it does not allow the spawning of
multiple binaries, or of the same binary with multiple sets of arguments. The following
routine spawns multiple binaries or the same binary with multiple sets of arguments, estab-
lishing communication with them and placing them in the same MPI COMM WORLD.

MPI COMM SPAWN MULTIPLE(count, array of commands, array of argv, array of maxprocs,
array of info, root, comm, intercomm, array of errcodes)

IN count number of commands (positive integer, signi�cant to

MPI only at root | see advice to users)

IN array of commands programs to be executed (array of strings, signi�cant

only at root)

IN array of argv arguments for commands (array of array of strings,

signi�cant only at root)

IN array of maxprocs maximum number of processes to start for each com-

mand (array of integer, signi�cant only at root)

IN array of info info objects telling the runtime system where and how

to start processes (array of handles, signi�cant only at

root)

IN root rank of process in which previous arguments are ex-

amined (integer)

IN comm intracommunicator containing group of spawning pro-

cesses (handle)

OUT intercomm intercommunicator between original group and newly

spawned group (handle)

OUT array of errcodes one error code per process (array of integer)

int MPI Comm spawn multiple(int count, char *array of commands[],

char **array of argv[], int array of maxprocs[],

MPI Info array of info[], int root, MPI Comm comm,

MPI Comm *intercomm, int array of errcodes[])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

90 CHAPTER 5. PROCESS CREATION AND MANAGEMENT

MPI COMM SPAWN MULTIPLE(COUNT, ARRAY OF COMMANDS, ARRAY OF ARGV,

ARRAY OF MAXPROCS, ARRAY OF INFO, ROOT, COMM, INTERCOMM,

ARRAY OF ERRCODES, IERROR)

INTEGER COUNT, ARRAY OF INFO(*), ARRAY OF MAXPROCS(*), ROOT, COMM,

INTERCOMM, ARRAY OF ERRCODES(*), IERROR

CHARACTER*(*) ARRAY OF COMMANDS(*), ARRAY OF ARGV(COUNT, *)

MPI::Intercomm MPI::Intracomm::Spawn multiple(int count,

const char* array of commands[], const char** array of argv[],

const int array of maxprocs[], const MPI::Info array of info[],

int root, int array of errcodes[])

MPI::Intercomm MPI::Intracomm::Spawn multiple(int count,

const char* array of commands[], const char** array of argv[],

const int array of maxprocs[], const MPI::Info array of info[],

int root)

MPI COMM SPAWN MULTIPLE is identical to MPI COMM SPAWN except that there
are multiple executable speci�cations. The �rst argument, count, gives the number of
speci�cations. Each of the next four arguments are simply arrays of the corresponding
arguments in MPI COMM SPAWN. For the Fortran version of array of argv, the element
array of argv(i,j) is the jth argument to command number i.

Rationale. This may seem backwards to Fortran programmers who are familiar
with Fortran's column-major ordering. However, it is necessary to do it this way to
allow MPI COMM SPAWN to sort out arguments. Note that the leading dimension of
array of argv must be the same as count. (End of rationale.)

Advice to users. The argument count is interpreted by MPI only at the root, as
is array of argv. Since the leading dimension of array of argv is count, a non-positive
value of count at a non-root node could theoretically cause a runtime bounds check
error, even though array of argv should be ignored by the subroutine. If this happens,
you should explicitly supply a reasonable value of count on the non-root nodes. (End
of advice to users.)

In any language, an application may use the constant MPI ARGVS NULL (which is likely
to be (char ***)0 in C) to specify that no arguments should be passed to any commands.
The e�ect of setting individual elements of array of argv toMPI ARGV NULL is not de�ned.
To specify arguments for some commands but not others, the commands without arguments
should have a corresponding argv whose �rst element is null ((char *)0 in C and empty
string in Fortran).

All of the spawned processes have the same MPI COMM WORLD. Their ranks in
MPI COMM WORLD correspond directly to the order in which the commands are speci�ed
in MPI COMM SPAWN MULTIPLE. Assume that m1 processes are generated by the �rst
command, m2 by the second, etc. The processes corresponding to the �rst command have
ranks 0; 1; : : : ; m1�1. The processes in the second command have ranksm1; m1+1; : : : ; m1+
m2� 1. The processes in the third have ranks m1+m2; m1+m2+1; : : : ; m1+m2+m3� 1,
etc.

Advice to users. Calling MPI COMM SPAWN multiple times would create many
sets of children with di�erent MPI COMM WORLDs whereas

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.3. PROCESS MANAGER INTERFACE 91

MPI COMM SPAWN MULTIPLE creates children with a single MPI COMM WORLD,
so the two methods are not completely equivalent. There are also two performance-
related reasons why, if you need to spawn multiple executables, you may want to use
MPI COMM SPAWN MULTIPLE instead of calling MPI COMM SPAWN several times.
First, spawning several things at once may be faster than spawning them sequentially.
Second, in some implementations, communication between processes spawned at the
same time may be faster than communication between processes spawned separately.
(End of advice to users.)

The array of errcodes argument is 1-dimensional array of size
Pcount

i=1 ni, where ni is the
ith element of array of maxprocs. Command number i corresponds to the ni contiguous

slots in this array from element
Pi�1

j=1 nj to
hPi

j=1 nj
i
� 1. Error codes are treated as for

MPI COMM SPAWN.

Example 5.2 Examples of array of argv in C and Fortran
To run the program \ocean" with arguments \-grid�le" and \ocean1.grd" and the program
\atmos" with argument \atmos.grd" in C:

char *array_of_commands[2] = {"ocean", "atmos"};

char **array_of_argv[2];

char *argv0[] = {"-gridfile", "ocean1.grd", (char *)0};

char *argv1[] = {"atmos.grd", (char *)0};

array_of_argv[0] = argv0;

array_of_argv[1] = argv1;

MPI_Comm_spawn_multiple(2, array_of_commands, array_of_argv, ...);

Here's how you do it in Fortran:

CHARACTER*25 commands(2), array_of_argv(2, 3)

commands(1) = ' ocean '

array_of_argv(1, 1) = ' -gridfile '

array_of_argv(1, 2) = ' ocean1.grd'

array_of_argv(1, 3) = ' '

commands(2) = ' atmos '

array_of_argv(2, 1) = ' atmos.grd '

array_of_argv(2, 2) = ' '

call MPI_COMM_SPAWN_MULTIPLE(2, commands, array_of_argv, ...)

5.3.4 Reserved Keys

The following keys are reserved. An implementation is not required to interpret these keys,
but if it does interpret the key, it must provide the functionality described.

host Value is a hostname. The format of the hostname is determined by the implementation.

arch Value is an architecture name. Valid architecture names and what they mean are
determined by the implementation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

92 CHAPTER 5. PROCESS CREATION AND MANAGEMENT

wdir Value is the name of a directory on a machine on which the spawned process(es)
execute(s). This directory is made the working directory of the executing process(es).
The format of the directory name is determined by the implementation.

path Value is a directory or set of directories where the implementation should look for the
executable. The format of path is determined by the implementation.

�le Value is the name of a �le in which additional information is speci�ed. The format of
the �lename and internal format of the �le are determined by the implementation.

soft Value speci�es a set of numbers which are allowed values for the number of processes
that MPI COMM SPAWN (et al.) may create. The format of the value is a comma-
separated list of Fortran-90 triplets each of which speci�es a set of integers and which
together specify the set formed by the union of these sets. Negative values in this set
and values greater than maxprocs are ignored. MPI will spawn the largest number of
processes it can, consistent with some number in the set. The order in which triplets
are given is not signi�cant.

By Fortran-90 triplets, we mean:

1. a means a

2. a:b means a; a+ 1; a+ 2; : : : ; b

3. a:b:c means a; a+ c; a+ 2c; : : : ; a+ ck, where for c > 0, k is the largest integer
for which a+ ck � b and for c < 0, k is the largest integer for which a+ ck � b.
If b > a then c must be positive. If b < a then c must be negative.

Examples:

1. a:b gives a range between a and b

2. 0:N gives full \soft" functionality

3. 1,2,4,8,16,32,64,128,256,512,1024,2048,4096 allows power-of-two number
of processes.

4. 2:10000:2 allows even number of processes.

5. 2:10:2,7 allows 2, 4, 6, 7, 8, or 10 processes.

5.3.5 Spawn Example

Manager-worker Example, Using MPI SPAWN.

/* manager */

#include "mpi.h"

int main(int argc, char *argv[])

{

int world_size, universe_size, *universe_sizep, flag;

MPI_Comm everyone; /* intercommunicator */

char worker_program[100];

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &world_size);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.3. PROCESS MANAGER INTERFACE 93

if (world_size != 1) error("Top heavy with management");

MPI_Attr_get(MPI_COMM_WORLD, MPI_UNIVERSE_SIZE,

&universe_sizep, &flag);

if (!flag) {

printf("This MPI does not support UNIVERSE_SIZE. How many\n\

processes total?");

scanf("%d", &universe_size);

} else universe_size = *universe_sizep;

if (universe_size == 1) error("No room to start workers");

/*

* Now spawn the workers. Note that there is a run-time determination

* of what type of worker to spawn, and presumably this calculation must

* be done at run time and cannot be calculated before starting

* the program. If everything is known when the application is

* first started, it is generally better to start them all at once

* in a single MPI_COMM_WORLD.

*/

choose_worker_program(worker_program);

MPI_Comm_spawn(worker_program, MPI_ARGV_NULL, universe_size-1,

MPI_INFO_NULL, 0, MPI_COMM_SELF, &everyone,

MPI_ERRCODES_IGNORE);

/*

* Parallel code here. The communicator "everyone" can be used

* to communicate with the spawned processes, which have ranks 0,..

* MPI_UNIVERSE_SIZE-1 in the remote group of the intercommunicator

* "everyone".

*/

MPI_Finalize();

return 0;

}

/* worker */

#include "mpi.h"

int main(int argc, char *argv[])

{

int size;

MPI_Comm parent;

MPI_Init(&argc, &argv);

MPI_Comm_get_parent(&parent);

if (parent == MPI_COMM_NULL) error("No parent!");

MPI_Comm_remote_size(parent, &size);

if (size != 1) error("Something's wrong with the parent");

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

94 CHAPTER 5. PROCESS CREATION AND MANAGEMENT

/*

* Parallel code here.

* The manager is represented as the process with rank 0 in (the remote

* group of) MPI_COMM_PARENT. If the workers need to communicate among

* themselves, they can use MPI_COMM_WORLD.

*/

MPI_Finalize();

return 0;

}

5.4 Establishing Communication

This section provides functions that establish communication between two sets of MPI
processes that do not share a communicator.

Some situations in which these functions are useful are:

1. Two parts of an application that are started independently need to communicate.

2. A visualization tool wants to attach to a running process.

3. A server wants to accept connections from multiple clients. Both clients and server
may be parallel programs.

In each of these situations, MPI must establish communication channels where none existed
before, and there is no parent/child relationship. The routines described in this section
establish communication between the two sets of processes by creating an MPI intercommu-
nicator, where the two groups of the intercommunicator are the original sets of of processes.

Establishing contact between two groups of processes that do not share an existing
communicator is a collective but asymmetric process. One group of processes indicates its
willingness to accept connections from other groups of processes. We will call this group
the (parallel) server, even if this is not a client/server type of application. The other group
connects to the server; we will call it the client.

Advice to users. While the names client and server are used throughout this section,
MPI does not guarantee the traditional robustness of client server systems. The func-
tionality described in this section is intended to allow two cooperating parts of the
same application to communicate with one another. For instance, a client that gets a
segmentation fault and dies, or one that doesn't participate in a collective operation
may cause a server to crash or hang. (End of advice to users.)

5.4.1 Names, Addresses, Ports, and All That

Almost all of the complexity in MPI client/server routines addresses the question \how
does the client �nd out how to contact the server?" The di�culty, of course, is that there
is no existing communication channel between them, yet they must somehow agree on a
rendezvous point where they will establish communication | Catch 22.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.4. ESTABLISHING COMMUNICATION 95

Agreeing on a rendezvous point always involves a third party. The third party may
itself provide the rendezvous point or may communicate rendezvous information from server
to client. Complicating matters might be the fact that a client doesn't really care what
server it contacts, only that it be able to get in touch with one that can handle its request.

Ideally, MPI can accommodate a wide variety of run-time systems while retaining the
ability to write simple portable code. The following should be compatible with MPI:

� The server resides at a well-known internet address host:port.

� The server prints out an address to the terminal, the user gives this address to the
client program.

� The server places the address information on a nameserver, where it can be retrieved
with an agreed-upon name.

� The server to which the client connects is actually a broker, acting as a middleman
between the client and the real server.

MPI does not require a nameserver, so not all implementations will be able to support
all of the above scenarios. However, MPI provides an optional nameserver interface, and is
compatible with external name servers.

A port name is a system-supplied string that encodes a low-level network address at
which a server can be contacted. Typically this is an IP address and a port number, but
an implementation is free to use any protocol. The server establishes a port name with
the MPI OPEN PORT routine. It accepts a connection to a given port with
MPI COMM ACCEPT. A client uses port name to connect to the server.

By itself, the port name mechanism is completely portable, but it may be clumsy to
use because of the necessity to communicate port name to the client. It would be more
convenient if a server could specify that it be known by an application-supplied service name
so that the client could connect to that service name without knowing the port name.

An MPI implementation may allow the server to publish a (port name, service name)
pair with MPI PUBLISH NAME and the client to retrieve the port name from the service
name with MPI LOOKUP NAME. This allows three levels of portability, with increasing
levels of functionality.

1. Applications that do not rely on the ability to publish names are the most portable.
Typically the port name must be transferred \by hand" from server to client.

2. Applications that use the MPI PUBLISH NAME mechanism are completely portable
among implementations that provide this service. To be portable among all imple-
mentations, these applications should have a fall-back mechanism that can be used
when names are not published.

3. Applications may ignoreMPI's name publishing functionality and use their own mech-
anism (possibly system-supplied) to publish names. This allows arbitrary exibility
but is not portable.

5.4.2 Server Routines

A server makes itself available with two routines. First it must call MPI OPEN PORT to
establish a port at which it may be contacted. Secondly it must call MPI COMM ACCEPT
to accept connections from clients.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

96 CHAPTER 5. PROCESS CREATION AND MANAGEMENT

MPI OPEN PORT(info, port name)

IN info implementation-speci�c information on how to estab-

lish an address (handle)

OUT port name newly established port (string)

int MPI Open port(MPI Info info, char *port name)

MPI OPEN PORT(INFO, PORT NAME, IERROR)

CHARACTER*(*) PORT NAME

INTEGER INFO, IERROR

void MPI::Open port(const MPI::Info& info, char* port name)

This function establishes a network address, encoded in the port name string, at which
the server will be able to accept connections from clients. port name is supplied by the
system, possibly using information in the info argument.

MPI copies a system-supplied port name into port name. port name identi�es the newly
opened port and can be used by a client to contact the server. The maximum size string
that may be supplied by the system is MPI MAX PORT NAME.

Advice to users. The system copies the port name into port name. The application
must pass a bu�er of su�cient size to hold this value. (End of advice to users.)

port name is essentially a network address. It is unique within the communication
universe to which it belongs (determined by the implementation), and may be used by any
client within that communication universe. For instance, if it is an internet (host:port)
address, it will be unique on the internet. If it is a low level switch address on an IBM SP,
it will be unique to that SP.

Advice to implementors. These examples are not meant to constrain implementa-
tions. A port name could, for instance, contain a user name or the name of a batch
job, as long as it is unique within some well-de�ned communication domain. The
larger the communication domain, the more useful MPI's client/server functionality
will be. (End of advice to implementors.)

The precise form of the address is implementation-de�ned. For instance, an internet address
may be a host name or IP address, or anything that the implementation can decode into
an IP address. A port name may be reused after it is freed with MPI CLOSE PORT and
released by the system.

Advice to implementors. Since the user may type in port name by hand, it is useful
to choose a form that is easily readable and does not have embedded spaces. (End of
advice to implementors.)

info may be used to tell the implementation how to establish the address. It may, and
usually will, be MPI INFO NULL in order to get the implementation defaults.

MPI CLOSE PORT(port name)

IN port name a port (string)

int MPI Close port(char *port name)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.4. ESTABLISHING COMMUNICATION 97

MPI CLOSE PORT(PORT NAME, IERROR)

CHARACTER*(*) PORT NAME

INTEGER IERROR

void MPI::Close port(const char* port name)

This function releases the network address represented by port name.

MPI COMM ACCEPT(port name, info, root, comm, newcomm)

IN port name port name (string, used only on root)

IN info implementation-dependent information (handle, used

only on root)

IN root rank in comm of root node (integer)

IN comm intracommunicator over which call is collective (han-

dle)

OUT newcomm intercommunicator with client as remote group (han-

dle)

int MPI Comm accept(char *port name, MPI Info info, int root, MPI Comm comm,

MPI Comm *newcomm)

MPI COMM ACCEPT(PORT NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)

CHARACTER*(*) PORT NAME

INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI::Intercomm MPI::Intracomm::Accept(const char* port name,

const MPI::Info& info, int root) const

MPI COMM ACCEPT establishes communication with a client. It is collective over the
calling communicator. It returns an intercommunicator that allows communication with
the client.

The port name must have been established through a call to MPI OPEN PORT.
info is a implementation-de�ned string that may allow �ne control over the ACCEPT

call.

5.4.3 Client Routines

There is only one routine on the client side.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

98 CHAPTER 5. PROCESS CREATION AND MANAGEMENT

MPI COMM CONNECT(port name, info, root, comm, newcomm)

IN port name network address (string, used only on root)

IN info implementation-dependent information (handle, used

only on root)

IN root rank in comm of root node (integer)

IN comm intracommunicator over which call is collective (han-

dle)

OUT newcomm intercommunicator with server as remote group (han-

dle)

int MPI Comm connect(char *port name, MPI Info info, int root,

MPI Comm comm, MPI Comm *newcomm)

MPI COMM CONNECT(PORT NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)

CHARACTER*(*) PORT NAME

INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI::Intercomm MPI::Intracomm::Connect(const char* port name,

const MPI::Info& info, int root) const

This routine establishes communication with a server speci�ed by port name. It is
collective over the calling communicator and returns an intercommunicator in which the
remote group participated in an MPI COMM ACCEPT.

If the named port does not exist (or has been closed), MPI COMM CONNECT raises
an error of class MPI ERR PORT.

If the port exists, but does not have a pending MPI COMM ACCEPT, the connection
attempt will eventually time out after an implementation-de�ned time, or succeed when the
server calls MPI COMM ACCEPT. In the case of a time out, MPI COMM CONNECT raises
an error of class MPI ERR PORT.

Advice to implementors. The time out period may be arbitrarily short or long.
However, a high quality implementation will try to queue connection attempts so
that a server can handle simultaneous requests from several clients. A high quality
implementation may also provide a mechanism, through the info arguments to
MPI OPEN PORT,MPI COMM ACCEPT and/orMPI COMM CONNECT, for the user
to control timeout and queuing behavior. (End of advice to implementors.)

MPI provides no guarantee of fairness in servicing connection attempts. That is, connec-
tion attempts are not necessarily satis�ed in the order they were initiated and competition
from other connection attempts may prevent a particular connection attempt from being
satis�ed.

port name is the address of the server. It must be the same as the name returned by
MPI OPEN PORT on the server. Some freedom is allowed here. If there are equivalent
forms of port name, an implementation may accept them as well. For instance, if port name
is (hostname:port), an implementation may accept (ip address:port) as well.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.4. ESTABLISHING COMMUNICATION 99

5.4.4 Name Publishing

The routines in this section provide a mechanism for publishing names. A (service name,
port name) pair is published by the server, and may be retrieved by a client using the
service name only. An MPI implementation de�nes the scope of the service name, that is,
the domain over which the service name can be retrieved. If the domain is the empty
set, that is, if no client can retrieve the information, then we say that name publishing
is not supported. Implementations should document how the scope is determined. High
quality implementations will give some control to users through the info arguments to name
publishing functions. Examples are given in the descriptions of individual functions.

MPI PUBLISH NAME(service name, info, port name)

IN service name a service name to associate with the port (string)

IN info implementation-speci�c information (handle)

IN port name a port name (string)

int MPI Publish name(char *service name, MPI Info info, char *port name)

MPI PUBLISH NAME(SERVICE NAME, INFO, PORT NAME, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) SERVICE NAME, PORT NAME

void MPI::Publish name(const char* service name, const MPI::Info& info,

const char* port name)

This routine publishes the pair (port name, service name) so that an application may
retrieve a system-supplied port name using a well-known service name.

The implementation must de�ne the scope of a published service name, that is, the
domain over which the service name is unique, and conversely, the domain over which the
(port name, service name) pair may be retrieved. For instance, a service name may be
unique to a job (where job is de�ned by a distributed operating system or batch scheduler),
unique to a machine, or unique to a Kerberos realm. The scope may depend on the info
argument to MPI PUBLISH NAME.

MPI permits publishing more than one service name for a single port name. On the
other hand, if service name has already been published within the scope determined by info,
the behavior of MPI PUBLISH NAME is unde�ned. An MPI implementation may, through
a mechanism in the info argument to MPI PUBLISH NAME, provide a way to allow multiple
servers with the same service in the same scope. In this case, an implementation-de�ned
policy will determine which of several port names is returned by MPI LOOKUP NAME.

Note that while service name has a limited scope, determined by the implementation,
port name always has global scope within the communication universe used by the imple-
mentation (i.e., it is globally unique).

port name should be the name of a port established by MPI OPEN PORT and not yet
deleted by MPI CLOSE PORT. If it is not, the result is unde�ned.

Advice to implementors. In some cases, an MPI implementation may use a name
service that a user can also access directly. In this case, a name published by MPI
could easily conict with a name published by a user. In order to avoid such conicts,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

100 CHAPTER 5. PROCESS CREATION AND MANAGEMENT

MPI implementations should mangle service names so that they are unlikely to conict
with user code that makes use of the same service. Such name mangling will of course
be completely transparent to the user.

The following situation is problematic but unavoidable, if we want to allow implemen-
tations to use nameservers. Suppose there are multiple instances of \ocean" running
on a machine. If the scope of a service name is con�ned to a job, then multiple
oceans can coexist. If an implementation provides site-wide scope, however, multiple
instances are not possible as all calls to MPI PUBLISH NAME after the �rst may fail.
There is no universal solution to this.

To handle these situations, a high quality implementation should make it possible to
limit the domain over which names are published. (End of advice to implementors.)

MPI UNPUBLISH NAME(service name, info, port name)

IN service name a service name (string)

IN info implementation-speci�c information (handle)

IN port name a port name (string)

int MPI Unpublish name(char *service name, MPI Info info, char *port name)

MPI UNPUBLISH NAME(SERVICE NAME, INFO, PORT NAME, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) SERVICE NAME, PORT NAME

void MPI::Unpublish name(const char* service name, const MPI::Info& info,

const char* port name)

This routine unpublishes a service name that has been previously published. Attempt-
ing to unpublish a name that has not been published or has already been unpublished is
erroneous and is indicated by the error class MPI ERR SERVICE.

All published names must be unpublished before the corresponding port is closed and
before the publishing process exits. The behavior of MPI UNPUBLISH NAME is implemen-
tation dependent when a process tries to unpublish a name that it did not publish.

If the info argument was used with MPI PUBLISH NAME to tell the implementation
how to publish names, the implementation may require that info passed to
MPI UNPUBLISH NAME contain information to tell the implementation how to unpublish
a name.

MPI LOOKUP NAME(service name, info, port name)

IN service name a service name (string)

IN info implementation-speci�c information (handle)

OUT port name a port name (string)

int MPI Lookup name(char *service name, MPI Info info, char *port name)

MPI LOOKUP NAME(SERVICE NAME, INFO, PORT NAME, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.4. ESTABLISHING COMMUNICATION 101

CHARACTER*(*) SERVICE NAME, PORT NAME

INTEGER INFO, IERROR

void MPI::Lookup name(const char* service name, const MPI::Info& info,

char* port name)

This function retrieves a port name published by MPI PUBLISH NAME with
service name. If service name has not been published, it raises an error in the error class
MPI ERR NAME. The application must supply a port name bu�er large enough to hold the
largest possible port name (see discussion above under MPI OPEN PORT).

If an implementation allows multiple entries with the same service name within the
same scope, a particular port name is chosen in a way determined by the implementation.

If the info argument was used with MPI PUBLISH NAME to tell the implementation
how to publish names, a similar info argument may be required for MPI LOOKUP NAME.

5.4.5 Reserved Key Values

The following key values are reserved. An implementation is not required to interpret these
key values, but if it does interpret the key value, it must provide the functionality described.

ip port Value contains IP port number at which to establish a port. (Reserved for
MPI OPEN PORT only).

ip address Value contains IP address at which to establish a port. If the address is not a
valid IP address of the host on which the MPI OPEN PORT call is made, the results
are unde�ned. (Reserved for MPI OPEN PORT only).

5.4.6 Client/Server Examples

Simplest Example | Completely Portable.

The following example shows the simplest way to use the client/server interface. It does
not use service names at all.

On the server side:

char myport[MPI_MAX_PORT_NAME];

MPI_Comm intercomm;

/* ... */

MPI_Open_port(MPI_INFO_NULL, myport);

printf("port name is: %s\n", myport);

MPI_Comm_accept(myport, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);

/* do something with intercomm */

The server prints out the port name to the terminal and the user must type it in when
starting up the client (assuming the MPI implementation supports stdin such that this
works). On the client side:

MPI_Comm intercomm;

char name[MPI_MAX_PORT_NAME];

printf("enter port name: ");

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

102 CHAPTER 5. PROCESS CREATION AND MANAGEMENT

gets(name);

MPI_Comm_connect(name, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);

Ocean/Atmosphere - Relies on Name Publishing

In this example, the \ocean" application is the \server" side of a coupled ocean-atmosphere
climate model. It assumes that the MPI implementation publishes names.

MPI_Open_port(MPI_INFO_NULL, port_name);

MPI_Publish_name("ocean", MPI_INFO_NULL, port_name);

MPI_Comm_accept(port_name, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);

/* do something with intercomm */

MPI_Unpublish_name("ocean", MPI_INFO_NULL, port_name);

On the client side:

MPI_Lookup_name("ocean", MPI_INFO_NULL, port_name);

MPI_Comm_connect(port_name, MPI_INFO_NULL, 0, MPI_COMM_SELF,

&intercomm);

Simple Client-Server Example.

This is a simple example; the server accepts only a single connection at a time and serves
that connection until the client requests to be disconnected. The server is a single process.

Here is the server. It accepts a single connection and then processes data until it
receives a message with tag 1. A message with tag 0 tells the server to exit.

#include "mpi.h"

int main(int argc, char **argv)

{

MPI_Comm client;

MPI_Status status;

char port_name[MPI_MAX_PORT_NAME];

double buf[MAX_DATA];

int size, again;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

if (size != 1) error(FATAL, "Server too big");

MPI_Open_port(MPI_INFO_NULL, port_name);

printf("server available at %s\n",port_name);

while (1) {

MPI_Comm_accept(port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD,

&client);

again = 1;

while (again) {

MPI_Recv(buf, MAX_DATA, MPI_DOUBLE,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.4. ESTABLISHING COMMUNICATION 103

MPI_ANY_SOURCE, MPI_ANY_TAG, client, &status);

switch (status.MPI_TAG) {

case 0: MPI_Comm_free(&client);

MPI_Close_port(port_name);

MPI_Finalize();

return 0;

case 1: MPI_Comm_disconnect(&client);

again = 0;

break;

case 2: /* do something */

...

default:

/* Unexpected message type */

MPI_Abort(MPI_COMM_WORLD, 1);

}

}

}

}

Here is the client.

#include "mpi.h"

int main(int argc, char **argv)

{

MPI_Comm server;

double buf[MAX_DATA];

char port_name[MPI_MAX_PORT_NAME];

MPI_Init(&argc, &argv);

strcpy(port_name, argv[1]);/* assume server's name is cmd-line arg */

MPI_Comm_connect(port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD,

&server);

while (!done) {

tag = 2; /* Action to perform */

MPI_Send(buf, n, MPI_DOUBLE, 0, tag, server);

/* etc */

}

MPI_Send(buf, 0, MPI_DOUBLE, 0, 1, server);

MPI_Comm_disconnect(&server);

MPI_Finalize();

return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

104 CHAPTER 5. PROCESS CREATION AND MANAGEMENT

5.5 Other Functionality

5.5.1 Universe Size

Many \dynamic" MPI applications are expected to exist in a static runtime environment,
in which resources have been allocated before the application is run. When a user (or
possibly a batch system) runs one of these quasi-static applications, she will usually specify
a number of processes to start and a total number of processes that are expected. An
application simply needs to know how many slots there are, i.e., how many processes it
should spawn.

MPI provides an attribute on MPI COMM WORLD, MPI UNIVERSE SIZE, that allows the
application to obtain this information in a portable manner. This attribute indicates the
total number of processes that are expected. In Fortran, the attribute is the integer value.
In C, the attribute is a pointer to the integer value. An application typically subtracts
the size of MPI COMM WORLD from MPI UNIVERSE SIZE to �nd out how many processes it
should spawn. MPI UNIVERSE SIZE is initialized in MPI INIT and is not changed by MPI. If
de�ned, it has the same value on all processes of MPI COMM WORLD. MPI UNIVERSE SIZE is
determined by the application startup mechanism in a way not speci�ed by MPI. (The size
of MPI COMM WORLD is another example of such a parameter.)

Possibilities for how MPI UNIVERSE SIZE might be set include

� A -universe size argument to a program that starts MPI processes.

� Automatic interaction with a batch scheduler to �gure out how many processors have
been allocated to an application.

� An environment variable set by the user.

� Extra information passed to MPI COMM SPAWN through the info argument.

An implementation must document how MPI UNIVERSE SIZE is set. An implementation
may not support the ability to set MPI UNIVERSE SIZE, in which case the attribute
MPI UNIVERSE SIZE is not set.

MPI UNIVERSE SIZE is a recommendation, not necessarily a hard limit. For instance,
some implementations may allow an application to spawn 50 processes per processor, if
they are requested. However, it is likely that the user only wants to spawn one process per
processor.

MPI UNIVERSE SIZE is assumed to have been speci�ed when an application was started,
and is in essence a portable mechanism to allow the user to pass to the application (through
the MPI process startup mechanism, such as mpiexec) a piece of critical runtime informa-
tion. Note that no interaction with the runtime environment is required. If the runtime
environment changes size while an application is running, MPI UNIVERSE SIZE is not up-
dated, and the application must �nd out about the change through direct communication
with the runtime system.

5.5.2 Singleton MPI INIT

A high-quality implementation will allow any process (including those not started with a
\parallel application" mechanism) to become an MPI process by calling MPI INIT. Such
a process can then connect to other MPI processes using the MPI COMM ACCEPT and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.5. OTHER FUNCTIONALITY 105

MPI COMM CONNECT routines, or spawn other MPI processes. MPI does not mandate
this behavior, but strongly encourages it where technically feasible.

Advice to implementors. To start an MPI-1 application with more than one process
requires some special coordination. The processes must be started at the \same" time,
they must have a mechanism to establish communication, etc. Either the user or the
operating system must take special steps beyond simply starting processes.

When an application enters MPI INIT, clearly it must be able to determine if these
special steps were taken. MPI-1 does not say what happens if these special steps were
not taken | presumably this is treated as an error in starting the MPI application.
MPI-2 recommends the following behavior.

If a process enters MPI INIT and determines that no special steps were taken (i.e.,
it has not been given the information to form an MPI COMM WORLD with other
processes) it succeeds and forms a singleton MPI program, that is, one in which
MPI COMM WORLD has size 1.

In some implementations, MPI may not be able to function without an \MPI environ-
ment." For example, MPI may require that daemons be running or MPI may not be
able to work at all on the front-end of an MPP. In this case, an MPI implementation
may either

1. Create the environment (e.g., start a daemon) or

2. Raise an error if it cannot create the environment and the environment has not
been started independently.

A high quality implementation will try to create a singleton MPI process and not raise
an error.

(End of advice to implementors.)

5.5.3 MPI APPNUM

There is a prede�ned attribute MPI APPNUM of MPI COMM WORLD. In Fortran, the at-
tribute is an integer value. In C, the attribute is a pointer to an integer value. If a process
was spawned with MPI COMM SPAWN MULTIPLE, MPI APPNUM is the command number
that generated the current process. Numbering starts from zero. If a process was spawned
with MPI COMM SPAWN, it will have MPI APPNUM equal to zero.

Additionally, if the process was not started by a spawn call, but by an implementation-
speci�c startup mechanism that can handle multiple process speci�cations, MPI APPNUM

should be set to the number of the corresponding process speci�cation. In particular, if it
is started with

mpiexec spec0 [: spec1 : spec2 : ...]

MPI APPNUM should be set to the number of the corresponding speci�cation.
If an application was not spawned with MPI COMM SPAWN or

MPI COMM SPAWN MULTIPLE, and MPI APPNUM doesn't make sense in the context of
the implementation-speci�c startup mechanism, MPI APPNUM is not set.

MPI implementations may optionally provide a mechanism to override the value of
MPI APPNUM through the info argument. MPI reserves the following key for all SPAWN
calls.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

106 CHAPTER 5. PROCESS CREATION AND MANAGEMENT

appnum Value contains an integer that overrides the default value for MPI APPNUM in the
child.

Rationale. When a single application is started, it is able to �gure out how many pro-
cesses there are by looking at the size of MPI COMM WORLD. An application consisting
of multiple SPMD sub-applications has no way to �nd out how many sub-applications
there are and to which sub-application the process belongs. While there are ways to
�gure it out in special cases, there is no general mechanism. MPI APPNUM provides
such a general mechanism. (End of rationale.)

5.5.4 Releasing Connections

Before a client and server connect, they are independent MPI applications. An error in one
does not a�ect the other. After establishing a connection with MPI COMM CONNECT and
MPI COMM ACCEPT, an error in one may a�ect the other. It is desirable for a client and
server to be able to disconnect, so that an error in one will not a�ect the other. Similarly,
it might be desirable for a parent and child to disconnect, so that errors in the child do not
a�ect the parent, or vice-versa.

� Two processes are connected if there is a communication path (direct or indirect)
between them. More precisely:

1. Two processes are connected if

(a) they both belong to the same communicator (inter- or intra-, including
MPI COMM WORLD) or

(b) they have previously belonged to a communicator that was freed with
MPI COMM FREE instead of MPI COMM DISCONNECT or

(c) they both belong to the group of the same window or �lehandle.

2. If A is connected to B and B to C, then A is connected to C.

� Two processes are disconnected (also independent) if they are not connected.

� By the above de�nitions, connectivity is a transitive property, and divides the uni-
verse of MPI processes into disconnected (independent) sets (equivalence classes) of
processes.

� Processes which are connected, but don't share the same MPI COMM WORLD may
become disconnected (independent) if the communication path between them is bro-
ken by using MPI COMM DISCONNECT.

The following additional rules apply to MPI-1 functions:

� MPI FINALIZE is collective over a set of connected processes.

� MPI ABORT does not abort independent processes. As in MPI-1, it may abort all
processes in MPI COMM WORLD (ignoring its comm argument). Additionally, it
may abort connected processes as well, though it makes a \best attempt" to abort
only the processes in comm.

� If a process terminates without calling MPI FINALIZE, independent processes are not
a�ected but the e�ect on connected processes is not de�ned.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.5. OTHER FUNCTIONALITY 107

MPI COMM DISCONNECT(comm)

INOUT comm communicator (handle)

int MPI Comm disconnect(MPI Comm *comm)

MPI COMM DISCONNECT(COMM, IERROR)

INTEGER COMM, IERROR

void MPI::Comm::Disconnect()

This function waits for all pending communication on comm to complete internally,
deallocates the communicator object, and sets the handle to MPI COMM NULL. It is a
collective operation.

It may not be called with the communicatorMPI COMM WORLD orMPI COMM SELF.
MPI COMM DISCONNECT may be called only if all communication is complete and

matched, so that bu�ered data can be delivered to its destination. This requirement is the
same as for MPI FINALIZE.

MPI COMM DISCONNECT has the same action as MPI COMM FREE, except that it
waits for pending communication to �nish internally and enables the guarantee about the
behavior of disconnected processes.

Advice to users. To disconnect two processes you may need to call
MPI COMM DISCONNECT,MPI WIN FREE andMPI FILE CLOSE to remove all com-
munication paths between the two processes. Notes that it may be necessary to discon-
nect several communicators (or to free several windows or �les) before two processes
are completely independent. (End of advice to users.)

Rationale. It would be nice to be able to use MPI COMM FREE instead, but that
function explicitly does not wait for pending communication to complete. (End of
rationale.)

5.5.5 Another Way to Establish MPI Communication

MPI COMM JOIN(fd, intercomm)

IN fd socket �le descriptor

OUT intercomm new intercommunicator (handle)

int MPI Comm join(int fd, MPI Comm *intercomm)

MPI COMM JOIN(FD, INTERCOMM, IERROR)

INTEGER FD, INTERCOMM, IERROR

static MPI::Intercomm MPI::Comm::Join(const int fd)

MPI COMM JOIN is intended for MPI implementations that exist in an environment
supporting the Berkeley Socket interface [14, 17]. Implementations that exist in an environ-
ment not supporting Berkeley Sockets should provide the entry point for MPI COMM JOIN
and should return MPI COMM NULL.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

108 CHAPTER 5. PROCESS CREATION AND MANAGEMENT

This call creates an intercommunicator from the union of two MPI processes which are
connected by a socket. MPI COMM JOIN should normally succeed if the local and remote
processes have access to the same implementation-de�ned MPI communication universe.

Advice to users. An MPI implementation may require a speci�c communication
medium forMPI communication, such as a shared memory segment or a special switch.
In this case, it may not be possible for two processes to successfully join even if there
is a socket connecting them and they are using the same MPI implementation. (End
of advice to users.)

Advice to implementors. A high quality implementation will attempt to establish
communication over a slow medium if its preferred one is not available. If implemen-
tations do not do this, they must document why they cannot do MPI communication
over the medium used by the socket (especially if the socket is a TCP connection).
(End of advice to implementors.)

fd is a �le descriptor representing a socket of type SOCK STREAM (a two-way reliable
byte-stream connection). Non-blocking I/O and asynchronous noti�cation via SIGIO must
not be enabled for the socket. The socket must be in a connected state. The socket must
be quiescent when MPI COMM JOIN is called (see below). It is the responsibility of the
application to create the socket using standard socket API calls.

MPI COMM JOIN must be called by the process at each end of the socket. It does not
return until both processes have called MPI COMM JOIN. The two processes are referred
to as the local and remote processes.

MPI uses the socket to bootstrap creation of the intercommunicator, and for nothing
else. Upon return from MPI COMM JOIN, the �le descriptor will be open and quiescent
(see below).

If MPI is unable to create an intercommunicator, but is able to leave the socket in its
original state, with no pending communication, it succeeds and sets intercomm to
MPI COMM NULL.

The socket must be quiescent before MPI COMM JOIN is called and after
MPI COMM JOIN returns. More speci�cally, on entry to MPI COMM JOIN, a read on the
socket will not read any data that was written to the socket before the remote process called
MPI COMM JOIN. On exit from MPI COMM JOIN, a read will not read any data that was
written to the socket before the remote process returned from MPI COMM JOIN. It is the
responsibility of the application to ensure the �rst condition, and the responsibility of the
MPI implementation to ensure the second. In a multithreaded application, the application
must ensure that one thread does not access the socket while another is calling
MPI COMM JOIN, or call MPI COMM JOIN concurrently.

Advice to implementors. MPI is free to use any available communication path(s)
for MPI messages in the new communicator; the socket is only used for the initial
handshaking. (End of advice to implementors.)

MPI COMM JOIN uses non-MPI communication to do its work. The interaction of
non-MPI communication with pending MPI communication is not de�ned. Therefore, the
result of calling MPI COMM JOIN on two connected processes (see Section 5.5.4 on page
106 for the de�nition of connected) is unde�ned.

The returned communicator may be used to establish MPI communication with addi-
tional processes, through the usual MPI communicator creation mechanisms.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 6

One-Sided Communications

6.1 Introduction

Remote Memory Access (RMA) extends the communication mechanisms of MPI by allowing
one process to specify all communication parameters, both for the sending side and for the
receiving side. This mode of communication facilitates the coding of some applications with
dynamically changing data access patterns where the data distribution is �xed or slowly
changing. In such a case, each process can compute what data it needs to access or update
at other processes. However, processes may not know which data in their own memory
need to be accessed or updated by remote processes, and may not even know the identity of
these processes. Thus, the transfer parameters are all available only on one side. Regular
send/receive communication requires matching operations by sender and receiver. In order
to issue the matching operations, an application needs to distribute the transfer parameters.
This may require all processes to participate in a time consuming global computation, or
to periodically poll for potential communication requests to receive and act upon. The use
of RMA communication mechanisms avoids the need for global computations or explicit
polling. A generic example of this nature is the execution of an assignment of the form A =

B(map), where map is a permutation vector, and A, B and map are distributed in the same
manner.

Message-passing communication achieves two e�ects: communication of data from
sender to receiver; and synchronization of sender with receiver. The RMA design sepa-
rates these two functions. Three communication calls are provided: MPI PUT (remote
write), MPI GET (remote read) and MPI ACCUMULATE (remote update). A larger number
of synchronization calls are provided that support di�erent synchronization styles. The
design is similar to that of weakly coherent memory systems: correct ordering of memory
accesses has to be imposed by the user, using synchronization calls; the implementation can
delay communication operations until the synchronization calls occur, for e�ciency.

The design of the RMA functions allows implementors to take advantage, in many
cases, of fast communication mechanisms provided by various platforms, such as coherent or
noncoherent shared memory, DMA engines, hardware-supported put/get operations, com-
munication coprocessors, etc. The most frequently used RMA communication mechanisms
can be layered on top of message passing. However, support for asynchronous communica-
tion agents (handlers, threads, etc.) is needed, for certain RMA functions, in a distributed
memory environment.

We shall denote by origin the process that performs the call, and by target the

109

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

110 CHAPTER 6. ONE-SIDED COMMUNICATIONS

process in which the memory is accessed. Thus, in a put operation, source=origin and
destination=target; in a get operation, source=target and destination=origin.

6.2 Initialization

6.2.1 Window Creation

The initialization operation allows each process in an intracommunicator group to specify,
in a collective operation, a \window" in its memory that is made accessible to accesses by
remote processes. The call returns an opaque object that represents the group of processes
that own and access the set of windows, and the attributes of each window, as speci�ed by
the initialization call.

MPI WIN CREATE(base, size, disp unit, info, comm, win)

IN base initial address of window (choice)

IN size size of window in bytes (nonnegative integer)

IN disp unit local unit size for displacements, in bytes (positive in-

teger)

IN info info argument (handle)

IN comm communicator (handle)

OUT win window object returned by the call (handle)

int MPI Win create(void *base, MPI Aint size, int disp unit, MPI Info info,

MPI Comm comm, MPI Win *win)

MPI WIN CREATE(BASE, SIZE, DISP UNIT, INFO, COMM, WIN, IERROR)

<type> BASE(*)

INTEGER(KIND=MPI ADDRESS KIND) SIZE

INTEGER DISP UNIT, INFO, COMM, WIN, IERROR

static MPI::Win MPI::Win::Create(const void* base, MPI::Aint size, int

disp unit, const MPI::Info& info, const MPI::Intracomm& comm)

This is a collective call executed by all processes in the group of comm. It returns
a window object that can be used by these processes to perform RMA operations. Each
process speci�es a window of existing memory that it exposes to RMA accesses by the
processes in the group of comm. The window consists of size bytes, starting at address base.
A process may elect to expose no memory by specifying size = 0.

The displacement unit argument is provided to facilitate address arithmetic in RMA
operations: the target displacement argument of an RMA operation is scaled by the factor
disp unit speci�ed by the target process, at window creation.

Rationale. The window size is speci�ed using an address sized integer, so as to allow
windows that span more than 4 GB of address space. (Even if the physical memory
size is less than 4 GB, the address range may be larger than 4 GB, if addresses are
not contiguous.) (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.2. INITIALIZATION 111

Advice to users. Common choices for disp unit are 1 (no scaling), and (in C syntax)
sizeof(type), for a window that consists of an array of elements of type type. The
later choice will allow one to use array indices in RMA calls, and have those scaled
correctly to byte displacements, even in a heterogeneous environment. (End of advice
to users.)

The info argument provides optimization hints to the runtime about the expected usage
pattern of the window. The following info key is prede�ned:

no locks | if set to true, then the implementation may assume that the local window is
never locked (by a call to MPI WIN LOCK). This implies that this window is not used
for 3-party communication, and RMA can be implemented with no (less) asynchronous
agent activity at this process.

The various processes in the group of comm may specify completely di�erent target
windows, in location, size, displacement units and info arguments. As long as all the get,
put and accumulate accesses to a particular process �t their speci�c target window this
should pose no problem. The same area in memory may appear in multiple windows, each
associated with a di�erent window object. However, concurrent communications to distinct,
overlapping windows may lead to erroneous results.

Advice to users. A window can be created in any part of the process memory.
However, on some systems, the performance of windows in memory allocated by
MPI ALLOC MEM (Section 4.11, page 47) will be better. Also, on some systems,
performance is improved when window boundaries are aligned at \natural" boundaries
(word, double-word, cache line, page frame, etc.). (End of advice to users.)

Advice to implementors. In cases where RMA operations use di�erent mechanisms
in di�erent memory areas (e.g., load/store in a shared memory segment, and an asyn-
chronous handler in private memory), the MPI WIN CREATE call needs to �gure out
which type of memory is used for the window. To do so, MPI maintains, internally,
the list of memory segments allocated byMPI ALLOC MEM, or by other, implementa-
tion speci�c, mechanisms, together with information on the type of memory segment
allocated. When a call to MPI WIN CREATE occurs, then MPI checks which segment
contains each window, and decides, accordingly, which mechanism to use for RMA
operations.

Vendors may provide additional, implementation-speci�c mechanisms to allow \good"
memory to be used for static variables.

Implementors should document any performance impact of window alignment. (End
of advice to implementors.)

MPI WIN FREE(win)

INOUT win window object (handle)

int MPI Win free(MPI Win *win)

MPI WIN FREE(WIN, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

112 CHAPTER 6. ONE-SIDED COMMUNICATIONS

INTEGER WIN, IERROR

void MPI::Win::Free()

Frees the window object win and returns a null handle (equal to
MPI WIN NULL). This is a collective call executed by all processes in the group associated
with win. MPI WIN FREE(win) can be invoked by a process only after it has completed its
involvement in RMA communications on window win: i.e., the process has called
MPI WIN FENCE, or called MPI WIN WAIT to match a previous call to MPI WIN POST
or called MPI WIN COMPLETE to match a previous call to MPI WIN START or called
MPI WIN UNLOCK to match a previous call to MPI WIN LOCK. When the call returns, the
window memory can be freed.

Advice to implementors. MPI WIN FREE requires a barrier synchronization: no
process can return from free until all processes in the group of win called free. This, to
ensure that no process will attempt to access a remote window (e.g., with lock/unlock)
after it was freed. (End of advice to implementors.)

6.2.2 Window Attributes

The following three attributes are cached with a window, when the window is created.

MPI WIN BASE window base address.
MPI WIN SIZE window size, in bytes.
MPI WIN DISP UNIT displacement unit associated with the window.

In C, calls to MPI Win get attr(win, MPI WIN BASE, &base, &ag),
MPI Win get attr(win, MPI WIN SIZE, &size, &ag) and
MPI Win get attr(win, MPI WIN DISP UNIT, &disp unit, &ag) will return in base a pointer
to the start of the window win, and will return in size and disp unit pointers to the size and
displacement unit of the window, respectively. And similarly, in C++.

In Fortran, calls to MPI WIN GET ATTR(win, MPI WIN BASE, base, ag, ierror),
MPI WIN GET ATTR(win, MPI WIN SIZE, size, ag, ierror) and
MPI WIN GET ATTR(win, MPI WIN DISP UNIT, disp unit, ag, ierror) will return in
base, size and disp unit the (integer representation of) the base address, the size and the
displacement unit of the window win, respectively. (The window attribute access functions
are de�ned in Section 8.8, page 198.)

The other \window attribute," namely the group of processes attached to the window,
can be retrieved using the call below.

MPI WIN GET GROUP(win, group)

IN win window object (handle)

OUT group group of processes which share access to the window

(handle)

int MPI Win get group(MPI Win win, MPI Group *group)

MPI WIN GET GROUP(WIN, GROUP, IERROR)

INTEGER WIN, GROUP, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.3. COMMUNICATION CALLS 113

MPI::Group MPI::Win::Get group() const

MPI WIN GET GROUP returns a duplicate of the group of the communicator used to
create the window. associated with win. The group is returned in group.

6.3 Communication Calls

MPI supports three RMA communication calls: MPI PUT transfers data from the caller
memory (origin) to the target memory; MPI GET transfers data from the target memory
to the caller memory; and MPI ACCUMULATE updates locations in the target memory,
e.g. by adding to these locations values sent from the caller memory. These operations
are nonblocking: the call initiates the transfer, but the transfer may continue after the
call returns. The transfer is completed, both at the origin and at the target, when a
subsequent synchronization call is issued by the caller on the involved window object. These
synchronization calls are described in Section 6.4, page 121.

The local communication bu�er of an RMA call should not be updated, and the local
communication bu�er of a get call should not be accessed after the RMA call, until the
subsequent synchronization call completes.

Rationale. The rule above is more lenient than for message passing, where we do
not allow two concurrent sends, with overlapping send bu�ers. Here, we allow two
concurrent puts with overlapping send bu�ers. The reasons for this relaxation are

1. Users do not like that restriction, which is not very natural (it prohibits concur-
rent reads).

2. Weakening the rule does not prevent e�cient implementation, as far as we know.

3. Weakening the rule is important for performance of RMA: we want to associate
one synchronization call with as many RMA operations is possible. If puts from
overlapping bu�ers cannot be concurrent, then we need to needlessly add syn-
chronization points in the code.

(End of rationale.)

It is erroneous to have concurrent conicting accesses to the same memory location in a
window; if a location is updated by a put or accumulate operation, then this location cannot
be accessed by a load or another RMA operation until the updating operation has completed
at the target. There is one exception to this rule; namely, the same location can be updated
by several concurrent accumulate calls, the outcome being as if these updates occurred in
some order. In addition, a window cannot concurrently be updated by a put or accumulate
operation and by a local store operation. This, even if these two updates access di�erent
locations in the window. The last restriction enables more e�cient implementations of RMA
operations on many systems. These restrictions are described in more detail in Section 6.7,
page 137.

The calls use general datatype arguments to specify communication bu�ers at the origin
and at the target. Thus, a transfer operation may also gather data at the source and scatter
it at the destination. However, all arguments specifying both communication bu�ers are
provided by the caller.

For all three calls, the target process may be identical with the origin process; i.e., a
process may use an RMA operation to move data in its memory.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

114 CHAPTER 6. ONE-SIDED COMMUNICATIONS

Rationale. The choice of supporting \self-communication" is the same as for message
passing. It simpli�es some coding, and is very useful with accumulate operations, to
allow atomic updates of local variables. (End of rationale.)

6.3.1 Put

The execution of a put operation is similar to the execution of a send by the origin process
and a matching receive by the target process. The obvious di�erence is that all arguments
are provided by one call | the call executed by the origin process.

MPI PUT(origin addr, origin count, origin datatype, target rank, target disp, target count, tar-
get datatype, win)

IN origin addr initial address of origin bu�er (choice)

IN origin count number of entries in origin bu�er (nonnegative inte-

ger)

IN origin datatype datatype of each entry in origin bu�er (handle)

IN target rank rank of target (nonnegative integer)

IN target disp displacement from start of window to target bu�er

(nonnegative integer)

IN target count number of entries in target bu�er (nonnegative inte-

ger)

IN target datatype datatype of each entry in target bu�er (handle)

IN win window object used for communication (handle)

int MPI Put(void *origin addr, int origin count, MPI Datatype

origin datatype, int target rank, MPI Aint target disp, int

target count, MPI Datatype target datatype, MPI Win win)

MPI PUT(ORIGIN ADDR, ORIGIN COUNT, ORIGIN DATATYPE, TARGET RANK, TARGET DISP,

TARGET COUNT, TARGET DATATYPE, WIN, IERROR)

<type> ORIGIN ADDR(*)

INTEGER(KIND=MPI ADDRESS KIND) TARGET DISP

INTEGER ORIGIN COUNT, ORIGIN DATATYPE, TARGET RANK, TARGET COUNT,

TARGET DATATYPE, WIN, IERROR

void MPI::Win::Put(const void* origin addr, int origin count, const

MPI::Datatype& origin datatype, int target rank, MPI::Aint

target disp, int target count, const MPI::Datatype&

target datatype) const

Transfers origin count successive entries of the type speci�ed by the origin datatype,
starting at address origin addr on the origin node to the target node speci�ed by the
win, target rank pair. The data are written in the target bu�er at address target addr =
window base + target disp�disp unit, where window base and disp unit are the base address
and window displacement unit speci�ed at window initialization, by the target process.

The target bu�er is speci�ed by the arguments target count and target datatype.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.3. COMMUNICATION CALLS 115

The data transfer is the same as that which would occur if the origin process executed
a send operation with arguments origin addr, origin count, origin datatype, target rank, tag,
comm, and the target process executed a receive operation with arguments
target addr, target count, target datatype, source, tag, comm, where target addr is the target
bu�er address computed as explained above, and comm is a communicator for the group of
win.

The communication must satisfy the same constraints as for a similar message-passing
communication. The target datatype may not specify overlapping entries in the target bu�er.
The message sent must �t, without truncation, in the target bu�er. Furthermore, the target
bu�er must �t in the target window.

The target datatype argument is a handle to a datatype object de�ned at the origin
process. However, this object is interpreted at the target process: the outcome is as if the
target datatype object was de�ned at the target process, by the same sequence of calls
used to de�ne it at the origin process. The target datatype must contain only relative
displacements, not absolute addresses. The same holds for get and accumulate.

Advice to users. The target datatype argument is a handle to a datatype object that
is de�ned at the origin process, even though it de�nes a data layout in the target
process memory. This causes no problems in a homogeneous environment, or in a
heterogeneous environment, if only portable datatypes are used (portable datatypes
are de�ned in Section 2.4, page 7).

The performance of a put transfer can be signi�cantly a�ected, on some systems,
from the choice of window location and the shape and location of the origin and
target bu�er: transfers to a target window in memory allocated by MPI ALLOC MEM
may be much faster on shared memory systems; transfers from contiguous bu�ers will
be faster on most, if not all, systems; the alignment of the communication bu�ers may
also impact performance. (End of advice to users.)

Advice to implementors. A high quality implementation will attempt to prevent
remote accesses to memory outside the window that was exposed by the process.
This, both for debugging purposes, and for protection with client-server codes that
use RMA. I.e., a high-quality implementation will check, if possible, window bounds
on each RMA call, and raise an MPI exception at the origin call if an out-of-bound
situation occurred. Note that the condition can be checked at the origin. Of course,
the added safety achieved by such checks has to be weighed against the added cost of
such checks. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

116 CHAPTER 6. ONE-SIDED COMMUNICATIONS

6.3.2 Get

MPI GET(origin addr, origin count, origin datatype, target rank, target disp, target count, tar-
get datatype, win)

OUT origin addr initial address of origin bu�er (choice)

IN origin count number of entries in origin bu�er (nonnegative inte-

ger)

IN origin datatype datatype of each entry in origin bu�er (handle)

IN target rank rank of target (nonnegative integer)

IN target disp displacement from window start to the beginning of

the target bu�er (nonnegative integer)

IN target count number of entries in target bu�er (nonnegative inte-

ger)

IN target datatype datatype of each entry in target bu�er (handle)

IN win window object used for communication (handle)

int MPI Get(void *origin addr, int origin count, MPI Datatype

origin datatype, int target rank, MPI Aint target disp, int

target count, MPI Datatype target datatype, MPI Win win)

MPI GET(ORIGIN ADDR, ORIGIN COUNT, ORIGIN DATATYPE, TARGET RANK, TARGET DISP,

TARGET COUNT, TARGET DATATYPE, WIN, IERROR)

<type> ORIGIN ADDR(*)

INTEGER(KIND=MPI ADDRESS KIND) TARGET DISP

INTEGER ORIGIN COUNT, ORIGIN DATATYPE, TARGET RANK, TARGET COUNT,

TARGET DATATYPE, WIN, IERROR

void MPI::Win::Get(const void *origin addr, int origin count, const

MPI::Datatype& origin datatype, int target rank, MPI::Aint

target disp, int target count, const MPI::Datatype&

target datatype) const

Similar to MPI PUT, except that the direction of data transfer is reversed. Data are
copied from the target memory to the origin. The origin datatype may not specify over-
lapping entries in the origin bu�er. The target bu�er must be contained within the target
window, and the copied data must �t, without truncation, in the origin bu�er.

6.3.3 Examples

Example 6.1 We show how to implement the generic indirect assignment A = B(map),
where A, B and map have the same distribution, and map is a permutation. To simplify, we
assume a block distribution with equal size blocks.

SUBROUTINE MAPVALS(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.3. COMMUNICATION CALLS 117

REAL A(m), B(m)

INTEGER otype(p), oindex(m), & ! used to construct origin datatypes

ttype(p), tindex(m), & ! used to construct target datatypes

count(p), total(p), &

sizeofreal, win, ierr

! This part does the work that depends on the locations of B.

! Can be reused while this does not change

CALL MPI_TYPE_EXTENT(MPI_REAL, sizeofreal, ierr)

CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

! This part does the work that depends on the value of map and

! the locations of the arrays.

! Can be reused while these do not change

! Compute number of entries to be received from each process

DO i=1,p

count(i) = 0

END DO

DO i=1,m

j = map(i)/m+1

count(j) = count(j)+1

END DO

total(1) = 0

DO i=2,p

total(i) = total(i-1) + count(i-1)

END DO

DO i=1,p

count(i) = 0

END DO

! compute origin and target indices of entries.

! entry i at current process is received from location

! k at process (j-1), where map(i) = (j-1)*m + (k-1),

! j = 1..p and k = 1..m

DO i=1,m

j = map(i)/m+1

k = MOD(map(i),m)+1

count(j) = count(j)+1

oindex(total(j) + count(j)) = i

tindex(total(j) + count(j)) = k

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

118 CHAPTER 6. ONE-SIDED COMMUNICATIONS

END DO

! create origin and target datatypes for each get operation

DO i=1,p

CALL MPI_TYPE_INDEXED_BLOCK(count(i), 1, oindex(total(i)+1), &

MPI_REAL, otype(i), ierr)

CALL MPI_TYPE_COMMIT(otype(i), ierr)

CALL MPI_TYPE_INDEXED_BLOCK(count(i), 1, tindex(total(i)+1), &

MPI_REAL, ttype(i), ierr)

CALL MPI_TYPE_COMMIT(ttype(i), ierr)

END DO

! this part does the assignment itself

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,p

CALL MPI_GET(A, 1, otype(i), i-1, 0, 1, ttype(i), win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)

DO i=1,p

CALL MPI_TYPE_FREE(otype(i), ierr)

CALL MPI_TYPE_FREE(ttype(i), ierr)

END DO

RETURN

END

Example 6.2 A simpler version can be written that does not require that a datatype
be built for the target bu�er. But, one then needs a separate get call for each entry, as
illustrated below. This code is much simpler, but usually much less e�cient, for large arrays.

SUBROUTINE MAPVALS(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p

REAL A(m), B(m)

INTEGER sizeofreal, win, ierr

CALL MPI_TYPE_EXTENT(MPI_REAL, sizeofreal, ierr)

CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,m

j = map(i)/p

k = MOD(map(i),p)

CALL MPI_GET(A(i), 1, MPI_REAL, j, k, 1, MPI_REAL, win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.3. COMMUNICATION CALLS 119

CALL MPI_WIN_FREE(win, ierr)

RETURN

END

6.3.4 Accumulate Functions

It is often useful in a put operation to combine the data moved to the target process with the
data that resides at that process, rather then replacing the data there. This will allow, for
example, the accumulation of a sum by having all involved processes add their contribution
to the sum variable in the memory of one process.

MPI ACCUMULATE(origin addr, origin count, origin datatype, target rank, target disp, tar-
get count, target datatype, op, win)

IN origin addr initial address of bu�er (choice)

IN origin count number of entries in bu�er (nonnegative integer)

IN origin datatype datatype of each bu�er entry (handle)

IN target rank rank of target (nonnegative integer)

IN target disp displacement from start of window to beginning of tar-

get bu�er (nonnegative integer)

IN target count number of entries in target bu�er (nonnegative inte-

ger)

IN target datatype datatype of each entry in target bu�er (handle)

IN op reduce operation (handle)

IN win window object (handle)

int MPI Accumulate(void *origin addr, int origin count,

MPI Datatype origin datatype, int target rank,

MPI Aint target disp, int target count,

MPI Datatype target datatype, MPI Op op, MPI Win win)

MPI ACCUMULATE(ORIGIN ADDR, ORIGIN COUNT, ORIGIN DATATYPE, TARGET RANK,

TARGET DISP, TARGET COUNT, TARGET DATATYPE, OP, WIN, IERROR)

<type> ORIGIN ADDR(*)

INTEGER(KIND=MPI ADDRESS KIND) TARGET DISP

INTEGER ORIGIN COUNT, ORIGIN DATATYPE,TARGET RANK, TARGET COUNT,

TARGET DATATYPE, OP, WIN, IERROR

void MPI::Win::Accumulate(const void* origin addr, int origin count, const

MPI::Datatype& origin datatype, int target rank, MPI::Aint

target disp, int target count, const MPI::Datatype&

target datatype, const MPI::Op& op) const

Accumulate the contents of the origin bu�er (as de�ned by origin addr, origin count and
origin datatype) to the bu�er speci�ed by arguments target count and target datatype, at
o�set target disp, in the target window speci�ed by target rank and win, using the operation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

120 CHAPTER 6. ONE-SIDED COMMUNICATIONS

op. This is like MPI PUT except that data is combined into the target area instead of
overwriting it.

Any of the prede�ned operations forMPI REDUCE can be used. User-de�ned functions
cannot be used. For example, if op is MPI SUM, each element of the origin bu�er is added
to the corresponding element in the target, replacing the former value in the target.

Each datatype argument must be a prede�ned datatype or a derived datatype, where
all basic components are of the same prede�ned datatype. Both datatype arguments must
be constructed from the same prede�ned datatype. The operation op applies to elements of
that prede�ned type. target datatype must not specify overlapping entries, and the target
bu�er must �t in the target window.

A new prede�ned operation, MPI REPLACE, is de�ned. It corresponds to the associative
function f(a; b) = b; i.e., the current value in the target memory is replaced by the value
supplied by the origin.

Advice to users. MPI PUT is a special case ofMPI ACCUMULATE, with the operation
MPI REPLACE. Note, however, that MPI PUT and MPI ACCUMULATE have di�erent
constraints on concurrent updates. (End of advice to users.)

Example 6.3 We want to compute B(j) =
P

map(i)=j A(i). The arrays A, B and map are
distributed in the same manner. We write the simple version.

SUBROUTINE SUM(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p, sizeofreal, win, ierr

REAL A(m), B(m)

CALL MPI_TYPE_EXTENT(MPI_REAL, sizeofreal, ierr)

CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, MPI_INFO_NULL, &

comm, win, ierr)

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,m

j = map(i)/p

k = MOD(map(i),p)

CALL MPI_ACCUMULATE(A(i), 1, MPI_REAL, j, k, 1, MPI_REAL, &

MPI_SUM, win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)

RETURN

END

This code is identical to the code in Example 6.2, page 118, except that a call to
get has been replaced by a call to accumulate. (Note that, if map is one-to-one, then the
code computes B = A(map�1), which is the reverse assignment to the one computed in that
previous example.) In a similar manner, we can replace in Example 6.1, page 116, the call to
get by a call to accumulate, thus performing the computation with only one communication
between any two processes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.4. SYNCHRONIZATION CALLS 121

6.4 Synchronization Calls

RMA communications fall in two categories:

� active target communication, where data is moved from the memory of one process
to the memory of another, and both are explicitly involved in the communication. This
communication pattern is similar to message passing, except that all the data transfer
arguments are provided by one process, and the second process only participates in
the synchronization.

� passive target communication, where data is moved from the memory of one process
to the memory of another, and only the origin process is explicitly involved in the
transfer. Thus, two origin processes may communicate by accessing the same location
in a target window. The process that owns the target window may be distinct from
the two communicating processes, in which case it does not participate explicitly in
the communication. This communication paradigm is closest to a shared memory
model, where shared data can be accessed by all processes, irrespective of location.

RMA communication calls with argument win must occur at a process only within an
access epoch for win. Such an epoch starts with an RMA synchronization call on win; it
proceeds with zero or more RMA communication calls (MPI PUT, MPI GET or
MPI ACCUMULATE) on win; it completes with another synchronization call on
win. This allows users to amortize one synchronization with multiple data transfers and
provide implementors more exibility in the implementation of RMA operations.

Distinct access epochs for win at the same process must be disjoint. On the other hand,
epochs pertaining to di�erent win arguments may overlap. Local operations or other MPI
calls may also occur during an epoch.

In active target communication, a target window can be accessed by RMA operations
only within an exposure epoch. Such an epoch is started and completed by RMA syn-
chronization calls executed by the target process. Distinct exposure epochs at a process on
the same window must be disjoint, but such an exposure epoch may overlap with exposure
epochs on other windows or with access epochs for the same or other win arguments. There
is a one-to-one matching between access epochs at origin processes and exposure epochs
on target processes: RMA operations issued by an origin process for a target window will
access that target window during the same exposure epoch if and only if they were issued
during the same access epoch.

In passive target communication the target process does not execute RMA synchro-
nization calls, and there is no concept of an exposure epoch.

MPI provides three synchronization mechanisms:

1. The MPI WIN FENCE collective synchronization call supports a simple synchroniza-
tion pattern that is often used in parallel computations: namely a loosely-synchronous
model, where global computation phases alternate with global communication phases.
This mechanism is most useful for loosely synchronous algorithms where the graph
of communicating processes changes very frequently, or where each process communi-
cates with many others.

This call is used for active target communication. An access epoch at an origin
process or an exposure epoch at a target process are started and completed by calls to
MPI WIN FENCE. A process can access windows at all processes in the group of win

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

122 CHAPTER 6. ONE-SIDED COMMUNICATIONS

during such an access epoch, and the local window can be accessed by all processes
in the group of win during such an exposure epoch.

2. The four functions MPI WIN START, MPI WIN COMPLETE, MPI WIN POST and
MPI WIN WAIT can be used to restrict synchronization to the minimum: only pairs
of communicating processes synchronize, and they do so only when a synchronization
is needed to order correctly RMA accesses to a window with respect to local accesses
to that same window. This mechanism may be more e�cient when each process
communicates with few (logical) neighbors, and the communication graph is �xed or
changes infrequently.

These calls are used for active target communication. An access epoch is started
at the origin process by a call to MPI WIN START and is terminated by a call to
MPI WIN COMPLETE. The start call has a group argument that speci�es the group
of target processes for that epoch. An exposure epoch is started at the target process
by a call to MPI WIN POST and is completed by a call to MPI WIN WAIT. The post
call has a group argument that speci�es the set of origin processes for that epoch.

3. Finally, shared and exclusive locks are provided by the two functions MPI WIN LOCK
and MPI WIN UNLOCK. Lock synchronization is useful for MPI applications that em-
ulate a shared memory model via MPI calls; e.g., in a \billboard" model, where
processes can, at random times, access or update di�erent parts of the billboard.

These two calls provide passive target communication. An access epoch is started by
a call to MPI WIN LOCK and terminated by a call to MPI WIN UNLOCK. Only one
target window can be accessed during that epoch with win.

Figure 6.1 illustrates the general synchronization pattern for active target communica-
tion. The synchronization between post and start ensures that the put call of the origin
process does not start until the target process exposes the window (with the post call);
the target process will expose the window only after preceding local accesses to the window
have completed. The synchronization between complete and wait ensures that the put call
of the origin process completes before the window is unexposed (with the wait call). The
target process will execute following local accesses to the target window only after the wait
returned.

Figure 6.1 shows operations occurring in the natural temporal order implied by the
synchronizations: the post occurs before the matching start, and complete occurs before
the matching wait. However, such strong synchronization is more than needed for correct
ordering of window accesses. The semantics of MPI calls allow weak synchronization, as
illustrated in Figure 6.2. The access to the target window is delayed until the window is ex-
posed, after the post. However the startmay complete earlier; the put and complete may
also terminate earlier, if put data is bu�ered by the implementation. The synchronization
calls order correctly window accesses, but do not necessarily synchronize other operations.
This weaker synchronization semantic allows for more e�cient implementations.

Figure 6.3 illustrates the general synchronization pattern for passive target communi-
cation. The �rst origin process communicates data to the second origin process, through
the memory of the target process; the target process is not explicitly involved in the com-
munication. The lock and unlock calls ensure that the two RMA accesses do not occur
concurrently. However, they do not ensure that the put by origin 1 will precede the get by
origin 2.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.4. SYNCHRONIZATION CALLS 123

Local

accesses

window
Local

accesses

load

wait

post

store

memory

executed

put

in origin

in target

memory

executed

put

exposed
to RMA

Window is

accesses

.

.

.

.

.

.

.

window

.

store

.

PROCESS

put

ORIGIN

start

.

.

.

.

.

.

.

.

.

.

.

.

complete

TARGET
PROCESS

load

wait

post

Figure 6.1: active target communication. Dashed arrows represent synchronizations (order-
ing of events).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

124 CHAPTER 6. ONE-SIDED COMMUNICATIONS

Local

accesses

exposed
to RMA

Window is

accessesin target

memory

executed

put

.

.

.

.

.

.

.

.

.

complete

memory

executed

put

in origin

Local

window
put

window
accesses

PROCESSPROCESS
ORIGIN

.

.

start

TARGET

load

load

wait

wait

post

post

store

store

.

.

.

.

.

.

.

.

.

Figure 6.2: active target communication, with weak synchronization. Dashed arrows rep-
resent synchronizations (ordering of events)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.4. SYNCHRONIZATION CALLS 125

PROCESS

memory

executed

put

in origin
.
.
.
.
.

lock

.

.

unlock

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

in target

memory

executed

get

memory

executed

in origin

get

in target

memory

executed

TARGET

put

unlock
.
.
.
.
.
.
.
.

unlock

lock

ORIGIN
PROCESS

1

put

lock

ORIGIN
PROCESS

2

.

.

.

.

.

.

.

.

.

.

lock

get

unlock

Figure 6.3: passive target communication. Dashed arrows represent synchronizations (or-
dering of events).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

126 CHAPTER 6. ONE-SIDED COMMUNICATIONS

6.4.1 Fence

MPI WIN FENCE(assert, win)

IN assert program assertion (integer)

IN win window object (handle)

int MPI Win fence(int assert, MPI Win win)

MPI WIN FENCE(ASSERT, WIN, IERROR)

INTEGER ASSERT, WIN, IERROR

void MPI::Win::Fence(int assert) const

The MPI call MPI WIN FENCE(assert, win) synchronizes RMA calls on win. The call is
collective on the group of win. All RMA operations on win originating at a given process
and started before the fence call will complete at that process before the fence call returns.
They will be completed at their target before the fence call returns at the target. RMA
operations on win started by a process after the fence call returns will access their target
window only after MPI WIN FENCE has been called by the target process.

The call completes an RMA access epoch if it was preceded by another fence call and
the local process issued RMA communication calls on win between these two calls. The call
completes an RMA exposure epoch if it was preceded by another fence call and the local
window was the target of RMA accesses between these two calls. The call starts an RMA
access epoch if it is followed by another fence call and by RMA communication calls issued
between these two fence calls. The call starts an exposure epoch if it is followed by another
fence call and the local window is the target of RMA accesses between these two fence calls.
Thus, the fence call is equivalent to calls to a subset of post, start, complete, wait.

A fence call usually entails a barrier synchronization: a process completes a call to
MPI WIN FENCE only after all other processes in the group entered their matching call.
However, a call to MPI WIN FENCE that is known not to end any epoch (in particular, a
call with assert = MPI MODE NOPRECEDE) does not necessarily act as a barrier.

The assert argument is used to provide assertions on the context of the call that may
be used for various optimizations. This is described in Section 6.4.4. A value of assert = 0
is always valid.

Advice to users. Calls to MPI WIN FENCE should both precede and follow calls
to put, get or accumulate that are synchronized with fence calls. (End of advice to
users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.4. SYNCHRONIZATION CALLS 127

6.4.2 General Active Target Synchronization

MPI WIN START(group, assert, win)

IN group group of target processes (handle)

IN assert program assertion (integer)

IN win window object (handle)

int MPI Win start(MPI Group group, int assert, MPI Win win)

MPI WIN START(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

void MPI::Win::Start(const MPI::Group& group, int assert) const

Starts an RMA access epoch for win. RMA calls issued on win during this epoch must
access only windows at processes in group. Each process in group must issue a matching
call to MPI WIN POST. RMA accesses to each target window will be delayed, if necessary,
until the target process executed the matching call to MPI WIN POST. MPI WIN START
is allowed to block until the corresponding MPI WIN POST calls are executed, but is not
required to.

The assert argument is used to provide assertions on the context of the call that may
be used for various optimizations. This is described in Section 6.4.4. A value of assert = 0
is always valid.

MPI WIN COMPLETE(win)

IN win window object (handle)

int MPI Win complete(MPI Win win)

MPI WIN COMPLETE(WIN, IERROR)

INTEGER WIN, IERROR

void MPI::Win::Complete() const

Completes an RMA access epoch on win started by a call toMPI WIN START. All RMA
communication calls issued on win during this epoch will have completed at the origin when
the call returns.

MPI WIN COMPLETE enforces completion of preceding RMA calls at the origin, but
not at the target. A put or accumulate call may not have completed at the target when it
has completed at the origin.

Consider the sequence of calls in the example below.

Example 6.4

MPI_Win_start(group, flag, win);

MPI_Put(...,win);

MPI_Win_complete(win);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

128 CHAPTER 6. ONE-SIDED COMMUNICATIONS

The call to MPI WIN COMPLETE does not return until the put call has completed
at the origin; and the target window will be accessed by the put operation only after
the call to MPI WIN START has matched a call to MPI WIN POST by the target process.
This still leaves much choice to implementors. The call to MPI WIN START can block
until the matching call to MPI WIN POST occurs at all target processes. One can also
have implementations where the call to MPI WIN START is nonblocking, but the call to
MPI PUT blocks until the matching call to MPI WIN POST occurred; or implementations
where the �rst two calls are nonblocking, but the call to MPI WIN COMPLETE blocks
until the call to MPI WIN POST occurred; or even implementations where all three calls
can complete before any target process called MPI WIN POST | the data put must be
bu�ered, in this last case, so as to allow the put to complete at the origin ahead of its
completion at the target. However, once the call to MPI WIN POST is issued, the sequence
above must complete, without further dependencies.

MPI WIN POST(group, assert, win)

IN group group of origin processes (handle)

IN assert program assertion (integer)

IN win window object (handle)

int MPI Win post(MPI Group group, int assert, MPI Win win)

MPI WIN POST(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

void MPI::Win::Post(const MPI::Group& group, int assert) const

Starts an RMA exposure epoch for the local window associated with win. Only processes
in group should access the window with RMA calls on win during this epoch. Each process
in group must issue a matching call to MPI WIN START. MPI WIN POST does not block.

MPI WIN WAIT(win)

IN win window object (handle)

int MPI Win wait(MPI Win win)

MPI WIN WAIT(WIN, IERROR)

INTEGER WIN, IERROR

void MPI::Win::Wait() const

Completes an RMA exposure epoch started by a call to MPI WIN POST on win. This
call matches calls to MPI WIN COMPLETE(win) issued by each of the origin processes that
were granted access to the window during this epoch. The call to MPI WIN WAIT will block
until all matching calls to MPI WIN COMPLETE have occurred. This guarantees that all
these origin processes have completed their RMA accesses to the local window. When the
call returns, all these RMA accesses will have completed at the target window.

Figure 6.4 illustrates the use of these four functions. Process 0 puts data in the windows

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.4. SYNCHRONIZATION CALLS 129

PROCESS 0 PROCESS 1 PROCESS 2

post(0,3)

PROCESS 3

wait() wait()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

put(1)

put(2)

complete()

start(1,2)

post(0)

start(2)

complete()

put(2)

Figure 6.4: active target communication. Dashed arrows represent synchronizations and
solid arrows represent data transfer.

of processes 1 and 2 and process 3 puts data in the window of process 2. Each start call lists
the ranks of the processes whose windows will be accessed; each post call lists the ranks
of the processes that access the local window. The �gure illustrates a possible timing for
the events, assuming strong synchronization; in a weak synchronization, the start, put or
complete calls may occur ahead of the matching post calls.

MPI WIN TEST(win, ag)

IN win window object (handle)

OUT ag success ag (logical)

int MPI Win test(MPI Win win, int *flag)

MPI WIN TEST(WIN, FLAG, IERROR)

INTEGER WIN, IERROR

LOGICAL FLAG

bool MPI::Win::Test() const

This is the nonblocking version of MPI WIN WAIT. It returns ag = true if
MPI WIN WAIT would return, ag = false, otherwise. The e�ect of return ofMPI WIN TEST
with ag = true is the same as the e�ect of a return of MPI WIN WAIT. If ag = false is
returned, then the call has no visible e�ect.

MPI WIN TEST should be invoked only where MPI WIN WAIT can be invoked. Once
the call has returned ag = true, it must not be invoked anew, until the window is posted
anew.

Assume that window win is associated with a \hidden" communicator wincomm, used
for communication by the processes of win. The rules for matching of post and start calls
and for matching complete and wait call can be derived from the rules for matching sends
and receives, by considering the following (partial) model implementation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

130 CHAPTER 6. ONE-SIDED COMMUNICATIONS

MPI WIN POST(group,0,win) initiate a nonblocking send with tag tag0 to each process in
group, using wincomm. No need to wait for the completion of these sends.

MPI WIN START(group,0,win) initiate a nonblocking receive with tag
tag0 from each process in group, using wincomm. An RMA access to a window in
target process i is delayed until the receive from i is completed.

MPI WIN COMPLETE(win) initiate a nonblocking send with tag tag1 to each process in the
group of the preceding start call. No need to wait for the completion of these sends.

MPI WIN WAIT(win) initiate a nonblocking receive with tag tag1 from each process in the
group of the preceding post call. Wait for the completion of all receives.

No races can occur in a correct program: each of the sends matches a unique receive,
and vice-versa.

Rationale. The design for general active target synchronization requires the user to
provide complete information on the communication pattern, at each end of a com-
munication link: each origin speci�es a list of targets, and each target speci�es a list
of origins. This provides maximum exibility (hence, e�ciency) for the implementor:
each synchronization can be initiated by either side, since each \knows" the identity of
the other. This also provides maximum protection from possible races. On the other
hand, the design requires more information than RMA needs, in general: in general,
it is su�cient for the origin to know the rank of the target, but not vice versa. Users
that want more \anonymous" communication will be required to use the fence or lock
mechanisms. (End of rationale.)

Advice to users. Assume a communication pattern that is represented by a di-
rected graph G = < V;E >, where V = f0; : : : ; n � 1g and ij 2 E if origin
process i accesses the window at target process j. Then each process i issues a
call to MPI WIN POST(ingroupi, : : :), followed by a call to
MPI WIN START(outgroupi,: : :), where outgroupi = fj : ij 2 Eg and ingroupi =
fj : ji 2 Eg. A call is a noop, and can be skipped, if the group argument is empty.
After the communications calls, each process that issued a start will issue a complete.
Finally, each process that issued a post will issue a wait.

Note that each process may call with a group argument that has di�erent members.
(End of advice to users.)

6.4.3 Lock

MPI WIN LOCK(lock type, rank, assert, win)

IN lock type either MPI LOCK EXCLUSIVE or

MPI LOCK SHARED (state)

IN rank rank of locked window (nonnegative integer)

IN assert program assertion (integer)

IN win window object (handle)

int MPI Win lock(int lock type, int rank, int assert, MPI Win win)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.4. SYNCHRONIZATION CALLS 131

MPI WIN LOCK(LOCK TYPE, RANK, ASSERT, WIN, IERROR)

INTEGER LOCK TYPE, RANK, ASSERT, WIN, IERROR

void MPI::Win::Lock(int lock type, int rank, int assert) const

Starts an RMA access epoch. Only the window at the process with rank rank can be
accessed by RMA operations on win during that epoch.

MPI WIN UNLOCK(rank, win)

IN rank rank of window (nonnegative integer)

IN win window object (handle)

int MPI Win unlock(int rank, MPI Win win)

MPI WIN UNLOCK(RANK, WIN, IERROR)

INTEGER RANK, WIN, IERROR

void MPI::Win::Unlock(int rank) const

Completes an RMA access epoch started by a call to MPI WIN LOCK(...,win). RMA
operations issued during this period will have completed both at the origin and at the target
when the call returns.

Locks are used to protect accesses to the locked target window e�ected by RMA calls
issued between the lock and unlock call, and to protect local load/store accesses to a locked
local window executed between the lock and unlock call. Accesses that are protected by
an exclusive lock will not be concurrent at the window site with other accesses to the same
window that are lock protected. Accesses that are protected by a shared lock will not be
concurrent at the window site with accesses protected by an exclusive lock to the same
window.

It is erroneous to have a window locked and exposed (in an exposure epoch) concur-
rently. I.e., a process may not call MPI WIN LOCK to lock a target window if the target
process has called MPI WIN POST and has not yet called MPI WIN WAIT; it is erroneous
to call MPI WIN POST while the local window is locked.

Rationale. An alternative is to require MPI to enforce mutual exclusion between
exposure epochs and locking periods. But this would entail additional overheads
when locks or active target synchronization do not interact in support of those rare
interactions between the two mechanisms. The programming style that we encourage
here is that a set of windows is used with only one synchronization mechanism at
a time, with shifts from one mechanism to another being rare and involving global
synchronization. (End of rationale.)

Advice to users. Users need to use explicit synchronization code in order to enforce
mutual exclusion between locking periods and exposure epochs on a window. (End of
advice to users.)

Implementors may restrict the use of RMA communication that is synchronized by lock
calls to windows in memory allocated by MPI ALLOC MEM (Section 4.11, page 47). Locks
can be used portably only in such memory.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

132 CHAPTER 6. ONE-SIDED COMMUNICATIONS

Rationale. The implementation of passive target communication when memory is
not shared requires an asynchronous agent. Such an agent can be implemented more
easily, and can achieve better performance, if restricted to specially allocated memory.
It can be avoided altogether if shared memory is used. It seems natural to impose
restrictions that allows one to use shared memory for 3-rd party communication in
shared memory machines.

The downside of this decision is that passive target communication cannot be used
without taking advantage of nonstandard Fortran features: namely, the availability
of C-like pointers; these are not supported by some Fortran compilers (g77 and Win-
dows/NT compilers, at the time of writing). Also, passive target communication
cannot be portably targeted to COMMON blocks, or other statically declared Fortran
arrays. (End of rationale.)

Consider the sequence of calls in the example below.

Example 6.5

MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, assert, win)

MPI_Put(..., rank, ..., win)

MPI_Win_unlock(rank, win)

The call to MPI WIN UNLOCK will not return until the put transfer has completed at
the origin and at the target. This still leaves much freedom to implementors. The call to
MPI WIN LOCK may block until an exclusive lock on the window is acquired; or, the call
MPI WIN LOCK may not block, while the call to MPI PUT blocks until a lock is acquired;
or, the �rst two calls may not block, while MPI WIN UNLOCK blocks until a lock is acquired
| the update of the target window is then postponed until the call to MPI WIN UNLOCK
occurs. However, if the call to MPI WIN LOCK is used to lock a local window, then the call
must block until the lock is acquired, since the lock may protect local load/store accesses
to the window issued after the lock call returns.

6.4.4 Assertions

The assert argument in the calls MPI WIN POST, MPI WIN START, MPI WIN FENCE and
MPI WIN LOCK is used to provide assertions on the context of the call that may be used to
optimize performance. The assert argument does not change program semantics if it provides
correct information on the program | it is erroneous to provides incorrect information.
Users may always provide assert = 0 to indicate a general case, where no guarantees are
made.

Advice to users. Many implementations may not take advantage of the information
in assert; some of the information is relevant only for noncoherent, shared memory ma-
chines. Users should consult their implementation manual to �nd which information
is useful on each system. On the other hand, applications that provide correct asser-
tions whenever applicable are portable and will take advantage of assertion speci�c
optimizations, whenever available. (End of advice to users.)

Advice to implementors. Implementations can always ignore the
assert argument. Implementors should document which assert values are signi�cant
on their implementation. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.4. SYNCHRONIZATION CALLS 133

assert is the bit-vector OR of zero or more of the following integer constants:
MPI MODE NOCHECK,MPI MODE NOSTORE,MPI MODE NOPUT,MPI MODE NOPRECEDE and
MPI MODE NOSUCCEED. The signi�cant options are listed below, for each call.

Advice to users. C/C++ users can use bit vector or (j) to combine these constants;
Fortran 90 users can use the bit-vector IOR intrinsic. Fortran 77 users can use (non-
portably) bit vector IOR on systems that support it. Alternatively, Fortran users can
portably use integer addition to OR the constants (each constant should appear at
most once in the addition!). (End of advice to users.)

MPI WIN START:

MPI MODE NOCHECK | the matching calls to MPI WIN POST have already com-
pleted on all target processes when the call to MPI WIN START is made. The
nocheck option can be speci�ed in a start call if and only if it is speci�ed in
each matching post call. This is similar to the optimization of \ready-send" that
may save a handshake when the handshake is implicit in the code. (However,
ready-send is matched by a regular receive, whereas both start and post must
specify the nocheck option.)

MPI WIN POST:

MPI MODE NOCHECK | the matching calls to MPI WIN START have not yet oc-
curred on any origin processes when the call to MPI WIN POST is made. The
nocheck option can be speci�ed by a post call if and only if it is speci�ed by each
matching start call.

MPI MODE NOSTORE | the local window was not updated by local stores (or local
get or receive calls) since last synchronization. This may avoid the need for cache
synchronization at the post call.

MPI MODE NOPUT | the local window will not be updated by put or accumulate
calls after the post call, until the ensuing (wait) synchronization. This may avoid
the need for cache synchronization at the wait call.

MPI WIN FENCE:

MPI MODE NOSTORE | the local window was not updated by local stores (or local
get or receive calls) since last synchronization.

MPI MODE NOPUT | the local window will not be updated by put or accumulate
calls after the fence call, until the ensuing (fence) synchronization.

MPI MODE NOPRECEDE| the fence does not complete any sequence of locally issued
RMA calls. If this assertion is given by any process in the window group, then it
must be given by all processes in the group.

MPI MODE NOSUCCEED | the fence does not start any sequence of locally issued
RMA calls. If the assertion is given by any process in the window group, then it
must be given by all processes in the group.

MPI WIN LOCK:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

134 CHAPTER 6. ONE-SIDED COMMUNICATIONS

MPI MODE NOCHECK | no other process holds, or will attempt to acquire a con-
icting lock, while the caller holds the window lock. This is useful when mutual
exclusion is achieved by other means, but the coherence operations that may be
attached to the lock and unlock calls are still required.

Advice to users. Note that the nostore and noprecede ags provide information on
what happened before the call; the noput and nosucceed ags provide information on
what will happen after the call. (End of advice to users.)

6.4.5 Miscellaneous Clari�cations

Once an RMA routine completes, it is safe to free any opaque objects passed as argument to
that routine. For example, the datatype argument of a MPI PUT call can be freed as soon
as the call returns, even though the communication may not be complete.

As in message passing, datatypes must be committed before they can be used in RMA
communication.

6.5 Examples

Example 6.6 The following example shows a generic loosely synchronous, iterative code,
using fence synchronization. The window at each process consists of array A, which contains
the origin and target bu�ers of the put calls.

...

while(!converged(A)){

update(A);

MPI_Win_fence(MPI_MODE_NOPRECEDE, win);

for(i=0; i < toneighbors; i++)

MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],

todisp[i], 1, totype[i], win);

MPI_Win_fence((MPI_MODE_NOSTORE | MPI_MODE_NOSUCCEED), win);

}

The same code could be written with get, rather than put. Note that, during the commu-
nication phase, each window is concurrently read (as origin bu�er of puts) and written (as
target bu�er of puts). This is OK, provided that there is no overlap between the target
bu�er of a put and another communication bu�er.

Example 6.7 Same generic example, with more computation/communication overlap. We
assume that the update phase is broken in two subphases: the �rst, where the \boundary,"
which is involved in communication, is updated, and the second, where the \core," which
neither use nor provide communicated data, is updated.

...

while(!converged(A)){

update_boundary(A);

MPI_Win_fence((MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), win);

for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.5. EXAMPLES 135

fromdisp[i], 1, fromtype[i], win);

update_core(A);

MPI_Win_fence(MPI_MODE_NOSUCCEED, win);

}

The get communication can be concurrent with the core update, since they do not access the
same locations, and the local update of the origin bu�er by the get call can be concurrent
with the local update of the core by the update core call. In order to get similar overlap
with put communication we would need to use separate windows for the core and for the
boundary. This is required because we do not allow local stores to be concurrent with puts
on the same, or on overlapping, windows.

Example 6.8 Same code as in Example 6.6, rewritten using post-start-complete-wait.

...

while(!converged(A)){

update(A);

MPI_Win_post(fromgroup, 0, win);

MPI_Win_start(togroup, 0, win);

for(i=0; i < toneighbors; i++)

MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],

todisp[i], 1, totype[i], win);

MPI_Win_complete(win);

MPI_Win_wait(win);

}

Example 6.9 Same example, with split phases, as in Example 6.7.

...

while(!converged(A)){

update_boundary(A);

MPI_Win_post(togroup, MPI_MODE_NOPUT, win);

MPI_Win_start(fromgroup, 0, win);

for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],

fromdisp[i], 1, fromtype[i], win);

update_core(A);

MPI_Win_complete(win);

MPI_Win_wait(win);

}

Example 6.10 A checkerboard, or double bu�er communication pattern, that allows more
computation/communication overlap. Array A0 is updated using values of array A1, and
vice versa. We assume that communication is symmetric: if process A gets data from
process B, then process B gets data from process A. Window wini consists of array Ai.

...

if (!converged(A0,A1))

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);

MPI_Barrier(comm0);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

136 CHAPTER 6. ONE-SIDED COMMUNICATIONS

/* the barrier is needed because the start call inside the

loop uses the nocheck option */

while(!converged(A0, A1)){

/* communication on A0 and computation on A1 */

update2(A1, A0); /* local update of A1 that depends on A0 (and A1) */

MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win0);

for(i=0; i < neighbors; i++)

MPI_Get(&tobuf0[i], 1, totype0[i], neighbor[i],

fromdisp0[i], 1, fromtype0[i], win0);

update1(A1); /* local update of A1 that is

concurrent with communication that updates A0 */

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win1);

MPI_Win_complete(win0);

MPI_Win_wait(win0);

/* communication on A1 and computation on A0 */

update2(A0, A1); /* local update of A0 that depends on A1 (and A0)*/

MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win1);

for(i=0; i < neighbors; i++)

MPI_Get(&tobuf1[i], 1, totype1[i], neighbor[i],

fromdisp1[i], 1, fromtype1[i], win1);

update1(A0); /* local update of A0 that depends on A0 only,

concurrent with communication that updates A1 */

if (!converged(A0,A1))

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);

MPI_Win_complete(win1);

MPI_Win_wait(win1);

}

A process posts the local window associated with win0 before it completes RMA accesses
to the remote windows associated with win1. When the wait(win1) call returns, then all
neighbors of the calling process have posted the windows associated with win0. Conversely,
when the wait(win0) call returns, then all neighbors of the calling process have posted the
windows associated with win1. Therefore, the nocheck option can be used with the calls to
MPI WIN START.

Put calls can be used, instead of get calls, if the area of array A0 (resp. A1) used by
the update(A1, A0) (resp. update(A0, A1)) call is disjoint from the area modi�ed by the
RMA communication. On some systems, a put call may be more e�cient than a get call,
as it requires information exchange only in one direction.

6.6 Error Handling

6.6.1 Error Handlers

Errors occurring during calls to MPI WIN CREATE(...,comm,...) cause the error handler
currently associated with comm to be invoked. All other RMA calls have an input win
argument. When an error occurs during such a call, the error handler currently associated
with win is invoked.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.7. SEMANTICS AND CORRECTNESS 137

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

public window copy

STORE LOAD

process memory

PUTPUT GET

Window RMA Update Local Update

STORE

public window copy

Figure 6.5: Schematic description of window

The default error handler associated with win is MPI ERRORS ARE FATAL. Users may
change this default by explicitly associating a new error handler with win (see Section 4.13,
page 61).

6.6.2 Error Classes

The following new error classes are de�ned
MPI ERR WIN invalid win argument
MPI ERR BASE invalid base argument
MPI ERR SIZE invalid size argument
MPI ERR DISP invalid disp argument
MPI ERR LOCKTYPE invalid locktype argument
MPI ERR ASSERT invalid assert argument
MPI ERR RMA CONFLICT conicting accesses to window
MPI ERR RMA SYNC wrong synchronization of RMA calls

6.7 Semantics and Correctness

The semantics of RMA operations is best understood by assuming that the system maintains
a separate public copy of each window, in addition to the original location in process memory
(the private window copy). There is only one instance of each variable in process memory,
but a distinct public copy of the variable for each window that contains it. A load accesses
the instance in process memory (this includes MPI sends). A store accesses and updates
the instance in process memory (this includes MPI receives), but the update may a�ect
other public copies of the same locations. A get on a window accesses the public copy of
that window. A put or accumulate on a window accesses and updates the public copy of
that window, but the update may a�ect the private copy of the same locations in process
memory, and public copies of other overlapping windows. This is illustrated in Figure 6.5.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

138 CHAPTER 6. ONE-SIDED COMMUNICATIONS

The following rules specify the latest time at which an operation must complete at the
origin or the target. The update performed by a get call in the origin process memory is
visible when the get operation is complete at the origin (or earlier); the update performed
by a put or accumulate call in the public copy of the target window is visible when the put
or accumulate has completed at the target (or earlier). The rules also speci�es the latest
time at which an update of one window copy becomes visible in another overlapping copy.

1. An RMA operation is completed at the origin by the ensuing call to
MPI WIN COMPLETE,MPI WIN FENCE orMPI WIN UNLOCK that synchronizes this
access at the origin.

2. If an RMA operation is completed at the origin by a call to MPI WIN FENCE then the
operation is completed at the target by the matching call to MPI WIN FENCE by the
target process.

3. If an RMA operation is completed at the origin by a call to MPI WIN COMPLETE
then the operation is completed at the target by the matching call to MPI WIN WAIT
by the target process.

4. If an RMA operation is completed at the origin by a call to MPI WIN UNLOCK then
the operation is completed at the target by that same call to MPI WIN UNLOCK.

5. An update of a location in a private window copy in process memory becomes vis-
ible in the public window copy at latest when an ensuing call to MPI WIN POST,
MPI WIN FENCE, or MPI WIN UNLOCK is executed on that window by the window
owner.

6. An update by a put or accumulate call to a public window copy becomes visible in
the private copy in process memory at latest when an ensuing call to MPI WIN WAIT,
MPI WIN FENCE, or MPI WIN LOCK is executed on that window by the window
owner.

The MPI WIN FENCE or MPI WIN WAIT call that completes the transfer from public
copy to private copy (6) is the same call that completes the put or accumulate operation in
the window copy (2, 3). If a put or accumulate access was synchronized with a lock, then
the update of the public window copy is complete as soon as the updating process executed
MPI WIN UNLOCK. On the other hand, the update of private copy in the process memory
may be delayed until the target process executes a synchronization call on that window
(6). Thus, updates to process memory can always be delayed until the process executes a
suitable synchronization call. Updates to a public window copy can also be delayed until
the window owner executes a synchronization call, if fences or post-start-complete-wait
synchronization is used. Only when lock synchronization is used does it becomes necessary
to update the public window copy, even if the window owner does not execute any related
synchronization call.

The rules above also de�ne, by implication, when an update to a public window copy
becomes visible in another overlapping public window copy. Consider, for example, two
overlapping windows, win1 and win2. A call to MPI WIN FENCE(0, win1) by the window
owner makes visible in the process memory previous updates to window win1 by remote
processes. A subsequent call to MPI WIN FENCE(0, win2) makes these updates visible in
the public copy of win2.

A correct program must obey the following rules.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.7. SEMANTICS AND CORRECTNESS 139

1. A location in a window must not be accessed locally once an update to that location
has started, until the update becomes visible in the private window copy in process
memory.

2. A location in a window must not be accessed as a target of an RMA operation once
an update to that location has started, until the update becomes visible in the public
window copy. There is one exception to this rule, in the case where the same variable
is updated by two concurrent accumulates that use the same operation, with the same
prede�ned datatype, on the same window.

3. A put or accumulate must not access a target window once a local update or a put or
accumulate update to another (overlapping) target window have started on a location
in the target window, until the update becomes visible in the public copy of the
window. Conversely, a local update in process memory to a location in a window
must not start once a put or accumulate update to that target window has started,
until the put or accumulate update becomes visible in process memory. In both
cases, the restriction applies to operations even if they access disjoint locations in the
window.

A program is erroneous if it violates these rules.

Rationale. The last constraint on correct RMA accesses may seem unduly restric-
tive, as it forbids concurrent accesses to nonoverlapping locations in a window. The
reason for this constraint is that, on some architectures, explicit coherence restoring
operations may be needed at synchronization points. A di�erent operation may be
needed for locations that were locally updated by stores and for locations that were
remotely updated by put or accumulate operations. Without this constraint, the MPI
library will have to track precisely which locations in a window were updated by a
put or accumulate call. The additional overhead of maintaining such information is
considered prohibitive. (End of rationale.)

Advice to users. A user can write correct programs by following the following rules:

fence: During each period between fence calls, each window is either updated by put
or accumulate calls, or updated by local stores, but not both. Locations updated
by put or accumulate calls should not be accessed during the same period (with
the exception of concurrent updates to the same location by accumulate calls).
Locations accessed by get calls should not be updated during the same period.

post-start-complete-wait: A window should not be updated locally while being
posted, if it is being updated by put or accumulate calls. Locations updated
by put or accumulate calls should not be accessed while the window is posted
(with the exception of concurrent updates to the same location by accumulate
calls). Locations accessed by get calls should not be updated while the window
is posted.

With the post-start synchronization, the target process can tell the origin process
that its window is now ready for RMA access; with the complete-wait synchro-
nization, the origin process can tell the target process that it has �nished its
RMA accesses to the window.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

140 CHAPTER 6. ONE-SIDED COMMUNICATIONS

lock: Updates to the window are protected by exclusive locks if they may conict.
Nonconicting accesses (such as read-only accesses or accumulate accesses) are
protected by shared locks, both for local accesses and for RMA accesses.

changing window or synchronization mode: One can change synchronization
mode, or change the window used to access a location that belongs to two over-
lapping windows, when the process memory and the window copy are guaranteed
to have the same values. This is true after a local call to MPI WIN FENCE, if
RMA accesses to the window are synchronized with fences; after a local call to
MPI WIN WAIT, if the accesses are synchronized with post-start-complete-wait;
after the call at the origin (local or remote) to MPI WIN UNLOCK if the accesses
are synchronized with locks.

In addition, a process should not access the local bu�er of a get operation until the
operation is complete, and should not update the local bu�er of a put or accumulate
operation until that operation is complete. (End of advice to users.)

6.7.1 Atomicity

The outcome of concurrent accumulates to the same location, with the same operation and
prede�ned datatype, is as if the accumulates where done at that location in some serial
order. On the other hand, if two locations are both updated by two accumulate calls, then
the updates may occur in reverse order at the two locations. Thus, there is no guarantee
that the entire call to MPI ACCUMULATE is executed atomically. The e�ect of this lack
of atomicity is limited: The previous correctness conditions imply that a location updated
by a call to MPI ACCUMULATE, cannot be accessed by load or an RMA call other than
accumulate, until the MPI ACCUMULATE call has completed (at the target). Di�erent
interleavings can lead to di�erent results only to the extent that computer arithmetics are
not truly associative or commutative.

6.7.2 Progress

One-sided communication has the same progress requirements as point-to-point communi-
cation: once a communication is enabled, then it is guaranteed to complete. RMA calls
must have local semantics, except when required for synchronization with other RMA calls.

There is some fuzziness in the de�nition of the time when a RMA communication
becomes enabled. This fuzziness provides to the implementor more exibility than with
point-to-point communication. Access to a target window becomes enabled once the corre-
sponding synchronization (such as MPI WIN FENCE or MPI WIN POST) has executed. On
the origin process, an RMA communication may become enabled as soon as the correspond-
ing put, get or accumulate call has executed, or as late as when the ensuing synchronization
call is issued. Once the communication is enabled both at the origin and at the target, the
communication must complete.

Consider the code fragment in Example 6.4, on page 127. Some of the calls may block
if the target window is not posted. However, if the target window is posted, then the code
fragment must complete. The data transfer may start as soon as the put call occur, but
may be delayed until the ensuing complete call occurs.

Consider the code fragment in Example 6.5, on page 132. Some of the calls may block
if another process holds a conicting lock. However, if no conicting lock is held, then the
code fragment must complete.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.7. SEMANTICS AND CORRECTNESS 141

PROCESS 0

post(1)

start(1)

put(1)

complete

wait

loadload

PROCESS 1

post(0)

start(0)

put(0)

complete

wait

Figure 6.6: Symmetric communication

start

put

recv

complete

PROCESS 1

post

send

wait

PROCESS 0

Figure 6.7: Deadlock situation

Consider the code illustrated in Figure 6.6. Each process updates the window of the
other process using a put operation, then accesses its own window. The post calls are
nonblocking, and should complete. Once the post calls occur, RMA access to the windows is
enabled, so that each process should complete the sequence of calls start-put-complete. Once
these are done, the wait calls should complete at both processes. Thus, this communication
should not deadlock, irrespective of the amount of data transferred.

Assume, in the last example, that the order of the post and start calls is reversed, at
each process. Then, the code may deadlock, as each process may block on the start call,
waiting for the matching post to occur. Similarly, the program will deadlock, if the order
of the complete and wait calls is reversed, at each process.

The following two examples illustrate the fact that the synchronization between com-
plete and wait is not symmetric: the wait call blocks until the complete executes, but not
vice-versa. Consider the code illustrated in Figure 6.7. This code will deadlock: the wait
of process 1 blocks until process 0 calls complete, and the receive of process 0 blocks until
process 1 calls send. Consider, on the other hand, the code illustrated in Figure 6.8. This
code will not deadlock. Once process 1 calls post, then the sequence start, put, complete
on process 0 can proceed to completion. Process 0 will reach the send call, allowing the
receive call of process 1 to complete.

Rationale. MPI implementations must guarantee that a process makes progress on all
enabled communications it participates in, while blocked on an MPI call. This is true
for send-receive communication and applies to RMA communication as well. Thus, in
the example in Figure 6.8, the put and complete calls of process 0 should complete

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

142 CHAPTER 6. ONE-SIDED COMMUNICATIONS

put

complete

send

start

PROCESS 1

post

recv

wait

PROCESS 0

Figure 6.8: No deadlock

while process 1 is blocked on the receive call. This may require the involvement of
process 1, e.g., to transfer the data put, while it is blocked on the receive call.

A similar issue is whether such progress must occur while a process is busy comput-
ing, or blocked in a non-MPI call. Suppose that in the last example the send-receive
pair is replaced by a write-to-socket/read-from-socket pair. Then MPI does not spec-
ify whether deadlock is avoided. Suppose that the blocking receive of process 1 is
replaced by a very long compute loop. Then, according to one interpretation of the
MPI standard, process 0 must return from the complete call after a bounded delay,
even if process 1 does not reach any MPI call in this period of time. According to
another interpretation, the complete call may block until process 1 reaches the wait
call, or reaches another MPI call. The qualitative behavior is the same, under both
interpretations, unless a process is caught in an in�nite compute loop, in which case
the di�erence may not matter. However, the quantitative expectations are di�erent.
Di�erent MPI implementations reect these di�erent interpretations. While this am-
biguity is unfortunate, it does not seem to a�ect many real codes. The MPI forum
decided not to decide which interpretation of the standard is the correct one, since the
issue is very contentious, and a decision would have much impact on implementors
but less impact on users. (End of rationale.)

6.7.3 Registers and Compiler Optimizations

Advice to users. All the material in this section is an advice to users. (End of advice
to users.)

A coherence problem exists between variables kept in registers and the memory value
of these variables. An RMA call may access a variable in memory (or cache), while the
up-to-date value of this variable is in register. A get will not return the latest variable
value, and a put may be overwritten when the register is stored back in memory.

The problem is illustrated by the following code:

Source of Process 1 Source of Process 2 Executed in Process 2

bbbb = 777 buff = 999 reg A:=999

call MPI WIN FENCE call MPI WIN FENCE

call MPI PUT(bbbb stop appl.thread

into buff of process 2) buff:=777 in PUT handler

continue appl.thread

call MPI WIN FENCE call MPI WIN FENCE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.7. SEMANTICS AND CORRECTNESS 143

ccc = buff ccc:=reg A

In this example, variable buff is allocated in the register reg A and therefore ccc will
have the old value of buff and not the new value 777.

This problem, which also a�icts in some cases send/receive communication, is discussed
more at length in Section 10.2.2.

MPI implementations will avoid this problem for standard conforming C programs.
Many Fortran compilers will avoid this problem, without disabling compiler optimizations.
However, in order to avoid register coherence problems in a completely portable manner,
users should restrict their use of RMA windows to variables stored in COMMON blocks, or to
variables that were declared VOLATILE (while VOLATILE is not a standard Fortran declara-
tion, it is supported by many Fortran compilers). Details and an additional solution are
discussed in Section 10.2.2, \A Problem with Register Optimization," on page 289. See also,
\Problems Due to Data Copying and Sequence Association," on page 286, for additional
Fortran problems.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

144 CHAPTER 6. ONE-SIDED COMMUNICATIONS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 7

Extended Collective Operations

7.1 Introduction

MPI-1 de�ned collective communication for intracommunicators and two routines,
MPI INTERCOMM CREATE and MPI COMM DUP, for creating new intercommunicators.
In addition, in order to avoid argument aliasing problems with Fortran, MPI-1 requires
separate send and receive bu�ers for collective operations. MPI-2 introduces extensions
of many of the MPI-1 collective routines to intercommunicators, additional routines for
creating intercommunicators, and two new collective routines: a generalized all-to-all and
an exclusive scan. In addition, a way to specify \in place" bu�ers is provided for many of
the intracommunicator collective operations.

7.2 Intercommunicator Constructors

The current MPI interface provides only two intercommunicator construction routines:

� MPI INTERCOMM CREATE, creates an intercommunicator from two intracommuni-
cators,

� MPI COMM DUP, duplicates an existing intercommunicator (or intracommunicator).

The other communicator constructors, MPI COMM CREATE and MPI COMM SPLIT, cur-
rently apply only to intracommunicators. These operations in fact have well-de�ned seman-
tics for intercommunicators [20].

In the following discussions, the two groups in an intercommunicator are called the
left and right groups. A process in an intercommunicator is a member of either the left or
the right group. From the point of view of that process, the group that the process is a
member of is called the local group; the other group (relative to that process) is the remote
group. The left and right group labels give us a way to describe the two groups in an
intercommunicator that is not relative to any particular process (as the local and remote
groups are).

In addition, the speci�cation of collective operations (Section 4.1 of MPI-1) requires
that all collective routines are called with matching arguments. For the intercommunicator
extensions, this is weakened to matching for all members of the same local group.

145

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

146 CHAPTER 7. EXTENDED COLLECTIVE OPERATIONS

MPI COMM CREATE(comm in, group, comm out)

IN comm in original communicator (handle)

IN group group of processes to be in new communicator (han-

dle)

OUT comm out new communicator (handle)

MPI::Intercomm MPI::Intercomm::Create(const Group& group) const

MPI::Intracomm MPI::Intracomm::Create(const Group& group) const

The C and Fortran language bindings are identical to those in MPI-1, so are omitted
here.
If comm in is an intercommunicator, then the output communicator is also an intercom-
municator where the local group consists only of those processes contained in group (see
Figure 7.1). The group argument should only contain those processes in the local group of
the input intercommunicator that are to be a part of comm out. If either group does not
specify at least one process in the local group of the intercommunicator, or if the calling
process is not included in the group, MPI COMM NULL is returned.

Rationale. In the case where either the left or right group is empty, a null communi-
cator is returned instead of an intercommunicator with MPI GROUP EMPTY because
the side with the empty group must return MPI COMM NULL. (End of rationale.)

0 1

3

4

2

1

2

3

0
5

4

1

0

0

1

2

INTER-COMMUNICATOR CREATE
Before

After

Figure 7.1: Intercommunicator create using MPI COMM CREATE extended to intercommu-
nicators. The input groups are those in the grey circle.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.2. INTERCOMMUNICATOR CONSTRUCTORS 147

Example 7.1 The following example illustrates how the �rst node in the left side of an
intercommunicator could be joined with all members on the right side of an intercommun-
icator to form a new intercommunicator.

MPI_Comm inter_comm, new_inter_comm;

MPI_Group local_group, group;

int rank = 0; /* rank on left side to include in

new inter-comm */

/* Construct the original intercommunicator: "inter_comm" */

...

/* Construct the group of processes to be in new

intercommunicator */

if (/* I'm on the left side of the intercommunicator */) {

MPI_Comm_group (inter_comm, &local_group);

MPI_Group_incl (local_group, 1, &rank, &group);

MPI_Group_free (&local_group);

}

else

MPI_Comm_group (inter_comm, &group);

MPI_Comm_create (inter_comm, group, &new_inter_comm);

MPI_Group_free(&group);

MPI COMM SPLIT(comm in, color, key, comm out)

IN comm in original communicator (handle)

IN color control of subset assignment (integer)

IN key control of rank assignment (integer)

OUT comm out new communicator (handle)

MPI::Intercomm MPI::Intercomm::Split(int color, int key) const

MPI::Intracomm MPI::Intracomm::Split(int color, int key) const

The C and Fortran language bindings are identical to those in MPI-1, so are omitted
here.
The result of MPI COMM SPLIT on an intercommunicator is that those processes on the
left with the same color as those processes on the right combine to create a new intercom-
municator. The key argument describes the relative rank of processes on each side of the
intercommunicator (see Figure 7.2). For those colors that are speci�ed only on one side of
the intercommunicator, MPI COMM NULL is returned. MPI COMM NULL is also returned to
those processes that specify MPI UNDEFINED as the color.

Example 7.2 (Parallel client-server model). The following client code illustrates how
clients on the left side of an intercommunicator could be assigned to a single server from a
pool of servers on the right side of an intercommunicator.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

148 CHAPTER 7. EXTENDED COLLECTIVE OPERATIONS

1(1,0)

0(0)

1(3)
0(1)

1(0)

Rank in the original group

Color = 0

Color = 1

Color = 2

0(4) 0(1)

0(2)1(3)
0(2)

0(0,0)

3(0,1)
2(2,0)

Color

Key

0(0,1)

4(1,0)

1(0,0)

3(2,1)

2(2,0)

Input Intercommunicator (comm)

Disjoint output communicators (newcomm)
(one per color)

Figure 7.2: Intercommunicator construction achieved by splitting an existing intercommun-
icator with MPI COMM SPLIT extended to intercommunicators.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.3. EXTENDED COLLECTIVE OPERATIONS 149

/* Client code */

MPI_Comm multiple_server_comm;

MPI_Comm single_server_comm;

int color, rank, num_servers;

/* Create intercommunicator with clients and servers:

multiple_server_comm */

...

/* Find out the number of servers available */

MPI_Comm_remote_size (multiple_server_comm, &num_servers);

/* Determine my color */

MPI_Comm_rank (multiple_server_comm, &rank);

color = rank % num_servers;

/* Split the intercommunicator */

MPI_Comm_split (multiple_server_comm, color, rank,

&single_server_comm);

The following is the corresponding server code:

/* Server code */

MPI_Comm multiple_client_comm;

MPI_Comm single_server_comm;

int rank;

/* Create intercommunicator with clients and servers:

multiple_client_comm */

...

/* Split the intercommunicator for a single server per group

of clients */

MPI_Comm_rank (multiple_client_comm, &rank);

MPI_Comm_split (multiple_client_comm, rank, 0,

&single_server_comm);

7.3 Extended Collective Operations

7.3.1 Intercommunicator Collective Operations

In theMPI-1 standard (Section 4.2), collective operations only apply to intracommunicators;
however, most MPI collective operations can be generalized to intercommunicators. To
understand how MPI can be extended, we can view most MPI intracommunicator collective
operations as �tting one of the following categories (see, for instance, [20]):

All-To-All All processes contribute to the result. All processes receive the result.

� MPI Allgather, MPI Allgatherv

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

150 CHAPTER 7. EXTENDED COLLECTIVE OPERATIONS

� MPI Alltoall, MPI Alltoallv

� MPI Allreduce, MPI Reduce scatter

All-To-One All processes contribute to the result. One process receives the result.

� MPI Gather, MPI Gatherv

� MPI Reduce

One-To-All One process contributes to the result. All processes receive the result.

� MPI Bcast

� MPI Scatter, MPI Scatterv

Other Collective operations that do not �t into one of the above categories.

� MPI Scan

� MPI Barrier

The MPI Barrier operation does not �t into this classi�cation since no data is being moved
(other than the implicit fact that a barrier has been called). The data movement pattern
of MPI Scan does not �t this taxonomy.

The extension of collective communication from intracommunicators to intercommu-
nicators is best described in terms of the left and right groups. For example, an all-
to-all MPI Allgather operation can be described as collecting data from all members of
one group with the result appearing in all members of the other group (see Figure 7.3).
As another example, a one-to-all MPI Bcast operation sends data from one member of
one group to all members of the other group. Collective computation operations such as
MPI REDUCE SCATTER have a similar interpretation (see Figure 7.4). For intracommu-
nicators, these two groups are the same. For intercommunicators, these two groups are
distinct. For the all-to-all operations, each such operation is described in two phases, so
that it has a symmetric, full-duplex behavior.

For MPI-2, the following intracommunicator collective operations also apply to inter-
communicators:

� MPI BCAST,

� MPI GATHER, MPI GATHERV,

� MPI SCATTER, MPI SCATTERV,

� MPI ALLGATHER, MPI ALLGATHERV,

� MPI ALLTOALL, MPI ALLTOALLV, MPI ALLTOALLW

� MPI REDUCE, MPI ALLREDUCE,

� MPI REDUCE SCATTER,

� MPI BARRIER.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.3. EXTENDED COLLECTIVE OPERATIONS 151

(MPI ALLTOALLW is a new function described in Section 7.3.5.)
These functions use exactly the same argument list as their MPI-1 counterparts and

also work on intracommunicators, as expected. No new language bindings are consequently
needed for Fortran or C. However, in C++, the bindings have been "relaxed"; these member
functions have been moved from the MPI::Intercomm class to the MPI::Comm class. But
since the collective operations do not make sense on a C++ MPI::Comm (since it is neither
an intercommunicator nor an intracommunicator), the functions are all pure virtual. In an
MPI-2 implementation, the bindings in this chapter supersede the corresponding bindings
for MPI-1.2.

0

1

2

1

2

0

3

Lcomm Rcomm

0

1

2

1

2

0

3

Lcomm Rcomm

Figure 7.3: Intercommunicator allgather. The focus of data to one process is represented,
not mandated by the semantics. The two phases do allgathers in both directions.

7.3.2 Operations that Move Data

Two additions are made to many collective communication calls:

� Collective communication can occur \in place" for intracommunicators, with the out-
put bu�er being identical to the input bu�er. This is speci�ed by providing a special
argument value, MPI IN PLACE, instead of the send bu�er or the receive bu�er argu-
ment.

Rationale. The \in place" operations are provided to reduce unnecessary mem-
ory motion by both the MPI implementation and by the user. Note that while
the simple check of testing whether the send and receive bu�ers have the same
address will work for some cases (e.g., MPI ALLREDUCE), they are inadequate
in others (e.g., MPI GATHER, with root not equal to zero). Further, Fortran
explicitly prohibits aliasing of arguments; the approach of using a special value
to denote \in place" operation eliminates that di�culty. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

152 CHAPTER 7. EXTENDED COLLECTIVE OPERATIONS

0

1

2

1

2

0

3

Lcomm Rcomm

0

1

2

1

2

0

3

Lcomm Rcomm

Figure 7.4: Intercommunicator reduce-scatter. The focus of data to one process is rep-
resented, not mandated by the semantics. The two phases do reduce-scatters in both
directions.

Advice to users. By allowing the \in place" option, the receive bu�er in many of
the collective calls becomes a send-and-receive bu�er. For this reason, a Fortran
binding that includes INTENT must mark these as INOUT, not OUT.

Note that MPI IN PLACE is a special kind of value; it has the same restrictions
on its use that MPI BOTTOM has.

Some intracommunicator collective operations do not support the \in place"
option (e.g., MPI ALLTOALLV). (End of advice to users.)

� Collective communication applies to intercommunicators. If the operation is rooted
(e.g., broadcast, gather, scatter), then the transfer is unidirectional. The direction
of the transfer is indicated by a special value of the root argument. In this case, for
the group containing the root process, all processes in the group must call the routine
using a special argument for the root. The root process uses the special root value
MPI ROOT; all other processes in the same group as the root use MPI PROC NULL.
All processes in the other group (the group that is the remote group relative to the
root process) must call the collective routine and provide the rank of the root. If the
operation is unrooted (e.g., alltoall), then the transfer is bidirectional.

Note that the \in place" option for intracommunicators does not apply to intercom-
municators since in the intercommunicator case there is no communication from a
process to itself.

Rationale. Rooted operations are unidirectional by nature, and there is a clear way
of specifying direction. Non-rooted operations, such as all-to-all, will often occur as
part of an exchange, where it makes sense to communicate in both directions at once.
(End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.3. EXTENDED COLLECTIVE OPERATIONS 153

In the following, the de�nitions of the collective routines are provided to enhance the
readability and understanding of the associated text. They do not change the de�nitions
of the argument lists from MPI-1. The C and Fortran language bindings for these routines
are unchanged from MPI-1, and are not repeated here. Since new C++ bindings for the
intercommunicator versions are required, they are included. The text provided for each
routine is appended to the de�nition of the routine in MPI-1.

Broadcast

MPI BCAST(bu�er, count, datatype, root, comm)

INOUT bu�er starting address of bu�er (choice)

IN count number of entries in bu�er (integer)

IN datatype data type of bu�er (handle)

IN root rank of broadcast root (integer)

IN comm communicator (handle)

void MPI::Comm::Bcast(void* buffer, int count,

const MPI::Datatype& datatype, int root) const = 0

The \in place" option is not meaningful here.
If comm is an intercommunicator, then the call involves all processes in the intercom-

municator, but with one group (group A) de�ning the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI ROOT in root. All other processes in group A
pass the value MPI PROC NULL in root. Data is broadcast from the root to all processes in
group B. The receive bu�er arguments of the processes in group B must be consistent with
the send bu�er argument of the root.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

154 CHAPTER 7. EXTENDED COLLECTIVE OPERATIONS

Gather

MPI GATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

IN sendbuf starting address of send bu�er (choice)

IN sendcount number of elements in send bu�er (integer)

IN sendtype data type of send bu�er elements (handle)

OUT recvbuf address of receive bu�er (choice, signi�cant only at

root)

IN recvcount number of elements for any single receive (integer, sig-

ni�cant only at root)

IN recvtype data type of recv bu�er elements (handle, signi�cant

only at root)

IN root rank of receiving process (integer)

IN comm communicator (handle)

void MPI::Comm::Gather(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf, int recvcount,

const MPI::Datatype& recvtype, int root) const = 0

The \in place" option for intracommunicators is speci�ed by passing MPI IN PLACE as
the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and
the contribution of the root to the gathered vector is assumed to be already in the correct
place in the receive bu�er

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) de�ning the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI ROOT in root. All other processes in group A
pass the value MPI PROC NULL in root. Data is gathered from all processes in group B to
the root. The send bu�er arguments of the processes in group B must be consistent with
the receive bu�er argument of the root.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.3. EXTENDED COLLECTIVE OPERATIONS 155

MPI GATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root, comm)

IN sendbuf starting address of send bu�er (choice)

IN sendcount number of elements in send bu�er (integer)

IN sendtype data type of send bu�er elements (handle)

OUT recvbuf address of receive bu�er (choice, signi�cant only at

root)

IN recvcounts integer array (of length group size) containing the num-

ber of elements that are received from each process

(signi�cant only at root)

IN displs integer array (of length group size). Entry i speci�es

the displacement relative to recvbuf at which to place

the incoming data from process i (signi�cant only at

root)

IN recvtype data type of recv bu�er elements (handle, signi�cant

only at root)

IN root rank of receiving process (integer)

IN comm communicator (handle)

void MPI::Comm::Gatherv(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf,

const int recvcounts[], const int displs[],

const MPI::Datatype& recvtype, int root) const = 0

The \in place" option for intracommunicators is speci�ed by passing MPI IN PLACE as
the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and
the contribution of the root to the gathered vector is assumed to be already in the correct
place in the receive bu�er

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) de�ning the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI ROOT in root. All other processes in group A
pass the value MPI PROC NULL in root. Data is gathered from all processes in group B to
the root. The send bu�er arguments of the processes in group B must be consistent with
the receive bu�er argument of the root.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

156 CHAPTER 7. EXTENDED COLLECTIVE OPERATIONS

Scatter

MPI SCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

IN sendbuf address of send bu�er (choice, signi�cant only at root)

IN sendcount number of elements sent to each process (integer, sig-

ni�cant only at root)

IN sendtype data type of send bu�er elements (handle, signi�cant

only at root)

OUT recvbuf address of receive bu�er (choice)

IN recvcount number of elements in receive bu�er (integer)

IN recvtype data type of receive bu�er elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

void MPI::Comm::Scatter(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf, int recvcount,

const MPI::Datatype& recvtype, int root) const = 0

The \in place" option for intracommunicators is speci�ed by passing MPI IN PLACE as
the value of recvbuf at the root. In such case, recvcount and recvtype are ignored, and root
\sends" no data to itself. The scattered vector is still assumed to contain n segments, where
n is the group size; the root-th segment, which root should \send to itself," is not moved.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) de�ning the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI ROOT in root. All other processes in group A
pass the value MPI PROC NULL in root. Data is scattered from the root to all processes in
group B. The receive bu�er arguments of the processes in group B must be consistent with
the send bu�er argument of the root.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.3. EXTENDED COLLECTIVE OPERATIONS 157

MPI SCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root,
comm)

IN sendbuf address of send bu�er (choice, signi�cant only at root)

IN sendcounts integer array (of length group size) specifying the num-

ber of elements to send to each processor

IN displs integer array (of length group size). Entry i speci�es

the displacement (relative to sendbuf from which to

take the outgoing data to process i

IN sendtype data type of send bu�er elements (handle)

OUT recvbuf address of receive bu�er (choice)

IN recvcount number of elements in receive bu�er (integer)

IN recvtype data type of receive bu�er elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

void MPI::Comm::Scatterv(const void* sendbuf, const int sendcounts[],

const int displs[], const MPI::Datatype& sendtype,

void* recvbuf, int recvcount, const MPI::Datatype& recvtype,

int root) const = 0

The \in place" option for intracommunicators is speci�ed by passing MPI IN PLACE as
the value of recvbuf at the root. In such case, recvcount and recvtype are ignored, and root
\sends" no data to itself. The scattered vector is still assumed to contain n segments, where
n is the group size; the root-th segment, which root should \send to itself," is not moved.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) de�ning the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI ROOT in root. All other processes in group A
pass the value MPI PROC NULL in root. Data is scattered from the root to all processes in
group B. The receive bu�er arguments of the processes in group B must be consistent with
the send bu�er argument of the root.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

158 CHAPTER 7. EXTENDED COLLECTIVE OPERATIONS

\All" Forms and All-to-all

MPI ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

IN sendbuf starting address of send bu�er (choice)

IN sendcount number of elements in send bu�er (integer)

IN sendtype data type of send bu�er elements (handle)

OUT recvbuf address of receive bu�er (choice)

IN recvcount number of elements received from any process (inte-

ger)

IN recvtype data type of receive bu�er elements (handle)

IN comm communicator (handle)

void MPI::Comm::Allgather(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf, int recvcount,

const MPI::Datatype& recvtype) const = 0

The \in place" option for intracommunicators is speci�ed by passing the value
MPI IN PLACE to the argument sendbuf at all processes. sendcount and sendtype are ignored.
Then the input data of each process is assumed to be in the area where that process would
receive its own contribution to the receive bu�er. Speci�cally, the outcome of a call to
MPI ALLGATHER in the \in place" case is as if all processes executed n calls to

MPI_GATHER(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, recvbuf, recvcount,

recvtype, root, comm)

for root = 0, ..., n - 1.
If comm is an intercommunicator, then each process in group A contributes a data

item; these items are concatenated and the result is stored at each process in group B.
Conversely the concatenation of the contributions of the processes in group B is stored at
each process in group A. The send bu�er arguments in group A must be consistent with
the receive bu�er arguments in group B, and vice versa.

Advice to users. The communication pattern of MPI ALLGATHER executed on an
intercommunication domain need not be symmetric. The number of items sent by
processes in group A (as speci�ed by the arguments sendcount, sendtype in group A
and the arguments recvcount, recvtype in group B), need not equal the number of
items sent by processes in group B (as speci�ed by the arguments sendcount, sendtype
in group B and the arguments recvcount, recvtype in group A). In particular, one can
move data in only one direction by specifying sendcount = 0 for the communication
in the reverse direction.

(End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.3. EXTENDED COLLECTIVE OPERATIONS 159

MPI ALLGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, comm)

IN sendbuf starting address of send bu�er (choice)

IN sendcount number of elements in send bu�er (integer)

IN sendtype data type of send bu�er elements (handle)

OUT recvbuf address of receive bu�er (choice)

IN recvcounts integer array (of length group size) containing the num-

ber of elements that are received from each process

IN displs integer array (of length group size). Entry i speci�es

the displacement (relative to recvbuf) at which to place

the incoming data from process i

IN recvtype data type of receive bu�er elements (handle)

IN comm communicator (handle)

void MPI::Comm::Allgatherv(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf,

const int recvcounts[], const int displs[],

const MPI::Datatype& recvtype) const = 0

The \in place" option for intracommunicators is speci�ed by passing the value
MPI IN PLACE to the argument sendbuf at all processes. sendcount and sendtype are ignored.
Then the input data of each process is assumed to be in the area where that process would
receive its own contribution to the receive bu�er. Speci�cally, the outcome of a call to
MPI ALLGATHER in the \in place" case is as if all processes executed n calls to

MPI_GATHERV(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, recvbuf, recvcounts,

displs, recvtype, root, comm)

for root = 0, ..., n - 1.
If comm is an intercommunicator, then each process in group A contributes a data

item; these items are concatenated and the result is stored at each process in group B.
Conversely the concatenation of the contributions of the processes in group B is stored at
each process in group A. The send bu�er arguments in group A must be consistent with
the receive bu�er arguments in group B, and vice versa.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

160 CHAPTER 7. EXTENDED COLLECTIVE OPERATIONS

MPI ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

IN sendbuf starting address of send bu�er (choice)

IN sendcount number of elements sent to each process (integer)

IN sendtype data type of send bu�er elements (handle)

OUT recvbuf address of receive bu�er (choice)

IN recvcount number of elements received from any process (inte-

ger)

IN recvtype data type of receive bu�er elements (handle)

IN comm communicator (handle)

void MPI::Comm::Alltoall(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf, int recvcount,

const MPI::Datatype& recvtype) const = 0

No \in place" option is supported.
If comm is an intercommunicator, then the outcome is as if each process in group A

sends a message to each process in group B, and vice versa. The j-th send bu�er of process
i in group A should be consistent with the i-th receive bu�er of process j in group B, and
vice versa.

Advice to users. When all-to-all is executed on an intercommunication domain, then
the number of data items sent from processes in group A to processes in group B need
not equal the number of items sent in the reverse direction. In particular, one can have
unidirectional communication by specifying sendcount = 0 in the reverse direction.

(End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.3. EXTENDED COLLECTIVE OPERATIONS 161

MPI ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls, recvtype,
comm)

IN sendbuf starting address of send bu�er (choice)

IN sendcounts integer array equal to the group size specifying the

number of elements to send to each processor

IN sdispls integer array (of length group size). Entry j speci�es

the displacement (relative to sendbuf) from which to

take the outgoing data destined for process j

IN sendtype data type of send bu�er elements (handle)

OUT recvbuf address of receive bu�er (choice)

IN recvcounts integer array equal to the group size specifying the

number of elements that can be received from each

processor

IN rdispls integer array (of length group size). Entry i speci�es

the displacement (relative to recvbuf) at which to place

the incoming data from process i

IN recvtype data type of receive bu�er elements (handle)

IN comm communicator (handle)

void MPI::Comm::Alltoallv(const void* sendbuf, const int sendcounts[],

const int sdispls[], const MPI::Datatype& sendtype,

void* recvbuf, const int recvcounts[], const int rdispls[],

const MPI::Datatype& recvtype) const = 0

No \in place" option is supported.
If comm is an intercommunicator, then the outcome is as if each process in group A

sends a message to each process in group B, and vice versa. The j-th send bu�er of process
i in group A should be consistent with the i-th receive bu�er of process j in group B, and
vice versa.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

162 CHAPTER 7. EXTENDED COLLECTIVE OPERATIONS

7.3.3 Reductions

MPI REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)

IN sendbuf address of send bu�er (choice)

OUT recvbuf address of receive bu�er (choice, signi�cant only at

root)

IN count number of elements in send bu�er (integer)

IN datatype data type of elements of send bu�er (handle)

IN op reduce operation (handle)

IN root rank of root process (integer)

IN comm communicator (handle)

void MPI::Comm::Reduce(const void* sendbuf, void* recvbuf, int count,

const MPI::Datatype& datatype, const MPI::Op& op, int root)

const = 0

The \in place" option for intracommunicators is speci�ed by passing the value
MPI IN PLACE to the argument sendbuf at the root. In such case, the input data is taken at
the root from the receive bu�er, where it will be replaced by the output data.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) de�ning the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI ROOT in root. All other processes in group A
pass the value MPI PROC NULL in root. Only send bu�er arguments are signi�cant in group
B and only receive bu�er arguments are signi�cant at the root.

MPI ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm)

IN sendbuf starting address of send bu�er (choice)

OUT recvbuf starting address of receive bu�er (choice)

IN count number of elements in send bu�er (integer)

IN datatype data type of elements of send bu�er (handle)

IN op operation (handle)

IN comm communicator (handle)

void MPI::Comm::Allreduce(const void* sendbuf, void* recvbuf, int count,

const MPI::Datatype& datatype, const MPI::Op& op) const = 0

The \in place" option for intracommunicators is speci�ed by passing the value
MPI IN PLACE to the argument sendbuf at the root. In such case, the input data is taken at
each process from the receive bu�er, where it will be replaced by the output data.

If comm is an intercommunicator, then the result of the reduction of the data provided
by processes in group A is stored at each process in group B, and vice versa. Both groups
should provide the same count value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.3. EXTENDED COLLECTIVE OPERATIONS 163

MPI REDUCE SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm)

IN sendbuf starting address of send bu�er (choice)

OUT recvbuf starting address of receive bu�er (choice)

IN recvcounts integer array specifying the number of elements in re-

sult distributed to each process. Array must be iden-

tical on all calling processes.

IN datatype data type of elements of input bu�er (handle)

IN op operation (handle)

IN comm communicator (handle)

void MPI::Comm::Reduce scatter(const void* sendbuf, void* recvbuf,

int recvcounts[], const MPI::Datatype& datatype,

const MPI::Op& op) const = 0

The \in place" option for intracommunicators is speci�ed by passing MPI IN PLACE in
the sendbuf argument. In this case, the input data is taken from the top of the receive
bu�er. Note that the area occupied by the input data may be either longer or shorter than
the data �lled by the output data.

If comm is an intercommunicator, then the result of the reduction of the data provided
by processes in group A is scattered among processes in group B, and vice versa. Within each
group, all processes provide the same recvcounts argument, and the sum of the recvcounts
entries should be the same for the two groups.

Rationale. The last restriction is needed so that the length of the send bu�er can be
determined by the sum of the local recvcounts entries. Otherwise, a communication
is needed to �gure out how many elements are reduced. (End of rationale.)

7.3.4 Other Operations

MPI BARRIER(comm)

IN comm communicator (handle)

void MPI::Comm::Barrier() const = 0

ForMPI-2, commmay be an intercommunicator or an intracommunicator. If comm is an
intercommunicator, the barrier is performed across all processes in the intercommunicator.
In this case, all processes in the local group of the intercommunicator may exit the barrier
when all of the processes in the remote group have entered the barrier.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

164 CHAPTER 7. EXTENDED COLLECTIVE OPERATIONS

MPI SCAN(sendbuf, recvbuf, count, datatype, op, comm)

IN sendbuf starting address of send bu�er (choice)

OUT recvbuf starting address of receive bu�er (choice)

IN count number of elements in input bu�er (integer)

IN datatype data type of elements of input bu�er (handle)

IN op operation (handle)

IN comm communicator (handle)

The \in place" option for intracommunicators is speci�ed by passing MPI IN PLACE in
the sendbuf argument. In this case, the input data is taken from the receive bu�er, and
replaced by the output data.

This operation is illegal for intercommunicators.

7.3.5 Generalized All-to-all Function

One of the basic data movement operations needed in parallel signal processing is the 2-D
matrix transpose. This operation has motivated a generalization of the MPI ALLTOALLV
function. This new collective operation is MPI ALLTOALLW; the \W" indicates that it is
an extension to MPI ALLTOALLV.

The following function is the most general form of All-to-all. Like
MPI TYPE CREATE STRUCT, the most general type constructor, MPI ALLTOALLW allows
separate speci�cation of count, displacement and datatype. In addition, to allow maximum
exibility, the displacement of blocks within the send and receive bu�ers is speci�ed in
bytes.

Rationale. The MPI ALLTOALLW function generalizes several MPI functions by care-
fully selecting the input arguments. For example, by making all but one process have
sendcounts[i] = 0, this achieves an MPI SCATTERW function. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.3. EXTENDED COLLECTIVE OPERATIONS 165

MPI ALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recv-
types, comm)

IN sendbuf starting address of send bu�er (choice)

IN sendcounts integer array equal to the group size specifying the

number of elements to send to each processor (integer)

IN sdispls integer array (of length group size). Entry j speci�es

the displacement in bytes (relative to sendbuf) from

which to take the outgoing data destined for process j

IN sendtypes array of datatypes (of length group size). Entry j spec-

i�es the type of data to send to process j (handle)

OUT recvbuf address of receive bu�er (choice)

IN recvcounts integer array equal to the group size specifying the

number of elements that can be received from each

processor (integer)

IN rdispls integer array (of length group size). Entry i speci�es

the displacement in bytes (relative to recvbuf) at which

to place the incoming data from process i

IN recvtypes array of datatypes (of length group size). Entry i spec-

i�es the type of data received from process i (handle)

IN comm communicator (handle)

int MPI Alltoallw(void *sendbuf, int sendcounts[], int sdispls[],

MPI Datatype sendtypes[], void *recvbuf, int recvcounts[],

int rdispls[], MPI Datatype recvtypes[], MPI Comm comm)

MPI ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS,

RDISPLS, RECVTYPES, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*),

RDISPLS(*), RECVTYPES(*), COMM, IERROR

void MPI::Comm::Alltoallw(const void* sendbuf, const int sendcounts[],

const int sdispls[], const MPI::Datatype sendtypes[], void*

recvbuf, const int recvcounts[], const int rdispls[], const

MPI::Datatype recvtypes[]) const = 0

No \in place" option is supported.
The j-th block sent from process i is received by process j and is placed in the i-th

block of recvbuf. These blocks need not all have the same size.
The type signature associated with sendcounts[j], sendtypes[j] at process imust be equal

to the type signature associated with recvcounts[i], recvtypes[i] at process j. This implies
that the amount of data sent must be equal to the amount of data received, pairwise between
every pair of processes. Distinct type maps between sender and receiver are still allowed.

The outcome is as if each process sent a message to every other process with

MPI Send(sendbuf+ sdispls[i]; sendcounts[i];sendtypes[i]; i; :::);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

166 CHAPTER 7. EXTENDED COLLECTIVE OPERATIONS

and received a message from every other process with a call to

MPI Recv(recvbuf+ rdispls[i]; recvcounts[i];recvtypes[i]; i; :::):

All arguments on all processes are signi�cant. The argument comm must describe the
same communicator on all processes.

If comm is an intercommunicator, then the outcome is as if each process in group A
sends a message to each process in group B, and vice versa. The j-th send bu�er of process
i in group A should be consistent with the i-th receive bu�er of process j in group B, and
vice versa.

7.3.6 Exclusive Scan

MPI-1 provides an inclusive scan operation. The exclusive scan is described here.

MPI EXSCAN(sendbuf, recvbuf, count, datatype, op, comm)

IN sendbuf starting address of send bu�er (choice)

OUT recvbuf starting address of receive bu�er (choice)

IN count number of elements in input bu�er (integer)

IN datatype data type of elements of input bu�er (handle)

IN op operation (handle)

IN comm intracommunicator (handle)

int MPI Exscan(void *sendbuf, void *recvbuf, int count,

MPI Datatype datatype, MPI Op op, MPI Comm comm)

MPI EXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, IERROR

void MPI::Intracomm::Exscan(const void* sendbuf, void* recvbuf, int count,

const MPI::Datatype& datatype, const MPI::Op& op) const

MPI EXSCAN is used to perform a pre�x reduction on data distributed across the group.
The value in recvbuf on the process with rank 0 is unde�ned, and recvbuf is not sign�cant
on process 0. The value in recvbuf on the process with rank 1 is de�ned as the value in
sendbuf on the process with rank 0. For processes with rank i > 1, the operation returns, in
the receive bu�er of the process with rank i, the reduction of the values in the send bu�ers
of processes with ranks 0; : : : ; i � 1 (inclusive). The type of operations supported, their
semantics, and the constraints on send and receive bu�ers, are as for MPI REDUCE.

No \in place" option is supported.

Advice to users. As for MPI SCAN, MPI does not specify which processes may call
the operation, only that the result be correctly computed. In particular, note that
the process with rank 1 need not call the MPI Op, since all it needs to do is to receive
the value from the process with rank 0. However, all processes, even the processes
with ranks zero and one, must provide the same op. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.3. EXTENDED COLLECTIVE OPERATIONS 167

Rationale. The exclusive scan is more general than the inclusive scan provided
in MPI-1 as MPI SCAN. Any inclusive scan operation can be achieved by using the
exclusive scan and then locally combining the local contribution. Note that for non-
invertable operations such as MPI MAX, the exclusive scan cannot be computed with
the inclusive scan.

The reason that MPI-1 chose the inclusive scan is that the de�nition of behavior
on processes zero and one was thought to o�er too many complexities in de�nition,
particularly for user-de�ned operations. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

168 CHAPTER 7. EXTENDED COLLECTIVE OPERATIONS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 8

External Interfaces

8.1 Introduction

This chapter begins with calls used to create generalized requests. The objective of this
MPI-2 addition is to allow users ofMPI to be able to create new nonblocking operations with
an interface similar to what is present in MPI. This can be used to layer new functionality
on top of MPI. Next, Section 8.3 deals with setting the information found in status. This is
needed for generalized requests.

Section 8.4 allows users to associate names with communicators, windows, and datatypes.
This will allow debuggers and pro�lers to identify communicators, windows, and datatypes
with more useful labels. Section 8.5 allows users to add error codes, classes, and strings to
MPI. With users being able to layer functionality on top of MPI, it is desirable for them to
use the same error mechanisms found in MPI.

Section 8.6 deals with decoding datatypes. The opaque datatype object has found
a number of uses outside MPI. Furthermore, a number of tools wish to display internal
information about a datatype. To achieve this, datatype decoding functions are provided.

The chapter continues, in Section 8.7, with a discussion of how threads are to be handled
in MPI-2. Although thread compliance is not required, the standard speci�es how threads
are to work if they are provided. Section 8.8 has information on caching on communicators,
datatypes, and windows. Finally, Section 8.9 discusses duplicating a datatype.

8.2 Generalized Requests

The goal of this MPI-2 extension is to allow users to de�ne new nonblocking operations.
Such an outstanding nonblocking operation is represented by a (generalized) request. A
fundamental property of nonblocking operations is that progress toward the completion of
this operation occurs asynchronously, i.e., concurrently with normal program execution.
Typically, this requires execution of code concurrently with the execution of the user code,
e.g., in a separate thread or in a signal handler. Operating systems provide a variety of
mechanisms in support of concurrent execution. MPI does not attempt to standardize or
replace these mechanisms: it is assumed programmers who wish to de�ne new asynchronous
operations will use the mechanisms provided by the underlying operating system. Thus,
the calls in this section only provide a means for de�ning the e�ect of MPI calls such as
MPI WAIT or MPI CANCEL when they apply to generalized requests, and for signaling to
MPI the completion of a generalized operation.

169

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

170 CHAPTER 8. EXTERNAL INTERFACES

Rationale. It is tempting to also de�ne an MPI standard mechanism for achieving
concurrent execution of user-de�ned nonblocking operations. However, it is very dif-
�cult to de�ne such a mechanism without consideration of the speci�c mechanisms
used in the operating system. The Forum feels that concurrency mechanisms are a
proper part of the underlying operating system and should not be standardized by
MPI; the MPI standard should only deal with the interaction of such mechanisms with
MPI. (End of rationale.)

For a regular request, the operation associated with the request is performed by the
MPI implementation, and the operation completes without intervention by the application.
For a generalized request, the operation associated with the request is performed by the
application; therefore, the application must notify MPI when the operation completes. This
is done by making a call to MPI GREQUEST COMPLETE. MPI maintains the \completion"
status of generalized requests. Any other request state has to be maintained by the user.

A new generalized request is started with

MPI GREQUEST START(query fn, free fn, cancel fn, extra state, request)

IN query fn callback function invoked when request status is queried

(function)

IN free fn callback function invoked when request is freed (func-

tion)

IN cancel fn callback function invoked when request is cancelled

(function)

IN extra state extra state

OUT request generalized request (handle)

int MPI Grequest start(MPI Grequest query function *query fn,

MPI Grequest free function *free fn,

MPI Grequest cancel function *cancel fn, void *extra state,

MPI Request *request)

MPI GREQUEST START(QUERY FN, FREE FN, CANCEL FN, EXTRA STATE, REQUEST,

IERROR)

INTEGER REQUEST, IERROR

EXTERNAL QUERY FN, FREE FN, CANCEL FN

INTEGER (KIND=MPI ADDRESS KIND) EXTRA STATE

static MPI::Grequest

MPI::Grequest::Start(const MPI::Grequest::Query function

query fn, const MPI::Grequest::Free function free fn,

const MPI::Grequest::Cancel function cancel fn,

void *extra state)

Advice to users. Note that a generalized request belongs, in C++, to the class
MPI::Grequest, which is a derived class of MPI::Request. It is of the same type as
regular requests, in C and Fortran. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.2. GENERALIZED REQUESTS 171

The call starts a generalized request and returns a handle to it in request.
The syntax and meaning of the callback functions are listed below. All callback func-

tions are passed the extra state argument that was associated with the request by the start-
ing call MPI GREQUEST START. This can be used to maintain user-de�ned state for the
request. In C, the query function is

typedef int MPI Grequest query function(void *extra state,

MPI Status *status);

in Fortran

SUBROUTINE GREQUEST QUERY FUNCTION(EXTRA STATE, STATUS, IERROR)

INTEGER STATUS(MPI STATUS SIZE), IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE

and in C++

typedef int MPI::Grequest::Query function(void* extra state,

MPI::Status& status);

query fn function computes the status that should be returned for the generalized re-
quest. The status also includes information about successful/unsuccessful cancellation of
the request (result to be returned by MPI TEST CANCELLED).

query fn callback is invoked by theMPI fWAITjTESTgfANYjSOMEjALLg call that com-
pleted the generalized request associated with this callback. The callback function is also
invoked by calls to MPI REQUEST GET STATUS, if the request is complete when the call
occurs. In both cases, the callback is passed a reference to the corresponding status vari-
able passed by the user to the MPI call; the status set by the callback function is re-
turned by the MPI call. If the user provided MPI STATUS IGNORE or MPI STATUSES IGNORE

to the MPI function that causes query fn to be called, then MPI will pass a valid status
object to query fn, and this status will be ignored upon return of the callback function.
Note that query fn is invoked only after MPI GREQUEST COMPLETE is called on the re-
quest; it may be invoked several times for the same generalized request, e.g., if the user
calls MPI REQUEST GET STATUS several times for this request. Note also that a call to
MPI fWAITjTESTgfSOMEjALLg may cause multiple invocations of query fn callback func-
tions, one for each generalized request that is completed by the MPI call. The order of these
invocations is not speci�ed by MPI.

In C, the free function is

typedef int MPI Grequest free function(void *extra state);

and in Fortran

SUBROUTINE GREQUEST FREE FUNCTION(EXTRA STATE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE

and in C++

typedef int MPI::Grequest::Free function(void* extra state);

free fn function is invoked to clean up user-allocated resources when the generalized
request is freed.

free fn callback is invoked by the MPI fWAITjTESTgfANYjSOMEjALLg call that com-
pleted the generalized request associated with this callback. free fn is invoked after the call

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

172 CHAPTER 8. EXTERNAL INTERFACES

to query fn for the same request. However, if the MPI call completed multiple generalized
requests, the order in which free fn callback functions are invoked is not speci�ed by MPI.

free fn callback is also invoked for generalized requests that are freed by a call to
MPI REQUEST FREE (no call toWAIT fWAITjTESTgfANYjSOMEjALLg will occur for such
a request). In this case, the callback function will be called either in the MPI call
MPI REQUEST FREE(request), or in the MPI call MPI GREQUEST COMPLETE(request),
whichever happens last. I.e., in this case the actual freeing code is executed as soon as both
calls MPI REQUEST FREE and MPI GREQUEST COMPLETE have occurred. The request
is not deallocated until after free fn completes. Note that free fn will be invoked only once
per request by a correct program.

Advice to users. Calling MPI REQUEST FREE(request) will cause the request handle
to be set to MPI REQUEST NULL. This handle to the generalized request is no longer
valid. However, user copies of this handle are valid until after free fn completes since
MPI does not deallocate the object until then. Since free fn is not called until after
MPI GREQUEST COMPLETE, the user copy of the handle can be used to make this
call. Users should note that MPI will deallocate the object after free fn executes. At
this point, user copies of the request handle no longer point to a valid request. MPI
will not set user copies to MPI REQUEST NULL in this case, so it is up to the user to
avoid accessing this stale handle. This is a special case where MPI defers deallocating
the object until a later time that is known by the user. (End of advice to users.)

In C, the cancel function is
typedef int MPI Grequest cancel function(void *extra state, int complete);

in Fortran

SUBROUTINE GREQUEST CANCEL FUNCTION(EXTRA STATE, COMPLETE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE

LOGICAL COMPLETE

and in C++

typedef int MPI::Grequest::Cancel function(void* extra state,

bool complete);

cancel fn function is invoked to start the cancelation of a generalized request. It is called
by MPI REQUEST CANCEL(request). MPI passes to the callback function complete=true if
MPI GREQUEST COMPLETE was already called on the request, and
complete=false otherwise.

All callback functions return an error code. The code is passed back and dealt with as
appropriate for the error code by the MPI function that invoked the callback function. For
example, if error codes are returned then the error code returned by the callback function
will be returned by the MPI function that invoked the callback function. In the case of
MPI fWAITjTESTgfANYg call that invokes both query fn and free fn, the MPI call will
return the error code returned by the last callback, namely free fn. If one or more of the
requests in a call to MPI fWAITjTESTgfSOMEjALLg failed, then the MPI call will return
MPI ERR IN STATUS. In such a case, if the MPI call was passed an array of statuses, then
MPI will return in each of the statuses that correspond to a completed generalized request

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.2. GENERALIZED REQUESTS 173

the error code returned by the corresponding invocation of its free fn callback function.
However, if the MPI function was passed MPI STATUSES IGNORE, then the individual error
codes returned by each callback functions will be lost.

Advice to users. query fn must not set the error �eld of status since query fn may be
called by MPI WAIT or MPI TEST, in which case the error �eld of status should not
change. The MPI library knows the \context" in which query fn is invoked and can
decide correctly when to put in the error �eld of status the returned error code. (End
of advice to users.)

MPI GREQUEST COMPLETE(request)

INOUT request generalized request (handle)

int MPI Grequest complete(MPI Request request)

MPI GREQUEST COMPLETE(REQUEST, IERROR)

INTEGER REQUEST, IERROR

void MPI::Grequest::Complete()

The call informsMPI that the operations represented by the generalized request request
are complete. (See de�nitions in Section 2.4.) A call to MPI WAIT(request, status) will
return and a call to MPI TEST(request, ag, status) will return ag=true only after a call
to MPI GREQUEST COMPLETE has declared that these operations are complete.

MPI imposes no restrictions on the code executed by the callback functions. However,
new nonblocking operations should be de�ned so that the general semantic rules about MPI
calls such as MPI TEST, MPI REQUEST FREE, or MPI CANCEL still hold. For example,
all these calls are supposed to be local and nonblocking. Therefore, the callback functions
query fn, free fn, or cancel fn should invoke blocking MPI communication calls only if the
context is such that these calls are guaranteed to return in �nite time. Once MPI CANCEL
is invoked, the cancelled operation should complete in �nite time, irrespective of the state of
other processes (the operation has acquired \local" semantics). It should either succeed, or
fail without side-e�ects. The user should guarantee these same properties for newly de�ned
operations.

Advice to implementors. A call to MPI GREQUEST COMPLETE may unblock a
blocked user process/thread. The MPI library should ensure that the blocked user
computation will resume. (End of advice to implementors.)

8.2.1 Examples

Example 8.1 This example shows the code for a user-de�ned reduce operation on an int

using a binary tree: each non-root node receives two messages, sums them, and sends them
up. We assume that no status is returned and that the operation cannot be cancelled.

typedef struct {

MPI_Comm comm;

int tag;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

174 CHAPTER 8. EXTERNAL INTERFACES

int root;

int valin;

int *valout;

MPI_Request request;

} ARGS;

int myreduce(MPI_Comm comm, int tag, int root,

int valin, int *valout, MPI_Request *request)

{

ARGS *args;

pthread_t thread;

/* start request */

MPI_Grequest_start(query_fn, free_fn, cancel_fn, NULL, request);

args = (ARGS*)malloc(sizeof(ARGS));

args->comm = comm;

args->tag = tag;

args->root = root;

args->valin = valin;

args->valout = valout;

args->request = *request;

/* spawn thread to handle request */

/* The availability of the pthread_create call is system dependent */

pthread_create(&thread, NULL, reduce_thread, args);

return MPI_SUCCESS;

}

/* thread code */

void reduce_thread(void *ptr)

{

int lchild, rchild, parent, lval, rval, val;

MPI_Request req[2];

ARGS *args;

args = (ARGS*)ptr;

/* compute left,right child and parent in tree; set

to MPI_PROC_NULL if does not exist */

/* code not shown */

...

MPI_Irecv(&lval, 1, MPI_INT, lchild, args->tag, args->comm, &req[0]);

MPI_Irecv(&rval, 1, MPI_INT, rchild, args->tag, args->comm, &req[1]);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.3. ASSOCIATING INFORMATION WITH STATUS 175

MPI_Waitall(2, req, MPI_STATUSES_IGNORE);

val = lval + args->valin + rval;

MPI_Send(&val, 1, MPI_INT, parent, args->tag, args->comm);

if (parent == MPI_PROC_NULL) *(args->valout) = val;

MPI_Grequest_complete((args->request));

free(ptr);

return;

}

int query_fn(void *extra_state, MPI_Status *status)

{

/* always send just one int */

MPI_Status_set_elements(status, MPI_INT, 1);

/* can never cancel so always true */

MPI_Status_set_cancelled(status, 0);

/* choose not to return a value for this */

status->MPI_SOURCE = MPI_UNDEFINED;

/* tag has not meaning for this generalized request */

status->MPI_TAG = MPI_UNDEFINED;

/* this generalized request never fails */

return MPI_SUCCESS;

}

int free_fn(void *extra_state)

{

/* this generalized request does not need to do any freeing */

/* as a result it never fails here */

return MPI_SUCCESS;

}

int cancel_fn(void *extra_state, int complete)

{

/* This generalized request does not support cancelling.

Abort if not already done. If done then treat as if cancel failed. */

if (!complete) {

fprintf(stderr, "Cannot cancel generalized request - aborting program\n");

MPI_Abort(MPI_COMM_WORLD, 99);

}

return MPI_SUCCESS;

}

8.3 Associating Information with Status

InMPI-1, requests were associated with point-to-point operations. InMPI-2 there are several
di�erent types of requests. These range from new MPI calls for I/O to generalized requests.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

176 CHAPTER 8. EXTERNAL INTERFACES

It is desirable to allow these calls use the same request mechanism. This allows one to
wait or test on di�erent types of requests. However, MPI fTESTjWAITgfANYjSOMEjALLg
returns a status with information about the request. With the generalization of requests,
one needs to de�ne what information will be returned in the status object.

In MPI-2, each call �lls in the appropriate �elds in the status object. Any unused �elds
will have unde�ned values. A call to MPI fTESTjWAITgfANYjSOMEjALLg can modify any
of the �elds in the status object. Speci�cally, it can modify �elds that are unde�ned. The
�elds with meaningful value for a given request are de�ned in the sections with the new
request.

Generalized requests raise additional considerations. Here, the user provides the func-
tions to deal with the request. Unlike other MPI calls, the user needs to provide the
information to be returned in status. The status argument is provided directly to the call-
back function where the status needs to be set. Users can directly set the values in 3 of the
5 status values. The count and cancel �elds are opaque. To overcome this, new calls are
provided:

MPI STATUS SET ELEMENTS(status, datatype, count)

INOUT status status to associate count with (Status)

IN datatype datatype associated with count (handle)

IN count number of elements to associate with status (integer)

int MPI Status set elements(MPI Status *status, MPI Datatype datatype,

int count)

MPI STATUS SET ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI STATUS SIZE), DATATYPE, COUNT, IERROR

void MPI::Status::Set elements(const MPI::Datatype& datatype, int count)

This call modi�es the opaque part of status so that a call to MPI GET ELEMENTS will
return count. MPI GET COUNT will return a compatible value.

Rationale. The number of elements is set instead of the count because the former
can deal with nonintegral number of datatypes. (End of rationale.)

A subsequent call to MPI GET COUNT(status, datatype, count) or to
MPI GET ELEMENTS(status, datatype, count) must use a datatype argument that has the
same type signature as the datatype argument that was used in the call to
MPI STATUS SET ELEMENTS.

Rationale. This is similar to the restriction that holds when when
count is set by a receive operation: in that case, the calls to MPI GET COUNT and
MPI GET ELEMENTS must use a datatype with the same signature as the datatype
used in the receive call. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.4. NAMING OBJECTS 177

MPI STATUS SET CANCELLED(status, ag)

INOUT status status to associate cancel ag with (Status)

IN ag if true indicates request was cancelled (logical)

int MPI Status set cancelled(MPI Status *status, int flag)

MPI STATUS SET CANCELLED(STATUS, FLAG, IERROR)

INTEGER STATUS(MPI STATUS SIZE), IERROR

LOGICAL FLAG

void MPI::Status::Set cancelled(bool flag)

If ag is set to true then a subsequent call to MPI TEST CANCELLED(status, ag) will
also return ag = true, otherwise it will return false.

Advice to users. Users are advised not to reuse the status �elds for values other
than those for which they were intended. Doing so may lead to unexpected results
when using the status object. For example, calling MPI GET ELEMENTS may cause
an error if the value is out of range or it may be impossible to detect such an error.
The extra state argument provided with a generalized request can be used to return
information that does not logically belong in status. Furthermore, modifying the
values in a status set internally by MPI, e.g., MPI RECV, may lead to unpredictable
results and is strongly discouraged. (End of advice to users.)

8.4 Naming Objects

There are many occasions on which it would be useful to allow a user to associate a printable
identi�er with an MPI communicator, window, or datatype, for instance error reporting,
debugging, and pro�ling. The names attached to opaque objects do not propagate when
the object is duplicated or copied by MPI routines. For communicators this can be achieved
using the following two functions.

MPI COMM SET NAME (comm, comm name)

INOUT comm communicator whose identi�er is to be set (handle)

IN comm name the character string which is remembered as the name

(string)

int MPI Comm set name(MPI Comm comm, char *comm name)

MPI COMM SET NAME(COMM, COMM NAME, IERROR)

INTEGER COMM, IERROR

CHARACTER*(*) COMM NAME

void MPI::Comm::Set name(const char* comm name)

MPI COMM SET NAME allows a user to associate a name string with a communicator.
The character string which is passed to MPI COMM SET NAME will be saved inside the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

178 CHAPTER 8. EXTERNAL INTERFACES

MPI library (so it can be freed by the caller immediately after the call, or allocated on the
stack). Leading spaces in name are signi�cant but trailing ones are not.

MPI COMM SET NAME is a local (non-collective) operation, which only a�ects the
name of the communicator as seen in the process which made the MPI COMM SET NAME
call. There is no requirement that the same (or any) name be assigned to a communicator
in every process where it exists.

Advice to users. Since MPI COMM SET NAME is provided to help debug code, it
is sensible to give the same name to a communicator in all of the processes where it
exists, to avoid confusion. (End of advice to users.)

The length of the name which can be stored is limited to the value of
MPI MAX OBJECT NAME in Fortran and MPI MAX OBJECT NAME-1 in C and C++ to allow
for the null terminator. Attempts to put names longer than this will result in truncation of
the name. MPI MAX OBJECT NAME must have a value of at least 64.

Advice to users. Under circumstances of store exhaustion an attempt to put a name
of any length could fail, therefore the value of MPI MAX OBJECT NAME should be
viewed only as a strict upper bound on the name length, not a guarantee that setting
names of less than this length will always succeed. (End of advice to users.)

Advice to implementors. Implementations which pre-allocate a �xed size space for a
name should use the length of that allocation as the value of MPI MAX OBJECT NAME.
Implementations which allocate space for the name from the heap should still de�ne
MPI MAX OBJECT NAME to be a relatively small value, since the user has to allocate
space for a string of up to this size when calling MPI COMM GET NAME. (End of
advice to implementors.)

MPI COMM GET NAME (comm, comm name, resultlen)

IN comm communicator whose name is to be returned (handle)

OUT comm name the name previously stored on the communicator, or

an empty string if no such name exists (string)

OUT resultlen length of returned name (integer)

int MPI Comm get name(MPI Comm comm, char *comm name, int *resultlen)

MPI COMM GET NAME(COMM, COMM NAME, RESULTLEN, IERROR)

INTEGER COMM, RESULTLEN, IERROR

CHARACTER*(*) COMM NAME

void MPI::Comm::Get name(char* comm name, int& resultlen) const

MPI COMM GET NAME returns the last name which has previously been associated
with the given communicator. The name may be set and got from any language. The same
name will be returned independent of the language used. name should be allocated so that
it can hold a resulting string of length MPI MAX OBJECT NAME characters.
MPI COMM GET NAME returns a copy of the set name in name.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.4. NAMING OBJECTS 179

If the user has not associated a name with a communicator, or an error occurs,
MPI COMM GET NAME will return an empty string (all spaces in Fortran, "" in C and
C++). The three prede�ned communicators will have prede�ned names associated with
them. Thus, the names of MPI COMM WORLD, MPI COMM SELF, and MPI COMM PARENT

will have the default of MPI COMM WORLD, MPI COMM SELF, and MPI COMM PARENT. The fact
that the system may have chosen to give a default name to a communicator does not prevent
the user from setting a name on the same communicator; doing this removes the old name
and assigns the new one.

Rationale. We provide separate functions for setting and getting the name of a com-
municator, rather than simply providing a prede�ned attribute key for the following
reasons:

� It is not, in general, possible to store a string as an attribute from Fortran.

� It is not easy to set up the delete function for a string attribute unless it is known
to have been allocated from the heap.

� To make the attribute key useful additional code to call strdup is necessary. If
this is not standardized then users have to write it. This is extra unneeded work
which we can easily eliminate.

� The Fortran binding is not trivial to write (it will depend on details of the
Fortran compilation system), and will not be portable. Therefore it should be in
the library rather than in user code.

(End of rationale.)

Advice to users. The above de�nition means that it is safe simply to print the string
returned by MPI COMM GET NAME, as it is always a valid string even if there was
no name.

Note that associating a name with a communicator has no e�ect on the semantics of
anMPI program, and will (necessarily) increase the store requirement of the program,
since the names must be saved. Therefore there is no requirement that users use these
functions to associate names with communicators. However debugging and pro�ling
MPI applications may be made easier if names are associated with communicators,
since the debugger or pro�ler should then be able to present information in a less
cryptic manner. (End of advice to users.)

The following functions are used for setting and getting names of datatypes.

MPI TYPE SET NAME (type, type name)

INOUT type datatype whose identi�er is to be set (handle)

IN type name the character string which is remembered as the name

(string)

int MPI Type set name(MPI Datatype type, char *type name)

MPI TYPE SET NAME(TYPE, TYPE NAME, IERROR)

INTEGER TYPE, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

180 CHAPTER 8. EXTERNAL INTERFACES

CHARACTER*(*) TYPE NAME

void MPI::Datatype::Set name(const char* type name)

MPI TYPE GET NAME (type, type name, resultlen)

IN type datatype whose name is to be returned (handle)

OUT type name the name previously stored on the datatype, or a empty

string if no such name exists (string)

OUT resultlen length of returned name (integer)

int MPI Type get name(MPI Datatype type, char *type name, int *resultlen)

MPI TYPE GET NAME(TYPE, TYPE NAME, RESULTLEN, IERROR)

INTEGER TYPE, RESULTLEN, IERROR

CHARACTER*(*) TYPE NAME

void MPI::Datatype::Get name(char* type name, int& resultlen) const

Named prede�ned datatypes have the default names of the datatype name. For exam-
ple, MPI WCHAR has the default name of MPI WCHAR.

The following functions are used for setting and getting names of windows.

MPI WIN SET NAME (win, win name)

INOUT win window whose identi�er is to be set (handle)

IN win name the character string which is remembered as the name

(string)

int MPI Win set name(MPI Win win, char *win name)

MPI WIN SET NAME(WIN, WIN NAME, IERROR)

INTEGER WIN, IERROR

CHARACTER*(*) WIN NAME

void MPI::Win::Set name(const char* win name)

MPI WIN GET NAME (win, win name, resultlen)

IN win window whose name is to be returned (handle)

OUT win name the name previously stored on the window, or a empty

string if no such name exists (string)

OUT resultlen length of returned name (integer)

int MPI Win get name(MPI Win win, char *win name, int *resultlen)

MPI WIN GET NAME(WIN, WIN NAME, RESULTLEN, IERROR)

INTEGER WIN, RESULTLEN, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.5. ERROR CLASSES, ERROR CODES, AND ERROR HANDLERS 181

CHARACTER*(*) WIN NAME

void MPI::Win::Get name(char* win name, int& resultlen) const

8.5 Error Classes, Error Codes, and Error Handlers

Users may want to write a layered library on top of an existing MPI implementation, and
this library may have its own set of error codes and classes. An example of such a library is
an I/O library based on the I/O chapter in MPI-2. For this purpose, functions are needed
to:

1. add a new error class to the ones an MPI implementation already knows.

2. associate error codes with this error class, so that MPI ERROR CLASS works.

3. associate strings with these error codes, so that MPI ERROR STRING works.

4. invoke the error handler associated with a communicator, window, or object.

Several new functions are provided to do this. They are all local. No functions are provided
to free error handlers or error classes: it is not expected that an application will generate
them in signi�cant numbers.

MPI ADD ERROR CLASS(errorclass)

OUT errorclass value for the new error class (integer)

int MPI Add error class(int *errorclass)

MPI ADD ERROR CLASS(ERRORCLASS, IERROR)

INTEGER ERRORCLASS, IERROR

int MPI::Add error class()

Creates a new error class and returns the value for it.

Rationale. To avoid conicts with existing error codes and classes, the value is set
by the implementation and not by the user. (End of rationale.)

Advice to implementors. A high quality implementation will return the value for
a new errorclass in the same deterministic way on all processes. (End of advice to
implementors.)

Advice to users. Since a call toMPI ADD ERROR CLASS is local, the same errorclass
may not be returned on all processes that make this call. Thus, it is not safe to
assume that registering a new error on a set of processes at the same time will yield
the same errorclass on all of the processes. However, if an implementation returns
the new errorclass in a deterministic way, and they are always generated in the same
order on the same set of processes (for example, all processes), then the value will
be the same. However, even if a deterministic algorithm is used, the value can vary

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

182 CHAPTER 8. EXTERNAL INTERFACES

across processes. This can happen, for example, if di�erent but overlapping groups of
processes make a series of calls. As a result of these issues, getting the \same" error
on multiple processes may not cause the same value of error code to be generated.
(End of advice to users.)

The value of MPI ERR LASTCODE is not a�ected by new user-de�ned error codes and
classes. As in MPI-1, it is a constant value. Instead, a prede�ned attribute key
MPI LASTUSEDCODE is associated with MPI COMM WORLD. The attribute value correspond-
ing to this key is the current maximum error class including the user-de�ned ones. This is
a local value and may be di�erent on di�erent processes. The value returned by this key is
always greater than or equal to MPI ERR LASTCODE.

Advice to users. The value returned by the key MPI LASTUSEDCODE will not change
unless the user calls a function to explicitly add an error class/code. In a multi-
threaded environment, the user must take extra care in assuming this value has not
changed. Note that error codes and error classes are not necessarily dense. A user
may not assume that each error class below MPI LASTUSEDCODE is valid. (End of
advice to users.)

MPI ADD ERROR CODE(errorclass, errorcode)

IN errorclass error class (integer)

OUT errorcode new error code to associated with errorclass (integer)

int MPI Add error code(int errorclass, int *errorcode)

MPI ADD ERROR CODE(ERRORCLASS, ERRORCODE, IERROR)

INTEGER ERRORCLASS, ERRORCODE, IERROR

int MPI::Add error code(int errorclass)

Creates new error code associated with errorclass and returns its value in errorcode.

Rationale. To avoid conicts with existing error codes and classes, the value of the
new error code is set by the implementation and not by the user. (End of rationale.)

Advice to implementors. A high quality implementation will return the value for
a new errorcode in the same deterministic way on all processes. (End of advice to
implementors.)

MPI ADD ERROR STRING(errorcode, string)

IN errorcode error code or class (integer)

IN string text corresponding to errorcode (string)

int MPI Add error string(int errorcode, char *string)

MPI ADD ERROR STRING(ERRORCODE, STRING, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.5. ERROR CLASSES, ERROR CODES, AND ERROR HANDLERS 183

INTEGER ERRORCODE, IERROR

CHARACTER*(*) STRING

void MPI::Add error string(int errorcode, const char* string)

Associates an error string with an error code or class. The string must be no more
than MPI MAX ERROR STRING characters long. The length of the string is as de�ned in
the calling language. The length of the string does not include the null terminator in C
or C++. Trailing blanks will be stripped in Fortran. Calling MPI ADD ERROR STRING
for an errorcode that already has a string will replace the old string with the new string.
It is erroneous to call MPI ADD ERROR STRING for an error code or class with a value
� MPI ERR LASTCODE.

If MPI ERROR STRING is called when no string has been set, it will return a empty
string (all spaces in Fortran, "" in C and C++).

Section 4.13 on page 61 describes the methods for creating and associating error han-
dlers with communicators, �les, and windows.

MPI COMM CALL ERRHANDLER (comm, errorcode)

IN comm communicator with error handler (handle)

IN errorcode error code (integer)

int MPI Comm call errhandler(MPI Comm comm, int errorcode)

MPI COMM CALL ERRHANDLER(COMM, ERRORCODE, IERROR)

INTEGER COMM, ERRORCODE, IERROR

void MPI::Comm::Call errhandler(int errorcode) const

This function invokes the error handler assigned to the communicator with the error
code supplied. This function returns MPI SUCCESS in C and C++ and the same value in
IERROR if the error handler was successfully called (assuming the process is not aborted
and the error handler returns).

Advice to users. Users should note that the default error handler is
MPI ERRORS ARE FATAL. Thus, calling MPI COMM CALL ERRHANDLER will abort
the comm processes if the default error handler has not been changed for this com-
municator or on the parent before the communicator was created. (End of advice to
users.)

MPI WIN CALL ERRHANDLER (win, errorcode)

IN win window with error handler (handle)

IN errorcode error code (integer)

int MPI Win call errhandler(MPI Win win, int errorcode)

MPI WIN CALL ERRHANDLER(WIN, ERRORCODE, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

184 CHAPTER 8. EXTERNAL INTERFACES

INTEGER WIN, ERRORCODE, IERROR

void MPI::Win::Call errhandler(int errorcode) const

This function invokes the error handler assigned to the window with the error code
supplied. This function returns MPI SUCCESS in C and C++ and the same value in IERROR
if the error handler was successfully called (assuming the process is not aborted and the
error handler returns).

Advice to users. As with communicators, the default error handler for windows is
MPI ERRORS ARE FATAL. (End of advice to users.)

MPI FILE CALL ERRHANDLER (fh, errorcode)

IN fh �le with error handler (handle)

IN errorcode error code (integer)

int MPI File call errhandler(MPI File fh, int errorcode)

MPI FILE CALL ERRHANDLER(FH, ERRORCODE, IERROR)

INTEGER FH, ERRORCODE, IERROR

void MPI::File::Call errhandler(int errorcode) const

This function invokes the error handler assigned to the �le with the error code supplied.
This function returns MPI SUCCESS in C and C++ and the same value in IERROR if the
error handler was successfully called (assuming the process is not aborted and the error
handler returns).

Advice to users. Unlike errors on communicators and windows, the default behavior
for �les is to have MPI ERRORS RETURN (End of advice to users.)

Advice to users. Users are warned that handlers should not be called recursively
with MPI COMM CALL ERRHANDLER, MPI FILE CALL ERRHANDLER, or
MPI WIN CALL ERRHANDLER. Doing this can create a situation where an in�nite
recursion is created. This can occur if MPI COMM CALL ERRHANDLER,
MPI FILE CALL ERRHANDLER, or MPI WIN CALL ERRHANDLER is called inside an
error handler.

Error codes and classes are associated with a process. As a result, they may be used
in any error handler. Error handlers should be prepared to deal with any error code
it is given. Furthermore, it is good practice to only call an error handler with the
appropriate error codes. For example, �le errors would normally be sent to the �le
error handler. (End of advice to users.)

8.6 Decoding a Datatype

MPI-1 provides datatype objects, which allow users to specify an arbitrary layout of data
in memory. The layout information, once put in a datatype, could not be decoded from

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.6. DECODING A DATATYPE 185

the datatype. There are several cases, however, where accessing the layout information in
opaque datatype objects would be useful.

The two functions in this section are used together to decode datatypes to recreate
the calling sequence used in their initial de�nition. These can be used to allow a user to
determine the type map and type signature of a datatype.

MPI TYPE GET ENVELOPE(datatype, num integers, num addresses, num datatypes, com-
biner)

IN datatype datatype to access (handle)

OUT num integers number of input integers used in the call constructing

combiner (nonnegative integer)

OUT num addresses number of input addresses used in the call construct-

ing combiner (nonnegative integer)

OUT num datatypes number of input datatypes used in the call construct-

ing combiner (nonnegative integer)

OUT combiner combiner (state)

int MPI Type get envelope(MPI Datatype datatype, int *num integers,

int *num addresses, int *num datatypes, int *combiner)

MPI TYPE GET ENVELOPE(DATATYPE, NUM INTEGERS, NUM ADDRESSES, NUM DATATYPES,

COMBINER, IERROR)

INTEGER DATATYPE, NUM INTEGERS, NUM ADDRESSES, NUM DATATYPES, COMBINER,

IERROR

void MPI::Datatype::Get envelope(int& num integers, int& num addresses,

int& num datatypes, int& combiner) const

For the given datatype, MPI TYPE GET ENVELOPE returns information on the number
and type of input arguments used in the call that created the datatype. The number-of-
arguments values returned can be used to provide su�ciently large arrays in the decoding
routine MPI TYPE GET CONTENTS. This call and the meaning of the returned values is
described below. The combiner reects the MPI datatype constructor call that was used in
creating datatype.

Rationale. By requiring that the combiner reect the constructor used in the
creation of the datatype, the decoded information can be used to e�ectively recre-
ate the calling sequence used in the original creation. One call is e�ectively the
same as another when the information obtained from MPI TYPE GET CONTENTS
may be used with either to produce the same outcome. C calls MPI Type hindexed
and MPI Type create hindexed are always e�ectively the same while the Fortran call
MPI TYPE HINDEXED will be di�erent than either of these in some MPI implementa-
tions. This is the most useful information and was felt to be reasonable even though
it constrains implementations to remember the original constructor sequence even if
the internal representation is di�erent.

The decoded information keeps track of datatype duplications. This is important as
one needs to distinguish between a prede�ned datatype and a dup of a prede�ned

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

186 CHAPTER 8. EXTERNAL INTERFACES

datatype. The former is a constant object that cannot be freed, while the latter is a
derived datatype that can be freed. (End of rationale.)

The list below has the values that can be returned in combiner on the left and the call
associated with them on the right.

MPI COMBINER NAMED a named prede�ned datatype
MPI COMBINER DUP MPI TYPE DUP
MPI COMBINER CONTIGUOUS MPI TYPE CONTIGUOUS
MPI COMBINER VECTOR MPI TYPE VECTOR
MPI COMBINER HVECTOR INTEGER MPI TYPE HVECTOR from Fortran
MPI COMBINER HVECTOR MPI TYPE HVECTOR from C or C++

and in some case Fortran
or MPI TYPE CREATE HVECTOR

MPI COMBINER INDEXED MPI TYPE INDEXED
MPI COMBINER HINDEXED INTEGER MPI TYPE HINDEXED from Fortran
MPI COMBINER HINDEXED MPI TYPE HINDEXED from C or C++

and in some case Fortran
or MPI TYPE CREATE HINDEXED

MPI COMBINER INDEXED BLOCK MPI TYPE CREATE INDEXED BLOCK
MPI COMBINER STRUCT INTEGER MPI TYPE STRUCT from Fortran
MPI COMBINER STRUCT MPI TYPE STRUCT from C or C++

and in some case Fortran
or MPI TYPE CREATE STRUCT

MPI COMBINER SUBARRAY MPI TYPE CREATE SUBARRAY
MPI COMBINER DARRAY MPI TYPE CREATE DARRAY
MPI COMBINER F90 REAL MPI TYPE CREATE F90 REAL
MPI COMBINER F90 COMPLEX MPI TYPE CREATE F90 COMPLEX
MPI COMBINER F90 INTEGER MPI TYPE CREATE F90 INTEGER
MPI COMBINER RESIZED MPI TYPE CREATE RESIZED

If combiner is MPI COMBINER NAMED then datatype is a named prede�ned datatype.
For calls with address arguments, we sometimes need to di�erentiate whether the call

used an integer or an address size argument. For example, there are two combiners for
hvector: MPI COMBINER HVECTOR INTEGER and MPI COMBINER HVECTOR. The former is
used if it was the MPI-1 call from Fortran, and the latter is used if it was the MPI-1 call
from C or C++. However, on systems where MPI ADDRESS KIND =
MPI INTEGER KIND (i.e., where integer arguments and address size arguments are the same),
the combiner MPI COMBINER HVECTOR may be returned for a datatype constructed by a
call to MPI TYPE HVECTOR from Fortran. Similarly, MPI COMBINER HINDEXED may be
returned for a datatype constructed by a call to MPI TYPE HINDEXED from Fortran, and
MPI COMBINER STRUCT may be returned for a datatype constructed by a call to
MPI TYPE STRUCT from Fortran. On such systems, one need not di�erentiate constructors
that take address size arguments from constructors that take integer arguments, since these
are the same. The new MPI-2 calls all use address sized arguments.

Rationale. For recreating the original call, it is important to know if address infor-
mation may have been truncated. The MPI-1 calls from Fortran for a few routines
could be subject to truncation in the case where the default INTEGER size is smaller
than the size of an address. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.6. DECODING A DATATYPE 187

The actual arguments used in the creation call for a datatype can be obtained from the
call:

MPI TYPE GET CONTENTS(datatype, max integers, max addresses, max datatypes, ar-
ray of integers, array of addresses, array of datatypes)

IN datatype datatype to access (handle)

IN max integers number of elements in array of integers (non-negative

integer)

IN max addresses number of elements in array of addresses (non-negative

integer)

IN max datatypes number of elements in array of datatypes (non-negative

integer)

OUT array of integers contains integer arguments used in constructing

datatype (array of integers)

OUT array of addresses contains address arguments used in constructing

datatype (array of integers)

OUT array of datatypes contains datatype arguments used in constructing

datatype (array of handles)

int MPI Type get contents(MPI Datatype datatype, int max integers,

int max addresses, int max datatypes, int array of integers[],

MPI Aint array of addresses[],

MPI Datatype array of datatypes[])

MPI TYPE GET CONTENTS(DATATYPE, MAX INTEGERS, MAX ADDRESSES, MAX DATATYPES,

ARRAY OF INTEGERS, ARRAY OF ADDRESSES, ARRAY OF DATATYPES,

IERROR)

INTEGER DATATYPE, MAX INTEGERS, MAX ADDRESSES, MAX DATATYPES,

ARRAY OF INTEGERS(*), ARRAY OF DATATYPES(*), IERROR

INTEGER(KIND=MPI ADDRESS KIND) ARRAY OF ADDRESSES(*)

void MPI::Datatype::Get contents(int max integers, int max addresses,

int max datatypes, int array of integers[],

MPI::Aint array of addresses[],

MPI::Datatype array of datatypes[]) const

datatype must be a prede�ned unnamed or a derived datatype; the call is erroneous if
datatype is a prede�ned named datatype.

The values given for max integers, max addresses, and max datatypes must be at least as
large as the value returned in num integers, num addresses, and num datatypes, respectively,
in the call MPI TYPE GET ENVELOPE for the same datatype argument.

Rationale. The arguments max integers, max addresses, and max datatypes allow for
error checking in the call. This is analogous to the topology calls in MPI-1. (End of
rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

188 CHAPTER 8. EXTERNAL INTERFACES

The datatypes returned in array of datatypes are handles to datatype objects that are
equivalent to the datatypes used in the original construction call. If these were derived
datatypes, then the returned datatypes are new datatype objects, and the user is responsible
for freeing these datatypes with MPI TYPE FREE. If these were prede�ned datatypes, then
the returned datatype is equal to that (constant) prede�ned datatype and cannot be freed.

The committed state of returned derived datatypes is unde�ned, i.e., the datatypes may
or may not be committed. Furthermore, the content of attributes of returned datatypes is
unde�ned.

Note that MPI TYPE GET CONTENTS can be invoked with a datatype argument that
was constructed using MPI TYPE CREATE F90 REAL, MPI TYPE CREATE F90 INTEGER,
or MPI TYPE CREATE F90 COMPLEX (an unnamed prede�ned datatype). In such a case,
an empty array of datatypes is returned.

Rationale. The de�nition of datatype equivalence implies that equivalent prede�ned
datatypes are equal. By requiring the same handle for named prede�ned datatypes,
it is possible to use the == or .EQ. comparison operator to determine the datatype
involved. (End of rationale.)

Advice to implementors. The datatypes returned in array of datatypes must appear
to the user as if each is an equivalent copy of the datatype used in the type constructor
call. Whether this is done by creating a new datatype or via another mechanism such
as a reference count mechanism is up to the implementation as long as the semantics
are preserved. (End of advice to implementors.)

Rationale. The committed state and attributes of the returned datatype is delib-
erately left vague. The datatype used in the original construction may have been
modi�ed since its use in the constructor call. Attributes can be added, removed, or
modi�ed as well as having the datatype committed. The semantics given allow for
a reference count implementation without having to track these changes. (End of
rationale.)

In the MPI-1 datatype constructor calls, the address arguments in Fortran are of type
INTEGER. In the new MPI-2 calls, the address arguments are of type
INTEGER(KIND=MPI ADDRESS KIND). The call MPI TYPE GET CONTENTS returns all ad-
dresses in an argument of type INTEGER(KIND=MPI ADDRESS KIND). This is true even if the
old MPI-1 calls were used. Thus, the location of values returned can be thought of as being
returned by the C bindings. It can also be determined by examining the new MPI-2 calls
for datatype constructors for the deprecated MPI-1 calls that involve addresses.

Rationale. By having all address arguments returned in the
array of addresses argument, the result from a C and Fortran decoding of a datatype
gives the result in the same argument. It is assumed that an integer of type
INTEGER(KIND=MPI ADDRESS KIND) will be at least as large as the INTEGER argument
used in datatype construction with the old MPI-1 calls so no loss of information will
occur. (End of rationale.)

The following de�nes what values are placed in each entry of the returned arrays
depending on the datatype constructor used for datatype. It also speci�es the size of the
arrays needed which is the values returned by MPI TYPE GET ENVELOPE. In Fortran, the
following calls were made:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.6. DECODING A DATATYPE 189

PARAMETER (LARGE = 1000)

INTEGER TYPE, NI, NA, ND, COMBINER, I(LARGE), D(LARGE), IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) A(LARGE)

! CONSTRUCT DATATYPE TYPE (NOT SHOWN)

CALL MPI_TYPE_GET_ENVELOPE(TYPE, NI, NA, ND, COMBINER, IERROR)

IF ((NI .GT. LARGE) .OR. (NA .GT. LARGE) .OR. (ND .GT. LARGE)) THEN

WRITE (*, *) "NI, NA, OR ND = ", NI, NA, ND, &

" RETURNED BY MPI_TYPE_GET_ENVELOPE IS LARGER THAN LARGE = ", LARGE

CALL MPI_ABORT(MPI_COMM_WORLD, 99)

ENDIF

CALL MPI_TYPE_GET_CONTENTS(TYPE, NI, NA, ND, I, A, D, IERROR)

or in C the analogous calls of:

#define LARGE 1000

int ni, na, nd, combiner, i[LARGE];

MPI_Aint a[LARGE];

MPI_Datatype type, d[LARGE];

/* construct datatype type (not shown) */

MPI_Type_get_envelope(type, &ni, &na, &nd, &combiner);

if ((ni > LARGE) || (na > LARGE) || (nd > LARGE)) {

fprintf(stderr, "ni, na, or nd = %d %d %d returned by ", ni, na, nd);

fprintf(stderr, "MPI_Type_get_envelope is larger than LARGE = %d\n",

LARGE);

MPI_Abort(MPI_COMM_WORLD, 99);

};

MPI_Type_get_contents(type, ni, na, nd, i, a, d);

The C++ code is in analogy to the C code above with the same values returned.
In the descriptions that follow, the lower case name of arguments is used.
If combiner is MPI COMBINER NAMED then it is erroneous to call

MPI TYPE GET CONTENTS.
If combiner is MPI COMBINER DUP then

Constructor argument C & C++ location Fortran location

oldtype d[0] D(1)

and ni = 0, na = 0, nd = 1.
If combiner is MPI COMBINER CONTIGUOUS then

Constructor argument C & C++ location Fortran location

count i[0] I(1)
oldtype d[0] D(1)

and ni = 1, na = 0, nd = 1.
If combiner is MPI COMBINER VECTOR then

Constructor argument C & C++ location Fortran location

count i[0] I(1)
blocklength i[1] I(2)
stride i[2] I(3)
oldtype d[0] D(1)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

190 CHAPTER 8. EXTERNAL INTERFACES

and ni = 3, na = 0, nd = 1.
If combiner is MPI COMBINER HVECTOR INTEGER or MPI COMBINER HVECTOR then

Constructor argument C & C++ location Fortran location

count i[0] I(1)
blocklength i[1] I(2)
stride a[0] A(1)
oldtype d[0] D(1)

and ni = 2, na = 1, nd = 1.
If combiner is MPI COMBINER INDEXED then

Constructor argument C & C++ location Fortran location

count i[0] I(1)
array of blocklengths i[1] to i[i[0]] I(2) to I(I(1)+1)
array of displacements i[i[0]+1] to i[2*i[0]] I(I(1)+2) to I(2*I(1)+1)
oldtype d[0] D(1)

and ni = 2*count+1, na = 0, nd = 1.
If combiner is MPI COMBINER HINDEXED INTEGER or MPI COMBINER HINDEXED then

Constructor argument C & C++ location Fortran location

count i[0] I(1)
array of blocklengths i[1] to i[i[0]] I(2) to I(I(1)+1)
array of displacements a[0] to a[i[0]-1] A(1) to A(I(1))
oldtype d[0] D(1)

and ni = count+1, na = count, nd = 1.
If combiner is MPI COMBINER INDEXED BLOCK then

Constructor argument C & C++ location Fortran location

count i[0] I(1)
blocklength i[1] I(2)
array of displacements i[2] to i[i[0]+1] I(3) to I(I(1)+2)
oldtype d[0] D(1)

and ni = count+2, na = 0, nd = 1.
If combiner is MPI COMBINER STRUCT INTEGER or MPI COMBINER STRUCT then

Constructor argument C & C++ location Fortran location

count i[0] I(1)
array of blocklengths i[1] to i[i[0]] I(2) to I(I(1)+1)
array of displacements a[0] to a[i[0]-1] A(1) to A(I(1))
array of types d[0] to d[i[0]-1] D(1) to D(I(1))

and ni = count+1, na = count, nd = count.
If combiner is MPI COMBINER SUBARRAY then

Constructor argument C & C++ location Fortran location

ndims i[0] I(1)
array of sizes i[1] to i[i[0]] I(2) to I(I(1)+1)
array of subsizes i[i[0]+1] to i[2*i[0]] I(I(1)+2) to I(2*I(1)+1)
array of starts i[2*i[0]+1] to i[3*i[0]] I(2*I(1)+2) to I(3*I(1)+1)
order i[3*i[0]+1] I(3*I(1)+2]
oldtype d[0] D(1)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.6. DECODING A DATATYPE 191

and ni = 3*ndims+2, na = 0, nd = 1.
If combiner is MPI COMBINER DARRAY then

Constructor argument C & C++ location Fortran location

size i[0] I(1)
rank i[1] I(2)
ndims i[2] I(3)
array of gsizes i[3] to i[i[2]+2] I(4) to I(I(3)+3)
array of distribs i[i[2]+3] to i[2*i[2]+2] I(I(3)+4) to I(2*I(3)+3)
array of dargs i[2*i[2]+3] to i[3*i[2]+2] I(2*I(3)+4) to I(3*I(3)+3)
array of psizes i[3*i[2]+3] to i[4*i[2]+2] I(3*I(3)+4) to I(4*I(3)+3)
order i[4*i[2]+3] I(4*I(3)+4)
oldtype d[0] D(1)

and ni = 4*ndims+4, na = 0, nd = 1.
If combiner is MPI COMBINER F90 REAL then

Constructor argument C & C++ location Fortran location

p i[0] I(1)
r i[1] I(2)

and ni = 2, na = 0, nd = 0.
If combiner is MPI COMBINER F90 COMPLEX then

Constructor argument C & C++ location Fortran location

p i[0] I(1)
r i[1] I(2)

and ni = 2, na = 0, nd = 0.
If combiner is MPI COMBINER F90 INTEGER then

Constructor argument C & C++ location Fortran location

r i[0] I(1)

and ni = 1, na = 0, nd = 0.
If combiner is MPI COMBINER RESIZED then

Constructor argument C & C++ location Fortran location

lb a[0] A(1)
extent a[1] A(2)
oldtype d[0] D(1)

and ni = 0, na = 2, nd = 1.

Example 8.2 This example shows how a datatype can be decoded. The routine
printdatatype prints out the elements of the datatype. Note the use of MPI Type free for
datatypes that are not prede�ned.

/*

Example of decoding a datatype.

Returns 0 if the datatype is predefined, 1 otherwise

*/

#include <stdio.h>

#include <stdlib.h>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

192 CHAPTER 8. EXTERNAL INTERFACES

#include "mpi.h"

int printdatatype(MPI_Datatype datatype)

{

int *array_of_ints;

MPI_Aint *array_of_adds;

MPI_Datatype *array_of_dtypes;

int num_ints, num_adds, num_dtypes, combiner;

int i;

MPI_Type_get_envelope(datatype,

&num_ints, &num_adds, &num_dtypes, &combiner);

switch (combiner) {

case MPI_COMBINER_NAMED:

printf("Datatype is named:");

/* To print the specific type, we can match against the

predefined forms. We can NOT use a switch statement here

We could also use MPI_TYPE_GET_NAME if we prefered to use

names that the user may have changed.

*/

if (datatype == MPI_INT) printf("MPI_INT\n");

else if (datatype == MPI_DOUBLE) printf("MPI_DOUBLE\n");

... else test for other types ...

return 0;

break;

case MPI_COMBINER_STRUCT:

case MPI_COMBINER_STRUCT_INTEGER:

printf("Datatype is struct containing");

array_of_ints = (int *)malloc(num_ints * sizeof(int));

array_of_adds =

(MPI_Aint *) malloc(num_adds * sizeof(MPI_Aint));

array_of_dtypes = (MPI_Datatype *)

malloc(num_dtypes * sizeof(MPI_Datatype));

MPI_Type_get_contents(datatype, num_ints, num_adds, num_dtypes,

array_of_ints, array_of_adds, array_of_dtypes);

printf(" %d datatypes:\n", array_of_ints[0]);

for (i=0; i<array_of_ints[0]; i++) {

printf("blocklength %d, displacement %ld, type:\n",

array_of_ints[i+1], array_of_adds[i]);

if (printdatatype(array_of_dtypes[i])) {

/* Note that we free the type ONLY if it

is not predefined */

MPI_Type_free(&array_of_dtypes[i]);

}

}

free(array_of_ints);

free(array_of_adds);

free(array_of_dtypes);

break;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.7. MPI AND THREADS 193

... other combiner values ...

default:

printf("Unrecognized combiner type\n");

}

return 1;

}

8.7 MPI and Threads

This section speci�es the interaction between MPI calls and threads. The section lists
minimal requirements for thread compliant MPI implementations and de�nes functions
that can be used for initializing the thread environment. MPI may be implemented in
environments where threads are not supported or perform poorly. Therefore, it is not
required that all MPI implementations ful�ll all the requirements speci�ed in this section.

This section generally assumes a thread package similar to POSIX threads [11], but the
syntax and semantics of thread calls are not speci�ed here | these are beyond the scope
of this document.

8.7.1 General

In a thread-compliant implementation, an MPI process is a process that may be multi-
threaded. Each thread can issue MPI calls; however, threads are not separately addressable:
a rank in a send or receive call identi�es a process, not a thread. A message sent to a process
can be received by any thread in this process.

Rationale. This model corresponds to the POSIX model of interprocess communica-
tion: the fact that a process is multi-threaded, rather than single-threaded, does not
a�ect the external interface of this process. MPI implementations where MPI `pro-
cesses' are POSIX threads inside a single POSIX process are not thread-compliant by
this de�nition (indeed, their \processes" are single-threaded). (End of rationale.)

Advice to users. It is the user's responsibility to prevent races when threads within
the same application post conicting communication calls. The user can make sure
that two threads in the same process will not issue conicting communication calls by
using distinct communicators at each thread. (End of advice to users.)

The two main requirements for a thread-compliant implementation are listed below.

1. All MPI calls are thread-safe. I.e., two concurrently running threads may make MPI
calls and the outcome will be as if the calls executed in some order, even if their
execution is interleaved.

2. Blocking MPI calls will block the calling thread only, allowing another thread to
execute, if available. The calling thread will be blocked until the event on which it
is waiting occurs. Once the blocked communication is enabled and can proceed, then
the call will complete and the thread will be marked runnable, within a �nite time.
A blocked thread will not prevent progress of other runnable threads on the same
process, and will not prevent them from executing MPI calls.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

194 CHAPTER 8. EXTERNAL INTERFACES

Example 8.3 Process 0 consists of two threads. The �rst thread executes a blocking send
call MPI Send(bu�1, count, type, 0, 0, comm), whereas the second thread executes a blocking
receive call MPI Recv(bu�2, count, type, 0, 0, comm, &status). I.e., the �rst thread sends a
message that is received by the second thread. This communication should always succeed.
According to the �rst requirement, the execution will correspond to some interleaving of
the two calls. According to the second requirement, a call can only block the calling thread
and cannot prevent progress of the other thread. If the send call went ahead of the receive
call, then the sending thread may block, but this will not prevent the receiving thread from
executing. Thus, the receive call will occur. Once both calls occur, the communication is
enabled and both calls will complete. On the other hand, a single-threaded process that
posts a send, followed by a matching receive, may deadlock. The progress requirement for
multithreaded implementations is stronger, as a blocked call cannot prevent progress in
other threads.

Advice to implementors. MPI calls can be made thread-safe by executing only one at
a time, e.g., by protecting MPI code with one process-global lock. However, blocked
operations cannot hold the lock, as this would prevent progress of other threads in
the process. The lock is held only for the duration of an atomic, locally-completing
suboperation such as posting a send or completing a send, and is released in between.
Finer locks can provide more concurrency, at the expense of higher locking overheads.
Concurrency can also be achieved by having some of the MPI protocol executed by
separate server threads. (End of advice to implementors.)

8.7.2 Clari�cations

Initialization and Completion The call to MPI FINALIZE should occur on the same thread
that initialized MPI. We call this thread themain thread. The call should occur only after
all the process threads have completed theirMPI calls, and have no pending communications
or I/O operations.

Rationale. This constraint simpli�es implementation. (End of rationale.)

Multiple threads completing the same request. A program where two threads block, waiting
on the same request, is erroneous. Similarly, the same request cannot appear in the array of
requests of two concurrent MPI WAITfANYjSOMEjALLg calls. In MPI, a request can only
be completed once. Any combination of wait or test which violates this rule is erroneous.

Rationale. This is consistent with the view that a multithreaded execution cor-
responds to an interleaving of the MPI calls. In a single threaded implementa-
tion, once a wait is posted on a request the request handle will be nulli�ed be-
fore it is possible to post a second wait on the same handle. With threads, an
MPI WAITfANYjSOMEjALLg may be blocked without having nulli�ed its request(s)
so it becomes the user's responsibility to avoid using the same request in anMPI WAIT
on another thread. This constraint also simpli�es implementation, as only one thread
will be blocked on any communication or I/O event. (End of rationale.)

Probe A receive call that uses source and tag values returned by a preceding call to
MPI PROBE orMPI IPROBE will receive the message matched by the probe call only if there

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.7. MPI AND THREADS 195

was no other matching receive after the probe and before that receive. In a multithreaded
environment, it is up to the user to enforce this condition using suitable mutual exclusion
logic. This can be enforced by making sure that each communicator is used by only one
thread on each process.

Collective calls Matching of collective calls on a communicator, window, or �le handle is
done according to the order in which the calls are issued at each process. If concurrent
threads issue such calls on the same communicator, window or �le handle, it is up to the
user to make sure the calls are correctly ordered, using interthread synchronization.

Exception handlers An exception handler does not necessarily execute in the context of the
thread that made the exception-raising MPI call; the exception handler may be executed
by a thread that is distinct from the thread that will return the error code.

Rationale. The MPI implementation may be multithreaded, so that part of the
communication protocol may execute on a thread that is distinct from the thread
that made the MPI call. The design allows the exception handler to be executed on
the thread where the exception occurred. (End of rationale.)

Interaction with signals and cancellations The outcome is unde�ned if a thread that executes
an MPI call is cancelled (by another thread), or if a thread catches a signal while executing
an MPI call. However, a thread of an MPI process may terminate, and may catch signals or
be cancelled by another thread when not executing MPI calls.

Rationale. Few C library functions are signal safe, and many have cancellation points
| points where the thread executing them may be cancelled. The above restriction
simpli�es implementation (no need for the MPI library to be \async-cancel-safe" or
\async-signal-safe." (End of rationale.)

Advice to users. Users can catch signals in separate, non-MPI threads (e.g., by
masking signals on MPI calling threads, and unmasking them in one or more non-MPI
threads). A good programming practice is to have a distinct thread blocked in a
call to sigwait for each user expected signal that may occur. Users must not catch
signals used by the MPI implementation; as each MPI implementation is required to
document the signals used internally, users can avoid these signals. (End of advice to
users.)

Advice to implementors. The MPI library should not invoke library calls that are
not thread safe, if multiple threads execute. (End of advice to implementors.)

8.7.3 Initialization

The following function may be used to initialize MPI, and initialize the MPI thread envi-
ronment, instead of MPI INIT.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

196 CHAPTER 8. EXTERNAL INTERFACES

MPI INIT THREAD(required, provided)

IN required desired level of thread support (integer)

OUT provided provided level of thread support (integer)

int MPI Init thread(int *argc, char *((*argv)[]), int required,

int *provided)

MPI INIT THREAD(REQUIRED, PROVIDED, IERROR)

INTEGER REQUIRED, PROVIDED, IERROR

int MPI::Init thread(int& argc, char**& argv, int required)

int MPI::Init thread(int required)

Advice to users. In C and C++, the passing of argc and argv is optional. In C, this is
accomplished by passing the appropriate null pointer. In C++, this is accomplished
with two separate bindings to cover these two cases. This is as with MPI INIT as
discussed in Section 4.2. (End of advice to users.)

This call initializes MPI in the same way that a call to MPI INIT would. In addition,
it initializes the thread environment. The argument required is used to specify the desired
level of thread support. The possible values are listed in increasing order of thread support.

MPI THREAD SINGLE Only one thread will execute.

MPI THREAD FUNNELED The process may be multi-threaded, but only the main thread will
make MPI calls (all MPI calls are \funneled" to the main thread).

MPI THREAD SERIALIZED The process may be multi-threaded, and multiple threads may
make MPI calls, but only one at a time: MPI calls are not made concurrently from
two distinct threads (all MPI calls are \serialized").

MPI THREAD MULTIPLE Multiple threads may call MPI, with no restrictions.

These values are monotonic; i.e., MPI THREAD SINGLE < MPI THREAD FUNNELED <

MPI THREAD SERIALIZED < MPI THREAD MULTIPLE.
Di�erent processes in MPI COMM WORLDmay require di�erent levels of thread support.
The call returns in provided information about the actual level of thread support that

will be provided by MPI. It can be one of the four values listed above.
The level(s) of thread support that can be provided by MPI INIT THREAD will depend

on the implementation, and may depend on information provided by the user before the
program started to execute (e.g., with arguments to mpiexec). If possible, the call will
return provided = required. Failing this, the call will return the least supported level such
that provided > required (thus providing a stronger level of support than required by the
user). Finally, if the user requirement cannot be satis�ed, then the call will return in
provided the highest supported level.

A thread compliant MPI implementation will be able to return provided
= MPI THREAD MULTIPLE. Such an implementation may always return provided
= MPI THREAD MULTIPLE, irrespective of the value of required. At the other extreme,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.7. MPI AND THREADS 197

an MPI library that is not thread compliant may always return
provided = MPI THREAD SINGLE, irrespective of the value of required.

A call to MPI INIT has the same e�ect as a call to MPI INIT THREAD with a required
= MPI THREAD SINGLE.

Vendors may provide (implementation dependent) means to specify the level(s) of
thread support available when the MPI program is started, e.g., with arguments to mpiexec.
This will a�ect the outcome of calls to MPI INIT and MPI INIT THREAD. Suppose, for
example, that an MPI program has been started so that only MPI THREAD MULTIPLE is
available. Then MPI INIT THREAD will return provided = MPI THREAD MULTIPLE, ir-
respective of the value of required; a call to MPI INIT will also initialize the MPI thread
support level to MPI THREAD MULTIPLE. Suppose, on the other hand, that an MPI program
has been started so that all four levels of thread support are available. Then, a call to
MPI INIT THREAD will return provided = required; on the other hand, a call to MPI INIT
will initialize the MPI thread support level to MPI THREAD SINGLE.

Rationale. Various optimizations are possible when MPI code is executed single-
threaded, or is executed on multiple threads, but not concurrently: mutual exclusion
code may be omitted. Furthermore, if only one thread executes, then the MPI library
can use library functions that are not thread safe, without risking conicts with user
threads. Also, the model of one communication thread, multiple computation threads
�ts well many applications. E.g., if the process code is a sequential Fortran/C/C++
program with MPI calls that has been parallelized by a compiler for execution on an
SMP node, in a cluster of SMPs, then the process computation is multi-threaded, but
MPI calls will likely execute on a single thread.

The design accommodates a static speci�cation of the thread support level, for en-
vironments that require static binding of libraries, and for compatibility for current
multi-threaded MPI codes. (End of rationale.)

Advice to implementors. If provided is not MPI THREAD SINGLE then the MPI library
should not invoke C/ C++/Fortran library calls that are not thread safe, e.g., in an
environment where malloc is not thread safe, then malloc should not be used by the
MPI library.

Some implementors may want to use di�erentMPI libraries for di�erent levels of thread
support. They can do so using dynamic linking and selecting which library will be
linked when MPI INIT THREAD is invoked. If this is not possible, then optimizations
for lower levels of thread support will occur only when the level of thread support
required is speci�ed at link time. (End of advice to implementors.)

The following function can be used to query the current level of thread support.

MPI QUERY THREAD(provided)

OUT provided provided level of thread support (integer)

int MPI Query thread(int *provided)

MPI QUERY THREAD(PROVIDED, IERROR)

INTEGER PROVIDED, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

198 CHAPTER 8. EXTERNAL INTERFACES

int MPI::Query thread()

The call returns in provided the current level of thread support. This will be the value
returned in provided by MPI INIT THREAD, if MPI was initialized by a call to
MPI INIT THREAD().

MPI IS THREAD MAIN(ag)

OUT ag true if calling thread is main thread, false otherwise

(logical)

int MPI Is thread main(int *flag)

MPI IS THREAD MAIN(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

bool MPI::Is thread main()

This function can be called by a thread to �nd out whether it is the main thread (the
thread that called MPI INIT or MPI INIT THREAD).

All routines listed in this section must be supported by all MPI implementations.

Rationale. MPI libraries are required to provide these calls even if they do not support
threads, so that portable code that contains invocations to these functions be able to
link correctly. MPI INIT continues to be supported so as to provide compatibility with
current MPI codes. (End of rationale.)

Advice to users. It is possible to spawn threads before MPI is initialized, but
no MPI call other than MPI INITIALIZED should be executed by these threads, un-
til MPI INIT THREAD is invoked by one thread (which, thereby, becomes the main
thread). In particular, it is possible to enter the MPI execution with a multi-threaded
process.

The level of thread support provided is a global property of the MPI process that can
be speci�ed only once, when MPI is initialized on that process (or before). Portable
third party libraries have to be written so as to accommodate any provided level of
thread support. Otherwise, their usage will be restricted to speci�c level(s) of thread
support. If such a library can run only with speci�c level(s) of thread support, e.g.,
only with MPI THREAD MULTIPLE, then MPI QUERY THREAD can be used to check
whether the user initialized MPI to the correct level of thread support and, if not,
raise an exception. (End of advice to users.)

8.8 New Attribute Caching Functions

Caching on communicators has been a very useful feature. In MPI-2 it is expanded to
include caching on windows and datatypes.

Rationale. In one extreme you can allow caching on all opaque handles. The other
extreme is to only allow it on communicators. Caching has a cost associated with it

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.8. NEW ATTRIBUTE CACHING FUNCTIONS 199

and should only be allowed when it is clearly needed and the increased cost is modest.
This is the reason that windows and datatypes were added but not other handles.
(End of rationale.)

One di�culty in MPI-1 is the potential for size di�erences between Fortran integers and
C pointers. To overcome this problem with attribute caching on communicators, new func-
tions are also given for this case. The new functions to cache on datatypes and windows also
address this issue. For a general discussion of the address size problem, see Section 4.12.6.

The MPI-1.2 clari�cation, described in Section 3.2.8 on page 26, about the e�ect of
returning other than MPI SUCCESS from attribute callbacks applies to these new versions
as well.

8.8.1 Communicators

The new functions that are replacements for the MPI-1 functions for caching on communi-
cators are:

MPI COMM CREATE KEYVAL(comm copy attr fn, comm delete attr fn, comm keyval,
extra state)

IN comm copy attr fn copy callback function for comm keyval (function)

IN comm delete attr fn delete callback function for comm keyval (function)

OUT comm keyval key value for future access (integer)

IN extra state extra state for callback functions

int MPI Comm create keyval(MPI Comm copy attr function *comm copy attr fn,

MPI Comm delete attr function *comm delete attr fn,

int *comm keyval, void *extra state)

MPI COMM CREATE KEYVAL(COMM COPY ATTR FN, COMM DELETE ATTR FN, COMM KEYVAL,

EXTRA STATE, IERROR)

EXTERNAL COMM COPY ATTR FN, COMM DELETE ATTR FN

INTEGER COMM KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE

static int MPI::Comm::Create keyval(MPI::Comm::Copy attr function*

comm copy attr fn,

MPI::Comm::Delete attr function* comm delete attr fn,

void* extra state)

This function replaces MPI KEYVAL CREATE, whose use is deprecated. The C binding
is identical. The Fortran binding di�ers in that extra state is an address-sized integer.
Also, the copy and delete callback functions have Fortran bindings that are consistent with
address-sized attributes.

The argument comm copy attr fn may be speci�ed as MPI COMM NULL COPY FN or
MPI COMM DUP FN from either C, C++, or Fortran. MPI COMM NULL COPY FN is a
function that does nothing other than returning ag = 0 and MPI SUCCESS.
MPI COMM DUP FN is a simple-minded copy function that sets ag = 1, returns the value

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

200 CHAPTER 8. EXTERNAL INTERFACES

of attribute val in in attribute val out, and returns MPI SUCCESS. These replace the MPI-1
prede�ned callbacks MPI NULL COPY FN and MPI DUP FN, whose use is deprecated.

The argument comm delete attr fn may be speci�ed as MPI COMM NULL DELETE FN
from either C, C++, or Fortran. MPI COMM NULL DELETE FN is a function that does
nothing, other than returning MPI SUCCESS. MPI COMM NULL DELETE FN replaces
MPI NULL DELETE FN, whose use is deprecated.

The C callback functions are:
typedef int MPI Comm copy attr function(MPI Comm oldcomm, int comm keyval,

void *extra state, void *attribute val in,

void *attribute val out, int *flag);

and
typedef int MPI Comm delete attr function(MPI Comm comm, int comm keyval,

void *attribute val, void *extra state);

which are the same as theMPI-1.1 calls but with a new name. The old names are deprecated.
The Fortran callback functions are:

SUBROUTINE COMM COPY ATTR FN(OLDCOMM, COMM KEYVAL, EXTRA STATE,

ATTRIBUTE VAL IN, ATTRIBUTE VAL OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE, ATTRIBUTE VAL IN,

ATTRIBUTE VAL OUT

LOGICAL FLAG

and
SUBROUTINE COMM DELETE ATTR FN(COMM, COMM KEYVAL, ATTRIBUTE VAL, EXTRA STATE,

IERROR)

INTEGER COMM, COMM KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL, EXTRA STATE

The C++ callbacks are:
typedef int MPI::Comm::Copy attr function(const MPI::Comm& oldcomm,

int comm keyval, void* extra state, void* attribute val in,

void* attribute val out, bool& flag);

and
typedef int MPI::Comm::Delete attr function(MPI::Comm& comm,

int comm keyval, void* attribute val, void* extra state);

MPI COMM FREE KEYVAL(comm keyval)

INOUT comm keyval key value (integer)

int MPI Comm free keyval(int *comm keyval)

MPI COMM FREE KEYVAL(COMM KEYVAL, IERROR)

INTEGER COMM KEYVAL, IERROR

static void MPI::Comm::Free keyval(int& comm keyval)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.8. NEW ATTRIBUTE CACHING FUNCTIONS 201

This call is identical to the MPI-1 call MPI KEYVAL FREE but is needed to match the
new communicator-speci�c creation function. The use ofMPI KEYVAL FREE is deprecated.

MPI COMM SET ATTR(comm, comm keyval, attribute val)

INOUT comm communicator from which attribute will be attached

(handle)

IN comm keyval key value (integer)

IN attribute val attribute value

int MPI Comm set attr(MPI Comm comm, int comm keyval, void *attribute val)

MPI COMM SET ATTR(COMM, COMM KEYVAL, ATTRIBUTE VAL, IERROR)

INTEGER COMM, COMM KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL

void MPI::Comm::Set attr(int comm keyval, const void* attribute val) const

This function replaces MPI ATTR PUT, whose use is deprecated. The C binding is
identical. The Fortran binding di�ers in that attribute val is an address-sized integer.

MPI COMM GET ATTR(comm, comm keyval, attribute val, ag)

IN comm communicator to which the attribute is attached (han-

dle)

IN comm keyval key value (integer)

OUT attribute val attribute value, unless ag = false

OUT ag false if no attribute is associated with the key (logical)

int MPI Comm get attr(MPI Comm comm, int comm keyval, void *attribute val,

int *flag)

MPI COMM GET ATTR(COMM, COMM KEYVAL, ATTRIBUTE VAL, FLAG, IERROR)

INTEGER COMM, COMM KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL

LOGICAL FLAG

bool MPI::Comm::Get attr(int comm keyval, void* attribute val) const

This function replaces MPI ATTR GET, whose use is deprecated. The C binding is
identical. The Fortran binding di�ers in that attribute val is an address-sized integer.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

202 CHAPTER 8. EXTERNAL INTERFACES

MPI COMM DELETE ATTR(comm, comm keyval)

INOUT comm communicator fromwhich the attribute is deleted (han-

dle)

IN comm keyval key value (integer)

int MPI Comm delete attr(MPI Comm comm, int comm keyval)

MPI COMM DELETE ATTR(COMM, COMM KEYVAL, IERROR)

INTEGER COMM, COMM KEYVAL, IERROR

void MPI::Comm::Delete attr(int comm keyval)

This function is the same as MPI ATTR DELETE but is needed to match the new
communicator speci�c functions. The use of MPI ATTR DELETE is deprecated.

8.8.2 Windows

The new functions for caching on windows are:

MPI WIN CREATE KEYVAL(win copy attr fn, win delete attr fn, win keyval, extra state)

IN win copy attr fn copy callback function for win keyval (function)

IN win delete attr fn delete callback function for win keyval (function)

OUT win keyval key value for future access (integer)

IN extra state extra state for callback functions

int MPI Win create keyval(MPI Win copy attr function *win copy attr fn,

MPI Win delete attr function *win delete attr fn,

int *win keyval, void *extra state)

MPI WIN CREATE KEYVAL(WIN COPY ATTR FN, WIN DELETE ATTR FN, WIN KEYVAL,

EXTRA STATE, IERROR)

EXTERNAL WIN COPY ATTR FN, WIN DELETE ATTR FN

INTEGER WIN KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE

static int MPI::Win::Create keyval(MPI::Win::Copy attr function*

win copy attr fn,

MPI::Win::Delete attr function* win delete attr fn,

void* extra state)

The argument win copy attr fn may be speci�ed as MPI WIN NULL COPY FN or
MPI WIN DUP FN from either C, C++, or Fortran. MPI WIN NULL COPY FN is a function
that does nothing other than returning ag = 0 and MPI SUCCESS. MPI WIN DUP FN is
a simple-minded copy function that sets ag = 1, returns the value of attribute val in in
attribute val out, and returns MPI SUCCESS.

The argument win delete attr fn may be speci�ed as MPI WIN NULL DELETE FN from
either C, C++, or Fortran. MPI WIN NULL DELETE FN is a function that does nothing,
other than returning MPI SUCCESS.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.8. NEW ATTRIBUTE CACHING FUNCTIONS 203

The C callback functions are:
typedef int MPI Win copy attr function(MPI Win oldwin, int win keyval,

void *extra state, void *attribute val in,

void *attribute val out, int *flag);

and
typedef int MPI Win delete attr function(MPI Win win, int win keyval,

void *attribute val, void *extra state);

The Fortran callback functions are:
SUBROUTINE WIN COPY ATTR FN(OLDWIN, WIN KEYVAL, EXTRA STATE,

ATTRIBUTE VAL IN, ATTRIBUTE VAL OUT, FLAG, IERROR)

INTEGER OLDWIN, WIN KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE, ATTRIBUTE VAL IN,

ATTRIBUTE VAL OUT

LOGICAL FLAG

and
SUBROUTINE WIN DELETE ATTR FN(WIN, WIN KEYVAL, ATTRIBUTE VAL, EXTRA STATE,

IERROR)

INTEGER WIN, WIN KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL, EXTRA STATE

The C++ callbacks are:
typedef int MPI::Win::Copy attr function(const MPI::Win& oldwin,

int win keyval, void* extra state, void* attribute val in,

void* attribute val out, bool& flag);

and
typedef int MPI::Win::Delete attr function(MPI::Win& win, int win keyval,

void* attribute val, void* extra state);

MPI WIN FREE KEYVAL(win keyval)

INOUT win keyval key value (integer)

int MPI Win free keyval(int *win keyval)

MPI WIN FREE KEYVAL(WIN KEYVAL, IERROR)

INTEGER WIN KEYVAL, IERROR

static void MPI::Win::Free keyval(int& win keyval)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

204 CHAPTER 8. EXTERNAL INTERFACES

MPI WIN SET ATTR(win, win keyval, attribute val)

INOUT win window to which attribute will be attached (handle)

IN win keyval key value (integer)

IN attribute val attribute value

int MPI Win set attr(MPI Win win, int win keyval, void *attribute val)

MPI WIN SET ATTR(WIN, WIN KEYVAL, ATTRIBUTE VAL, IERROR)

INTEGER WIN, WIN KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL

void MPI::Win::Set attr(int win keyval, const void* attribute val)

MPI WIN GET ATTR(win, win keyval, attribute val, ag)

IN win window to which the attribute is attached (handle)

IN win keyval key value (integer)

OUT attribute val attribute value, unless ag = false

OUT ag false if no attribute is associated with the key (logical)

int MPI Win get attr(MPI Win win, int win keyval, void *attribute val,

int *flag)

MPI WIN GET ATTR(WIN, WIN KEYVAL, ATTRIBUTE VAL, FLAG, IERROR)

INTEGER WIN, WIN KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL

LOGICAL FLAG

bool MPI::Win::Get attr(const MPI::Win& win, int win keyval,

void* attribute val) const

MPI WIN DELETE ATTR(win, win keyval)

INOUT win window from which the attribute is deleted (handle)

IN win keyval key value (integer)

int MPI Win delete attr(MPI Win win, int win keyval)

MPI WIN DELETE ATTR(WIN, WIN KEYVAL, IERROR)

INTEGER WIN, WIN KEYVAL, IERROR

void MPI::Win::Delete attr(int win keyval)

8.8.3 Datatypes

The new functions for caching on datatypes are:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.8. NEW ATTRIBUTE CACHING FUNCTIONS 205

MPI TYPE CREATE KEYVAL(type copy attr fn, type delete attr fn, type keyval, extra state)

IN type copy attr fn copy callback function for type keyval (function)

IN type delete attr fn delete callback function for type keyval (function)

OUT type keyval key value for future access (integer)

IN extra state extra state for callback functions

int MPI Type create keyval(MPI Type copy attr function *type copy attr fn,

MPI Type delete attr function *type delete attr fn,

int *type keyval, void *extra state)

MPI TYPE CREATE KEYVAL(TYPE COPY ATTR FN, TYPE DELETE ATTR FN, TYPE KEYVAL,

EXTRA STATE, IERROR)

EXTERNAL TYPE COPY ATTR FN, TYPE DELETE ATTR FN

INTEGER TYPE KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE

static int MPI::Datatype::Create keyval(MPI::Datatype::Copy attr function*

type copy attr fn, MPI::Datatype::Delete attr function*

type delete attr fn, void* extra state)

The argument type copy attr fn may be speci�ed as MPI TYPE NULL COPY FN or
MPI TYPE DUP FN from either C, C++, or Fortran. MPI TYPE NULL COPY FN is a
function that does nothing other than returning ag = 0 and MPI SUCCESS.
MPI TYPE DUP FN is a simple-minded copy function that sets ag = 1, returns the value
of attribute val in in attribute val out, and returns MPI SUCCESS.

The argument type delete attr fn may be speci�ed as MPI TYPE NULL DELETE FN
from either C, C++, or Fortran. MPI TYPE NULL DELETE FN is a function that does
nothing, other than returning MPI SUCCESS.

The C callback functions are:
typedef int MPI Type copy attr function(MPI Datatype oldtype,

int type keyval, void *extra state, void *attribute val in,

void *attribute val out, int *flag);

and
typedef int MPI Type delete attr function(MPI Datatype type, int type keyval,

void *attribute val, void *extra state);

The Fortran callback functions are:
SUBROUTINE TYPE COPY ATTR FN(OLDTYPE, TYPE KEYVAL, EXTRA STATE,

ATTRIBUTE VAL IN, ATTRIBUTE VAL OUT, FLAG, IERROR)

INTEGER OLDTYPE, TYPE KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE,

ATTRIBUTE VAL IN, ATTRIBUTE VAL OUT

LOGICAL FLAG

and
SUBROUTINE TYPE DELETE ATTR FN(TYPE, TYPE KEYVAL, ATTRIBUTE VAL, EXTRA STATE,

IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

206 CHAPTER 8. EXTERNAL INTERFACES

INTEGER TYPE, TYPE KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL, EXTRA STATE

The C++ callbacks are:
typedef int MPI::Datatype::Copy attr function(const MPI::Datatype& oldtype,

int type keyval, void* extra state,

const void* attribute val in, void* attribute val out,

bool& flag);

and
typedef int MPI::Datatype::Delete attr function(MPI::Datatype& type,

int type keyval, void* attribute val, void* extra state);

MPI TYPE FREE KEYVAL(type keyval)

INOUT type keyval key value (integer)

int MPI Type free keyval(int *type keyval)

MPI TYPE FREE KEYVAL(TYPE KEYVAL, IERROR)

INTEGER TYPE KEYVAL, IERROR

static void MPI::Datatype::Free keyval(int& type keyval)

MPI TYPE SET ATTR(type, type keyval, attribute val)

INOUT type datatype to which attribute will be attached (handle)

IN type keyval key value (integer)

IN attribute val attribute value

int MPI Type set attr(MPI Datatype type, int type keyval,

void *attribute val)

MPI TYPE SET ATTR(TYPE, TYPE KEYVAL, ATTRIBUTE VAL, IERROR)

INTEGER TYPE, TYPE KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL

void MPI::Datatype::Set attr(int type keyval, const void* attribute val)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.9. DUPLICATING A DATATYPE 207

MPI TYPE GET ATTR(type, type keyval, attribute val, ag)

IN type datatype to which the attribute is attached (handle)

IN type keyval key value (integer)

OUT attribute val attribute value, unless ag = false

OUT ag false if no attribute is associated with the key (logical)

int MPI Type get attr(MPI Datatype type, int type keyval, void

*attribute val, int *flag)

MPI TYPE GET ATTR(TYPE, TYPE KEYVAL, ATTRIBUTE VAL, FLAG, IERROR)

INTEGER TYPE, TYPE KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL

LOGICAL FLAG

bool MPI::Datatype::Get attr(int type keyval, void* attribute val) const

MPI TYPE DELETE ATTR(type, type keyval)

INOUT type datatype from which the attribute is deleted (handle)

IN type keyval key value (integer)

int MPI Type delete attr(MPI Datatype type, int type keyval)

MPI TYPE DELETE ATTR(TYPE, TYPE KEYVAL, IERROR)

INTEGER TYPE, TYPE KEYVAL, IERROR

void MPI::Datatype::Delete attr(int type keyval)

8.9 Duplicating a Datatype

MPI TYPE DUP(type, newtype)

IN type datatype (handle)

OUT newtype copy of type (handle)

int MPI Type dup(MPI Datatype type, MPI Datatype *newtype)

MPI TYPE DUP(TYPE, NEWTYPE, IERROR)

INTEGER TYPE, NEWTYPE, IERROR

MPI::Datatype MPI::Datatype::Dup() const

MPI TYPE DUP is a new type constructor which duplicates the existing type with
associated key values. For each key value, the respective copy callback function determines
the attribute value associated with this key in the new communicator; one particular action
that a copy callback may take is to delete the attribute from the new datatype. Returns

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

208 CHAPTER 8. EXTERNAL INTERFACES

in newtype a new datatype with exactly the same properties as type and any copied cached
information. The new datatype has identical upper bound and lower bound and yields the
same net result when fully decoded with the functions in Section 8.6. The newtype has the
same committed state as the old type.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 9

I/O

9.1 Introduction

POSIX provides a model of a widely portable �le system, but the portability and optimiza-
tion needed for parallel I/O cannot be achieved with the POSIX interface.

The signi�cant optimizations required for e�ciency (e.g., grouping [15], collective
bu�ering [1, 2, 16, 19, 22], and disk-directed I/O [13]) can only be implemented if the par-
allel I/O system provides a high-level interface supporting partitioning of �le data among
processes and a collective interface supporting complete transfers of global data structures
between process memories and �les. In addition, further e�ciencies can be gained via sup-
port for asynchronous I/O, strided accesses, and control over physical �le layout on storage
devices (disks). The I/O environment described in this chapter provides these facilities.

Instead of de�ning I/O access modes to express the common patterns for accessing a
shared �le (broadcast, reduction, scatter, gather), we chose another approach in which data
partitioning is expressed using derived datatypes. Compared to a limited set of prede�ned
access patterns, this approach has the advantage of added exibility and expressiveness.

9.1.1 De�nitions

�le An MPI �le is an ordered collection of typed data items. MPI supports random or
sequential access to any integral set of these items. A �le is opened collectively by a
group of processes. All collective I/O calls on a �le are collective over this group.

displacement A �le displacement is an absolute byte position relative to the beginning of
a �le. The displacement de�nes the location where a view begins. Note that a \�le
displacement" is distinct from a \typemap displacement."

etype An etype (elementary datatype) is the unit of data access and positioning. It can be
anyMPI prede�ned or derived datatype. Derived etypes can be constructed using any
of the MPI datatype constructor routines, provided all resulting typemap displace-
ments are nonnegative and monotonically nondecreasing. Data access is performed in
etype units, reading or writing whole data items of type etype. O�sets are expressed
as a count of etypes; �le pointers point to the beginning of etypes. Depending on
context, the term \etype" is used to describe one of three aspects of an elementary
datatype: a particular MPI type, a data item of that type, or the extent of that type.

209

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

210 CHAPTER 9. I/O

�letype A �letype is the basis for partitioning a �le among processes and de�nes a template
for accessing the �le. A �letype is either a single etype or a derived MPI datatype
constructed from multiple instances of the same etype. In addition, the extent of any
hole in the �letype must be a multiple of the etype's extent. The displacements in the
typemap of the �letype are not required to be distinct, but they must be nonnegative
and monotonically nondecreasing.

view A view de�nes the current set of data visible and accessible from an open �le as an
ordered set of etypes. Each process has its own view of the �le, de�ned by three
quantities: a displacement, an etype, and a �letype. The pattern described by a
�letype is repeated, beginning at the displacement, to de�ne the view. The pattern
of repetition is de�ned to be the same pattern that MPI TYPE CONTIGUOUS would
produce if it were passed the �letype and an arbitrarily large count. Figure 9.1 shows
how the tiling works; note that the �letype in this example must have explicit lower
and upper bounds set in order for the initial and �nal holes to be repeated in the
view. Views can be changed by the user during program execution. The default view
is a linear byte stream (displacement is zero, etype and �letype equal to MPI BYTE).

...

etype

filetype

displacement

holes

tiling a file with the filetype:

accessible data

Figure 9.1: Etypes and �letypes

A group of processes can use complementary views to achieve a global data distribution
such as a scatter/gather pattern (see Figure 9.2).

process 0 filetype

...

etype

process 1 filetype

process 2 filetype

displacement

tiling a file with the filetypes:

Figure 9.2: Partitioning a �le among parallel processes

o�set An o�set is a position in the �le relative to the current view, expressed as a count of
etypes. Holes in the view's �letype are skipped when calculating this position. O�set
0 is the location of the �rst etype visible in the view (after skipping the displacement
and any initial holes in the view). For example, an o�set of 2 for process 1 in Figure 9.2
is the position of the 8th etype in the �le after the displacement. An \explicit o�set"
is an o�set that is used as a formal parameter in explicit data access routines.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.2. FILE MANIPULATION 211

�le size and end of �le The size of an MPI �le is measured in bytes from the beginning
of the �le. A newly created �le has a size of zero bytes. Using the size as an absolute
displacement gives the position of the byte immediately following the last byte in the
�le. For any given view, the end of �le is the o�set of the �rst etype accessible in the
current view starting after the last byte in the �le.

�le pointer A �le pointer is an implicit o�set maintained byMPI. \Individual �le pointers"
are �le pointers that are local to each process that opened the �le. A \shared �le
pointer" is a �le pointer that is shared by the group of processes that opened the �le.

�le handle A �le handle is an opaque object created by MPI FILE OPEN and freed by
MPI FILE CLOSE. All operations on an open �le reference the �le through the �le
handle.

9.2 File Manipulation

9.2.1 Opening a File

MPI FILE OPEN(comm, �lename, amode, info, fh)

IN comm communicator (handle)

IN �lename name of �le to open (string)

IN amode �le access mode (integer)

IN info info object (handle)

OUT fh new �le handle (handle)

int MPI File open(MPI Comm comm, char *filename, int amode, MPI Info info,

MPI File *fh)

MPI FILE OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)

CHARACTER*(*) FILENAME

INTEGER COMM, AMODE, INFO, FH, IERROR

static MPI::File MPI::File::Open(const MPI::Intracomm& comm,

const char* filename, int amode, const MPI::Info& info)

MPI FILE OPEN opens the �le identi�ed by the �le name �lename on all processes in
the comm communicator group. MPI FILE OPEN is a collective routine: all processes must
provide the same value for amode, and all processes must provide �lenames that reference
the same �le. (Values for info may vary.) comm must be an intracommunicator; it is
erroneous to pass an intercommunicator to MPI FILE OPEN. Errors in
MPI FILE OPEN are raised using the default �le error handler (see Section 9.7, page 265).
A process can open a �le independently of other processes by using the MPI COMM SELF

communicator. The �le handle returned, fh, can be subsequently used to access the �le until
the �le is closed using MPI FILE CLOSE. Before calling MPI FINALIZE, the user is required
to close (via MPI FILE CLOSE) all �les that were opened with MPI FILE OPEN. Note that
the communicator comm is una�ected by MPI FILE OPEN and continues to be usable in all

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

212 CHAPTER 9. I/O

MPI routines (e.g., MPI SEND). Furthermore, the use of comm will not interfere with I/O
behavior.

The format for specifying the �le name in the �lename argument is implementation
dependent and must be documented by the implementation.

Advice to implementors. An implementation may require that �lename include a
string or strings specifying additional information about the �le. Examples include
the type of �lesystem (e.g., a pre�x of ufs:), a remote hostname (e.g., a pre�x of
machine.univ.edu:), or a �le password (e.g., a su�x of /PASSWORD=SECRET).
(End of advice to implementors.)

Advice to users. On some implementations of MPI, the �le namespace may not be
identical from all processes of all applications. For example, \/tmp/foo" may denote
di�erent �les on di�erent processes, or a single �le may have many names, dependent
on process location. The user is responsible for ensuring that a single �le is referenced
by the �lename argument, as it may be impossible for an implementation to detect
this type of namespace error. (End of advice to users.)

Initially, all processes view the �le as a linear byte stream, and each process views data
in its own native representation (no data representation conversion is performed). (POSIX
�les are linear byte streams in the native representation.) The �le view can be changed via
the MPI FILE SET VIEW routine.

The following access modes are supported (speci�ed in amode, a bit vector OR of the
following integer constants):

� MPI MODE RDONLY | read only,

� MPI MODE RDWR | reading and writing,

� MPI MODE WRONLY | write only,

� MPI MODE CREATE | create the �le if it does not exist,

� MPI MODE EXCL | error if creating �le that already exists,

� MPI MODE DELETE ON CLOSE | delete �le on close,

� MPI MODE UNIQUE OPEN | �le will not be concurrently opened elsewhere,

� MPI MODE SEQUENTIAL | �le will only be accessed sequentially,

� MPI MODE APPEND | set initial position of all �le pointers to end of �le.

Advice to users. C/C++ users can use bit vector OR (j) to combine these constants;
Fortran 90 users can use the bit vector IOR intrinsic. Fortran 77 users can use (non-
portably) bit vector IOR on systems that support it. Alternatively, Fortran users can
portably use integer addition to OR the constants (each constant should appear at
most once in the addition.). (End of advice to users.)

Advice to implementors. The values of these constants must be de�ned such that
the bitwise OR and the sum of any distinct set of these constants is equivalent. (End
of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.2. FILE MANIPULATION 213

The modes MPI MODE RDONLY, MPI MODE RDWR, MPI MODE WRONLY,
MPI MODE CREATE, and MPI MODE EXCL have identical semantics to their POSIX counter-
parts [11]. Exactly one of MPI MODE RDONLY, MPI MODE RDWR, or MPI MODE WRONLY,
must be speci�ed. It is erroneous to specify MPI MODE CREATE or MPI MODE EXCL in
conjunction with MPI MODE RDONLY; it is erroneous to specify MPI MODE SEQUENTIAL

together with MPI MODE RDWR.
The MPI MODE DELETE ON CLOSE mode causes the �le to be deleted (equivalent to

performing an MPI FILE DELETE) when the �le is closed.
The MPI MODE UNIQUE OPEN mode allows an implementation to optimize access by

eliminating the overhead of �le locking. It is erroneous to open a �le in this mode unless
the �le will not be concurrently opened elsewhere.

Advice to users. For MPI MODE UNIQUE OPEN, not opened elsewhere includes both
inside and outside the MPI environment. In particular, one needs to be aware of
potential external events which may open �les (e.g., automated backup facilities).
When MPI MODE UNIQUE OPEN is speci�ed, the user is responsible for ensuring that
no such external events take place. (End of advice to users.)

TheMPI MODE SEQUENTIALmode allows an implementation to optimize access to some
sequential devices (tapes and network streams). It is erroneous to attempt nonsequential
access to a �le that has been opened in this mode.

Specifying MPI MODE APPEND only guarantees that all shared and individual �le point-
ers are positioned at the initial end of �le when MPI FILE OPEN returns. Subsequent po-
sitioning of �le pointers is application dependent. In particular, the implementation does
not ensure that all writes are appended.

Errors related to the access mode are raised in the class MPI ERR AMODE.
The info argument is used to provide information regarding �le access patterns and �le

system speci�cs (see Section 9.2.8, page 218). The constant MPI INFO NULL can be used
when no info needs to be speci�ed.

Advice to users. Some �le attributes are inherently implementation dependent (e.g.,
�le permissions). These attributes must be set using either the info argument or
facilities outside the scope of MPI. (End of advice to users.)

Files are opened by default using nonatomic mode �le consistency semantics (see Sec-
tion 9.6.1, page 255). The more stringent atomic mode consistency semantics, required for
atomicity of conicting accesses, can be set using MPI FILE SET ATOMICITY.

9.2.2 Closing a File

MPI FILE CLOSE(fh)

INOUT fh �le handle (handle)

int MPI File close(MPI File *fh)

MPI FILE CLOSE(FH, IERROR)

INTEGER FH, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

214 CHAPTER 9. I/O

void MPI::File::Close()

MPI FILE CLOSE �rst synchronizes �le state (equivalent to performing an
MPI FILE SYNC), then closes the �le associated with fh. The �le is deleted if it was opened
with access mode MPI MODE DELETE ON CLOSE (equivalent to performing an
MPI FILE DELETE). MPI FILE CLOSE is a collective routine.

Advice to users. If the �le is deleted on close, and there are other processes currently
accessing the �le, the status of the �le and the behavior of future accesses by these
processes are implementation dependent. (End of advice to users.)

The user is responsible for ensuring that all outstanding nonblocking requests and
split collective operations associated with fh made by a process have completed before that
process calls MPI FILE CLOSE.

The MPI FILE CLOSE routine deallocates the �le handle object and sets fh to
MPI FILE NULL.

9.2.3 Deleting a File

MPI FILE DELETE(�lename, info)

IN �lename name of �le to delete (string)

IN info info object (handle)

int MPI File delete(char *filename, MPI Info info)

MPI FILE DELETE(FILENAME, INFO, IERROR)

CHARACTER*(*) FILENAME

INTEGER INFO, IERROR

static void MPI::File::Delete(const char* filename, const MPI::Info& info)

MPI FILE DELETE deletes the �le identi�ed by the �le name �lename. If the �le does
not exist, MPI FILE DELETE raises an error in the class MPI ERR NO SUCH FILE.

The info argument can be used to provide information regarding �le system speci�cs
(see Section 9.2.8, page 218). The constant MPI INFO NULL refers to the null info, and can
be used when no info needs to be speci�ed.

If a process currently has the �le open, the behavior of any access to the �le (as well
as the behavior of any outstanding accesses) is implementation dependent. In addition,
whether an open �le is deleted or not is also implementation dependent. If the �le is not
deleted, an error in the class MPI ERR FILE IN USE or MPI ERR ACCESS will be raised. Errors
are raised using the default error handler (see Section 9.7, page 265).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.2. FILE MANIPULATION 215

9.2.4 Resizing a File

MPI FILE SET SIZE(fh, size)

INOUT fh �le handle (handle)

IN size size to truncate or expand �le (integer)

int MPI File set size(MPI File fh, MPI Offset size)

MPI FILE SET SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI OFFSET KIND) SIZE

void MPI::File::Set size(MPI::Offset size)

MPI FILE SET SIZE resizes the �le associated with the �le handle fh. size is measured
in bytes from the beginning of the �le. MPI FILE SET SIZE is collective; all processes in
the group must pass identical values for size.

If size is smaller than the current �le size, the �le is truncated at the position de�ned
by size. The implementation is free to deallocate �le blocks located beyond this position.

If size is larger than the current �le size, the �le size becomes size. Regions of the �le
that have been previously written are una�ected. The values of data in the new regions in
the �le (those locations with displacements between old �le size and size) are unde�ned. It
is implementation dependent whether the MPI FILE SET SIZE routine allocates �le space|
use MPI FILE PREALLOCATE to force �le space to be reserved.

MPI FILE SET SIZE does not a�ect the individual �le pointers or the shared �le pointer.
If MPI MODE SEQUENTIAL mode was speci�ed when the �le was opened, it is erroneous to
call this routine.

Advice to users. It is possible for the �le pointers to point beyond the end of �le
after a MPI FILE SET SIZE operation truncates a �le. This is legal, and equivalent to
seeking beyond the current end of �le. (End of advice to users.)

All nonblocking requests and split collective operations on fh must be completed before
calling MPI FILE SET SIZE. Otherwise, calling MPI FILE SET SIZE is erroneous. As far as
consistency semantics are concerned, MPI FILE SET SIZE is a write operation that conicts
with operations that access bytes at displacements between the old and new �le sizes (see
Section 9.6.1, page 255).

9.2.5 Preallocating Space for a File

MPI FILE PREALLOCATE(fh, size)

INOUT fh �le handle (handle)

IN size size to preallocate �le (integer)

int MPI File preallocate(MPI File fh, MPI Offset size)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

216 CHAPTER 9. I/O

MPI FILE PREALLOCATE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI OFFSET KIND) SIZE

void MPI::File::Preallocate(MPI::Offset size)

MPI FILE PREALLOCATE ensures that storage space is allocated for the �rst size bytes
of the �le associated with fh. MPI FILE PREALLOCATE is collective; all processes in the
group must pass identical values for size. Regions of the �le that have previously been
written are una�ected. For newly allocated regions of the �le, MPI FILE PREALLOCATE
has the same e�ect as writing unde�ned data. If size is larger than the current �le size, the
�le size increases to size. If size is less than or equal to the current �le size, the �le size is
unchanged.

The treatment of �le pointers, pending nonblocking accesses, and �le consistency is the
same as with MPI FILE SET SIZE. If MPI MODE SEQUENTIAL mode was speci�ed when the
�le was opened, it is erroneous to call this routine.

Advice to users. In some implementations, �le preallocation may be expensive. (End
of advice to users.)

9.2.6 Querying the Size of a File

MPI FILE GET SIZE(fh, size)

IN fh �le handle (handle)

OUT size size of the �le in bytes (integer)

int MPI File get size(MPI File fh, MPI Offset *size)

MPI FILE GET SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI OFFSET KIND) SIZE

MPI::Offset MPI::File::Get size() const

MPI FILE GET SIZE returns, in size, the current size in bytes of the �le associated with
the �le handle fh. As far as consistency semantics are concerned, MPI FILE GET SIZE is a
data access operation (see Section 9.6.1, page 255).

9.2.7 Querying File Parameters

MPI FILE GET GROUP(fh, group)

IN fh �le handle (handle)

OUT group group which opened the �le (handle)

int MPI File get group(MPI File fh, MPI Group *group)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.2. FILE MANIPULATION 217

MPI FILE GET GROUP(FH, GROUP, IERROR)

INTEGER FH, GROUP, IERROR

MPI::Group MPI::File::Get group() const

MPI FILE GET GROUP returns a duplicate of the group of the communicator used to
open the �le associated with fh. The group is returned in group. The user is responsible for
freeing group.

MPI FILE GET AMODE(fh, amode)

IN fh �le handle (handle)

OUT amode �le access mode used to open the �le (integer)

int MPI File get amode(MPI File fh, int *amode)

MPI FILE GET AMODE(FH, AMODE, IERROR)

INTEGER FH, AMODE, IERROR

int MPI::File::Get amode() const

MPI FILE GET AMODE returns, in amode, the access mode of the �le associated with
fh.

Example 9.1 In Fortran 77, decoding an amode bit vector will require a routine such as
the following:

SUBROUTINE BIT_QUERY(TEST_BIT, MAX_BIT, AMODE, BIT_FOUND)

!

! TEST IF THE INPUT TEST_BIT IS SET IN THE INPUT AMODE

! IF SET, RETURN 1 IN BIT_FOUND, 0 OTHERWISE

!

INTEGER TEST_BIT, AMODE, BIT_FOUND, CP_AMODE, HIFOUND

BIT_FOUND = 0

CP_AMODE = AMODE

100 CONTINUE

LBIT = 0

HIFOUND = 0

DO 20 L = MAX_BIT, 0, -1

MATCHER = 2**L

IF (CP_AMODE .GE. MATCHER .AND. HIFOUND .EQ. 0) THEN

HIFOUND = 1

LBIT = MATCHER

CP_AMODE = CP_AMODE - MATCHER

END IF

20 CONTINUE

IF (HIFOUND .EQ. 1 .AND. LBIT .EQ. TEST_BIT) BIT_FOUND = 1

IF (BIT_FOUND .EQ. 0 .AND. HIFOUND .EQ. 1 .AND. &

CP_AMODE .GT. 0) GO TO 100

END

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

218 CHAPTER 9. I/O

This routine could be called successively to decode amode, one bit at a time. For
example, the following code fragment would check for MPI MODE RDONLY.

CALL BIT_QUERY(MPI_MODE_RDONLY, 30, AMODE, BIT_FOUND)

IF (BIT_FOUND .EQ. 1) THEN

PRINT *, ' FOUND READ-ONLY BIT IN AMODE=', AMODE

ELSE

PRINT *, ' READ-ONLY BIT NOT FOUND IN AMODE=', AMODE

END IF

9.2.8 File Info

Hints speci�ed via info (see Section 4.10, page 43) allow a user to provide information
such as �le access patterns and �le system speci�cs to direct optimization. Providing
hints may enable an implementation to deliver increased I/O performance or minimize
the use of system resources. However, hints do not change the semantics of any of the
I/O interfaces. In other words, an implementation is free to ignore all hints. Hints are
speci�ed on a per �le basis, in MPI FILE OPEN, MPI FILE DELETE, MPI FILE SET VIEW,
and MPI FILE SET INFO, via the opaque info object.

Advice to implementors. It may happen that a program is coded with hints for one
system, and later executes on another system that does not support these hints. In
general, unsupported hints should simply be ignored. Needless to say, no hint can be
mandatory. However, for each hint used by a speci�c implementation, a default value
must be provided when the user does not specify a value for this hint. (End of advice
to implementors.)

MPI FILE SET INFO(fh, info)

INOUT fh �le handle (handle)

IN info info object (handle)

int MPI File set info(MPI File fh, MPI Info info)

MPI FILE SET INFO(FH, INFO, IERROR)

INTEGER FH, INFO, IERROR

void MPI::File::Set info(const MPI::Info& info)

MPI FILE SET INFO sets new values for the hints of the �le associated with
fh. MPI FILE SET INFO is a collective routine. The info object may be di�erent on each
process, but any info entries that an implementation requires to be the same on all processes
must appear with the same value in each process's info object.

Advice to users. Many info items that an implementation can use when it creates or
opens a �le cannot easily be changed once the �le has been created or opened. Thus,
an implementation may ignore hints issued in this call that it would have accepted in
an open call. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.2. FILE MANIPULATION 219

MPI FILE GET INFO(fh, info used)

IN fh �le handle (handle)

OUT info used new info object (handle)

int MPI File get info(MPI File fh, MPI Info *info used)

MPI FILE GET INFO(FH, INFO USED, IERROR)

INTEGER FH, INFO USED, IERROR

MPI::Info MPI::File::Get info() const

MPI FILE GET INFO returns a new info object containing the hints of the �le associated
with fh. The current setting of all hints actually used by the system related to this open �le
is returned in info used. The user is responsible for freeing info used via MPI INFO FREE.

Advice to users. The info object returned in info used will contain all hints currently
active for this �le. This set of hints may be greater or smaller than the set of hints
passed in to MPI FILE OPEN, MPI FILE SET VIEW, and MPI FILE SET INFO, as the
system may not recognize some hints set by the user, and may recognize other hints
that the user has not set. (End of advice to users.)

Reserved File Hints

Some potentially useful hints (info key values) are outlined below. The following key values
are reserved. An implementation is not required to interpret these key values, but if it does
interpret the key value, it must provide the functionality described. (For more details on
\info," see Section 4.10, page 43.)

These hints mainly a�ect access patterns and the layout of data on parallel I/O devices.
For each hint name introduced, we describe the purpose of the hint, and the type of the hint
value. The \[SAME]" annotation speci�es that the hint values provided by all participating
processes must be identical; otherwise the program is erroneous. In addition, some hints are
context dependent, and are only used by an implementation at speci�c times (e.g., �le perm
is only useful during �le creation).

access style (comma separated list of strings): This hint speci�es the manner in which
the �le will be accessed until the �le is closed or until the access style key value is
altered. The hint value is a comma separated list of the following: read once, write once,
read mostly, write mostly, sequential, reverse sequential, and random.

collective bu�ering (boolean) [SAME]: This hint speci�es whether the application may ben-
e�t from collective bu�ering. Collective bu�ering is an optimization performed on
collective accesses. Accesses to the �le are performed on behalf of all processes in the
group by a number of target nodes. These target nodes coalesce small requests into
large disk accesses. Legal values for this key are true and false. Collective bu�ering
parameters are further directed via additional hints: cb block size, cb bu�er size, and
cb nodes.

cb block size (integer) [SAME]: This hint speci�es the block size to be used for collective
bu�ering �le access. Target nodes access data in chunks of this size. The chunks are
distributed among target nodes in a round-robin (CYCLIC) pattern.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

220 CHAPTER 9. I/O

cb bu�er size (integer) [SAME]: This hint speci�es the total bu�er space that can be used
for collective bu�ering on each target node, usually a multiple of cb block size.

cb nodes (integer) [SAME]: This hint speci�es the number of target nodes to be used for
collective bu�ering.

chunked (comma separated list of integers) [SAME]: This hint speci�es that the �le
consists of a multidimentional array that is often accessed by subarrays. The value
for this hint is a comma separated list of array dimensions, starting from the most
signi�cant one (for an array stored in row-major order, as in C, the most signi�cant
dimension is the �rst one; for an array stored in column-major order, as in Fortran, the
most signi�cant dimension is the last one, and array dimensions should be reversed).

chunked item (comma separated list of integers) [SAME]: This hint speci�es the size
of each array entry, in bytes.

chunked size (comma separated list of integers) [SAME]: This hint speci�es the dimen-
sions of the subarrays. This is a comma separated list of array dimensions, starting
from the most signi�cant one.

�lename (string): This hint speci�es the �le name used when the �le was opened. If the
implementation is capable of returning the �le name of an open �le, it will be returned
using this key by MPI FILE GET INFO. This key is ignored when passed to
MPI FILE OPEN, MPI FILE SET VIEW, MPI FILE SET INFO, and
MPI FILE DELETE.

�le perm (string) [SAME]: This hint speci�es the �le permissions to use for �le creation.
Setting this hint is only useful when passed to MPI FILE OPEN with an amode that
includes MPI MODE CREATE. The set of legal values for this key is implementation
dependent.

io node list (comma separated list of strings) [SAME]: This hint speci�es the list of
I/O devices that should be used to store the �le. This hint is most relevant when the
�le is created.

nb proc (integer) [SAME]: This hint speci�es the number of parallel processes that will
typically be assigned to run programs that access this �le. This hint is most relevant
when the �le is created.

num io nodes (integer) [SAME]: This hint speci�es the number of I/O devices in the sys-
tem. This hint is most relevant when the �le is created.

striping factor (integer) [SAME]: This hint speci�es the number of I/O devices that the
�le should be striped across, and is relevant only when the �le is created.

striping unit (integer) [SAME]: This hint speci�es the suggested striping unit to be used
for this �le. The striping unit is the amount of consecutive data assigned to one I/O
device before progressing to the next device, when striping across a number of devices.
It is expressed in bytes. This hint is relevant only when the �le is created.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.3. FILE VIEWS 221

9.3 File Views

MPI FILE SET VIEW(fh, disp, etype, �letype, datarep, info)

INOUT fh �le handle (handle)

IN disp displacement (integer)

IN etype elementary datatype (handle)

IN �letype �letype (handle)

IN datarep data representation (string)

IN info info object (handle)

int MPI File set view(MPI File fh, MPI Offset disp, MPI Datatype etype,

MPI Datatype filetype, char *datarep, MPI Info info)

MPI FILE SET VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)

INTEGER FH, ETYPE, FILETYPE, INFO, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI OFFSET KIND) DISP

void MPI::File::Set view(MPI::Offset disp, const MPI::Datatype& etype,

const MPI::Datatype& filetype, const char* datarep,

const MPI::Info& info)

The MPI FILE SET VIEW routine changes the process's view of the data in the �le.
The start of the view is set to disp; the type of data is set to etype; the distribution of data
to processes is set to �letype; and the representation of data in the �le is set to datarep. In
addition, MPI FILE SET VIEW resets the individual �le pointers and the shared �le pointer
to zero. MPI FILE SET VIEW is collective; the values for datarep and the extents of etype in
the �le data representation must be identical on all processes in the group; values for disp,
�letype, and info may vary. The datatypes passed in etype and �letype must be committed.

The etype always speci�es the data layout in the �le. If etype is a portable datatype
(see Section 2.4, page 7), the extent of etype is computed by scaling any displacements in
the datatype to match the �le data representation. If etype is not a portable datatype, no
scaling is done when computing the extent of etype. The user must be careful when using
nonportable etypes in heterogeneous environments; see Section 9.5.1, page 248 for further
details.

If MPI MODE SEQUENTIAL mode was speci�ed when the �le was opened, the special
displacement MPI DISPLACEMENT CURRENT must be passed in disp. This sets the displace-
ment to the current position of the shared �le pointer.

Rationale. For some sequential �les, such as those corresponding to magnetic tapes
or streaming network connections, the displacement may not be meaningful.
MPI DISPLACEMENT CURRENT allows the view to be changed for these types of �les.
(End of rationale.)

Advice to implementors. It is expected that a call toMPI FILE SET VIEW will imme-
diately follow MPI FILE OPEN in numerous instances. A high quality implementation
will ensure that this behavior is e�cient. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

222 CHAPTER 9. I/O

The disp displacement argument speci�es the position (absolute o�set in bytes from
the beginning of the �le) where the view begins.

Advice to users. disp can be used to skip headers or when the �le includes a sequence
of data segments that are to be accessed in di�erent patterns (see Figure 9.3). Separate
views, each using a di�erent displacement and �letype, can be used to access each
segment.

second view

first view

header ...
file structure:

first displacement second displacement

Figure 9.3: Displacements

(End of advice to users.)

An etype (elementary datatype) is the unit of data access and positioning. It can be
any MPI prede�ned or derived datatype. Derived etypes can be constructed by using any
of the MPI datatype constructor routines, provided all resulting typemap displacements are
nonnegative and monotonically nondecreasing. Data access is performed in etype units,
reading or writing whole data items of type etype. O�sets are expressed as a count of
etypes; �le pointers point to the beginning of etypes.

Advice to users. In order to ensure interoperability in a heterogeneous environment,
additional restrictions must be observed when constructing the etype (see Section 9.5,
page 246). (End of advice to users.)

A �letype is either a single etype or a derived MPI datatype constructed from multiple
instances of the same etype. In addition, the extent of any hole in the �letype must be
a multiple of the etype's extent. These displacements are not required to be distinct, but
they cannot be negative, and they must be monotonically nondecreasing.

If the �le is opened for writing, neither the etype nor the �letype is permitted to contain
overlapping regions. This restriction is equivalent to the \datatype used in a receive cannot
specify overlapping regions" restriction for communication. Note that �letypes from di�erent
processes may still overlap each other.

If �letype has holes in it, then the data in the holes is inaccessible to the calling process.
However, the disp, etype and �letype arguments can be changed via future calls to
MPI FILE SET VIEW to access a di�erent part of the �le.

It is erroneous to use absolute addresses in the construction of the etype and �letype.
The info argument is used to provide information regarding �le access patterns and

�le system speci�cs to direct optimization (see Section 9.2.8, page 218). The constant
MPI INFO NULL refers to the null info and can be used when no info needs to be speci�ed.

The datarep argument is a string that speci�es the representation of data in the �le.
See the �le interoperability section (Section 9.5, page 246) for details and a discussion of
valid values.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.4. DATA ACCESS 223

The user is responsible for ensuring that all nonblocking requests and split collective
operations on fh have been completed before calling MPI FILE SET VIEW|otherwise, the
call to MPI FILE SET VIEW is erroneous.

MPI FILE GET VIEW(fh, disp, etype, �letype, datarep)

IN fh �le handle (handle)

OUT disp displacement (integer)

OUT etype elementary datatype (handle)

OUT �letype �letype (handle)

OUT datarep data representation (string)

int MPI File get view(MPI File fh, MPI Offset *disp, MPI Datatype *etype,

MPI Datatype *filetype, char *datarep)

MPI FILE GET VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)

INTEGER FH, ETYPE, FILETYPE, IERROR

CHARACTER*(*) DATAREP, INTEGER(KIND=MPI OFFSET KIND) DISP

void MPI::File::Get view(MPI::Offset& disp, MPI::Datatype& etype,

MPI::Datatype& filetype, char* datarep) const

MPI FILE GET VIEW returns the process's view of the data in the �le. The current
value of the displacement is returned in disp. The etype and �letype are new datatypes with
typemaps equal to the typemaps of the current etype and �letype, respectively.

The data representation is returned in datarep. The user is responsible for ensuring
that datarep is large enough to hold the returned data representation string. The length of
a data representation string is limited to the value of MPI MAX DATAREP STRING.

In addition, if a portable datatype was used to set the current view, then the corre-
sponding datatype returned by MPI FILE GET VIEW is also a portable datatype. If etype
or �letype are derived datatypes, the user is responsible for freeing them. The etype and
�letype returned are both in a committed state.

9.4 Data Access

9.4.1 Data Access Routines

Data is moved between �les and processes by issuing read and write calls. There are three
orthogonal aspects to data access: positioning (explicit o�set vs. implicit �le pointer),
synchronism (blocking vs. nonblocking and split collective), and coordination (noncollective
vs. collective). The following combinations of these data access routines, including two types
of �le pointers (individual and shared) are provided:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

224 CHAPTER 9. I/O

positioning synchronism coordination

noncollective collective

explicit blocking MPI FILE READ AT MPI FILE READ AT ALL
o�sets MPI FILE WRITE AT MPI FILE WRITE AT ALL

nonblocking & MPI FILE IREAD AT MPI FILE READ AT ALL BEGIN
split collective MPI FILE READ AT ALL END

MPI FILE IWRITE AT MPI FILE WRITE AT ALL BEGIN
MPI FILE WRITE AT ALL END

individual blocking MPI FILE READ MPI FILE READ ALL
�le pointers MPI FILE WRITE MPI FILE WRITE ALL

nonblocking & MPI FILE IREAD MPI FILE READ ALL BEGIN
split collective MPI FILE READ ALL END

MPI FILE IWRITE MPI FILE WRITE ALL BEGIN
MPI FILE WRITE ALL END

shared blocking MPI FILE READ SHARED MPI FILE READ ORDERED
�le pointer MPI FILE WRITE SHARED MPI FILE WRITE ORDERED

nonblocking & MPI FILE IREAD SHARED MPI FILE READ ORDERED BEGIN
split collective MPI FILE READ ORDERED END

MPI FILE IWRITE SHARED MPI FILE WRITE ORDERED BEGIN
MPI FILE WRITE ORDERED END

POSIX read()/fread() and write()/fwrite() are blocking, noncollective operations and
use individual �le pointers. TheMPI equivalents areMPI FILE READ andMPI FILE WRITE.

Implementations of data access routines may bu�er data to improve performance. This
does not a�ect reads, as the data is always available in the user's bu�er after a read operation
completes. For writes, however, the MPI FILE SYNC routine provides the only guarantee
that data has been transferred to the storage device.

Positioning

MPI provides three types of positioning for data access routines: explicit o�sets, individual
�le pointers, and shared �le pointers. The di�erent positioning methods may be mixed
within the same program and do not a�ect each other.

The data access routines that accept explicit o�sets contain AT in their name (e.g.,
MPI FILE WRITE AT). Explicit o�set operations perform data access at the �le position
given directly as an argument|no �le pointer is used nor updated. Note that this is not
equivalent to an atomic seek-and-read or seek-and-write operation, as no \seek" is issued.
Operations with explicit o�sets are described in Section 9.4.2, page 226.

The names of the individual �le pointer routines contain no positional quali�er (e.g.,
MPI FILE WRITE). Operations with individual �le pointers are described in Section 9.4.3,
page 230. The data access routines that use shared �le pointers contain SHARED or
ORDERED in their name (e.g., MPI FILE WRITE SHARED). Operations with shared �le
pointers are described in Section 9.4.4, page 235.

The main semantic issues withMPI-maintained �le pointers are how and when they are
updated by I/O operations. In general, each I/O operation leaves the �le pointer pointing to
the next data item after the last one that is accessed by the operation. In a nonblocking or
split collective operation, the pointer is updated by the call that initiates the I/O, possibly
before the access completes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.4. DATA ACCESS 225

More formally,

new �le o�set = old �le o�set+
elements(datatype)

elements(etype)
� count

where count is the number of datatype items to be accessed, elements(X) is the number
of prede�ned datatypes in the typemap of X , and old �le o�set is the value of the implicit
o�set before the call. The �le position, new �le o�set , is in terms of a count of etypes
relative to the current view.

Synchronism

MPI supports blocking and nonblocking I/O routines.
A blocking I/O call will not return until the I/O request is completed.
A nonblocking I/O call initiates an I/O operation, but does not wait for it to complete.

Given suitable hardware, this allows the transfer of data out/in the user's bu�er to proceed
concurrently with computation. A separate request complete call (MPI WAIT, MPI TEST,
or any of their variants) is needed to complete the I/O request, i.e., to con�rm that the data
has been read or written and that it is safe for the user to reuse the bu�er. The nonblocking
versions of the routines are named MPI FILE IXXX, where the I stands for immediate.

It is erroneous to access the local bu�er of a nonblocking data access operation, or to
use that bu�er as the source or target of other communications, between the initiation and
completion of the operation.

The split collective routines support a restricted form of \nonblocking" operations for
collective data access (see Section 9.4.5, page 240).

Coordination

Every noncollective data access routine MPI FILE XXX has a collective counterpart. For
most routines, this counterpart is MPI FILE XXX ALL or a pair of MPI FILE XXX BEGIN
and MPI FILE XXX END. The counterparts to the MPI FILE XXX SHARED routines are
MPI FILE XXX ORDERED.

The completion of a noncollective call only depends on the activity of the calling pro-
cess. However, the completion of a collective call (which must be called by all members of
the process group) may depend on the activity of the other processes participating in the
collective call. See Section 9.6.4, page 259, for rules on semantics of collective calls.

Collective operations may perform much better than their noncollective counterparts,
as global data accesses have signi�cant potential for automatic optimization.

Data Access Conventions

Data is moved between �les and processes by calling read and write routines. Read routines
move data from a �le into memory. Write routines move data from memory into a �le. The
�le is designated by a �le handle, fh. The location of the �le data is speci�ed by an o�set
into the current view. The data in memory is speci�ed by a triple: buf, count, and datatype.
Upon completion, the amount of data accessed by the calling process is returned in a status.

An o�set designates the starting position in the �le for an access. The o�set is always in
etype units relative to the current view. Explicit o�set routines pass o�set as an argument
(negative values are erroneous). The �le pointer routines use implicit o�sets maintained by
MPI.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

226 CHAPTER 9. I/O

A data access routine attempts to transfer (read or write) count data items of type
datatype between the user's bu�er buf and the �le. The datatype passed to the routine
must be a committed datatype. The layout of data in memory corresponding to buf, count,
datatype is interpreted the same way as inMPI-1 communication functions; see Section 3.12.5
in [6]. The data is accessed from those parts of the �le speci�ed by the current view
(Section 9.3, page 221). The type signature of datatype must match the type signature
of some number of contiguous copies of the etype of the current view. As in a receive, it
is erroneous to specify a datatype for reading that contains overlapping regions (areas of
memory which would be stored into more than once).

The nonblocking data access routines indicate that MPI can start a data access and
associate a request handle, request, with the I/O operation. Nonblocking operations are
completed via MPI TEST, MPI WAIT, or any of their variants.

Data access operations, when completed, return the amount of data accessed in status.

Advice to users. To prevent problems with the argument copying and register opti-
mization done by Fortran compilers, please note the hints in subsections \Problems
Due to Data Copying and Sequence Association," and \A Problem with Register
Optimization" in Section 10.2.2, pages 286 and 289. (End of advice to users.)

For blocking routines, status is returned directly. For nonblocking routines and split
collective routines, status is returned when the operation is completed. The number of
datatype entries and prede�ned elements accessed by the calling process can be extracted
from status by using MPI GET COUNT and MPI GET ELEMENTS, respectively. The inter-
pretation of theMPI ERROR �eld is the same as for other operations | normally unde�ned,
but meaningful if an MPI routine returns MPI ERR IN STATUS. The user can pass (in C
and Fortran) MPI STATUS IGNORE in the status argument if the return value of this argu-
ment is not needed. In C++, the status argument is optional. The status can be passed
to MPI TEST CANCELLED to determine if the operation was cancelled. All other �elds of
status are unde�ned.

When reading, a program can detect the end of �le by noting that the amount of data
read is less than the amount requested. Writing past the end of �le increases the �le size.
The amount of data accessed will be the amount requested, unless an error is raised (or a
read reaches the end of �le).

9.4.2 Data Access with Explicit O�sets

If MPI MODE SEQUENTIAL mode was speci�ed when the �le was opened, it is erroneous to
call the routines in this section.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.4. DATA ACCESS 227

MPI FILE READ AT(fh, o�set, buf, count, datatype, status)

IN fh �le handle (handle)

IN o�set �le o�set (integer)

OUT buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT status status object (Status)

int MPI File read at(MPI File fh, MPI Offset offset, void *buf, int count,

MPI Datatype datatype, MPI Status *status)

MPI FILE READ AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

void MPI::File::Read at(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read at(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE READ AT reads a �le beginning at the position speci�ed by o�set.

MPI FILE READ AT ALL(fh, o�set, buf, count, datatype, status)

IN fh �le handle (handle)

IN o�set �le o�set (integer)

OUT buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT status status object (Status)

int MPI File read at all(MPI File fh, MPI Offset offset, void *buf,

int count, MPI Datatype datatype, MPI Status *status)

MPI FILE READ AT ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

void MPI::File::Read at all(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read at all(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

228 CHAPTER 9. I/O

MPI FILE READ AT ALL is a collective version of the blocking MPI FILE READ AT
interface.

MPI FILE WRITE AT(fh, o�set, buf, count, datatype, status)

INOUT fh �le handle (handle)

IN o�set �le o�set (integer)

IN buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT status status object (Status)

int MPI File write at(MPI File fh, MPI Offset offset, void *buf, int count,

MPI Datatype datatype, MPI Status *status)

MPI FILE WRITE AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

void MPI::File::Write at(MPI::Offset offset, const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write at(MPI::Offset offset, const void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE WRITE AT writes a �le beginning at the position speci�ed by o�set.

MPI FILE WRITE AT ALL(fh, o�set, buf, count, datatype, status)

INOUT fh �le handle (handle)

IN o�set �le o�set (integer)

IN buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT status status object (Status)

int MPI File write at all(MPI File fh, MPI Offset offset, void *buf,

int count, MPI Datatype datatype, MPI Status *status)

MPI FILE WRITE AT ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

void MPI::File::Write at all(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype, MPI::Status& status)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.4. DATA ACCESS 229

void MPI::File::Write at all(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype)

MPI FILE WRITE AT ALL is a collective version of the blocking MPI FILE WRITE AT
interface.

MPI FILE IREAD AT(fh, o�set, buf, count, datatype, request)

IN fh �le handle (handle)

IN o�set �le o�set (integer)

OUT buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT request request object (handle)

int MPI File iread at(MPI File fh, MPI Offset offset, void *buf, int count,

MPI Datatype datatype, MPI Request *request)

MPI FILE IREAD AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

MPI::Request MPI::File::Iread at(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE IREAD AT is a nonblocking version of the MPI FILE READ AT interface.

MPI FILE IWRITE AT(fh, o�set, buf, count, datatype, request)

INOUT fh �le handle (handle)

IN o�set �le o�set (integer)

IN buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT request request object (handle)

int MPI File iwrite at(MPI File fh, MPI Offset offset, void *buf, int count,

MPI Datatype datatype, MPI Request *request)

MPI FILE IWRITE AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

MPI::Request MPI::File::Iwrite at(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

230 CHAPTER 9. I/O

MPI FILE IWRITE AT is a nonblocking version of the MPI FILE WRITE AT interface.

9.4.3 Data Access with Individual File Pointers

MPI maintains one individual �le pointer per process per �le handle. The current value
of this pointer implicitly speci�es the o�set in the data access routines described in this
section. These routines only use and update the individual �le pointers maintained by MPI.
The shared �le pointer is not used nor updated.

The individual �le pointer routines have the same semantics as the data access with
explicit o�set routines described in Section 9.4.2, page 226, with the following modi�cation:

� the o�set is de�ned to be the current value of the MPI-maintained individual �le
pointer.

After an individual �le pointer operation is initiated, the individual �le pointer is updated
to point to the next etype after the last one that will be accessed. The �le pointer is updated
relative to the current view of the �le.

If MPI MODE SEQUENTIAL mode was speci�ed when the �le was opened, it is erroneous
to call the routines in this section.

MPI FILE READ(fh, buf, count, datatype, status)

INOUT fh �le handle (handle)

OUT buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT status status object (Status)

int MPI File read(MPI File fh, void *buf, int count, MPI Datatype datatype,

MPI Status *status)

MPI FILE READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype,

MPI::Status& status)

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype)

MPI FILE READ reads a �le using the individual �le pointer.

Example 9.2 The following Fortran code fragment is an example of reading a �le until
the end of �le is reached:

! Read a preexisting input file until all data has been read.

! Call routine "process_input" if all requested data is read.

! The Fortran 90 "exit" statement exits the loop.

integer bufsize, numread, totprocessed, status(MPI_STATUS_SIZE)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.4. DATA ACCESS 231

parameter (bufsize=100)

real localbuffer(bufsize)

call MPI_FILE_OPEN(MPI_COMM_WORLD, 'myoldfile', &

MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, ierr)

call MPI_FILE_SET_VIEW(myfh, 0, MPI_REAL, MPI_REAL, 'native', &

MPI_INFO_NULL, ierr)

totprocessed = 0

do

call MPI_FILE_READ(myfh, localbuffer, bufsize, MPI_REAL, &

status, ierr)

call MPI_GET_COUNT(status, MPI_REAL, numread, ierr)

call process_input(localbuffer, numread)

totprocessed = totprocessed + numread

if (numread < bufsize) exit

enddo

write(6,1001) numread, bufsize, totprocessed

1001 format("No more data: read", I3, "and expected", I3, &

"Processed total of", I6, "before terminating job.")

call MPI_FILE_CLOSE(myfh, ierr)

MPI FILE READ ALL(fh, buf, count, datatype, status)

INOUT fh �le handle (handle)

OUT buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT status status object (Status)

int MPI File read all(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Status *status)

MPI FILE READ ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

void MPI::File::Read all(void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read all(void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE READ ALL is a collective version of the blocking MPI FILE READ interface.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

232 CHAPTER 9. I/O

MPI FILE WRITE(fh, buf, count, datatype, status)

INOUT fh �le handle (handle)

IN buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT status status object (Status)

int MPI File write(MPI File fh, void *buf, int count, MPI Datatype datatype,

MPI Status *status)

MPI FILE WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

void MPI::File::Write(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write(const void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE WRITE writes a �le using the individual �le pointer.

MPI FILE WRITE ALL(fh, buf, count, datatype, status)

INOUT fh �le handle (handle)

IN buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT status status object (Status)

int MPI File write all(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Status *status)

MPI FILE WRITE ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

void MPI::File::Write all(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write all(const void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE WRITE ALL is a collective version of the blocking MPI FILE WRITE interface.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.4. DATA ACCESS 233

MPI FILE IREAD(fh, buf, count, datatype, request)

INOUT fh �le handle (handle)

OUT buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT request request object (handle)

int MPI File iread(MPI File fh, void *buf, int count, MPI Datatype datatype,

MPI Request *request)

MPI FILE IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI::Request MPI::File::Iread(void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE IREAD is a nonblocking version of the MPI FILE READ interface.

Example 9.3 The following Fortran code fragment illustrates �le pointer update seman-
tics:

! Read the first twenty real words in a file into two local

! buffers. Note that when the first MPI_FILE_IREAD returns,

! the file pointer has been updated to point to the

! eleventh real word in the file.

integer bufsize, req1, req2

integer, dimension(MPI_STATUS_SIZE) :: status1, status2

parameter (bufsize=10)

real buf1(bufsize), buf2(bufsize)

call MPI_FILE_OPEN(MPI_COMM_WORLD, 'myoldfile', &

MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, ierr)

call MPI_FILE_SET_VIEW(myfh, 0, MPI_REAL, MPI_REAL, 'native', &

MPI_INFO_NULL, ierr)

call MPI_FILE_IREAD(myfh, buf1, bufsize, MPI_REAL, &

req1, ierr)

call MPI_FILE_IREAD(myfh, buf2, bufsize, MPI_REAL, &

req2, ierr)

call MPI_WAIT(req1, status1, ierr)

call MPI_WAIT(req2, status2, ierr)

call MPI_FILE_CLOSE(myfh, ierr)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

234 CHAPTER 9. I/O

MPI FILE IWRITE(fh, buf, count, datatype, request)

INOUT fh �le handle (handle)

IN buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT request request object (handle)

int MPI File iwrite(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Request *request)

MPI FILE IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI::Request MPI::File::Iwrite(const void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE IWRITE is a nonblocking version of the MPI FILE WRITE interface.

MPI FILE SEEK(fh, o�set, whence)

INOUT fh �le handle (handle)

IN o�set �le o�set (integer)

IN whence update mode (state)

int MPI File seek(MPI File fh, MPI Offset offset, int whence)

MPI FILE SEEK(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

void MPI::File::Seek(MPI::Offset offset, int whence)

MPI FILE SEEK updates the individual �le pointer according to whence, which has the
following possible values:

� MPI SEEK SET: the pointer is set to o�set

� MPI SEEK CUR: the pointer is set to the current pointer position plus o�set

� MPI SEEK END: the pointer is set to the end of �le plus o�set

The o�set can be negative, which allows seeking backwards. It is erroneous to seek to
a negative position in the view.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.4. DATA ACCESS 235

MPI FILE GET POSITION(fh, o�set)

IN fh �le handle (handle)

OUT o�set o�set of individual pointer (integer)

int MPI File get position(MPI File fh, MPI Offset *offset)

MPI FILE GET POSITION(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

MPI::Offset MPI::File::Get position() const

MPI FILE GET POSITION returns, in o�set, the current position of the individual �le
pointer in etype units relative to the current view.

Advice to users. The o�set can be used in a future call to MPI FILE SEEK using
whence = MPI SEEK SET to return to the current position. To set the displacement to
the current �le pointer position, �rst convert o�set into an absolute byte position us-
ing MPI FILE GET BYTE OFFSET, then call MPI FILE SET VIEW with the resulting
displacement. (End of advice to users.)

MPI FILE GET BYTE OFFSET(fh, o�set, disp)

IN fh �le handle (handle)

IN o�set o�set (integer)

OUT disp absolute byte position of o�set (integer)

int MPI File get byte offset(MPI File fh, MPI Offset offset,

MPI Offset *disp)

MPI FILE GET BYTE OFFSET(FH, OFFSET, DISP, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET, DISP

MPI::Offset MPI::File::Get byte offset(const MPI::Offset disp) const

MPI FILE GET BYTE OFFSET converts a view-relative o�set into an absolute byte
position. The absolute byte position (from the beginning of the �le) of o�set relative to the
current view of fh is returned in disp.

9.4.4 Data Access with Shared File Pointers

MPI maintains exactly one shared �le pointer per collective MPI FILE OPEN (shared among
processes in the communicator group). The current value of this pointer implicitly speci�es
the o�set in the data access routines described in this section. These routines only use and
update the shared �le pointer maintained by MPI. The individual �le pointers are not used
nor updated.

The shared �le pointer routines have the same semantics as the data access with explicit
o�set routines described in Section 9.4.2, page 226, with the following modi�cations:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

236 CHAPTER 9. I/O

� the o�set is de�ned to be the current value of the MPI-maintained shared �le pointer,

� the e�ect of multiple calls to shared �le pointer routines is de�ned to behave as if the
calls were serialized, and

� the use of shared �le pointer routines is erroneous unless all processes use the same
�le view.

For the noncollective shared �le pointer routines, the serialization ordering is not determin-
istic. The user needs to use other synchronization means to enforce a speci�c order.

After a shared �le pointer operation is initiated, the shared �le pointer is updated to
point to the next etype after the last one that will be accessed. The �le pointer is updated
relative to the current view of the �le.

Noncollective Operations

MPI FILE READ SHARED(fh, buf, count, datatype, status)

INOUT fh �le handle (handle)

OUT buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT status status object (Status)

int MPI File read shared(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Status *status)

MPI FILE READ SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

void MPI::File::Read shared(void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read shared(void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE READ SHARED reads a �le using the shared �le pointer.

MPI FILE WRITE SHARED(fh, buf, count, datatype, status)

INOUT fh �le handle (handle)

IN buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT status status object (Status)

int MPI File write shared(MPI File fh, void *buf, int count,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.4. DATA ACCESS 237

MPI Datatype datatype, MPI Status *status)

MPI FILE WRITE SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

void MPI::File::Write shared(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write shared(const void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE WRITE SHARED writes a �le using the shared �le pointer.

MPI FILE IREAD SHARED(fh, buf, count, datatype, request)

INOUT fh �le handle (handle)

OUT buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT request request object (handle)

int MPI File iread shared(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Request *request)

MPI FILE IREAD SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI::Request MPI::File::Iread shared(void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE IREAD SHARED is a nonblocking version of the MPI FILE READ SHARED
interface.

MPI FILE IWRITE SHARED(fh, buf, count, datatype, request)

INOUT fh �le handle (handle)

IN buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT request request object (handle)

int MPI File iwrite shared(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Request *request)

MPI FILE IWRITE SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

238 CHAPTER 9. I/O

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI::Request MPI::File::Iwrite shared(const void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE IWRITE SHARED is a nonblocking version of the MPI FILE WRITE SHARED
interface.

Collective Operations

The semantics of a collective access using a shared �le pointer is that the accesses to the
�le will be in the order determined by the ranks of the processes within the group. For each
process, the location in the �le at which data is accessed is the position at which the shared
�le pointer would be after all processes whose ranks within the group less than that of this
process had accessed their data. In addition, in order to prevent subsequent shared o�set
accesses by the same processes from interfering with this collective access, the call might
return only after all the processes within the group have initiated their accesses. When the
call returns, the shared �le pointer points to the next etype accessible, according to the �le
view used by all processes, after the last etype requested.

Advice to users. There may be some programs in which all processes in the group need
to access the �le using the shared �le pointer, but the program may not require that
data be accessed in order of process rank. In such programs, using the shared ordered
routines (e.g., MPI FILE WRITE ORDERED rather than MPI FILE WRITE SHARED)
may enable an implementation to optimize access, improving performance. (End of
advice to users.)

Advice to implementors. Accesses to the data requested by all processes do not have
to be serialized. Once all processes have issued their requests, locations within the �le
for all accesses can be computed, and accesses can proceed independently from each
other, possibly in parallel. (End of advice to implementors.)

MPI FILE READ ORDERED(fh, buf, count, datatype, status)

INOUT fh �le handle (handle)

OUT buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT status status object (Status)

int MPI File read ordered(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Status *status)

MPI FILE READ ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

void MPI::File::Read ordered(void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.4. DATA ACCESS 239

void MPI::File::Read ordered(void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE READ ORDERED is a collective version of the MPI FILE READ SHARED in-
terface.

MPI FILE WRITE ORDERED(fh, buf, count, datatype, status)

INOUT fh �le handle (handle)

IN buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

OUT status status object (Status)

int MPI File write ordered(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Status *status)

MPI FILE WRITE ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

void MPI::File::Write ordered(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write ordered(const void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE WRITE ORDERED is a collective version of the MPI FILE WRITE SHARED
interface.

Seek

If MPI MODE SEQUENTIAL mode was speci�ed when the �le was opened, it is erroneous
to call the following two routines (MPI FILE SEEK SHARED and
MPI FILE GET POSITION SHARED).

MPI FILE SEEK SHARED(fh, o�set, whence)

INOUT fh �le handle (handle)

IN o�set �le o�set (integer)

IN whence update mode (state)

int MPI File seek shared(MPI File fh, MPI Offset offset, int whence)

MPI FILE SEEK SHARED(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

void MPI::File::Seek shared(MPI::Offset offset, int whence)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

240 CHAPTER 9. I/O

MPI FILE SEEK SHARED updates the shared �le pointer according to whence, which
has the following possible values:

� MPI SEEK SET: the pointer is set to o�set

� MPI SEEK CUR: the pointer is set to the current pointer position plus o�set

� MPI SEEK END: the pointer is set to the end of �le plus o�set

MPI FILE SEEK SHARED is collective; all the processes in the communicator group
associated with the �le handle fh must call MPI FILE SEEK SHARED with the same values
for o�set and whence.

The o�set can be negative, which allows seeking backwards. It is erroneous to seek to
a negative position in the view.

MPI FILE GET POSITION SHARED(fh, o�set)

IN fh �le handle (handle)

OUT o�set o�set of shared pointer (integer)

int MPI File get position shared(MPI File fh, MPI Offset *offset)

MPI FILE GET POSITION SHARED(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

MPI::Offset MPI::File::Get position shared() const

MPI FILE GET POSITION SHARED returns, in o�set, the current position of the shared
�le pointer in etype units relative to the current view.

Advice to users. The o�set can be used in a future call to MPI FILE SEEK SHARED
using whence = MPI SEEK SET to return to the current position. To set the displace-
ment to the current �le pointer position, �rst convert o�set into an absolute byte po-
sition using MPI FILE GET BYTE OFFSET, then call MPI FILE SET VIEW with the
resulting displacement. (End of advice to users.)

9.4.5 Split Collective Data Access Routines

MPI provides a restricted form of \nonblocking collective" I/O operations for all data ac-
cesses using split collective data access routines. These routines are referred to as \split"
collective routines because a single collective operation is split in two: a begin routine and
an end routine. The begin routine begins the operation, much like a nonblocking data access
(e.g., MPI FILE IREAD). The end routine completes the operation, much like the matching
test or wait (e.g., MPI WAIT). As with nonblocking data access operations, the user must
not use the bu�er passed to a begin routine while the routine is outstanding; the operation
must be completed with an end routine before it is safe to free bu�ers, etc.

Split collective data access operations on a �le handle fh are subject to the semantic
rules given below.

� On any MPI process, each �le handle may have at most one active split collective
operation at any time.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.4. DATA ACCESS 241

� Begin calls are collective over the group of processes that participated in the collective
open and follow the ordering rules for collective calls.

� End calls are collective over the group of processes that participated in the collective
open and follow the ordering rules for collective calls. Each end call matches the
preceding begin call for the same collective operation. When an \end" call is made,
exactly one unmatched \begin" call for the same operation must precede it.

� An implementation is free to implement any split collective data access routine us-
ing the corresponding blocking collective routine when either the begin call (e.g.,
MPI FILE READ ALL BEGIN) or the end call (e.g., MPI FILE READ ALL END) is is-
sued. The begin and end calls are provided to allow the user and MPI implementation
to optimize the collective operation.

� Split collective operations do not match the corresponding regular collective operation.
For example, in a single collective read operation, an MPI FILE READ ALL on one
process does not match an MPI FILE READ ALL BEGIN/MPI FILE READ ALL END
pair on another process.

� Split collective routines must specify a bu�er in both the begin and end routines.
By specifying the bu�er that receives data in the end routine, we can avoid many
(though not all) of the problems described in \A Problem with Register Optimization,"
Section 10.2.2, page 289.

� No collective I/O operations are permitted on a �le handle concurrently with a split
collective access on that �le handle (i.e., between the begin and end of the access).
That is

MPI_File_read_all_begin(fh, ...);

...

MPI_File_read_all(fh, ...);

...

MPI_File_read_all_end(fh, ...);

is erroneous.

� In a multithreaded implementation, any split collective begin and end operation called
by a process must be called from the same thread. This restriction is made to simplify
the implementation in the multithreaded case. (Note that we have already disallowed
having two threads begin a split collective operation on the same �le handle since only
one split collective operation can be active on a �le handle at any time.)

The arguments for these routines have the same meaning as for the equivalent collective
versions (e.g., the argument de�nitions for MPI FILE READ ALL BEGIN and
MPI FILE READ ALL END are equivalent to the arguments for MPI FILE READ ALL). The
begin routine (e.g., MPI FILE READ ALL BEGIN) begins a split collective operation that,
when completed with the matching end routine (i.e., MPI FILE READ ALL END) produces
the result as de�ned for the equivalent collective routine (i.e., MPI FILE READ ALL).

For the purpose of consistency semantics (Section 9.6.1, page 255), a matched pair of
split collective data access operations (e.g., MPI FILE READ ALL BEGIN and
MPI FILE READ ALL END) compose a single data access.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

242 CHAPTER 9. I/O

MPI FILE READ AT ALL BEGIN(fh, o�set, buf, count, datatype)

IN fh �le handle (handle)

IN o�set �le o�set (integer)

OUT buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

int MPI File read at all begin(MPI File fh, MPI Offset offset, void *buf,

int count, MPI Datatype datatype)

MPI FILE READ AT ALL BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

void MPI::File::Read at all begin(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE READ AT ALL END(fh, buf, status)

IN fh �le handle (handle)

OUT buf initial address of bu�er (choice)

OUT status status object (Status)

int MPI File read at all end(MPI File fh, void *buf, MPI Status *status)

MPI FILE READ AT ALL END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI STATUS SIZE), IERROR

void MPI::File::Read at all end(void* buf, MPI::Status& status)

void MPI::File::Read at all end(void* buf)

MPI FILE WRITE AT ALL BEGIN(fh, o�set, buf, count, datatype)

INOUT fh �le handle (handle)

IN o�set �le o�set (integer)

IN buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

int MPI File write at all begin(MPI File fh, MPI Offset offset, void *buf,

int count, MPI Datatype datatype)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.4. DATA ACCESS 243

MPI FILE WRITE AT ALL BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

void MPI::File::Write at all begin(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype)

MPI FILE WRITE AT ALL END(fh, buf, status)

INOUT fh �le handle (handle)

IN buf initial address of bu�er (choice)

OUT status status object (Status)

int MPI File write at all end(MPI File fh, void *buf, MPI Status *status)

MPI FILE WRITE AT ALL END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI STATUS SIZE), IERROR

void MPI::File::Write at all end(const void* buf, MPI::Status& status)

void MPI::File::Write at all end(const void* buf)

MPI FILE READ ALL BEGIN(fh, buf, count, datatype)

INOUT fh �le handle (handle)

OUT buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

int MPI File read all begin(MPI File fh, void *buf, int count,

MPI Datatype datatype)

MPI FILE READ ALL BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

void MPI::File::Read all begin(void* buf, int count,

const MPI::Datatype& datatype)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

244 CHAPTER 9. I/O

MPI FILE READ ALL END(fh, buf, status)

INOUT fh �le handle (handle)

OUT buf initial address of bu�er (choice)

OUT status status object (Status)

int MPI File read all end(MPI File fh, void *buf, MPI Status *status)

MPI FILE READ ALL END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI STATUS SIZE), IERROR

void MPI::File::Read all end(void* buf, MPI::Status& status)

void MPI::File::Read all end(void* buf)

MPI FILE WRITE ALL BEGIN(fh, buf, count, datatype)

INOUT fh �le handle (handle)

IN buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

int MPI File write all begin(MPI File fh, void *buf, int count,

MPI Datatype datatype)

MPI FILE WRITE ALL BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

void MPI::File::Write all begin(const void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE WRITE ALL END(fh, buf, status)

INOUT fh �le handle (handle)

IN buf initial address of bu�er (choice)

OUT status status object (Status)

int MPI File write all end(MPI File fh, void *buf, MPI Status *status)

MPI FILE WRITE ALL END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI STATUS SIZE), IERROR

void MPI::File::Write all end(const void* buf, MPI::Status& status)

void MPI::File::Write all end(const void* buf)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.4. DATA ACCESS 245

MPI FILE READ ORDERED BEGIN(fh, buf, count, datatype)

INOUT fh �le handle (handle)

OUT buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

int MPI File read ordered begin(MPI File fh, void *buf, int count,

MPI Datatype datatype)

MPI FILE READ ORDERED BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

void MPI::File::Read ordered begin(void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE READ ORDERED END(fh, buf, status)

INOUT fh �le handle (handle)

OUT buf initial address of bu�er (choice)

OUT status status object (Status)

int MPI File read ordered end(MPI File fh, void *buf, MPI Status *status)

MPI FILE READ ORDERED END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI STATUS SIZE), IERROR

void MPI::File::Read ordered end(void* buf, MPI::Status& status)

void MPI::File::Read ordered end(void* buf)

MPI FILE WRITE ORDERED BEGIN(fh, buf, count, datatype)

INOUT fh �le handle (handle)

IN buf initial address of bu�er (choice)

IN count number of elements in bu�er (integer)

IN datatype datatype of each bu�er element (handle)

int MPI File write ordered begin(MPI File fh, void *buf, int count,

MPI Datatype datatype)

MPI FILE WRITE ORDERED BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

246 CHAPTER 9. I/O

void MPI::File::Write ordered begin(const void* buf, int count,

const MPI::Datatype& datatype)

MPI FILE WRITE ORDERED END(fh, buf, status)

INOUT fh �le handle (handle)

IN buf initial address of bu�er (choice)

OUT status status object (Status)

int MPI File write ordered end(MPI File fh, void *buf, MPI Status *status)

MPI FILE WRITE ORDERED END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI STATUS SIZE), IERROR

void MPI::File::Write ordered end(const void* buf, MPI::Status& status)

void MPI::File::Write ordered end(const void* buf)

9.5 File Interoperability

At the most basic level, �le interoperability is the ability to read the information previously
written to a �le|not just the bits of data, but the actual information the bits represent.
MPI guarantees full interoperability within a single MPI environment, and supports in-
creased interoperability outside that environment through the external data representation
(Section 9.5.2, page 250) as well as the data conversion functions (Section 9.5.3, page 251).

Interoperability within a single MPI environment (which could be considered \oper-
ability") ensures that �le data written by one MPI process can be read by any other MPI
process, subject to the consistency constraints (see Section 9.6.1, page 255), provided that
it would have been possible to start the two processes simultaneously and have them reside
in a single MPI COMM WORLD. Furthermore, both processes must see the same data values
at every absolute byte o�set in the �le for which data was written.

This single environment �le interoperability implies that �le data is accessible regardless
of the number of processes.

There are three aspects to �le interoperability:

� transferring the bits,

� converting between di�erent �le structures, and

� converting between di�erent machine representations.

The �rst two aspects of �le interoperability are beyond the scope of this standard,
as both are highly machine dependent. However, transferring the bits of a �le into and
out of the MPI environment (e.g., by writing a �le to tape) is required to be supported
by all MPI implementations. In particular, an implementation must specify how familiar
operations similar to POSIX cp, rm, and mv can be performed on the �le. Furthermore, it
is expected that the facility provided maintains the correspondence between absolute byte

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.5. FILE INTEROPERABILITY 247

o�sets (e.g., after possible �le structure conversion, the data bits at byte o�set 102 in the
MPI environment are at byte o�set 102 outside the MPI environment). As an example,
a simple o�-line conversion utility that transfers and converts �les between the native �le
system and the MPI environment would su�ce, provided it maintained the o�set coherence
mentioned above. In a high quality implementation of MPI, users will be able to manipulate
MPI �les using the same or similar tools that the native �le system o�ers for manipulating
its �les.

The remaining aspect of �le interoperability, converting between di�erent machine
representations, is supported by the typing information speci�ed in the etype and �letype.
This facility allows the information in �les to be shared between any two applications,
regardless of whether they use MPI, and regardless of the machine architectures on which
they run.

MPI supports multiple data representations: \native," \internal," and \external32."
An implementation may support additional data representations. MPI also supports user-
de�ned data representations (see Section 9.5.3, page 251). The native and internal data
representations are implementation dependent, while the external32 representation is com-
mon to allMPI implementations and facilitates �le interoperability. The data representation
is speci�ed in the datarep argument to MPI FILE SET VIEW.

Advice to users. MPI is not guaranteed to retain knowledge of what data representa-
tion was used when a �le is written. Therefore, to correctly retrieve �le data, an MPI
application is responsible for specifying the same data representation as was used to
create the �le. (End of advice to users.)

\native" Data in this representation is stored in a �le exactly as it is in memory. The ad-
vantage of this data representation is that data precision and I/O performance are not
lost in type conversions with a purely homogeneous environment. The disadvantage
is the loss of transparent interoperability within a heterogeneous MPI environment.

Advice to users. This data representation should only be used in a homogeneous
MPI environment, or when the MPI application is capable of performing the data
type conversions itself. (End of advice to users.)

Advice to implementors. When implementing read and write operations on
top of MPI message passing, the message data should be typed as MPI BYTE
to ensure that the message routines do not perform any type conversions on the
data. (End of advice to implementors.)

\internal" This data representation can be used for I/O operations in a homogeneous
or heterogeneous environment; the implementation will perform type conversions if
necessary. The implementation is free to store data in any format of its choice, with
the restriction that it will maintain constant extents for all prede�ned datatypes in any
one �le. The environment in which the resulting �le can be reused is implementation-
de�ned and must be documented by the implementation.

Rationale. This data representation allows the implementation to perform I/O
e�ciently in a heterogeneous environment, though with implementation-de�ned
restrictions on how the �le can be reused. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

248 CHAPTER 9. I/O

Advice to implementors. Since \external32" is a superset of the functionality
provided by \internal," an implementation may choose to implement \internal"
as \external32." (End of advice to implementors.)

\external32" This data representation states that read and write operations convert all
data from and to the \external32" representation de�ned in Section 9.5.2, page 250.
The data conversion rules for communication also apply to these conversions (see
Section 3.3.2, page 25-27, of the MPI-1 document). The data on the storage medium
is always in this canonical representation, and the data in memory is always in the
local process's native representation.

This data representation has several advantages. First, all processes reading the �le
in a heterogeneous MPI environment will automatically have the data converted to
their respective native representations. Second, the �le can be exported from one MPI
environment and imported into any other MPI environment with the guarantee that
the second environment will be able to read all the data in the �le.

The disadvantage of this data representation is that data precision and I/O perfor-
mance may be lost in data type conversions.

Advice to implementors. When implementing read and write operations on top
of MPI message passing, the message data should be converted to and from the
\external32" representation in the client, and sent as type MPI BYTE. This will
avoid possible double data type conversions and the associated further loss of
precision and performance. (End of advice to implementors.)

9.5.1 Datatypes for File Interoperability

If the �le data representation is other than \native," care must be taken in constructing
etypes and �letypes. Any of the datatype constructor functions may be used; however,
for those functions that accept displacements in bytes, the displacements must be speci�ed
in terms of their values in the �le for the �le data representation being used. MPI will
interpret these byte displacements as is; no scaling will be done. The function
MPI FILE GET TYPE EXTENT can be used to calculate the extents of datatypes in the �le.
For etypes and �letypes that are portable datatypes (see Section 2.4, page 7), MPI will
scale any displacements in the datatypes to match the �le data representation. Datatypes
passed as arguments to read/write routines specify the data layout in memory; therefore,
they must always be constructed using displacements corresponding to displacements in
memory.

Advice to users. One can logically think of the �le as if it were stored in the memory
of a �le server. The etype and �letype are interpreted as if they were de�ned at this
�le server, by the same sequence of calls used to de�ne them at the calling process.
If the data representation is \native", then this logical �le server runs on the same
architecture as the calling process, so that these types de�ne the same data layout
on the �le as they would de�ne in the memory of the calling process. If the etype
and �letype are portable datatypes, then the data layout de�ned in the �le is the
same as would be de�ned in the calling process memory, up to a scaling factor. The
routine MPI FILE GET FILE EXTENT can be used to calculate this scaling factor.
Thus, two equivalent, portable datatypes will de�ne the same data layout in the �le,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.5. FILE INTEROPERABILITY 249

even in a heterogeneous environment with \internal", \external32", or user de�ned
data representations. Otherwise, the etype and �letype must be constructed so that
their typemap and extent are the same on any architecture. This can be achieved if
the they have an explicit upper bound and lower bound (de�ned either using
MPI LB and MPI UB markers, or using MPI TYPE CREATE RESIZED). This condition
must also be ful�lled by any datatype that is used in the construction of the etype
and �letype, if this datatype is replicated contiguously, either explicitly, by a call to
MPI TYPE CONTIGUOUS, or implictly, by a blocklength argument that is greater
than one. If an etype or �letype is not portable, and has a typemap or extent that is
architecture dependent, then the data layout speci�ed by it on a �le is implementation
dependent.

File data representations other than \native" may be di�erent from corresponding
data representations in memory. Therefore, for these �le data representations, it is
important not to use hardwired byte o�sets for �le positioning, including the initial
displacement that speci�es the view. When a portable datatype (see Section 2.4,
page 7) is used in a data access operation, any holes in the datatype are scaled to
match the data representation. However, note that this technique only works when
all the processes that created the �le view build their etypes from the same prede�ned
datatypes. For example, if one process uses an etype built from MPI INT and another
uses an etype built from MPI FLOAT, the resulting views may be nonportable because
the relative sizes of these types may di�er from one data representation to another.
(End of advice to users.)

MPI FILE GET TYPE EXTENT(fh, datatype, extent)

IN fh �le handle (handle)

IN datatype datatype (handle)

OUT extent datatype extent (integer)

int MPI File get type extent(MPI File fh, MPI Datatype datatype,

MPI Aint *extent)

MPI FILE GET TYPE EXTENT(FH, DATATYPE, EXTENT, IERROR)

INTEGER FH, DATATYPE, IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTENT

MPI::Aint MPI::File::Get type extent(const MPI::Datatype& datatype) const

Returns the extent of datatype in the �le fh. This extent will be the same for all
processes accessing the �le fh. If the current view uses a user-de�ned data representation
(see Section 9.5.3, page 251), MPI uses the dtype �le extent fn callback to calculate the
extent.

Advice to implementors. In the case of user-de�ned data representations, the extent
of a derived datatype can be calculated by �rst determining the extents of the prede-
�ned datatypes in this derived datatype using dtype �le extent fn (see Section 9.5.3,
page 251). (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

250 CHAPTER 9. I/O

9.5.2 External Data Representation: \external32"

All MPI implementations are required to support the data representation de�ned in this
section. Support of optional datatypes (e.g., MPI INTEGER2) is not required.

All oating point values are in big-endian IEEE format [9] of the appropriate size.
Floating point values are represented by one of three IEEE formats. These are the IEEE
\Single," \Double," and \Double Extended" formats, requiring 4, 8 and 16 bytes of storage,
respectively. For the IEEE \Double Extended" formats,MPI speci�es a Format Width of 16
bytes, with 15 exponent bits, bias = +10383, 112 fraction bits, and an encoding analogous
to the \Double" format. All integral values are in two's complement big-endian format. Big-
endian means most signi�cant byte at lowest address byte. For Fortran LOGICAL and C++
bool, 0 implies false and nonzero implies true. Fortran COMPLEX and DOUBLE COMPLEX are
represented by a pair of oating point format values for the real and imaginary components.
Characters are in ISO 8859-1 format [10]. Wide characters (of type MPI WCHAR) are in
Unicode format [23].

All signed numerals (e.g., MPI INT, MPI REAL) have the sign bit at the most signi�cant
bit. MPI COMPLEX and MPI DOUBLE COMPLEX have the sign bit of the real and imaginary
parts at the most signi�cant bit of each part.

According to IEEE speci�cations [9], the \NaN" (not a number) is system dependent.
It should not be interpreted within MPI as anything other than \NaN."

Advice to implementors. TheMPI treatment of \NaN" is similar to the approach used
in XDR (see ftp://ds.internic.net/rfc/rfc1832.txt). (End of advice to implementors.)

All data is byte aligned, regardless of type. All data items are stored contiguously in
the �le.

Advice to implementors. All bytes of LOGICAL and boolmust be checked to determine
the value. (End of advice to implementors.)

Advice to users. The type MPI PACKED is treated as bytes and is not converted.
The user should be aware that MPI PACK has the option of placing a header in the
beginning of the pack bu�er. (End of advice to users.)

Type Length

------------------ ------

MPI_PACKED 1

MPI_BYTE 1

MPI_CHAR 1

MPI_UNSIGNED_CHAR 1

MPI_SIGNED_CHAR 1

MPI_WCHAR 2

MPI_SHORT 2

MPI_UNSIGNED_SHORT 2

MPI_INT 4

MPI_UNSIGNED 4

MPI_LONG 4

MPI_UNSIGNED_LONG 4

MPI_FLOAT 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.5. FILE INTEROPERABILITY 251

MPI_DOUBLE 8

MPI_LONG_DOUBLE 16

MPI_CHARACTER 1

MPI_LOGICAL 4

MPI_INTEGER 4

MPI_REAL 4

MPI_DOUBLE_PRECISION 8

MPI_COMPLEX 2*4

MPI_DOUBLE_COMPLEX 2*8

Optional Type Length

------------------ ------

MPI_INTEGER1 1

MPI_INTEGER2 2

MPI_INTEGER4 4

MPI_INTEGER8 8

MPI_LONG_LONG 8

MPI_UNSIGNED_LONG_LONG 8

MPI_REAL4 4

MPI_REAL8 8

MPI_REAL16 16

The size of the prede�ned datatypes returned from MPI TYPE CREATE F90 REAL,
MPI TYPE CREATE F90 COMPLEX, andMPI TYPE CREATE F90 INTEGER are de�ned in
Section 10.2.5, page 296.

Advice to implementors. When converting a larger size integer to a smaller size
integer, only the less signi�cant bytes are moved. Care must be taken to preserve the
sign bit value. This allows no conversion errors if the data range is within the range
of the smaller size integer. (End of advice to implementors.)

9.5.3 User-De�ned Data Representations

There are two situations that cannot be handled by the required representations:

1. a user wants to write a �le in a representation unknown to the implementation, and

2. a user wants to read a �le written in a representation unknown to the implementation.

User-de�ned data representations allow the user to insert a third party converter into
the I/O stream to do the data representation conversion.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

252 CHAPTER 9. I/O

MPI REGISTER DATAREP(datarep, read conversion fn, write conversion fn,
dtype �le extent fn, extra state)

IN datarep data representation identi�er (string)

IN read conversion fn function invoked to convert from �le representation to

native representation (function)

IN write conversion fn function invoked to convert from native representation

to �le representation (function)

IN dtype �le extent fn function invoked to get the extent of a datatype as

represented in the �le (function)

IN extra state extra state

int MPI Register datarep(char *datarep,

MPI Datarep conversion function *read conversion fn,

MPI Datarep conversion function *write conversion fn,

MPI Datarep extent function *dtype file extent fn,

void *extra state)

MPI REGISTER DATAREP(DATAREP, READ CONVERSION FN, WRITE CONVERSION FN,

DTYPE FILE EXTENT FN, EXTRA STATE, IERROR)

CHARACTER*(*) DATAREP

EXTERNAL READ CONVERSION FN, WRITE CONVERSION FN, DTYPE FILE EXTENT FN

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE

INTEGER IERROR

void MPI::Register datarep(const char* datarep,

MPI::Datarep conversion function* read conversion fn,

MPI::Datarep conversion function* write conversion fn,

MPI::Datarep extent function* dtype file extent fn,

void* extra state)

The call associates read conversion fn, write conversion fn, and dtype �le extent fn with
the data representation identi�er datarep. datarep can then be used as an argument to
MPI FILE SET VIEW, causing subsequent data access operations to call the conversion
functions to convert all data items accessed between �le data representation and native
representation. MPI REGISTER DATAREP is a local operation and only registers the data
representation for the calling MPI process. If datarep is already de�ned, an error in the
error class MPI ERR DUP DATAREP is raised using the default �le error handler (see Sec-
tion 9.7, page 265). The length of a data representation string is limited to the value of
MPI MAX DATAREP STRING. MPI MAX DATAREP STRING must have a value of at least 64.
No routines are provided to delete data representations and free the associated resources;
it is not expected that an application will generate them in signi�cant numbers.

Extent Callback

typedef int MPI Datarep extent function(MPI Datatype datatype,

MPI Aint *file extent, void *extra state);

SUBROUTINE DATAREP EXTENT FUNCTION(DATATYPE, EXTENT, EXTRA STATE, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.5. FILE INTEROPERABILITY 253

INTEGER DATATYPE, IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTENT, EXTRA STATE

typedef MPI::Datarep extent function(const MPI::Datatype& datatype,

MPI::Aint& file extent, void* extra state);

The function dtype �le extent fn must return, in �le extent, the number of bytes re-
quired to store datatype in the �le representation. The function is passed, in extra state,
the argument that was passed to the MPI REGISTER DATAREP call. MPI will only call this
routine with prede�ned datatypes employed by the user.

Datarep Conversion Functions

typedef int MPI Datarep conversion function(void *userbuf,

MPI Datatype datatype, int count, void *filebuf,

MPI Offset position, void *extra state);

SUBROUTINE DATAREP CONVERSION FUNCTION(USERBUF, DATATYPE, COUNT, FILEBUF,

POSITION, EXTRA STATE, IERROR)

<TYPE> USERBUF(*), FILEBUF(*)

INTEGER COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI OFFSET KIND) POSITION

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE

typedef MPI::Datarep conversion function(void* userbuf,

MPI::Datatype& datatype, int count, void* filebuf,

MPI::Offset position, void* extra state);

The function read conversion fn must convert from �le data representation to native
representation. Before calling this routine, MPI allocates and �lls �lebuf with
count contiguous data items. The type of each data item matches the corresponding entry
for the prede�ned datatype in the type signature of datatype. The function is passed,
in extra state, the argument that was passed to the MPI REGISTER DATAREP call. The
function must copy all count data items from �lebuf to userbuf in the distribution described
by datatype, converting each data item from �le representation to native representation.
datatype will be equivalent to the datatype that the user passed to the read or write function.
If the size of datatype is less than the size of the count data items, the conversion function
must treat datatype as being contiguously tiled over the userbuf. The conversion function
must begin storing converted data at the location in userbuf speci�ed by position into the
(tiled) datatype.

Advice to users. Although the conversion functions have similarities to MPI PACK
andMPI UNPACK inMPI-1, one should note the di�erences in the use of the arguments
count and position. In the conversion functions, count is a count of data items (i.e.,
count of typemap entries of datatype), and position is an index into this typemap. In
MPI PACK, incount refers to the number of whole datatypes, and position is a number
of bytes. (End of advice to users.)

Advice to implementors. A converted read operation could be implemented as follows:

1. Get �le extent of all data items

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

254 CHAPTER 9. I/O

2. Allocate a �lebuf large enough to hold all count data items

3. Read data from �le into �lebuf

4. Call read conversion fn to convert data and place it into userbuf

5. Deallocate �lebuf

(End of advice to implementors.)

If MPI cannot allocate a bu�er large enough to hold all the data to be converted from
a read operation, it may call the conversion function repeatedly using the same datatype
and userbuf, and reading successive chunks of data to be converted in �lebuf. For the �rst
call (and in the case when all the data to be converted �ts into �lebuf), MPI will call the
function with position set to zero. Data converted during this call will be stored in the
userbuf according to the �rst count data items in datatype. Then in subsequent calls to the
conversion function, MPI will increment the value in position by the count of items converted
in the previous call.

Rationale. Passing the conversion function a position and one datatype for the
transfer allows the conversion function to decode the datatype only once and cache an
internal representation of it on the datatype. Then on subsequent calls, the conversion
function can use the position to quickly �nd its place in the datatype and continue
storing converted data where it left o� at the end of the previous call. (End of
rationale.)

Advice to users. Although the conversion function may usefully cache an internal
representation on the datatype, it should not cache any state information speci�c to
an ongoing conversion operation, since it is possible for the same datatype to be used
concurrently in multiple conversion operations. (End of advice to users.)

The function write conversion fn must convert from native representation to �le data
representation. Before calling this routine, MPI allocates �lebuf of a size large enough to
hold count contiguous data items. The type of each data item matches the corresponding
entry for the prede�ned datatype in the type signature of datatype. The function must
copy count data items from userbuf in the distribution described by
datatype, to a contiguous distribution in �lebuf, converting each data item from native
representation to �le representation. If the size of datatype is less than the size of count
data items, the conversion function must treat datatype as being contiguously tiled over the
userbuf.

The function must begin copying at the location in userbuf speci�ed by position into
the (tiled) datatype. datatype will be equivalent to the datatype that the user passed to the
read or write function. The function is passed, in extra state, the argument that was passed
to the MPI REGISTER DATAREP call.

The prede�ned constant MPI CONVERSION FN NULL may be used as either
write conversion fn or read conversion fn. In that case, MPI will not attempt to invoke
write conversion fn or read conversion fn, respectively, but will perform the requested data
access using the native data representation.

An MPI implementation must ensure that all data accessed is converted, either by
using a �lebuf large enough to hold all the requested data items or else by making repeated

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.6. CONSISTENCY AND SEMANTICS 255

calls to the conversion function with the same datatype argument and appropriate values
for position.

An implementation will only invoke the callback routines in this section (
read conversion fn, write conversion fn, and dtype �le extent fn) when one of the read or write
routines in Section 9.4, page 223, or MPI FILE GET TYPE EXTENT is called by the user.
dtype �le extent fn will only be passed prede�ned datatypes employed by the user. The
conversion functions will only be passed datatypes equivalent to those that the user has
passed to one of the routines noted above.

The conversion functions must be reentrant. User de�ned data representations are
restricted to use byte alignment for all types. Furthermore, it is erroneous for the conversion
functions to call any collective routines or to free datatype.

The conversion functions should return an error code. If the returned error code has
a value other than MPI SUCCESS, the implementation will raise an error in the class
MPI ERR CONVERSION.

9.5.4 Matching Data Representations

It is the user's responsibility to ensure that the data representation used to read data from
a �le is compatible with the data representation that was used to write that data to the �le.

In general, using the same data representation name when writing and reading a �le
does not guarantee that the representation is compatible. Similarly, using di�erent repre-
sentation names on two di�erent implementations may yield compatible representations.

Compatibility can be obtained when \external32" representation is used, although
precision may be lost and the performance may be less than when \native" representation is
used. Compatibility is guaranteed using "external32" provided at least one of the following
conditions is met.

� The data access routines directly use types enumerated in Section 9.5.2, page 250,
that are supported by all implementations participating in the I/O. The prede�ned
type used to write a data item must also be used to read a data item.

� In the case of Fortran 90 programs, the programs participating in the data accesses
obtain compatible datatypes using MPI routines that specify precision and/or range
(Section 10.2.5, page 292).

� For any given data item, the programs participating in the data accesses use compat-
ible prede�ned types to write and read the data item.

User-de�ned data representations may be used to provide an implementation compat-
iblity with another implementation's \native" or \internal" representation.

Advice to users. Section 10.2.5, page 292, de�nes routines that support the use of
matching datatypes in heterogeneous environments and contains examples illustrating
their use. (End of advice to users.)

9.6 Consistency and Semantics

9.6.1 File Consistency

Consistency semantics de�ne the outcome of multiple accesses to a single �le. All �le
accesses in MPI are relative to a speci�c �le handle created from a collective open. MPI

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

256 CHAPTER 9. I/O

provides three levels of consistency: sequential consistency among all accesses using a single
�le handle, sequential consistency among all accesses using �le handles created from a single
collective open with atomic mode enabled, and user-imposed consistency among accesses
other than the above. Sequential consistency means the behavior of a set of operations will
be as if the operations were performed in some serial order consistent with program order;
each access appears atomic, although the exact ordering of accesses is unspeci�ed. User-
imposed consistency may be obtained using program order and calls to MPI FILE SYNC.

Let FH1 be the set of �le handles created from one particular collective open of the
�le FOO, and FH2 be the set of �le handles created from a di�erent collective open of
FOO. Note that nothing restrictive is said about FH1 and FH2: the sizes of FH1 and
FH2 may be di�erent, the groups of processes used for each open may or may not intersect,
the �le handles in FH1 may be destroyed before those in FH2 are created, etc. Consider
the following three cases: a single �le handle (e.g., fh1 2 FH1), two �le handles created
from a single collective open (e.g., fh1a 2 FH1 and fh1b 2 FH1), and two �le handles from
di�erent collective opens (e.g., fh1 2 FH1 and fh2 2 FH2).

For the purpose of consistency semantics, a matched pair (Section 9.4.5, page 240) of
split collective data access operations (e.g., MPI FILE READ ALL BEGIN and
MPI FILE READ ALL END) compose a single data access operation. Similarly, a nonblock-
ing data access routine (e.g.,MPI FILE IREAD) and the routine which completes the request
(e.g.,MPI WAIT) also compose a single data access operation. For all cases below, these data
access operations are subject to the same constraints as blocking data access operations.

Advice to users. For an MPI FILE IREAD and MPI WAIT pair, the operation begins
when MPI FILE IREAD is called and ends when MPI WAIT returns. (End of advice to
users.)

Assume that A1 and A2 are two data access operations. Let D1 (D2) be the set of
absolute byte displacements of every byte accessed in A1 (A2). The two data accesses
overlap if D1 \D2 6= ;. The two data accesses conict if they overlap and at least one is a
write access.

Let SEQfh be a sequence of �le operations on a single �le handle, bracketed by
MPI FILE SYNCs on that �le handle. (Both opening and closing a �le implicitly perform
an MPI FILE SYNC.) SEQfh is a \write sequence" if any of the data access operations in
the sequence are writes or if any of the �le manipulation operations in the sequence change
the state of the �le (e.g., MPI FILE SET SIZE or MPI FILE PREALLOCATE). Given two
sequences, SEQ1 and SEQ2, we say they are not concurrent if one sequence is guaranteed
to completely precede the other (temporally).

The requirements for guaranteeing sequential consistency among all accesses to a par-
ticular �le are divided into the three cases given below. If any of these requirements are
not met, then the value of all data in that �le is implementation dependent.

Case 1: fh1 2 FH1 All operations on fh1 are sequentially consistent if atomic mode is
set. If nonatomic mode is set, then all operations on fh1 are sequentially consistent if they
are either nonconcurrent, nonconicting, or both.

Case 2: fh1a 2 FH1 and fh1b 2 FH1 Assume A1 is a data access operation using fh1a,
and A2 is a data access operation using fh1b. If for any access A1, there is no access A2

that conicts with A1, then MPI guarantees sequential consistency.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.6. CONSISTENCY AND SEMANTICS 257

However, unlike POSIX semantics, the default MPI semantics for conicting accesses
do not guarantee sequential consistency. If A1 and A2 conict, sequential consistency can
be guaranteed by either enabling atomic mode via the MPI FILE SET ATOMICITY routine,
or meeting the condition described in Case 3 below.

Case 3: fh1 2 FH1 and fh2 2 FH2 Consider access to a single �le using �le handles from
distinct collective opens. In order to guarantee sequential consistency, MPI FILE SYNC
must be used (both opening and closing a �le implicitly perform an MPI FILE SYNC).

Sequential consistency is guaranteed among accesses to a single �le if for any write
sequence SEQ1 to the �le, there is no sequence SEQ2 to the �le which is concurrent with
SEQ1. To guarantee sequential consistency when there are write sequences,
MPI FILE SYNC must be used together with a mechanism that guarantees nonconcurrency
of the sequences.

See the examples in Section 9.6.10, page 261, for further clari�cation of some of these
consistency semantics.

MPI FILE SET ATOMICITY(fh, ag)

INOUT fh �le handle (handle)

IN ag true to set atomic mode, false to set nonatomic mode

(logical)

int MPI File set atomicity(MPI File fh, int flag)

MPI FILE SET ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

void MPI::File::Set atomicity(bool flag)

Let FH be the set of �le handles created by one collective open. The consistency
semantics for data access operations using FH is set by collectively calling
MPI FILE SET ATOMICITY on FH . MPI FILE SET ATOMICITY is collective; all processes
in the group must pass identical values for fh and ag. If ag is true, atomic mode is set; if
ag is false, nonatomic mode is set.

Changing the consistency semantics for an open �le only a�ects new data accesses.
All completed data accesses are guaranteed to abide by the consistency semantics in e�ect
during their execution. Nonblocking data accesses and split collective operations that have
not completed (e.g., via MPI WAIT) are only guaranteed to abide by nonatomic mode
consistency semantics.

Advice to implementors. Since the semantics guaranteed by atomic mode are stronger
than those guaranteed by nonatomic mode, an implementation is free to adhere to
the more stringent atomic mode semantics for outstanding requests. (End of advice
to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

258 CHAPTER 9. I/O

MPI FILE GET ATOMICITY(fh, ag)

IN fh �le handle (handle)

OUT ag true if atomic mode, false if nonatomic mode (logical)

int MPI File get atomicity(MPI File fh, int *flag)

MPI FILE GET ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

bool MPI::File::Get atomicity() const

MPI FILE GET ATOMICITY returns the current consistency semantics for data access
operations on the set of �le handles created by one collective open. If ag is true, atomic
mode is enabled; if ag is false, nonatomic mode is enabled.

MPI FILE SYNC(fh)

INOUT fh �le handle (handle)

int MPI File sync(MPI File fh)

MPI FILE SYNC(FH, IERROR)

INTEGER FH, IERROR

void MPI::File::Sync()

Calling MPI FILE SYNC with fh causes all previous writes to fh by the calling process
to be transferred to the storage device. If other processes have made updates to the storage
device, then all such updates become visible to subsequent reads of fh by the calling process.
MPI FILE SYNC may be necessary to ensure sequential consistency in certain cases (see
above).

MPI FILE SYNC is a collective operation.
The user is responsible for ensuring that all nonblocking requests and split collective

operations on fh have been completed before calling MPI FILE SYNC|otherwise, the call
to MPI FILE SYNC is erroneous.

9.6.2 Random Access vs. Sequential Files

MPI distinguishes ordinary random access �les from sequential stream �les, such as pipes
and tape �les. Sequential stream �les must be opened with the MPI MODE SEQUENTIAL

ag set in the amode. For these �les, the only permitted data access operations are shared
�le pointer reads and writes. Filetypes and etypes with holes are erroneous. In addition,
the notion of �le pointer is not meaningful; therefore, calls toMPI FILE SEEK SHARED and
MPI FILE GET POSITION SHARED are erroneous, and the pointer update rules speci�ed
for the data access routines do not apply. The amount of data accessed by a data access
operation will be the amount requested unless the end of �le is reached or an error is raised.

Rationale. This implies that reading on a pipe will always wait until the requested
amount of data is available or until the process writing to the pipe has issued an end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.6. CONSISTENCY AND SEMANTICS 259

of �le. (End of rationale.)

Finally, for some sequential �les, such as those corresponding to magnetic tapes or
streaming network connections, writes to the �le may be destructive. In other words, a
write may act as a truncate (a MPI FILE SET SIZE with size set to the current position)
followed by the write.

9.6.3 Progress

The progress rules of MPI are both a promise to users and a set of constraints on imple-
mentors. In cases where the progress rules restrict possible implementation choices more
than the interface speci�cation alone, the progress rules take precedence.

All blocking routines must complete in �nite time unless an exceptional condition (such
as resource exhaustion) causes an error.

Nonblocking data access routines inherit the following progress rule from nonblocking
point to point communication: a nonblocking write is equivalent to a nonblocking send for
which a receive is eventually posted, and a nonblocking read is equivalent to a nonblocking
receive for which a send is eventually posted.

Finally, an implementation is free to delay progress of collective routines until all pro-
cesses in the group associated with the collective call have invoked the routine. Once all
processes in the group have invoked the routine, the progress rule of the equivalent noncol-
lective routine must be followed.

9.6.4 Collective File Operations

Collective �le operations are subject to the same restrictions as collective communication
operations. For a complete discussion, please refer to the semantics set forth in MPI-1 [6],
Section 4.12.

Collective �le operations are collective over a dup of the communicator used to open
the �le|this duplicate communicator is implicitly speci�ed via the �le handle argument.
Di�erent processes can pass di�erent values for other arguments of a collective routine unless
speci�ed otherwise.

9.6.5 Type Matching

The type matching rules for I/O mimic the type matching rules for communication with one
exception: if etype is MPI BYTE, then this matches any datatype in a data access operation.
In general, the etype of data items written must match the etype used to read the items,
and for each data access operation, the current etype must also match the type declaration
of the data access bu�er.

Advice to users. In most cases, use of MPI BYTE as a wild card will defeat the
�le interoperability features of MPI. File interoperability can only perform automatic
conversion between heterogeneous data representations when the exact datatypes ac-
cessed are explicitly speci�ed. (End of advice to users.)

9.6.6 Miscellaneous Clari�cations

Once an I/O routine completes, it is safe to free any opaque objects passed as arguments
to that routine. For example, the comm and info used in an MPI FILE OPEN, or the etype

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

260 CHAPTER 9. I/O

and �letype used in an MPI FILE SET VIEW, can be freed without a�ecting access to the
�le. Note that for nonblocking routines and split collective operations, the operation must
be completed before it is safe to reuse data bu�ers passed as arguments.

As in communication, datatypes must be committed before they can be used in �le
manipulation or data access operations. For example, the etype and
�letype must be committed before calling MPI FILE SET VIEW, and the datatype must be
committed before calling MPI FILE READ or MPI FILE WRITE.

9.6.7 MPI O�set Type

MPI O�set is an integer type of size su�cient to represent the size (in bytes) of the largest
�le supported by MPI. Displacements and o�sets are always speci�ed as values of type
MPI O�set.

In Fortran, the corresponding integer is an integer of kind MPI OFFSET KIND, de�ned
in mpif.h and the mpi module.

In Fortran 77 environments that do not support KIND parameters,
MPI O�set arguments should be declared as an INTEGER of suitable size. The language
interoperability implications for MPI O�set are similar to those for addresses (see Section
4.12, page 49).

9.6.8 Logical vs. Physical File Layout

MPI speci�es how the data should be laid out in a virtual �le structure (the view), not
how that �le structure is to be stored on one or more disks. Speci�cation of the physical
�le structure was avoided because it is expected that the mapping of �les to disks will be
system speci�c, and any speci�c control over �le layout would therefore restrict program
portability. However, there are still cases where some information may be necessary to
optimize �le layout. This information can be provided as hints speci�ed via info when a �le
is created (see Section 9.2.8, page 218).

9.6.9 File Size

The size of a �le may be increased by writing to the �le after the current end of �le. The size
may also be changed by calling MPI size changing routines, such as MPI FILE SET SIZE. A
call to a size changing routine does not necessarily change the �le size. For example, calling
MPI FILE PREALLOCATE with a size less than the current size does not change the size.

Consider a set of bytes that has been written to a �le since the most recent call to a
size changing routine, or since MPI FILE OPEN if no such routine has been called. Let the
high byte be the byte in that set with the largest displacement. The �le size is the larger of

� One plus the displacement of the high byte.

� The size immediately after the size changing routine, or MPI FILE OPEN, returned.

When applying consistency semantics, calls to MPI FILE SET SIZE and
MPI FILE PREALLOCATE are considered writes to the �le (which conict with operations
that access bytes at displacements between the old and new �le sizes), and
MPI FILE GET SIZE is considered a read of the �le (which overlaps with all accesses to the
�le).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.6. CONSISTENCY AND SEMANTICS 261

Advice to users. Any sequence of operations containing the collective routines
MPI FILE SET SIZE and MPI FILE PREALLOCATE is a write sequence. As such, se-
quential consistency in nonatomic mode is not guaranteed unless the conditions in
Section 9.6.1, page 255, are satis�ed. (End of advice to users.)

File pointer update semantics (i.e., �le pointers are updated by the amount accessed)
are only guaranteed if �le size changes are sequentially consistent.

Advice to users. Consider the following example. Given two operations made by sep-
arate processes to a �le containing 100 bytes: an MPI FILE READ of 10 bytes and an
MPI FILE SET SIZE to 0 bytes. If the user does not enforce sequential consistency be-
tween these two operations, the �le pointer may be updated by the amount requested
(10 bytes) even if the amount accessed is zero bytes. (End of advice to users.)

9.6.10 Examples

The examples in this section illustrate the application of the MPI consistency and semantics
guarantees. These address

� conicting accesses on �le handles obtained from a single collective open, and

� all accesses on �le handles obtained from two separate collective opens.

The simplest way to achieve consistency for conicting accesses is to obtain sequential
consistency by setting atomic mode. For the code below, process 1 will read either 0 or 10
integers. If the latter, every element of b will be 5. If nonatomic mode is set, the results of
the read are unde�ned.

/* Process 0 */

int i, a[10] ;

int TRUE = 1;

for (i=0;i<10;i++)

a[i] = 5 ;

MPI_File_open(MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0) ;

MPI_File_set_view(fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

MPI_File_set_atomicity(fh0, TRUE) ;

MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status) ;

/* MPI_Barrier(MPI_COMM_WORLD) ; */

/* Process 1 */

int b[10] ;

int TRUE = 1;

MPI_File_open(MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1) ;

MPI_File_set_view(fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

MPI_File_set_atomicity(fh1, TRUE) ;

/* MPI_Barrier(MPI_COMM_WORLD) ; */

MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status) ;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

262 CHAPTER 9. I/O

A user may guarantee that the write on process 0 precedes the read on process 1 by imposing
temporal order with, for example, calls to MPI BARRIER.

Advice to users. Routines other thanMPI BARRIER may be used to impose temporal
order. In the example above, process 0 could use MPI SEND to send a 0 byte message,
received by process 1 using MPI RECV. (End of advice to users.)

Alternatively, a user can impose consistency with nonatomic mode set:

/* Process 0 */

int i, a[10] ;

for (i=0;i<10;i++)

a[i] = 5 ;

MPI_File_open(MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0) ;

MPI_File_set_view(fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status) ;

MPI_File_sync(fh0) ;

MPI_Barrier(MPI_COMM_WORLD) ;

MPI_File_sync(fh0) ;

/* Process 1 */

int b[10] ;

MPI_File_open(MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1) ;

MPI_File_set_view(fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

MPI_File_sync(fh1) ;

MPI_Barrier(MPI_COMM_WORLD) ;

MPI_File_sync(fh1) ;

MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status) ;

The \sync-barrier-sync" construct is required because:

� The barrier ensures that the write on process 0 occurs before the read on process 1.

� The �rst sync guarantees that the data written by all processes is transferred to the
storage device.

� The second sync guarantees that all data which has been transferred to the storage
device is visible to all processes. (This does not a�ect process 0 in this example.)

The following program represents an erroneous attempt to achieve consistency by elim-
inating the apparently superuous second \sync" call for each process.

/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */

/* Process 0 */

int i, a[10] ;

for (i=0;i<10;i++)

a[i] = 5 ;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.6. CONSISTENCY AND SEMANTICS 263

MPI_File_open(MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0) ;

MPI_File_set_view(fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status) ;

MPI_File_sync(fh0) ;

MPI_Barrier(MPI_COMM_WORLD) ;

/* Process 1 */

int b[10] ;

MPI_File_open(MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1) ;

MPI_File_set_view(fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

MPI_Barrier(MPI_COMM_WORLD) ;

MPI_File_sync(fh1) ;

MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status) ;

/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */

The above program also violates the MPI rule against out-of-order collective operations and
will deadlock for implementations in which MPI FILE SYNC blocks.

Advice to users. Some implementations may choose to implement MPI FILE SYNC as
a temporally synchronizing function. When using such an implementation, the \sync-
barrier-sync" construct above can be replaced by a single \sync." The results of
using such code with an implementation for which MPI FILE SYNC is not temporally
synchronizing is unde�ned. (End of advice to users.)

Asynchronous I/O

The behavior of asynchronous I/O operations is determined by applying the rules speci�ed
above for synchronous I/O operations.

The following examples all access a preexisting �le \my�le." Word 10 in my�le initially
contains the integer 2. Each example writes and reads word 10.

First consider the following code fragment:

int a = 4, b, TRUE=1;

MPI_File_open(MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh) ;

MPI_File_set_view(fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

/* MPI_File_set_atomicity(fh, TRUE) ; Use this to set atomic mode. */

MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;

MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;

MPI_Waitall(2, reqs, statuses) ;

For asynchronous data access operations, MPI speci�es that the access occurs at any time
between the call to the asynchronous data access routine and the return from the corre-
sponding request complete routine. Thus, executing either the read before the write, or the
write before the read is consistent with program order. If atomic mode is set, then MPI
guarantees sequential consistency, and the program will read either 2 or 4 into b. If atomic

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

264 CHAPTER 9. I/O

mode is not set, then sequential consistency is not guaranteed and the program may read
something other than 2 or 4 due to the conicting data access.

Similarly, the following code fragment does not order �le accesses:

int a = 4, b;

MPI_File_open(MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh) ;

MPI_File_set_view(fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

/* MPI_File_set_atomicity(fh, TRUE) ; Use this to set atomic mode. */

MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;

MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;

MPI_Wait(&reqs[0], &status) ;

MPI_Wait(&reqs[1], &status) ;

If atomic mode is set, either 2 or 4 will be read into b. Again, MPI does not guarantee
sequential consistency in nonatomic mode.

On the other hand, the following code fragment:

int a = 4, b;

MPI_File_open(MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh) ;

MPI_File_set_view(fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;

MPI_Wait(&reqs[0], &status) ;

MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;

MPI_Wait(&reqs[1], &status) ;

de�nes the same ordering as:

int a = 4, b;

MPI_File_open(MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh) ;

MPI_File_set_view(fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

MPI_File_write_at(fh, 10, &a, 1, MPI_INT, &status) ;

MPI_File_read_at(fh, 10, &b, 1, MPI_INT, &status) ;

Since

� nonconcurrent operations on a single �le handle are sequentially consistent, and

� the program fragments specify an order for the operations,

MPI guarantees that both program fragments will read the value 4 into b. There is no need
to set atomic mode for this example.

Similar considerations apply to conicting accesses of the form:

MPI_File_write_all_begin(fh,...) ;

MPI_File_iread(fh,...) ;

MPI_Wait(fh,...) ;

MPI_File_write_all_end(fh,...) ;

Recall that constraints governing consistency and semantics are not relevant to the
following:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.7. I/O ERROR HANDLING 265

MPI_File_write_all_begin(fh,...) ;

MPI_File_read_all_begin(fh,...) ;

MPI_File_read_all_end(fh,...) ;

MPI_File_write_all_end(fh,...) ;

since split collective operations on the same �le handle may not overlap (see Section 9.4.5,
page 240).

9.7 I/O Error Handling

By default, communication errors are fatal|MPI ERRORS ARE FATAL is the default error
handler associated with MPI COMM WORLD. I/O errors are usually less catastrophic (e.g.,
\�le not found") than communication errors, and common practice is to catch these errors
and continue executing. For this reason, MPI provides additional error facilities for I/O.

Advice to users. MPI does not specify the state of a computation after an erroneous
MPI call has occurred. A high quality implementation will support the I/O error
handling facilities, allowing users to write programs using common practice for I/O.
(End of advice to users.)

Like communicators, each �le handle has an error handler associated with it. The
MPI-2 I/O error handling routines are de�ned in Section 4.13, page 61.

When MPI calls a user-de�ned error handler resulting from an error on a particular
�le handle, the �rst two arguments passed to the �le error handler are the �le handle and
the error code. For I/O errors that are not associated with a valid �le handle (e.g., in
MPI FILE OPEN or MPI FILE DELETE), the �rst argument passed to the error handler is
MPI FILE NULL,

I/O error handling di�ers from communication error handling in another important
aspect. By default, the prede�ned error handler for �le handles is MPI ERRORS RETURN.
The default �le error handler has two purposes: when a new �le handle is created (by
MPI FILE OPEN), the error handler for the new �le handle is initially set to the default
error handler, and I/O routines that have no valid �le handle on which to raise an error
(e.g.,MPI FILE OPEN orMPI FILE DELETE) use the default �le error handler. The default
�le error handler can be changed by specifying MPI FILE NULL as the fh argument to
MPI FILE SET ERRHANDLER. The current value of the default �le error handler can be
determined by passing MPI FILE NULL as the fh argument to MPI FILE GET ERRHANDLER.

Rationale. For communication, the default error handler is inherited from
MPI COMM WORLD. In I/O, there is no analogous \root" �le handle from which default
properties can be inherited. Rather than invent a new global �le handle, the default
�le error handler is manipulated as if it were attached to MPI FILE NULL. (End of
rationale.)

9.8 I/O Error Classes

The implementation dependent error codes returned by the I/O routines can be converted
into the following error classes. In addition, calls to routines in this chapter may raise errors
in other MPI classes, such as MPI ERR TYPE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

266 CHAPTER 9. I/O

MPI ERR FILE Invalid �le handle
MPI ERR NOT SAME Collective argument not identical on all

processes, or collective routines called in
a di�erent order by di�erent processes

MPI ERR AMODE Error related to the amode passed to
MPI FILE OPEN

MPI ERR UNSUPPORTED DATAREP Unsupported datarep passed to
MPI FILE SET VIEW

MPI ERR UNSUPPORTED OPERATION Unsupported operation, such as seeking on
a �le which supports sequential access only

MPI ERR NO SUCH FILE File does not exist
MPI ERR FILE EXISTS File exists
MPI ERR BAD FILE Invalid �le name (e.g., path name too long)
MPI ERR ACCESS Permission denied
MPI ERR NO SPACE Not enough space
MPI ERR QUOTA Quota exceeded
MPI ERR READ ONLY Read-only �le or �le system
MPI ERR FILE IN USE File operation could not be completed, as

the �le is currently open by some process
MPI ERR DUP DATAREP Conversion functions could not be regis-

tered because a data representation identi-
�er that was already de�ned was passed to
MPI REGISTER DATAREP

MPI ERR CONVERSION An error occurred in a user supplied data
conversion function.

MPI ERR IO Other I/O error

9.9 Examples

9.9.1 Double Bu�ering with Split Collective I/O

This example shows how to overlap computation and output. The computation is performed
by the function compute buffer().

/*===

*

* Function: double_buffer

*

* Synopsis:

* void double_buffer(

* MPI_File fh, ** IN

* MPI_Datatype buftype, ** IN

* int bufcount ** IN

*)

*

* Description:

* Performs the steps to overlap computation with a collective write

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.9. EXAMPLES 267

* by using a double-buffering technique.

*

* Parameters:

* fh previously opened MPI file handle

* buftype MPI datatype for memory layout

* (Assumes a compatible view has been set on fh)

* bufcount # buftype elements to transfer

--/

/* this macro switches which buffer "x" is pointing to */

#define TOGGLE_PTR(x) (((x)==(buffer1)) ? (x=buffer2) : (x=buffer1))

void double_buffer(MPI_File fh, MPI_Datatype buftype, int bufcount)

{

MPI_Status status; /* status for MPI calls */

float *buffer1, *buffer2; /* buffers to hold results */

float *compute_buf_ptr; /* destination buffer */

/* for computing */

float *write_buf_ptr; /* source for writing */

int done; /* determines when to quit */

/* buffer initialization */

buffer1 = (float *)

malloc(bufcount*sizeof(float)) ;

buffer2 = (float *)

malloc(bufcount*sizeof(float)) ;

compute_buf_ptr = buffer1 ; /* initially point to buffer1 */

write_buf_ptr = buffer1 ; /* initially point to buffer1 */

/* DOUBLE-BUFFER prolog:

* compute buffer1; then initiate writing buffer1 to disk

*/

compute_buffer(compute_buf_ptr, bufcount, &done);

MPI_File_write_all_begin(fh, write_buf_ptr, bufcount, buftype);

/* DOUBLE-BUFFER steady state:

* Overlap writing old results from buffer pointed to by write_buf_ptr

* with computing new results into buffer pointed to by compute_buf_ptr.

*

* There is always one write-buffer and one compute-buffer in use

* during steady state.

*/

while (!done) {

TOGGLE_PTR(compute_buf_ptr);

compute_buffer(compute_buf_ptr, bufcount, &done);

MPI_File_write_all_end(fh, write_buf_ptr, &status);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

268 CHAPTER 9. I/O

TOGGLE_PTR(write_buf_ptr);

MPI_File_write_all_begin(fh, write_buf_ptr, bufcount, buftype);

}

/* DOUBLE-BUFFER epilog:

* wait for final write to complete.

*/

MPI_File_write_all_end(fh, write_buf_ptr, &status);

/* buffer cleanup */

free(buffer1);

free(buffer2);

}

9.9.2 Subarray Filetype Constructor

Process 0 Process 2

Process 1 Process 3

Figure 9.4: Example array �le layout

HolesMPI_DOUBLE

Figure 9.5: Example local array �letype for process 1

Assume we are writing out a 100x100 2D array of double precision oating point numbers
that is distributed among 4 processes such that each process has a block of 25 columns (e.g.,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

9.9. EXAMPLES 269

process 0 has columns 0-24, process 1 has columns 25-49, etc.; see Figure 9.4). To create
the �letypes for each process one could use the following C program:

double subarray[100][25];

MPI_Datatype filetype;

int sizes[2], subsizes[2], starts[2];

int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

sizes[0]=100; sizes[1]=100;

subsizes[0]=100; subsizes[1]=25;

starts[0]=0; starts[1]=rank*subsizes[1];

MPI_Type_create_subarray(2, sizes, subsizes, starts, MPI_ORDER_C,

MPI_DOUBLE, &filetype);

Or, equivalently in Fortran:

double precision subarray(100,25)

integer filetype, rank, ierror

integer sizes(2), subsizes(2), starts(2)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)

sizes(1)=100

sizes(2)=100

subsizes(1)=100

subsizes(2)=25

starts(1)=0

starts(2)=rank*subsizes(2)

call MPI_TYPE_CREATE_SUBARRAY(2, sizes, subsizes, starts, &

MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, &

filetype, ierror)

The generated �letype will then describe the portion of the �le contained within the
process's subarray with holes for the space taken by the other processes. Figure 9.5 shows
the �letype created for process 1.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

270 CHAPTER 9. I/O

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 10

Language Bindings

10.1 C++

10.1.1 Overview

This section presents a complete C++ language interface for MPI. There are some issues
speci�c to C++ that must be considered in the design of this interface that go beyond the
simple description of language bindings. In particular, in C++, we must be concerned with
the design of objects and their interfaces, rather than just the design of a language-speci�c
functional interface to MPI. Fortunately, the original design of MPI was based on the notion
of objects, so a natural set of classes is already part of MPI.

Since the original design ofMPI-1 did not include a C++ language interface, a complete
list of C++ bindings for MPI-1 functions is provided in Annex B. MPI-2 includes C++
bindings as part of its function speci�cations. In some cases, MPI-2 provides new names
for the C bindings of MPI-1 functions. In this case, the C++ binding matches the new C
name | there is no binding for the deprecated name. As such, the C++ binding for the
new name appears in Annex A, not Annex B.

10.1.2 Design

The C++ language interface for MPI is designed according to the following criteria:

1. The C++ language interface consists of a small set of classes with a lightweight
functional interface to MPI. The classes are based upon the fundamental MPI object
types (e.g., communicator, group, etc.).

2. The MPI C++ language bindings provide a semantically correct interface to MPI.

3. To the greatest extent possible, the C++ bindings for MPI functions are member
functions of MPI classes.

Rationale. Providing a lightweight set of MPI objects that correspond to the basic
MPI types is the best �t toMPI's implicit object-based design; methods can be supplied
for these objects to realize MPI functionality. The existing C bindings can be used in
C++ programs, but much of the expressive power of the C++ language is forfeited.
On the other hand, while a comprehensive class library would make user programming
more elegant, such a library it is not suitable as a language binding for MPI since a

271

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

272 CHAPTER 10. LANGUAGE BINDINGS

binding must provide a direct and unambiguous mapping to the speci�ed functionality
of MPI. (End of rationale.)

.

10.1.3 C++ Classes for MPI

All MPI classes, constants, and functions are declared within the scope of an MPI namespace.
Thus, instead of the MPI pre�x that is used in C and Fortran, MPI functions essentially
have an MPI:: pre�x.

Advice to implementors. Although namespace is o�cially part of the draft ANSI
C++ standard, as of this writing it not yet widely implemented in C++ compilers.
Implementations using compilers without namespace may obtain the same scoping
through the use of a non-instantiable MPI class. (To make the
MPI class non-instantiable, all constructors must be private.) (End of advice to
implementors.)

The members of the MPI namespace are those classes corresponding to objects implicitly
used by MPI. An abbreviated de�nition of the MPI namespace for MPI-1 and its member
classes is as follows:

namespace MPI {

class Comm {...};

class Intracomm : public Comm {...};

class Graphcomm : public Intracomm {...};

class Cartcomm : public Intracomm {...};

class Intercomm : public Comm {...};

class Datatype {...};

class Errhandler {...};

class Exception {...};

class Group {...};

class Op {...};

class Request {...};

class Prequest : public Request {...};

class Status {...};

};

Additionally, the following classes de�ned for MPI-2:

namespace MPI {

class File {...};

class Grequest : public Request {...};

class Info {...};

class Win {...};

};

Note that there are a small number of derived classes, and that virtual inheritance is
not used.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.1. C++ 273

10.1.4 Class Member Functions for MPI

Besides the member functions which constitute the C++ language bindings for MPI, the
C++ language interface has additional functions (as required by the C++ language). In
particular, the C++ language interface must provide a constructor and destructor, an
assignment operator, and comparison operators.

The complete set of C++ language bindings for MPI-1 is presented in Annex B. The
bindings take advantage of some important C++ features, such as references and const.
Declarations (which apply to all MPImember classes) for construction, destruction, copying,
assignment, comparison, and mixed-language operability are also provided. To maintain
consistency with what has gone before, the binding de�nitions are given in the same order
as given for the C bindings in [6].

Except where indicated, all non-static member functions (except for constructors and
the assignment operator) of MPI member classes are virtual functions.

Rationale. Providing virtual member functions is an important part of design for
inheritance. Virtual functions can be bound at run-time, which allows users of libraries
to re-de�ne the behavior of objects already contained in a library. There is a small
performance penalty that must be paid (the virtual function must be looked up before
it can be called). However, users concerned about this performance penalty can force
compile-time function binding. (End of rationale.)

Example 10.1 Example showing a derived MPI class.

class foo_comm : public MPI::Intracomm {

public:

void Send(void* buf, int count, const MPI::Datatype& type,

int dest, int tag) const

{

// Class library functionality

MPI::Intracomm::Send(buf, count, type, dest, tag);

// More class library functionality

}

};

Advice to implementors. Implementors must be careful to avoid unintended side
e�ects from class libraries that use inheritance, especially in layered implementations.
For example, if MPI BCAST is implemented by repeated calls to MPI SEND or
MPI RECV, the behavior of MPI BCAST cannot be changed by derived communicator
classes that might rede�ne MPI SEND or MPI RECV. The implementation of
MPI BCAST must explicitly use theMPI SEND (orMPI RECV) of the base MPI::Comm
class. (End of advice to implementors.)

10.1.5 Semantics

The semantics of the member functions constituting the C++ language binding for MPI are
speci�ed by the MPI function description itself. Here, we specify the semantics for those
portions of the C++ language interface that are not part of the language binding. In this
subsection, functions are prototyped using the type MPI::hCLASSi rather than listing each
function for every MPI class; the word hCLASSi can be replaced with any valid MPI class
name (e.g., Group), except as noted.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

274 CHAPTER 10. LANGUAGE BINDINGS

Construction / Destruction The default constructor and destructor are prototyped as fol-
lows:

MPI::<CLASS>()

�MPI::<CLASS>()

In terms of construction and destruction, opaque MPI user level objects behave like
handles. Default constructors for all MPI objects except MPI::Status create corresponding
MPI::* NULL handles. That is, when an MPI object is instantiated, comparing it with its
corresponding MPI::* NULL object will return true. The default constructors do not create
new MPI opaque objects. Some classes have a member function Create() for this purpose.

Example 10.2 In the following code fragment, the test will return true and the message
will be sent to cout.

void foo()

{

MPI::Intracomm bar;

if (bar == MPI::COMM_NULL)

cout << "bar is MPI::COMM_NULL" << endl;

}

The destructor for each MPI user level object does not invoke the corresponding
MPI * FREE function (if it exists).

Rationale. MPI * FREE functions are not automatically invoked for the following
reasons:

1. Automatic destruction contradicts the shallow-copy semantics of theMPI classes.

2. The model put forth in MPI makes memory allocation and deallocation the re-
sponsibility of the user, not the implementation.

3. Calling MPI * FREE upon destruction could have unintended side e�ects, in-
cluding triggering collective operations (this also a�ects the copy, assignment,
and construction semantics). In the following example, we would want neither
foo comm nor bar comm to automatically invoke MPI * FREE upon exit from the
function.

void example_function()

{

MPI::Intracomm foo_comm(MPI::COMM_WORLD), bar_comm;

bar_comm = MPI::COMM_WORLD.Dup();

// rest of function

}

(End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.1. C++ 275

Copy / Assignment The copy constructor and assignment operator are prototyped as fol-
lows:

MPI::<CLASS>(const MPI::<CLASS>& data)

MPI::<CLASS>& MPI::<CLASS>::operator=(const MPI::<CLASS>& data)

In terms of copying and assignment, opaque MPI user level objects behave like handles.
Copy constructors perform handle-based (shallow) copies. MPI::Status objects are excep-
tions to this rule. These objects perform deep copies for assignment and copy construction.

Advice to implementors. Each MPI user level object is likely to contain, by value
or by reference, implementation-dependent state information. The assignment and
copying of MPI object handles may simply copy this value (or reference). (End of
advice to implementors.)

Example 10.3 Example using assignment operator. In this example,
MPI::Intracomm::Dup() is not called for foo comm. The object foo comm is simply an
alias for MPI::COMM WORLD. But bar comm is created with a call to
MPI::Intracomm::Dup() and is therefore a di�erent communicator than foo comm (and
thus di�erent from MPI::COMM WORLD). baz comm becomes an alias for bar comm. If one of
bar comm or baz comm is freed with MPI COMM FREE it will be set to MPI::COMM NULL.
The state of the other handle will be unde�ned | it will be invalid, but not necessarily set
to MPI::COMM NULL.

MPI::Intracomm foo_comm, bar_comm, baz_comm;

foo_comm = MPI::COMM_WORLD;

bar_comm = MPI::COMM_WORLD.Dup();

baz_comm = bar_comm;

Comparison The comparison operators are prototyped as follows:

bool MPI::<CLASS>::operator==(const MPI::<CLASS>& data) const

bool MPI::<CLASS>::operator!=(const MPI::<CLASS>& data) const

The member function operator==() returns true only when the handles reference the
same internal MPI object, false otherwise. operator!=() returns the boolean complement
of operator==(). However, since the Status class is not a handle to an underlying MPI
object, it does not make sense to compare Status instances. Therefore, the operator==()
and operator!=() functions are not de�ned on the Status class.

Constants Constants are singleton objects and are declared const. Note that not all glob-
ally de�ned MPI objects are constant. For example, MPI::COMM WORLD and MPI::COMM SELF

are not const.

10.1.6 C++ Datatypes

Table 10.1 lists all of the C++ prede�ned MPI datatypes and their corresponding C and
C++ datatypes, Table 10.2 lists all of the Fortran prede�ned MPI datatypes and their

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

276 CHAPTER 10. LANGUAGE BINDINGS

corresponding Fortran 77 datatypes. Table 10.3 lists the C++ names for all other MPI
datatypes.

MPI::BYTE and MPI::PACKED conform to the same restrictions as MPI BYTE and
MPI PACKED, listed in Sections 3.2.2 and 3.13 of MPI-1, respectively.

MPI datatype C datatype C++ datatype

MPI::CHAR char char

MPI::WCHAR wchar t wchar t

MPI::SHORT signed short signed short

MPI::INT signed int signed int

MPI::LONG signed long signed long

MPI::SIGNED CHAR signed char signed char

MPI::UNSIGNED CHAR unsigned char unsigned char

MPI::UNSIGNED SHORT unsigned short unsigned short

MPI::UNSIGNED unsigned int unsigned int

MPI::UNSIGNED LONG unsigned long unsigned long int

MPI::FLOAT float float

MPI::DOUBLE double double

MPI::LONG DOUBLE long double long double

MPI::BOOL bool

MPI::COMPLEX Complex<float>

MPI::DOUBLE COMPLEX Complex<double>

MPI::LONG DOUBLE COMPLEX Complex<long double>

MPI::BYTE
MPI::PACKED

Table 10.1: C++ names for the MPI C and C++ prede�ned datatypes, and their corre-
sponding C/C++ datatypes.

MPI datatype Fortran datatype

MPI::CHARACTER CHARACTER(1)

MPI::INTEGER INTEGER

MPI::REAL REAL

MPI::DOUBLE PRECISION DOUBLE PRECISION

MPI::LOGICAL LOGICAL

MPI::F COMPLEX COMPLEX

MPI::BYTE
MPI::PACKED

Table 10.2: C++ names for the MPI Fortran prede�ned datatypes, and their corresponding
Fortran 77 datatypes.

The following table de�nes groups of MPI prede�ned datatypes:

C integer: MPI::INT, MPI::LONG, MPI::SHORT,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.1. C++ 277

MPI datatype Description

MPI::FLOAT INT C/C++ reduction type
MPI::DOUBLE INT C/C++ reduction type
MPI::LONG INT C/C++ reduction type
MPI::TWOINT C/C++ reduction type
MPI::SHORT INT C/C++ reduction type
MPI::LONG DOUBLE INT C/C++ reduction type

MPI::LONG LONG Optional C/C++ type
MPI::UNSIGNED LONG LONG Optional C/C++ type

MPI::TWOREAL Fortran reduction type
MPI::TWODOUBLE PRECISION Fortran reduction type
MPI::TWOINTEGER Fortran reduction type

MPI::F DOUBLE COMPLEX Optional Fortran type
MPI::INTEGER1 Explicit size type
MPI::INTEGER2 Explicit size type
MPI::INTEGER4 Explicit size type
MPI::INTEGER8 Explicit size type
MPI::REAL4 Explicit size type
MPI::REAL8 Explicit size type
MPI::REAL16 Explicit size type

Table 10.3: C++ names for other MPI datatypes. Implementations may also de�ne other
optional types (e.g., MPI::INTEGER8).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

278 CHAPTER 10. LANGUAGE BINDINGS

MPI::UNSIGNED SHORT, MPI::UNSIGNED,
MPI::UNSIGNED LONG, MPI::SIGNED CHAR,
MPI::UNSIGNED CHAR

Fortran integer: MPI::INTEGER
Floating point: MPI::FLOAT, MPI::DOUBLE, MPI::REAL,

MPI::DOUBLE PRECISION,
MPI::LONG DOUBLE

Logical: MPI::LOGICAL, MPI::BOOL
Complex: MPI::F COMPLEX, MPI::COMPLEX,

MPI::F DOUBLE COMPLEX,
MPI::DOUBLE COMPLEX,
MPI::LONG DOUBLE COMPLEX

Byte: MPI::BYTE

Valid datatypes for each reduction operation is speci�ed below in terms of the groups
de�ned above.

Op Allowed Types

MPI::MAX, MPI::MIN C integer, Fortran integer, Floating point

MPI::SUM, MPI::PROD C integer, Fortran integer, Floating point, Complex
MPI::LAND, MPI::LOR, MPI::LXOR C integer, Logical

MPI::BAND, MPI::BOR, MPI::BXOR C integer, Fortran integer, Byte

MPI::MINLOC and MPI::MAXLOC perform just as their C and Fortran counterparts; see
Section 4.9.3 in MPI-1.

10.1.7 Communicators

The MPI::Comm class hierarchy makes explicit the di�erent kinds of communicators implic-
itly de�ned by MPI and allows them to be strongly typed. Since the original design of MPI
de�ned only one type of handle for all types of communicators, the following clari�cations
are provided for the C++ design.

Types of communicators There are �ve di�erent types of communicators: MPI::Comm,
MPI::Intercomm, MPI::Intracomm, MPI::Cartcomm, and MPI::Graphcomm. MPI::Comm is
the abstract base communicator class, encapsulating the functionality common to all MPI
communicators. MPI::Intercomm and MPI::Intracomm are derived from MPI::Comm.
MPI::Cartcomm and MPI::Graphcomm are derived from MPI::Intracomm.

Advice to users. Initializing a derived class with an instance of a base class is not legal
in C++. For instance, it is not legal to initialize a Cartcomm from an Intracomm.
Moreover, because MPI::Comm is an abstract base class, it is non-instantiable, so that
it is not possible to have an object of class MPI::Comm. However, it is possible to
have a reference or a pointer to an MPI::Comm.

Example 10.4 The following code is erroneous.

Intracomm intra = MPI::COMM_WORLD.Dup();

Cartcomm cart(intra); // This is erroneous

(End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.1. C++ 279

MPI::COMM NULL The speci�c type of MPI::COMM NULL is implementation dependent.
MPI::COMM NULL must be able to be used in comparisons and initializations with all types
of communicators. MPI::COMM NULL must also be able to be passed to a function that
expects a communicator argument in the parameter list (provided that MPI::COMM NULL is
an allowed value for the communicator argument).

Rationale. There are several possibilities for implementation of MPI::COMM NULL.
Specifying its required behavior, rather than its realization, provides maximum exi-
bility to implementors. (End of rationale.)

Example 10.5 The following example demonstrates the behavior of assignment and com-
parison using MPI::COMM NULL.

MPI::Intercomm comm;

comm = MPI::COMM_NULL; // assign with COMM_NULL

if (comm == MPI::COMM_NULL) // true

cout << "comm is NULL" << endl;

if (MPI::COMM_NULL == comm) // note -- a different function!

cout << "comm is still NULL" << endl;

Dup() is not de�ned as a member function of MPI::Comm, but it is de�ned for the
derived classes of MPI::Comm. Dup() is not virtual and it returns its OUT/ parameter by
value.

MPI::Comm::Clone() The C++ language interface for MPI includes a new function
Clone(). MPI::Comm::Clone() is a pure virtual function. For the derived communicator
classes, Clone() behaves like Dup() except that it returns a new object by reference. The
Clone() functions are prototyped as follows:

Comm& Comm::Clone() const = 0

Intracomm& Intracomm::Clone() const

Intercomm& Intercomm::Clone() const

Cartcomm& Cartcomm::Clone() const

Graphcomm& Graphcomm::Clone() const

Rationale. Clone() provides the \virtual dup" functionality that is expected by C++
programmers and library writers. Since Clone() returns a new object by reference,
users are responsible for eventually deleting the object. A new name is introduced
rather than changing the functionality of Dup(). (End of rationale.)

Advice to implementors. Within their class declarations, prototypes for Clone() and
Dup() would look like the following:

namespace MPI {

class Comm {

virtual Comm& Clone() const = 0;

};

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

280 CHAPTER 10. LANGUAGE BINDINGS

class Intracomm : public Comm {

Intracomm Dup() const { ... };

virtual Intracomm& Clone() const { ... };

};

class Intercomm : public Comm {

Intercomm Dup() const { ... };

virtual Intercomm& Clone() const { ... };

};

// Cartcomm and Graphcomm are similarly defined

};

Compilers that do not support the variable return type feature of virtual functions
may return a reference to Comm. Users can cast to the appropriate type as necessary.
(End of advice to implementors.)

10.1.8 Exceptions

The C++ language interface for MPI includes the prede�ned error handler
MPI::ERRORS THROW EXCEPTIONS for use with the Set errhandler() member functions.
MPI::ERRORS THROW EXCEPTIONS can only be set or retrieved by C++ functions. If a non-
C++ program causes an error that invokes the MPI::ERRORS THROW EXCEPTIONS error han-
dler, the exception will pass up the calling stack until C++ code can catch it. If there is
no C++ code to catch it, the behavior is unde�ned. In a multi-threaded environment or if
a non-blocking MPI call throws an exception while making progress in the background, the
behavior is implementation dependent.

The error handler MPI::ERRORS THROW EXCEPTIONS causes an MPI::Exception to be
thrown for any MPI result code other than MPI::SUCCESS. The public interface to
MPI::Exception class is de�ned as follows:

namespace MPI {

class Exception {

public:

Exception(int error_code);

int Get_error_code() const;

int Get_error_class() const;

const char *Get_error_string() const;

};

};

Advice to implementors.

The exception will be thrown within the body of MPI::ERRORS THROW EXCEPTIONS. It
is expected that control will be returned to the user when the exception is thrown.
Some MPI functions specify certain return information in their parameters in the case
of an error and MPI ERRORS RETURN is speci�ed. The same type of return information
must be provided when exceptions are thrown.

For example, MPI WAITALL puts an error code for each request in the corresponding
entry in the status array and returns MPI ERR IN STATUS. When using

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.1. C++ 281

MPI::ERRORS THROW EXCEPTIONS, it is expected that the error codes in the status
array will be set appropriately before the exception is thrown.

(End of advice to implementors.)

10.1.9 Mixed-Language Operability

The C++ language interface provides functions listed below for mixed-language operability.
These functions provide for a seamless transition between C and C++. For the case where
the C++ class corresponding to <CLASS> has derived classes, functions are also provided
for converting between the derived classes and the C MPI <CLASS>.

MPI::<CLASS>& MPI::<CLASS>::operator=(const MPI <CLASS>& data)

MPI::<CLASS>(const MPI <CLASS>& data)

MPI::<CLASS>::operator MPI <CLASS>() const

These functions are discussed in Section 4.12.4.

10.1.10 Pro�ling

This section speci�es the requirements of a C++ pro�ling interface to MPI.

Advice to implementors. Since the main goal of pro�ling is to intercept function calls
from user code, it is the implementor's decision how to layer the underlying imple-
mentation to allow function calls to be intercepted and pro�led. If an implementation
of the MPI C++ bindings is layered on top of MPI bindings in another language
(such as C), or if the C++ bindings are layered on top of a pro�ling interface in an-
other language, no extra pro�ling interface is necessary because the underlying MPI
implementation already meets the MPI pro�ling interface requirements.

Native C++ MPI implementations that do not have access to other pro�ling interfaces
must implement an interface that meets the requirements outlined in this section.

High quality implementations can implement the interface outlined in this section in
order to promote portable C++ pro�ling libraries. Implementors may wish to provide
an option whether to build the C++ pro�ling interface or not; C++ implementations
that are already layered on top of bindings in another language or another pro�ling
interface will have to insert a third layer to implement the C++ pro�ling interface.
(End of advice to implementors.)

To meet the requirements of the C++ MPI pro�ling interface, an implementation of
the MPI functions must:

1. Provide a mechanism through which all of the MPI de�ned functions may be accessed
with a name shift. Thus all of the MPI functions (which normally start with the pre�x
\MPI::") should also be accessible with the pre�x \PMPI::."

2. Ensure that those MPI functions which are not replaced may still be linked into an
executable image without causing name clashes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

282 CHAPTER 10. LANGUAGE BINDINGS

3. Document the implementation of di�erent language bindings of the MPI interface if
they are layered on top of each other, so that pro�ler developer knows whether they
must implement the pro�le interface for each binding, or can economize by imple-
menting it only for the lowest level routines.

4. Where the implementation of di�erent language bindings is is done through a layered
approach (e.g., the C++ binding is a set of \wrapper" functions which call the C
implementation), ensure that these wrapper functions are separable from the rest of
the library.

This is necessary to allow a separate pro�ling library to be correctly implemented,
since (at least with Unix linker semantics) the pro�ling library must contain these
wrapper functions if it is to perform as expected. This requirement allows the author
of the pro�ling library to extract these functions from the original MPI library and add
them into the pro�ling library without bringing along any other unnecessary code.

5. Provide a no-op routine MPI::Pcontrol in the MPI library.

Advice to implementors. There are (at least) two apparent options for implementing
the C++ pro�ling interface: inheritance or caching. An inheritance-based approach
may not be attractive because it may require a virtual inheritance implementation of
the communicator classes. Thus, it is most likely that implementors still cache PMPI

objects on their corresponding MPI objects. The caching scheme is outlined below.

The \real" entry points to each routine can be provided within a namespace PMPI.
The non-pro�ling version can then be provided within a namespace MPI.

Caching instances of PMPI objects in the MPI handles provides the \has a" relationship
that is necessary to implement the pro�ling scheme.

Each instance of an MPI object simply \wraps up" an instance of a PMPI object. MPI
objects can then perform pro�ling actions before invoking the corresponding function
in their internal PMPI object.

The key to making the pro�ling work by simply re-linking programs is by having
a header �le that declares all the MPI functions. The functions must be de�ned
elsewhere, and compiled into a library. MPI constants should be declared extern in
the MPI namespace. For example, the following is an excerpt from a sample mpi.h

�le:

Example 10.6 Sample mpi.h �le.

namespace PMPI {

class Comm {

public:

int Get_size() const;

};

// etc.

};

namespace MPI {

public:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.1. C++ 283

class Comm {

public:

int Get_size() const;

private:

PMPI::Comm pmpi_comm;

};

};

Note that all constructors, the assignment operator, and the destructor in the MPI

class will need to initialize/destroy the internal PMPI object as appropriate.

The de�nitions of the functions must be in separate object �les; the PMPI class member
functions and the non-pro�ling versions of the MPI class member functions can be
compiled into libmpi.a, while the pro�ling versions can be compiled into libpmpi.a.
Note that the PMPI class member functions and the MPI constants must be in di�erent
object �les than the non-pro�ling MPI class member functions in the libmpi.a library
to prevent multiple de�nitions of MPI class member function names when linking both
libmpi.a and libpmpi.a. For example:

Example 10.7 pmpi.cc, to be compiled into libmpi.a.

int PMPI::Comm::Get_size() const

{

// Implementation of MPI_COMM_SIZE

}

Example 10.8 constants.cc, to be compiled into libmpi.a.

const MPI::Intracomm MPI::COMM_WORLD;

Example 10.9 mpi no profile.cc, to be compiled into libmpi.a.

int MPI::Comm::Get_size() const

{

return pmpi_comm.Get_size();

}

Example 10.10 mpi profile.cc, to be compiled into libpmpi.a.

int MPI::Comm::Get_size() const

{

// Do profiling stuff

int ret = pmpi_comm.Get_size();

// More profiling stuff

return ret;

}

(End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

284 CHAPTER 10. LANGUAGE BINDINGS

10.2 Fortran Support

10.2.1 Overview

Fortran 90 is the current international Fortran standard. MPI-2 Fortran bindings are Fortran
90 bindings that in most cases are \Fortran 77 friendly." That is, with few exceptions (e.g.,
KIND-parameterized types, and the mpi module, both of which can be avoided) Fortran 77
compilers should be able to compile MPI programs.

Rationale. Fortran 90 contains numerous features designed to make it a more \mod-
ern" language than Fortran 77. It seems natural that MPI should be able to take
advantage of these new features with a set of bindings tailored to Fortran 90. MPI
does not (yet) use many of these features because of a number of technical di�culties.
(End of rationale.)

MPI de�nes two levels of Fortran support, described in Sections 10.2.3 and 10.2.4.
A third level of Fortran support is envisioned, but is deferred to future standardization
e�orts. In the rest of this section, \Fortran" shall refer to Fortran 90 (or its successor)
unless quali�ed.

1. Basic Fortran Support An implementation with this level of Fortran support pro-
vides the original Fortran bindings speci�ed in MPI-1, with small additional require-
ments speci�ed in Section 10.2.3.

2. Extended Fortran Support An implementation with this level of Fortran sup-
port provides Basic Fortran Support plus additional features that speci�cally support
Fortran 90, as described in Section 10.2.4.

A compliant MPI-2 implementation providing a Fortran interface must provide Ex-
tended Fortran Support unless the target compiler does not support modules or KIND-
parameterized types.

10.2.2 Problems With Fortran Bindings for MPI

This section discusses a number of problems that may arise when using MPI in a Fortran
program. It is intended as advice to users, and clari�es how MPI interacts with Fortran. It
does not add to the standard, but is intended to clarify the standard.

As noted in the original MPI speci�cation, the interface violates the Fortran standard
in several ways. While these cause few problems for Fortran 77 programs, they become
more signi�cant for Fortran 90 programs, so that users must exercise care when using new
Fortran 90 features. The violations were originally adopted and have been retained because
they are important for the usability of MPI. The rest of this section describes the potential
problems in detail. It supersedes and replaces the discussion of Fortran bindings in the
original MPI speci�cation (for Fortran 90, not Fortran 77).

The following MPI features are inconsistent with Fortran 90.

1. An MPI subroutine with a choice argument may be called with di�erent argument
types.

2. An MPI subroutine with an assumed-size dummy argument may be passed an actual
scalar argument.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.2. FORTRAN SUPPORT 285

3. Many MPI routines assume that actual arguments are passed by address and that
arguments are not copied on entrance to or exit from the subroutine.

4. An MPI implementation may read or modify user data (e.g., communication bu�ers
used by nonblocking communications) concurrently with a user program that is exe-
cuting outside of MPI calls.

5. Several named \constants," such as MPI BOTTOM, MPI IN PLACE,
MPI STATUS IGNORE, MPI STATUSES IGNORE, MPI ERRCODES IGNORE,
MPI ARGV NULL, and MPI ARGVS NULL are not ordinary Fortran constants and require
a special implementation. See Section 2.5.4 on page 10 for more information.

6. The memory allocation routine MPI ALLOC MEM can't be usefully used in Fortran
without a language extension that allows the allocated memory to be associated with
a Fortran variable.

MPI-1 contained several routines that take address-sized information as input or return
address-sized information as output. In C such arguments were of type MPI Aint and in
Fortran of type INTEGER. On machines where integers are smaller than addresses, these
routines can lose information. In MPI-2 the use of these functions has been deprecated and
they have been replaced by routines taking INTEGER arguments of KIND=MPI ADDRESS KIND.
A number of new MPI-2 functions also take INTEGER arguments of non-default KIND. See
Section 2.6 on page 11 and Section 4.14 on page 65 for more information.

Problems Due to Strong Typing

All MPI functions with choice arguments associate actual arguments of di�erent Fortran
datatypes with the same dummy argument. This is not allowed by Fortran 77, and in
Fortran 90 is technically only allowed if the function is overloaded with a di�erent function
for each type. In C, the use of void* formal arguments avoids these problems.

The following code fragment is technically illegal and may generate a compile-time
error.

integer i(5)

real x(5)

...

call mpi_send(x, 5, MPI_REAL, ...)

call mpi_send(i, 5, MPI_INTEGER, ...)

In practice, it is rare for compilers to do more than issue a warning, though there is concern
that Fortran 90 compilers are more likely to return errors.

It is also technically illegal in Fortran to pass a scalar actual argument to an array
dummy argument. Thus the following code fragment may generate an error since the buf
argument to MPI SEND is declared as an assumed-size array <type> buf(*).

integer a

call mpi_send(a, 1, MPI_INTEGER, ...)

Advice to users. In the event that you run into one of the problems related to type
checking, you may be able to work around it by using a compiler ag, by compiling

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

286 CHAPTER 10. LANGUAGE BINDINGS

separately, or by using an MPI implementation with Extended Fortran Support as de-
scribed in Section 10.2.4. An alternative that will usually work with variables local to a
routine but not with arguments to a function or subroutine is to use the EQUIVALENCE
statement to create another variable with a type accepted by the compiler. (End of
advice to users.)

Problems Due to Data Copying and Sequence Association

Implicit in MPI is the idea of a contiguous chunk of memory accessible through a linear
address space. MPI copies data to and from this memory. An MPI program speci�es the
location of data by providing memory addresses and o�sets. In the C language, sequence
association rules plus pointers provide all the necessary low-level structure.

In Fortran 90, user data is not necessarily stored contiguously. For example, the array
section A(1:N:2) involves only the elements of A with indices 1, 3, 5, The same is true
for a pointer array whose target is such a section. Most compilers ensure that an array that
is a dummy argument is held in contiguous memory if it is declared with an explicit shape
(e.g., B(N)) or is of assumed size (e.g., B(*)). If necessary, they do this by making a copy
of the array into contiguous memory. Both Fortran 77 and Fortran 90 are carefully worded
to allow such copying to occur, but few Fortran 77 compilers do it.1

Because MPI dummy bu�er arguments are assumed-size arrays, this leads to a serious
problem for a non-blocking call: the compiler copies the temporary array back on return
but MPI continues to copy data to the memory that held it. For example, consider the
following code fragment:

real a(100)

call MPI_IRECV(a(1:100:2), MPI_REAL, 50, ...)

Since the �rst dummy argument to MPI IRECV is an assumed-size array (<type> buf(*)),
the array section a(1:100:2) is copied to a temporary before being passed to MPI IRECV,
so that it is contiguous in memory. MPI IRECV returns immediately, and data is copied
from the temporary back into the array a. Sometime later, MPI may write to the address of
the deallocated temporary. Copying is also a problem for MPI ISEND since the temporary
array may be deallocated before the data has all been sent from it.

Most Fortran 90 compilers do not make a copy if the actual argument is the whole of
an explicit-shape or assumed-size array or is a `simple' section such as A(1:N) of such an
array. (We de�ne `simple' more fully in the next paragraph.) Also, many compilers treat
allocatable arrays the same as they treat explicit-shape arrays in this regard (though we
know of one that does not). However, the same is not true for assumed-shape and pointer
arrays; since they may be discontiguous, copying is often done. It is this copying that causes
problems for MPI as described in the previous paragraph.

Our formal de�nition of a `simple' array section is

name ([:,]... [<subscript>]:[<subscript>] [,<subscript>]...)

That is, there are zero or more dimensions that are selected in full, then one dimension
selected without a stride, then zero or more dimensions that are selected with a simple
subscript. Examples are

A(1:N), A(:,N), A(:,1:N,1), A(1:6,N), A(:,:,1:N)

1Technically, the Fortran standards are worded to allow non-contiguous storage of any array data.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.2. FORTRAN SUPPORT 287

Because of Fortran's column-major ordering, where the �rst index varies fastest, a simple
section of a contiguous array will also be contiguous.2

The same problem can occur with a scalar argument. Some compilers, even for Fortran
77, make a copy of some scalar dummy arguments within a called procedure. That this can
cause a problem is illustrated by the example

call user1(a,rq)

call MPI_WAIT(rq,status,ierr)

write (*,*) a

subroutine user1(buf,request)

call MPI_IRECV(buf,...,request,...)

end

If a is copied, MPI IRECV will alter the copy when it completes the communication and
will not alter a itself.

Note that copying will almost certainly occur for an argument that is a non-trivial
expression (one with at least one operator or function call), a section that does not select a
contiguous part of its parent (e.g., A(1:n:2)), a pointer whose target is such a section, or
an assumed-shape array that is (directly or indirectly) associated with such a section.

If there is a compiler option that inhibits copying of arguments, in either the calling or
called procedure, this should be employed.

If a compiler makes copies in the calling procedure of arguments that are explicit-
shape or assumed-size arrays, simple array sections of such arrays, or scalars, and if there
is no compiler option to inhibit this, then the compiler cannot be used for applications
that use MPI GET ADDRESS, or any non-blocking MPI routine. If a compiler copies scalar
arguments in the called procedure and there is no compiler option to inhibit this, then this
compiler cannot be used for applications that use memory references across subroutine calls
as in the example above.

Special Constants

MPI requires a number of special \constants" that cannot be implemented as normal For-
tran constants, including MPI BOTTOM, MPI STATUS IGNORE, MPI IN PLACE,
MPI STATUSES IGNORE and MPI ERRCODES IGNORE. In C, these are implemented as con-
stant pointers, usually as NULL and are used where the function prototype calls for a pointer
to a variable, not the variable itself.

In Fortran the implementation of these special constants may require the use of lan-
guage constructs that are outside the Fortran standard. Using special values for the con-
stants (e.g., by de�ning them through parameter statements) is not possible because an
implementation cannot distinguish these values from legal data. Typically these constants
are implemented as prede�ned static variables (e.g., a variable in an MPI-declared COMMON

block), relying on the fact that the target compiler passes data by address. Inside the
subroutine, this address can be extracted by some mechanism outside the Fortran standard
(e.g., by Fortran extensions or by implementing the function in C).

2To keep the de�nition of `simple' simple, we have chosen to require all but one of the section subscripts

to be without bounds. A colon without bounds makes it obvious both to the compiler and to the reader

that the whole of the dimension is selected. It would have been possible to allow cases where the whole

dimension is selected with one or two bounds, but this means for the reader that the array declaration or

most recent allocation has to be consulted and for the compiler that a run-time check may be required.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

288 CHAPTER 10. LANGUAGE BINDINGS

Fortran 90 Derived Types

MPI does not explicitly support passing Fortran 90 derived types to choice dummy argu-
ments. Indeed, for MPI implementations that provide explicit interfaces through the mpi

module a compiler will reject derived type actual arguments at compile time. Even when no
explicit interfaces are given, users should be aware that Fortran 90 provides no guarantee
of sequence association for derived types or arrays of derived types. For instance, an array
of a derived type consisting of two elements may be implemented as an array of the �rst
elements followed by an array of the second. Use of the SEQUENCE attribute may help here,
somewhat.

The following code fragment shows one possible way to send a derived type in Fortran.
The example assumes that all data is passed by address.

type mytype

integer i

real x

double precision d

end type mytype

type(mytype) foo

integer blocklen(3), type(3)

integer(MPI_ADDRESS_KIND) disp(3), base

call MPI_GET_ADDRESS(foo%i, disp(1), ierr)

call MPI_GET_ADDRESS(foo%x, disp(2), ierr)

call MPI_GET_ADDRESS(foo%d, disp(3), ierr)

base = disp(1)

disp(1) = disp(1) - base

disp(2) = disp(2) - base

disp(3) = disp(3) - base

blocklen(1) = 1

blocklen(2) = 1

blocklen(3) = 1

type(1) = MPI_INTEGER

type(2) = MPI_REAL

type(3) = MPI_DOUBLE_PRECISION

call MPI_TYPE_CREATE_STRUCT(3, blocklen, disp, type, newtype, ierr)

call MPI_TYPE_COMMIT(newtype, ierr)

! unpleasant to send foo%i instead of foo, but it works for scalar

! entities of type mytype

call MPI_SEND(foo%i, 1, newtype, ...)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.2. FORTRAN SUPPORT 289

A Problem with Register Optimization

MPI provides operations that may be hidden from the user code and run concurrently with
it, accessing the same memory as user code. Examples include the data transfer for an
MPI IRECV. The optimizer of a compiler will assume that it can recognize periods when a
copy of a variable can be kept in a register without reloading from or storing to memory.
When the user code is working with a register copy of some variable while the hidden
operation reads or writes the memory copy, problems occur. This section discusses register
optimization pitfalls.

When a variable is local to a Fortran subroutine (i.e., not in a module or COMMON

block), the compiler will assume that it cannot be modi�ed by a called subroutine unless it
is an actual argument of the call. In the most common linkage convention, the subroutine
is expected to save and restore certain registers. Thus, the optimizer will assume that a
register which held a valid copy of such a variable before the call will still hold a valid copy
on return.

Normally users are not a�icted with this. But the user should pay attention to this
section if in his/her program a bu�er argument to an MPI SEND, MPI RECV etc., uses
a name which hides the actual variables involved. MPI BOTTOM with an MPI Datatype
containing absolute addresses is one example. Creating a datatype which uses one variable
as an anchor and brings along others by usingMPI GET ADDRESS to determine their o�sets
from the anchor is another. The anchor variable would be the only one mentioned in the
call. Also attention must be paid if MPI operations are used that run in parallel with the
user's application.

The following example shows what Fortran compilers are allowed to do.

This source ... can be compiled as:

call MPI_GET_ADDRESS(buf,bufaddr, call MPI_GET_ADDRESS(buf,...)

ierror)

call MPI_TYPE_CREATE_STRUCT(1,1, call MPI_TYPE_CREATE_STRUCT(...)

bufaddr,

MPI_REAL,type,ierror)

call MPI_TYPE_COMMIT(type,ierror) call MPI_TYPE_COMMIT(...)

val_old = buf register = buf

val_old = register

call MPI_RECV(MPI_BOTTOM,1,type,...) call MPI_RECV(MPI_BOTTOM,...)

val_new = buf val_new = register

The compiler does not invalidate the register because it cannot see that MPI RECV
changes the value of buf. The access of buf is hidden by the use of MPI GET ADDRESS and
MPI BOTTOM.

The next example shows extreme, but allowed, possibilities.

Source compiled as or compiled as

call MPI_IRECV(buf,..req) call MPI_IRECV(buf,..req) call MPI_IRECV(buf,..req)

register = buf b1 = buf

call MPI_WAIT(req,..) call MPI_WAIT(req,..) call MPI_WAIT(req,..)

b1 = buf b1 := register

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

290 CHAPTER 10. LANGUAGE BINDINGS

MPI WAIT on a concurrent thread modi�es buf between the invocation of MPI IRECV
and the �nish of MPI WAIT. But the compiler cannot see any possibility that buf can be
changed afterMPI IRECV has returned, and may schedule the load of buf earlier than typed
in the source. It has no reason to avoid using a register to hold buf across the call to
MPI WAIT. It also may reorder the instructions as in the case on the right.

To prevent instruction reordering or the allocation of a bu�er in a register there are
two possibilities in portable Fortran code:

� The compiler may be prevented from moving a reference to a bu�er across a call to
an MPI subroutine by surrounding the call by calls to an external subroutine with
the bu�er as an actual argument. Note that if the intent is declared in the external
subroutine, it must be OUT or INOUT. The subroutine itself may have an empty body,
but the compiler does not know this and has to assume that the bu�er may be altered.
For example, the above call of MPI RECV might be replaced by

call DD(buf)

call MPI_RECV(MPI_BOTTOM,...)

call DD(buf)

with the separately compiled

subroutine DD(buf)

integer buf

end

(assuming that buf has type INTEGER). The compiler may be similarly prevented from
moving a reference to a variable across a call to an MPI subroutine.

In the case of a non-blocking call, as in the above call of MPI WAIT, no reference to
the bu�er is permitted until it has been veri�ed that the transfer has been completed.
Therefore, in this case, the extra call ahead of the MPI call is not necessary, i.e., the
call of MPI WAIT in the example might be replaced by

call MPI_WAIT(req,..)

call DD(buf)

� An alternative is to put the bu�er or variable into a module or a common block and
access it through a USE or COMMON statement in each scope where it is referenced,
de�ned or appears as an actual argument in a call to an MPI routine. The compiler
will then have to assume that the MPI procedure (MPI RECV in the above example)
may alter the bu�er or variable, provided that the compiler cannot analyze that the
MPI procedure does not reference the module or common block.

In the longer term, the attribute VOLATILE is under consideration for Fortran 2000 and
would give the bu�er or variable the properties needed, but it would inhibit optimization
of any code containing the bu�er or variable.

In C, subroutines which modify variables that are not in the argument list will not cause
register optimization problems. This is because taking pointers to storage objects by using
the & operator and later referencing the objects by way of the pointer is an integral part of
the language. A C compiler understands the implications, so that the problem should not
occur, in general. However, some compilers do o�er optional aggressive optimization levels
which may not be safe.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.2. FORTRAN SUPPORT 291

10.2.3 Basic Fortran Support

Because Fortran 90 is (for all practical purposes) a superset of Fortran 77, Fortran 90
(and future) programs can use the original Fortran interface. The following additional
requirements are added:

1. Implementations are required to provide the �le mpif.h, as described in the original
MPI-1 speci�cation.

2. mpif.h must be valid and equivalent for both �xed- and free- source form.

Advice to implementors. To make mpif.h compatible with both �xed- and free-source
forms, to allow automatic inclusion by preprocessors, and to allow extended �xed-form
line length, it is recommended that requirement two be met by constructing mpif.h

without any continuation lines. This should be possible because mpif.h contains
only declarations, and because common block declarations can be split among several
lines. To support Fortran 77 as well as Fortran 90, it may be necessary to eliminate
all comments from mpif.h. (End of advice to implementors.)

10.2.4 Extended Fortran Support

Implementations with Extended Fortran support must provide:

1. An mpi module

2. A new set of functions to provide additional support for Fortran intrinsic numeric
types, including parameterized types: MPI SIZEOF, MPI TYPE MATCH SIZE,
MPI TYPE CREATE F90 INTEGER, MPI TYPE CREATE F90 REAL and
MPI TYPE CREATE F90 COMPLEX. Parameterized types are Fortran intrinsic types
which are speci�ed using KIND type parameters. These routines are described in detail
in Section 10.2.5.

Additionally, high quality implementations should provide a mechanism to prevent fatal
type mismatch errors for MPI routines with choice arguments.

The mpi Module

An MPI implementation must provide a module named mpi that can be USEd in a Fortran
90 program. This module must:

� De�ne all named MPI constants

� Declare MPI functions that return a value.

An MPI implementation may provide in the mpi module other features that enhance
the usability of MPI while maintaining adherence to the standard. For example, it may:

� Provide interfaces for all or for a subset of MPI routines.

� Provide INTENT information in these interface blocks.

Advice to implementors. The appropriate INTENT may be di�erent from what is
given in the MPI generic interface. Implementations must choose INTENT so that the
function adheres to the MPI standard. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

292 CHAPTER 10. LANGUAGE BINDINGS

Rationale. The intent given by the MPI generic interface is not precisely de�ned
and does not in all cases correspond to the correct Fortran INTENT. For instance,
receiving into a bu�er speci�ed by a datatype with absolute addresses may require
associating MPI BOTTOM with a dummy OUT argument. Moreover, \constants" such
as MPI BOTTOM and MPI STATUS IGNORE are not constants as de�ned by Fortran,
but \special addresses" used in a nonstandard way. Finally, the MPI-1 generic intent
is changed in several places by MPI-2. For instance, MPI IN PLACE changes the sense
of an OUT argument to be INOUT. (End of rationale.)

Applications may use either the mpi module or the mpif.h include �le. An implemen-
tation may require use of the module to prevent type mismatch errors (see below).

Advice to users. It is recommended to use the mpimodule even if it is not necessary to
use it to avoid type mismatch errors on a particular system. Using a module provides
several potential advantages over using an include �le. (End of advice to users.)

It must be possible to link together routines some of which USE mpi and others of which
INCLUDE mpif.h.

No Type Mismatch Problems for Subroutines with Choice Arguments

A high quality MPI implementation should provide a mechanism to ensure that MPI choice
arguments do not cause fatal compile-time or run-time errors due to type mismatch. An
MPI implementation may require applications to use the mpi module, or require that it be
compiled with a particular compiler ag, in order to avoid type mismatch problems.

Advice to implementors. In the case where the compiler does not generate errors,
nothing needs to be done to the existing interface. In the case where the compiler
may generate errors, a set of overloaded functions may be used. See the paper of M.
Hennecke [8]. Even if the compiler does not generate errors, explicit interfaces for
all routines would be useful for detecting errors in the argument list. Also, explicit
interfaces which give INTENT information can reduce the amount of copying for BUF(*)
arguments. (End of advice to implementors.)

10.2.5 Additional Support for Fortran Numeric Intrinsic Types

The routines in this section are part of Extended Fortran Support described in Section
10.2.4.

MPI-1 provides a small number of named datatypes that correspond to named intrinsic
types supported by C and Fortran. These include MPI INTEGER, MPI REAL, MPI INT,
MPI DOUBLE, etc., as well as the optional types MPI REAL4, MPI REAL8, etc. There is a
one-to-one correspondence between language declarations and MPI types.

Fortran (starting with Fortran 90) provides so-called KIND-parameterized types. These
types are declared using an intrinsic type (one of INTEGER, REAL, COMPLEX, LOGICAL and
CHARACTER) with an optional integer KIND parameter that selects from among one or more
variants. The speci�c meaning of di�erent KIND values themselves are implementation
dependent and not speci�ed by the language. Fortran provides the KIND selection functions
selected real kind for REAL and COMPLEX types, and selected int kind for INTEGER

types that allow users to declare variables with a minimum precision or number of digits.
These functions provide a portable way to declare KIND-parameterized REAL, COMPLEX and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.2. FORTRAN SUPPORT 293

INTEGER variables in Fortran. This scheme is backward compatible with Fortran 77. REAL
and INTEGER Fortran variables have a default KIND if none is speci�ed. Fortran DOUBLE
PRECISION variables are of intrinsic type REAL with a non-default KIND. The following
two declarations are equivalent:

double precision x

real(KIND(0.0d0)) x

MPI provides two orthogonal methods to communicate using numeric intrinsic types.
The �rst method can be used when variables have been declared in a portable way |
using default KIND or using KIND parameters obtained with the selected int kind or
selected real kind functions. With this method, MPI automatically selects the correct
data size (e.g., 4 or 8 bytes) and provides representation conversion in heterogeneous en-
vironments. The second method gives the user complete control over communication by
exposing machine representations.

Parameterized Datatypes with Speci�ed Precision and Exponent Range

MPI-1 provides named datatypes corresponding to standard Fortran 77 numeric types |
MPI INTEGER, MPI COMPLEX, MPI REAL, MPI DOUBLE PRECISION and
MPI DOUBLE COMPLEX. MPI automatically selects the correct data size and provides rep-
resentation conversion in heterogeneous environments. The mechanism described in this
section extends this MPI-1 model to support portable parameterized numeric types.

The model for supporting portable parameterized types is as follows. Real variables
are declared (perhaps indirectly) using selected real kind(p, r) to determine the KIND
parameter, where p is decimal digits of precision and r is an exponent range. Implicitly
MPI maintains a two-dimensional array of prede�ned MPI datatypes D(p, r). D(p, r) is
de�ned for each value of (p, r) supported by the compiler, including pairs for which one
value is unspeci�ed. Attempting to access an element of the array with an index (p, r) not
supported by the compiler is erroneous. MPI implicitly maintains a similar array of COMPLEX
datatypes. For integers, there is a similar implicit array related to selected int kind and
indexed by the requested number of digits r. Note that the prede�ned datatypes contained
in these implicit arrays are not the same as the named MPI datatypes MPI REAL, etc., but
a new set.

Advice to implementors. The above description is for explanatory purposes only. It
is not expected that implementations will have such internal arrays. (End of advice
to implementors.)

Advice to users. selected real kind() maps a large number of (p,r) pairs to a
much smaller number of KIND parameters supported by the compiler. KIND parameters
are not speci�ed by the language and are not portable. From the language point of
view intrinsic types of the same base type and KIND parameter are of the same type. In
order to allow interoperability in a heterogeneous environment, MPI is more stringent.
The correspondingMPI datatypes match if and only if they have the same (p,r) value
(REAL and COMPLEX) or r value (INTEGER). Thus MPI has many more datatypes than
there are fundamental language types. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

294 CHAPTER 10. LANGUAGE BINDINGS

MPI TYPE CREATE F90 REAL(p, r, newtype)

IN p precision, in decimal digits (integer)

IN r decimal exponent range (integer)

OUT newtype the requested MPI datatype (handle)

int MPI Type create f90 real(int p, int r, MPI Datatype *newtype)

MPI TYPE CREATE F90 REAL(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

static MPI::Datatype MPI::Datatype::Create f90 real(int p, int r)

This function returns a prede�ned MPI datatype that matches a REAL variable of KIND
selected real kind(p, r). In the model described above it returns a handle for the
element D(p, r). Either p or r may be omitted from calls to selected real kind(p, r)

(but not both). Analogously, either p or rmay be set toMPI UNDEFINED. In communication,
an MPI datatype A returned by MPI TYPE CREATE F90 REAL matches a datatype B if and
only if B was returned by MPI TYPE CREATE F90 REAL called with the same values for p
and r or B is a duplicate of such a datatype. Restrictions on using the returned datatype
with the \external32" data representation are given on page 296.

It is erroneous to supply values for p and r not supported by the compiler.

MPI TYPE CREATE F90 COMPLEX(p, r, newtype)

IN p precision, in decimal digits (integer)

IN r decimal exponent range (integer)

OUT newtype the requested MPI datatype (handle)

int MPI Type create f90 complex(int p, int r, MPI Datatype *newtype)

MPI TYPE CREATE F90 COMPLEX(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

static MPI::Datatype MPI::Datatype::Create f90 complex(int p, int r)

This function returns a prede�ned MPI datatype that matches a
COMPLEX variable of KIND selected real kind(p, r). Either p or r may be omitted from
calls to selected real kind(p, r) (but not both). Analogously, either p or r may be set
to MPI UNDEFINED. Matching rules for datatypes created by this function are analogous
to the matching rules for datatypes created byMPI TYPE CREATE F90 REAL. Restrictions
on using the returned datatype with the \external32" data representation are given on page
296.

It is erroneous to supply values for p and r not supported by the compiler.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.2. FORTRAN SUPPORT 295

MPI TYPE CREATE F90 INTEGER(r, newtype)

IN r decimal exponent range, i.e., number of decimal digits

(integer)

OUT newtype the requested MPI datatype (handle)

int MPI Type create f90 integer(int r, MPI Datatype *newtype)

MPI TYPE CREATE F90 INTEGER(R, NEWTYPE, IERROR)

INTEGER R, NEWTYPE, IERROR

static MPI::Datatype MPI::Datatype::Create f90 integer(int r)

This function returns a prede�ned MPI datatype that matches a INTEGER variable of
KIND selected int kind(r). Matching rules for datatypes created by this function are
analogous to the matching rules for datatypes created by MPI TYPE CREATE F90 REAL.
Restrictions on using the returned datatype with the \external32" data representation are
given on page 296.

It is erroneous to supply a value for r that is not supported by the compiler.
Example:

integer longtype, quadtype

integer, parameter :: long = selected_int_kind(15)

integer(long) ii(10)

real(selected_real_kind(30)) x(10)

call MPI_TYPE_CREATE_F90_INTEGER(15, longtype, ierror)

call MPI_TYPE_CREATE_F90_REAL(30, MPI_UNDEFINED, quadtype, ierror)

...

call MPI_SEND(ii, 10, longtype, ...)

call MPI_SEND(x, 10, quadtype, ...)

Advice to users. The datatypes returned by the above functions are prede�ned
datatypes. They cannot be freed; they do not need to be committed; they can be
used with prede�ned reduction operations. There are two situations in which they
behave di�erently syntactically, but not semantically, from the MPI named prede�ned
datatypes.

1. MPI TYPE GET ENVELOPE returns special combiners that allow a program to
retrieve the values of p and r.

2. Because the datatypes are not named, they cannot be used as compile-time
initializers or otherwise accessed before a call to one of the
MPI TYPE CREATE F90 routines.

If a variable was declared specifying a non-default KIND value that was not ob-
tained with selected real kind() or selected int kind(), the only way to obtain
a matching MPI datatype is to use the size-based mechanism described in the next
section.

(End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

296 CHAPTER 10. LANGUAGE BINDINGS

Rationale. TheMPI TYPE CREATE F90 REAL/COMPLEX/INTEGER interface needs
as input the original range and precision values to be able to de�ne useful and compiler-
independent external (Section 9.5.2 on page 250) or user-de�ned (Section 9.5.3 on page
251) data representations, and in order to be able to perform automatic and e�cient
data conversions in a heterogeneous environment. (End of rationale.)

We now specify how the datatypes described in this section behave when used with the
\external32" external data representation described in Section 9.5.2 on page 250.

The external32 representation speci�es data formats for integer and oating point val-
ues. Integer values are represented in two's complement big-endian format. Floating point
values are represented by one of three IEEE formats. These are the IEEE \Single," \Dou-
ble" and \Double Extended" formats, requiring 4, 8 and 16 bytes of storage, respectively.
For the IEEE \Double Extended" formats,MPI speci�es a Format Width of 16 bytes, with
15 exponent bits, bias = +10383, 112 fraction bits, and an encoding analogous to the
\Double" format.

The external32 representations of the datatypes returned by
MPI TYPE CREATE F90 REAL/COMPLEX/INTEGER are given by the following rules.
For MPI TYPE CREATE F90 REAL:

if (p > 33) or (r > 4931) then external32 representation

is undefined

else if (p > 15) or (r > 307) then external32_size = 16

else if (p > 6) or (r > 37) then external32_size = 8

else external32_size = 4

ForMPI TYPE CREATE F90 COMPLEX: twice the size as forMPI TYPE CREATE F90 REAL.
For MPI TYPE CREATE F90 INTEGER:

if (r > 38) then external32 representation is undefined

else if (r > 18) then external32_size = 16

else if (r > 9) then external32_size = 8

else if (r > 4) then external32_size = 4

else if (r > 2) then external32_size = 2

else external32_size = 1

If the external32 representation of a datatype is unde�ned, the result of using the datatype
directly or indirectly (i.e., as part of another datatype or through a duplicated datatype)
in operations that require the external32 representation is unde�ned. These operations
include MPI PACK EXTERNAL, MPI UNPACK EXTERNAL and many MPI FILE functions,
when the \external32" data representation is used. The ranges for which the external32
representation is unde�ned are reserved for future standardization.

Support for Size-speci�c MPI Datatypes

MPI-1 provides named datatypes corresponding to optional Fortran 77 numeric types that
contain explicit byte lengths | MPI REAL4, MPI INTEGER8, etc. This section describes a
mechanism that generalizes this model to support all Fortran numeric intrinsic types.

We assume that for each typeclass (integer, real, complex) and each word size there is
a unique machine representation. For every pair (typeclass, n) supported by a compiler,
MPI must provide a named size-speci�c datatype. The name of this datatype is of the form

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.2. FORTRAN SUPPORT 297

MPI <TYPE>n in C and Fortran and of the form MPI::<TYPE>n in C++ where
<TYPE> is one of REAL, INTEGER and COMPLEX, and n is the length in bytes of the machine
representation. This datatype locally matches all variables of type (typeclass, n). The list
of names for such types includes:

MPI_REAL4

MPI_REAL8

MPI_REAL16

MPI_COMPLEX8

MPI_COMPLEX16

MPI_COMPLEX32

MPI_INTEGER1

MPI_INTEGER2

MPI_INTEGER4

MPI_INTEGER8

MPI_INTEGER16

In MPI-1 these datatypes are all optional and correspond to the optional, nonstandard
declarations supported by many Fortran compilers. In MPI-2, one datatype is required
for each representation supported by the compiler. To be backward compatible with the
interpretation of these types inMPI-1, we assume that the nonstandard declarations REAL*n,
INTEGER*n, always create a variable whose representation is of size n. All these datatypes
are prede�ned.

The following functions allow a user to obtain a size-speci�c MPI datatype for any
intrinsic Fortran type.

MPI SIZEOF(x, size)

IN x a Fortran variable of numeric intrinsic type (choice)

OUT size size of machine representation of that type (integer)

MPI SIZEOF(X, SIZE, IERROR)

<type> X

INTEGER SIZE, IERROR

This function returns the size in bytes of the machine representation of the given
variable. It is a generic Fortran routine and has a Fortran binding only.

Advice to users. This function is similar to the C and C++ sizeof operator but
behaves slightly di�erently. If given an array argument, it returns the size of the base
element, not the size of the whole array. (End of advice to users.)

Rationale. This function is not available in other languages because it would not be
useful. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

298 CHAPTER 10. LANGUAGE BINDINGS

MPI TYPE MATCH SIZE(typeclass, size, type)

IN typeclass generic type speci�er (integer)

IN size size, in bytes, of representation (integer)

OUT type datatype with correct type, size (handle)

int MPI Type match size(int typeclass, int size, MPI Datatype *type)

MPI TYPE MATCH SIZE(TYPECLASS, SIZE, TYPE, IERROR)

INTEGER TYPECLASS, SIZE, TYPE, IERROR

static MPI::Datatype MPI::Datatype::Match size(int typeclass, int size)

typeclass is one of MPI TYPECLASS REAL, MPI TYPECLASS INTEGER and
MPI TYPECLASS COMPLEX, corresponding to the desired typeclass. The function returns
an MPI datatype matching a local variable of type (typeclass, size).

This function returns a reference (handle) to one of the prede�ned named datatypes, not
a duplicate. This type cannot be freed. MPI TYPE MATCH SIZE can be used to obtain a
size-speci�c type that matches a Fortran numeric intrinsic type by �rst calling MPI SIZEOF
in order to compute the variable size, and then calling MPI TYPE MATCH SIZE to �nd a
suitable datatype. In C and C++, one can use the C function sizeof(), instead of
MPI SIZEOF. In addition, for variables of default kind the variable's size can be computed
by a call to MPI TYPE GET EXTENT, if the typeclass is known. It is erroneous to specify
a size not supported by the compiler.

Rationale. This is a convenience function. Without it, it can be tedious to �nd the
correct named type. See note to implementors below. (End of rationale.)

Advice to implementors. This function could be implemented as a series of tests.

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *rtype)

{

switch(typeclass) {

case MPI_TYPECLASS_REAL: switch(size) {

case 4: *rtype = MPI_REAL4; return MPI_SUCCESS;

case 8: *rtype = MPI_REAL8; return MPI_SUCCESS;

default: error(...);

}

case MPI_TYPECLASS_INTEGER: switch(size) {

case 4: *rtype = MPI_INTEGER4; return MPI_SUCCESS;

case 8: *rtype = MPI_INTEGER8; return MPI_SUCCESS;

default: error(...); }

... etc ...

}

}

(End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.2. FORTRAN SUPPORT 299

Communication With Size-speci�c Types

The usual type matching rules apply to size-speci�c datatypes: a value sent with datatype
MPI <TYPE>n can be received with this same datatype on another process. Most modern
computers use 2's complement for integers and IEEE format for oating point. Thus, com-
munication using these size-speci�c datatypes will not entail loss of precision or truncation
errors.

Advice to users. Care is required when communicating in a heterogeneous environ-
ment. Consider the following code:

real(selected_real_kind(5)) x(100)

call MPI_SIZEOF(x, size, ierror)

call MPI_TYPE_MATCH_SIZE(MPI_TYPECLASS_REAL, size, xtype, ierror)

if (myrank .eq. 0) then

... initialize x ...

call MPI_SEND(x, xtype, 100, 1, ...)

else if (myrank .eq. 1) then

call MPI_RECV(x, xtype, 100, 0, ...)

endif

This may not work in a heterogeneous environment if the value of size is not the
same on process 1 and process 0. There should be no problem in a homogeneous
environment. To communicate in a heterogeneous environment, there are at least four
options. The �rst is to declare variables of default type and use the MPI datatypes
for these types, e.g., declare a variable of type REAL and use MPI REAL. The second
is to use selected real kind or selected int kind and with the functions of the
previous section. The third is to declare a variable that is known to be the same
size on all architectures (e.g., selected real kind(12) on almost all compilers will
result in an 8-byte representation). The fourth is to carefully check representation
size before communication. This may require explicit conversion to a variable of size
that can be communicated and handshaking between sender and receiver to agree on
a size.

Note �nally that using the \external32" representation for I/O requires explicit at-
tention to the representation sizes. Consider the following code:

real(selected_real_kind(5)) x(100)

call MPI_SIZEOF(x, size, ierror)

call MPI_TYPE_MATCH_SIZE(MPI_TYPECLASS_REAL, size, xtype, ierror)

if (myrank .eq. 0) then

call MPI_FILE_OPEN(MPI_COMM_SELF, 'foo', &

MPI_MODE_CREATE+MPI_MODE_WRONLY, &

MPI_INFO_NULL, fh, ierror)

call MPI_FILE_SET_VIEW(fh, 0, xtype, xtype, 'external32', &

MPI_INFO_NULL, ierror)

call MPI_FILE_WRITE(fh, x, 100, xtype, status, ierror)

call MPI_FILE_CLOSE(fh, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

300 CHAPTER 10. LANGUAGE BINDINGS

endif

call MPI_BARRIER(MPI_COMM_WORLD, ierror)

if (myrank .eq. 1) then

call MPI_FILE_OPEN(MPI_COMM_SELF, 'foo', MPI_MODE_RDONLY, &

MPI_INFO_NULL, fh, ierror)

call MPI_FILE_SET_VIEW(fh, 0, xtype, xtype, 'external32', &

MPI_INFO_NULL, ierror)

call MPI_FILE_WRITE(fh, x, 100, xtype, status, ierror)

call MPI_FILE_CLOSE(fh, ierror)

endif

If processes 0 and 1 are on di�erent machines, this code may not work as expected if
the size is di�erent on the two machines. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Bibliography

[1] Rajesh Bordawekar, Juan Miguel del Rosario, and Alok Choudhary. Design and eval-
uation of primitives for parallel I/O. In Proceedings of Supercomputing '93, pages
452{461, 1993.

[2] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Improved parallel
I/O via a two-phase run-time access strategy. In IPPS '93 Workshop on Input/Output
in Parallel Computer Systems, pages 56{70, 1993. Also published in Computer Archi-
tecture News 21(5), December 1993, pages 31{38.

[3] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison Wesley, 1990.

[4] C++ Forum. Working paper for draft proposed international standard for informa-
tion systems | programming language C++. Technical report, American National
Standards Institute, 1995.

[5] Message Passing Interface Forum. MPI: A Message-Passing Interface standard. The In-
ternational Journal of Supercomputer Applications and High Performance Computing,
8, 1994.

[6] Message Passing Interface Forum. MPI: A Message-Passing Interface standard (version
1.1). Technical report, 1995. http://www.mpi-forum.org.

[7] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Bob Manchek, and Vaidy
Sunderam. PVM: Parallel Virtual Machine|A User's Guide and Tutorial for Network
Parallel Computing. MIT Press, 1994.

[8] Michael Hennecke. A Fortran 90 interface to MPI version 1.1. Techni-
cal Report Internal Report 63/96, Rechenzentrum, Universit�at Karlsruhe, D-
76128 Karlsruhe, Germany, June 1996. Available via world wide web from
http://www.uni-karlsruhe.de/~Michael.Hennecke/Publications/#MPI F90.

[9] Institute of Electrical and Electronics Engineers, New York. IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, 1985.

[10] International Organization for Standardization, Geneva. Information processing |
8-bit single-byte coded graphic character sets | Part 1: Latin alphabet No. 1, 1987.

[11] International Organization for Standardization, Geneva. Information technology |
Portable Operating System Interface (POSIX) | Part 1: System Application Program
Interface (API) [C Language], December 1996.

301

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

302 BIBLIOGRAPHY

[12] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L. Steele Jr., and
Mary E. Zosel. The High Performance Fortran Handbook. MIT Press, 1993.

[13] David Kotz. Disk-directed I/O for MIMD multiprocessors. In Proceedings of the 1994
Symposium on Operating Systems Design and Implementation, pages 61{74, November
1994. Updated as Dartmouth TR PCS-TR94-226 on November 8, 1994.

[14] S. J. Le�et, R. S. Fabry, W. N. Joy, P. Lapsley, S. Miller, and C. Torek. An advanced
4.4BSD interprocess communication tutorial, Unix programmer's supplementary docu-
ments (PSD) 21. Technical report, Computer Systems Research Group, Depertment of
Electrical Engineering and Computer Science, University of California, Berkeley, 1993.
Also available at http://www.netbsd.org/Documentation/lite2/psd/.

[15] Bill Nitzberg. Performance of the iPSC/860 Concurrent File System. Technical Report
RND-92-020, NAS Systems Division, NASA Ames, December 1992.

[16] William J. Nitzberg. Collective Parallel I/O. PhD thesis, Department of Computer
and Information Science, University of Oregon, December 1995.

[17] 4.4BSD Programmer's Supplementary Documents (PSD). O'Reilly and Associates,
1994.

[18] Perry Partow and Dennis Cottel. Scalable Programming Environment. Technical Re-
port 1672, Naval Command Control and Ocean Surveillance Center (NRAD), Septem-
ber 1994.

[19] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed
collective I/O in Panda. In Proceedings of Supercomputing '95, December 1995.

[20] Anthony Skjellum, Nathan E. Doss, and Kishore Viswanathan. Inter-communicator
extensions to MPI in the MPIX (MPI eXtension) Library. Technical Report MSU-
940722, Mississippi State University | Dept. of Computer Science, April 1994.
http://www.erc.msstate.edu/mpi/mpix.html.

[21] Anthony Skjellum, Ziyang Lu, Purushotham V. Bangalore, and Nathan E. Doss. Ex-
plicit parallel programming in C++ based on the message-passing interface (MPI). In
Gregory V. Wilson, editor, Parallel Programming Using C++, Engineering Computa-
tion Series. MIT Press, July 1996. ISBN 0-262-73118-5.

[22] Rajeev Thakur and Alok Choudhary. An Extended Two-Phase Method for Accessing
Sections of Out-of-Core Arrays. Scienti�c Programming, 5(4):301{317, Winter 1996.

[23] The Unicode Standard, Version 2.0. Addison-Wesley, 1996. ISBN 0-201-48345-9.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Annex A

Language Binding

A.1 Introduction

This annex summarizes the speci�c bindings for Fortran, C, and C++. First the constants,
error codes, info keys, and info values are presented. Second, the MPI-1.2 bindings are
given. Third, the MPI-2 bindings are given.

A.2 De�ned Values and Handles

A.2.1 De�ned Constants

The C and Fortran name is listed in the left column and the C++ name is listed in the
right column.

303

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

304 ANNEX A. LANGUAGE BINDING

Return Codes

MPI ERR ACCESS MPI::ERR ACCESS

MPI ERR AMODE MPI::ERR AMODE

MPI ERR ASSERT MPI::ERR ASSERT

MPI ERR BAD FILE MPI::ERR BAD FILE

MPI ERR BASE MPI::ERR BASE

MPI ERR CONVERSION MPI::ERR CONVERSION

MPI ERR DISP MPI::ERR DISP

MPI ERR DUP DATAREP MPI::ERR DUP DATAREP

MPI ERR FILE EXISTS MPI::ERR FILE EXISTS

MPI ERR FILE IN USE MPI::ERR FILE IN USE

MPI ERR FILE MPI::ERR FILE

MPI ERR INFO KEY MPI::ERR INFO VALUE

MPI ERR INFO NOKEY MPI::ERR INFO NOKEY

MPI ERR INFO VALUE MPI::ERR INFO KEY

MPI ERR INFO MPI::ERR INFO

MPI ERR IO MPI::ERR IO

MPI ERR KEYVAL MPI::ERR KEYVAL

MPI ERR LOCKTYPE MPI::ERR LOCKTYPE

MPI ERR NAME MPI::ERR NAME

MPI ERR NO MEM MPI::ERR NO MEM

MPI ERR NOT SAME MPI::ERR NOT SAME

MPI ERR NO SPACE MPI::ERR NO SPACE

MPI ERR NO SUCH FILE MPI::ERR NO SUCH FILE

MPI ERR PORT MPI::ERR PORT

MPI ERR QUOTA MPI::ERR QUOTA

MPI ERR READ ONLY MPI::ERR READ ONLY

MPI ERR RMA CONFLICT MPI::ERR RMA CONFLICT

MPI ERR RMA SYNC MPI::ERR RMA SYNC

MPI ERR SERVICE MPI::ERR SERVICE

MPI ERR SIZE MPI::ERR SIZE

MPI ERR SPAWN MPI::ERR SPAWN

MPI ERR UNSUPPORTED DATAREP MPI::ERR UNSUPPORTED DATAREP

MPI ERR UNSUPPORTED OPERATION MPI::ERR UNSUPPORTED OPERATION

MPI ERR WIN MPI::ERR WIN

Assorted Constants

MPI IN PLACE MPI::IN PLACE

MPI LOCK EXCLUSIVE MPI::LOCK EXCLUSIVE

MPI LOCK SHARED MPI::LOCK SHARED

MPI ROOT MPI::ROOT

Variable Address Size (Fortran only)

MPI ADDRESS KIND Not de�ned for C++
MPI INTEGER KIND Not de�ned for C++
MPI OFFSET KIND Not de�ned for C++

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.2. DEFINED VALUES AND HANDLES 305

Maximum Sizes for Strings

MPI MAX DATAREP STRING MPI::MAX DATAREP STRING

MPI MAX INFO KEY MPI::MAX INFO KEY

MPI MAX INFO VAL MPI::MAX INFO VAL

MPI MAX OBJECT NAME MPI::MAX OBJECT NAME

MPI MAX PORT NAME MPI::MAX PORT NAME

Named Prede�ned Datatypes

MPI WCHAR MPI::WCHAR

C and C++ (no Fortran) Named Prede�ned Datatypes

MPI Fint MPI::Fint

Optional C and C++ (no Fortran) Named Prede�ned Datatypes

MPI UNSIGNED LONG LONG MPI::UNSIGNED LONG LONG

MPI SIGNED CHAR MPI::SIGNED CHAR

Prede�ned Attribute Keys

MPI APPNUM MPI::APPNUM

MPI LASTUSEDCODE MPI::LASTUSEDCODE

MPI UNIVERSE SIZE MPI::UNIVERSE SIZE

MPI WIN BASE MPI::WIN BASE

MPI WIN DISP UNIT MPI::WIN DISP UNIT

MPI WIN SIZE MPI::WIN SIZE

Collective Operations

MPI REPLACE MPI::REPLACE

Null Handles

MPI FILE NULL MPI::FILE NULL

MPI INFO NULL MPI::INFO NULL

MPI WIN NULL MPI::WIN NULL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

306 ANNEX A. LANGUAGE BINDING

Mode Constants

MPI MODE APPEND MPI::MODE APPEND

MPI MODE CREATE MPI::MODE CREATE

MPI MODE DELETE ON CLOSE MPI::MODE DELETE ON CLOSE

MPI MODE EXCL MPI::MODE EXCL

MPI MODE NOCHECK MPI::MODE NOCHECK

MPI MODE NOPRECEDE MPI::MODE NOPRECEDE

MPI MODE NOPUT MPI::MODE NOPUT

MPI MODE NOSTORE MPI::MODE NOSTORE

MPI MODE NOSUCCEED MPI::MODE NOSUCCEED

MPI MODE RDONLY MPI::MODE RDONLY

MPI MODE RDWR MPI::MODE RDWR

MPI MODE SEQUENTIAL MPI::MODE SEQUENTIAL

MPI MODE UNIQUE OPEN MPI::MODE UNIQUE OPEN

MPI MODE WRONLY MPI::MODE WRONLY

Datatype Decoding Constants

MPI COMBINER CONTIGUOUS MPI::COMBINER CONTIGUOUS

MPI COMBINER DARRAY MPI::COMBINER DARRAY

MPI COMBINER DUP MPI::COMBINER DUP

MPI COMBINER F90 COMPLEX MPI::COMBINER F90 COMPLEX

MPI COMBINER F90 INTEGER MPI::COMBINER F90 INTEGER

MPI COMBINER F90 REAL MPI::COMBINER F90 REAL

MPI COMBINER HINDEXED INTEGER MPI::COMBINER HINDEXED INTEGER

MPI COMBINER HINDEXED MPI::COMBINER HINDEXED

MPI COMBINER HVECTOR INTEGER MPI::COMBINER HVECTOR INTEGER

MPI COMBINER HVECTOR MPI::COMBINER HVECTOR

MPI COMBINER INDEXED BLOCK MPI::COMBINER INDEXED BLOCK

MPI COMBINER INDEXED MPI::COMBINER INDEXED

MPI COMBINER NAMED MPI::COMBINER NAMED

MPI COMBINER RESIZED MPI::COMBINER RESIZED

MPI COMBINER STRUCT INTEGER MPI::COMBINER STRUCT INTEGER

MPI COMBINER STRUCT MPI::COMBINER STRUCT

MPI COMBINER SUBARRAY MPI::COMBINER SUBARRAY

MPI COMBINER VECTOR MPI::COMBINER VECTOR

Threads Constants

MPI THREAD FUNNELED MPI::THREAD FUNNELED

MPI THREAD MULTIPLE MPI::THREAD MULTIPLE

MPI THREAD SERIALIZED MPI::THREAD SERIALIZED

MPI THREAD SINGLE MPI::THREAD SINGLE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.2. DEFINED VALUES AND HANDLES 307

File Operation Constants

MPI DISPLACEMENT CURRENT MPI::DISPLACEMENT CURRENT

MPI DISTRIBUTE BLOCK MPI::DISTRIBUTE BLOCK

MPI DISTRIBUTE CYCLIC MPI::DISTRIBUTE CYCLIC

MPI DISTRIBUTE DFLT DARG MPI::DISTRIBUTE DFLT DARG

MPI DISTRIBUTE NONE MPI::DISTRIBUTE NONE

MPI ORDER C MPI::ORDER C

MPI ORDER FORTRAN MPI::ORDER FORTRAN

MPI SEEK CUR MPI::SEEK CUR

MPI SEEK END MPI::SEEK END

MPI SEEK SET MPI::SEEK SET

F90 Datatype Matching Constants

MPI TYPECLASS COMPLEX MPI::TYPECLASS COMPLEX

MPI TYPECLASS INTEGER MPI::TYPECLASS INTEGER

MPI TYPECLASS REAL MPI::TYPECLASS REAL

Handles to Assorted Structures in C and C++ (no Fortran)

MPI File MPI::File

MPI Info MPI::Info

MPI Win MPI::Win

Constants Specifying Empty or Ignored Input

MPI ARGVS NULL MPI::ARGVS NULL

MPI ARGV NULL MPI::ARGV NULL

MPI ERRCODES IGNORE Not de�ned for C++
MPI STATUSES IGNORE Not de�ned for C++
MPI STATUS IGNORE Not de�ned for C++

C Constants Specifying Ignored Input (no C++ or Fortran)

MPI F STATUSES IGNORE Not de�ned for C++
MPI F STATUS IGNORE Not de�ned for C++

C and C++ cpp Constants and Fortran Parameters

MPI SUBVERSION

MPI VERSION

A.2.2 Info Keys

access style

appnum

arch

cb block size

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

308 ANNEX A. LANGUAGE BINDING

cb bu�er size

cb nodes

chunked item

chunked size

chunked

collective bu�ering

�le perm

�lename

�le

host

io node list

ip address

ip port

nb proc

no locks

num io nodes

path

soft

striping factor

striping unit

wdir

A.2.3 Info Values

false

random

read mostly

read once

reverse sequential

sequential

true

write mostly

write once

A.3 MPI-1.2 C Bindings

int MPI Get version(int *version, int *subversion)

A.4 MPI-1.2 Fortran Bindings

MPI GET VERSION(VERSION, SUBVERSION, IERROR)

INTEGER VERSION, SUBVERSION, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.5. MPI-1.2 C++ BINDINGS 309

A.5 MPI-1.2 C++ Bindings

See Section B.11.

A.6 MPI-2 C Bindings

A.6.1 Miscellany

int MPI Alloc mem(MPI Aint size, MPI Info info, void *baseptr)

MPI Fint MPI Comm c2f(MPI Comm comm)

int MPI Comm create errhandler(MPI Comm errhandler fn *function,

MPI Errhandler *errhandler)

MPI Comm MPI Comm f2c(MPI Fint comm)

int MPI Comm get errhandler(MPI Comm comm, MPI Errhandler *errhandler)

int MPI Comm set errhandler(MPI Comm comm, MPI Errhandler errhandler)

MPI Fint MPI File c2f(MPI File file)

int MPI File create errhandler(MPI File errhandler fn *function,

MPI Errhandler *errhandler)

MPI File MPI File f2c(MPI Fint file)

int MPI File get errhandler(MPI File file, MPI Errhandler *errhandler)

int MPI File set errhandler(MPI File file, MPI Errhandler errhandler)

int MPI Finalized(int *flag)

int MPI Free mem(void *base)

int MPI Get address(void *location, MPI Aint *address)

MPI Fint MPI Group c2f(MPI Group group)

MPI Group MPI Group f2c(MPI Fint group)

MPI Fint MPI Info c2f(MPI Info info)

int MPI Info create(MPI Info *info)

int MPI Info delete(MPI Info info, char *key)

int MPI Info dup(MPI Info info, MPI Info *newinfo)

MPI Info MPI Info f2c(MPI Fint info)

int MPI Info free(MPI Info *info)

int MPI Info get(MPI Info info, char *key, int valuelen, char *value,

int *flag)

int MPI Info get nkeys(MPI Info info, int *nkeys)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

310 ANNEX A. LANGUAGE BINDING

int MPI Info get nthkey(MPI Info info, int n, char *key)

int MPI Info get valuelen(MPI Info info, char *key, int *valuelen,

int *flag)

int MPI Info set(MPI Info info, char *key, char *value)

MPI Fint MPI Op c2f(MPI Op op)

MPI Op MPI Op f2c(MPI Fint op)

int MPI Pack external(char *datarep, void *inbuf, int incount,

MPI Datatype datatype, void *outbuf, MPI Aint outsize,

MPI Aint *position)

int MPI Pack external size(char *datarep, int incount,

MPI Datatype datatype, MPI Aint *size)

MPI Fint MPI Request c2f(MPI Request request)

MPI Request MPI Request f2c(MPI Fint request)

int MPI Request get status(MPI Request request, int *flag,

MPI Status *status)

int MPI Status c2f(MPI Status *c status, MPI Fint *f status)

int MPI Status f2c(MPI Fint *f status, MPI Status *c status)

MPI Fint MPI Type c2f(MPI Datatype datatype)

int MPI Type create darray(int size, int rank, int ndims,

int array of gsizes[], int array of distribs[], int

array of dargs[], int array of psizes[], int order,

MPI Datatype oldtype, MPI Datatype *newtype)

int MPI Type create hindexed(int count, int array of blocklengths[],

MPI Aint array of displacements[], MPI Datatype oldtype,

MPI Datatype *newtype)

int MPI Type create hvector(int count, int blocklength, MPI Aint stride,

MPI Datatype oldtype, MPI Datatype *newtype)

int MPI Type create indexed block(int count, int blocklength,

int array of displacements[], MPI Datatype oldtype,

MPI Datatype *newtype)

int MPI Type create resized(MPI Datatype oldtype, MPI Aint lb, MPI Aint

extent, MPI Datatype *newtype)

int MPI Type create struct(int count, int array of blocklengths[],

MPI Aint array of displacements[],

MPI Datatype array of types[], MPI Datatype *newtype)

int MPI Type create subarray(int ndims, int array of sizes[],

int array of subsizes[], int array of starts[], int order,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.6. MPI-2 C BINDINGS 311

MPI Datatype oldtype, MPI Datatype *newtype)

MPI Datatype MPI Type f2c(MPI Fint datatype)

int MPI Type get extent(MPI Datatype datatype, MPI Aint *lb,

MPI Aint *extent)

int MPI Type get true extent(MPI Datatype datatype, MPI Aint *true lb,

MPI Aint *true extent)

int MPI Unpack external(char *datarep, void *inbuf, MPI Aint insize,

MPI Aint *position, void *outbuf, int outcount,

MPI Datatype datatype)

MPI Fint MPI Win c2f(MPI Win win)

int MPI Win create errhandler(MPI Win errhandler fn *function, MPI Errhandler

*errhandler)

MPI Win MPI Win f2c(MPI Fint win)

int MPI Win get errhandler(MPI Win win, MPI Errhandler *errhandler)

int MPI Win set errhandler(MPI Win win, MPI Errhandler errhandler)

A.6.2 Process Creation and Management

int MPI Close port(char *port name)

int MPI Comm accept(char *port name, MPI Info info, int root, MPI Comm comm,

MPI Comm *newcomm)

int MPI Comm connect(char *port name, MPI Info info, int root,

MPI Comm comm, MPI Comm *newcomm)

int MPI Comm disconnect(MPI Comm *comm)

int MPI Comm get parent(MPI Comm *parent)

int MPI Comm join(int fd, MPI Comm *intercomm)

int MPI Comm spawn(char *command, char *argv[], int maxprocs, MPI Info info,

int root, MPI Comm comm, MPI Comm *intercomm,

int array of errcodes[])

int MPI Comm spawn multiple(int count, char *array of commands[],

char **array of argv[], int array of maxprocs[],

MPI Info array of info[], int root, MPI Comm comm,

MPI Comm *intercomm, int array of errcodes[])

int MPI Lookup name(char *service name, MPI Info info, char *port name)

int MPI Open port(MPI Info info, char *port name)

int MPI Publish name(char *service name, MPI Info info, char *port name)

int MPI Unpublish name(char *service name, MPI Info info, char *port name)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

312 ANNEX A. LANGUAGE BINDING

A.6.3 One-Sided Communications

int MPI Accumulate(void *origin addr, int origin count,

MPI Datatype origin datatype, int target rank,

MPI Aint target disp, int target count,

MPI Datatype target datatype, MPI Op op, MPI Win win)

int MPI Get(void *origin addr, int origin count, MPI Datatype

origin datatype, int target rank, MPI Aint target disp, int

target count, MPI Datatype target datatype, MPI Win win)

int MPI Put(void *origin addr, int origin count, MPI Datatype

origin datatype, int target rank, MPI Aint target disp, int

target count, MPI Datatype target datatype, MPI Win win)

int MPI Win complete(MPI Win win)

int MPI Win create(void *base, MPI Aint size, int disp unit, MPI Info info,

MPI Comm comm, MPI Win *win)

int MPI Win fence(int assert, MPI Win win)

int MPI Win free(MPI Win *win)

int MPI Win get group(MPI Win win, MPI Group *group)

int MPI Win lock(int lock type, int rank, int assert, MPI Win win)

int MPI Win post(MPI Group group, int assert, MPI Win win)

int MPI Win start(MPI Group group, int assert, MPI Win win)

int MPI Win test(MPI Win win, int *flag)

int MPI Win unlock(int rank, MPI Win win)

int MPI Win wait(MPI Win win)

A.6.4 Extended Collective Operations

int MPI Alltoallw(void *sendbuf, int sendcounts[], int sdispls[],

MPI Datatype sendtypes[], void *recvbuf, int recvcounts[],

int rdispls[], MPI Datatype recvtypes[], MPI Comm comm)

int MPI Exscan(void *sendbuf, void *recvbuf, int count,

MPI Datatype datatype, MPI Op op, MPI Comm comm)

A.6.5 External Interfaces

int MPI Add error class(int *errorclass)

int MPI Add error code(int errorclass, int *errorcode)

int MPI Add error string(int errorcode, char *string)

int MPI Comm call errhandler(MPI Comm comm, int errorcode)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.6. MPI-2 C BINDINGS 313

int MPI Comm create keyval(MPI Comm copy attr function *comm copy attr fn,

MPI Comm delete attr function *comm delete attr fn,

int *comm keyval, void *extra state)

int MPI Comm delete attr(MPI Comm comm, int comm keyval)

int MPI Comm free keyval(int *comm keyval)

int MPI Comm get attr(MPI Comm comm, int comm keyval, void *attribute val,

int *flag)

int MPI Comm get name(MPI Comm comm, char *comm name, int *resultlen)

int MPI Comm set attr(MPI Comm comm, int comm keyval, void *attribute val)

int MPI Comm set name(MPI Comm comm, char *comm name)

int MPI File call errhandler(MPI File fh, int errorcode)

int MPI Grequest complete(MPI Request request)

int MPI Grequest start(MPI Grequest query function *query fn,

MPI Grequest free function *free fn,

MPI Grequest cancel function *cancel fn, void *extra state,

MPI Request *request)

int MPI Init thread(int *argc, char *((*argv)[]), int required,

int *provided)

int MPI Is thread main(int *flag)

int MPI Query thread(int *provided)

int MPI Status set cancelled(MPI Status *status, int flag)

int MPI Status set elements(MPI Status *status, MPI Datatype datatype,

int count)

int MPI Type create keyval(MPI Type copy attr function *type copy attr fn,

MPI Type delete attr function *type delete attr fn,

int *type keyval, void *extra state)

int MPI Type delete attr(MPI Datatype type, int type keyval)

int MPI Type dup(MPI Datatype type, MPI Datatype *newtype)

int MPI Type free keyval(int *type keyval)

int MPI Type get attr(MPI Datatype type, int type keyval, void

*attribute val, int *flag)

int MPI Type get contents(MPI Datatype datatype, int max integers,

int max addresses, int max datatypes, int array of integers[],

MPI Aint array of addresses[],

MPI Datatype array of datatypes[])

int MPI Type get envelope(MPI Datatype datatype, int *num integers,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

314 ANNEX A. LANGUAGE BINDING

int *num addresses, int *num datatypes, int *combiner)

int MPI Type get name(MPI Datatype type, char *type name, int *resultlen)

int MPI Type set attr(MPI Datatype type, int type keyval,

void *attribute val)

int MPI Type set name(MPI Datatype type, char *type name)

int MPI Win call errhandler(MPI Win win, int errorcode)

int MPI Win create keyval(MPI Win copy attr function *win copy attr fn,

MPI Win delete attr function *win delete attr fn,

int *win keyval, void *extra state)

int MPI Win delete attr(MPI Win win, int win keyval)

int MPI Win free keyval(int *win keyval)

int MPI Win get attr(MPI Win win, int win keyval, void *attribute val,

int *flag)

int MPI Win get name(MPI Win win, char *win name, int *resultlen)

int MPI Win set attr(MPI Win win, int win keyval, void *attribute val)

int MPI Win set name(MPI Win win, char *win name)

A.6.6 I/O

int MPI File close(MPI File *fh)

int MPI File delete(char *filename, MPI Info info)

int MPI File get amode(MPI File fh, int *amode)

int MPI File get atomicity(MPI File fh, int *flag)

int MPI File get byte offset(MPI File fh, MPI Offset offset,

MPI Offset *disp)

int MPI File get group(MPI File fh, MPI Group *group)

int MPI File get info(MPI File fh, MPI Info *info used)

int MPI File get position(MPI File fh, MPI Offset *offset)

int MPI File get position shared(MPI File fh, MPI Offset *offset)

int MPI File get size(MPI File fh, MPI Offset *size)

int MPI File get type extent(MPI File fh, MPI Datatype datatype,

MPI Aint *extent)

int MPI File get view(MPI File fh, MPI Offset *disp, MPI Datatype *etype,

MPI Datatype *filetype, char *datarep)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.6. MPI-2 C BINDINGS 315

int MPI File iread(MPI File fh, void *buf, int count, MPI Datatype datatype,

MPI Request *request)

int MPI File iread at(MPI File fh, MPI Offset offset, void *buf, int count,

MPI Datatype datatype, MPI Request *request)

int MPI File iread shared(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Request *request)

int MPI File iwrite(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Request *request)

int MPI File iwrite at(MPI File fh, MPI Offset offset, void *buf, int count,

MPI Datatype datatype, MPI Request *request)

int MPI File iwrite shared(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Request *request)

int MPI File open(MPI Comm comm, char *filename, int amode, MPI Info info,

MPI File *fh)

int MPI File preallocate(MPI File fh, MPI Offset size)

int MPI File read(MPI File fh, void *buf, int count, MPI Datatype datatype,

MPI Status *status)

int MPI File read all(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Status *status)

int MPI File read all begin(MPI File fh, void *buf, int count,

MPI Datatype datatype)

int MPI File read all end(MPI File fh, void *buf, MPI Status *status)

int MPI File read at(MPI File fh, MPI Offset offset, void *buf, int count,

MPI Datatype datatype, MPI Status *status)

int MPI File read at all(MPI File fh, MPI Offset offset, void *buf,

int count, MPI Datatype datatype, MPI Status *status)

int MPI File read at all begin(MPI File fh, MPI Offset offset, void *buf,

int count, MPI Datatype datatype)

int MPI File read at all end(MPI File fh, void *buf, MPI Status *status)

int MPI File read ordered(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Status *status)

int MPI File read ordered begin(MPI File fh, void *buf, int count,

MPI Datatype datatype)

int MPI File read ordered end(MPI File fh, void *buf, MPI Status *status)

int MPI File read shared(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Status *status)

int MPI File seek(MPI File fh, MPI Offset offset, int whence)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

316 ANNEX A. LANGUAGE BINDING

int MPI File seek shared(MPI File fh, MPI Offset offset, int whence)

int MPI File set atomicity(MPI File fh, int flag)

int MPI File set info(MPI File fh, MPI Info info)

int MPI File set size(MPI File fh, MPI Offset size)

int MPI File set view(MPI File fh, MPI Offset disp, MPI Datatype etype,

MPI Datatype filetype, char *datarep, MPI Info info)

int MPI File sync(MPI File fh)

int MPI File write(MPI File fh, void *buf, int count, MPI Datatype datatype,

MPI Status *status)

int MPI File write all(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Status *status)

int MPI File write all begin(MPI File fh, void *buf, int count,

MPI Datatype datatype)

int MPI File write all end(MPI File fh, void *buf, MPI Status *status)

int MPI File write at(MPI File fh, MPI Offset offset, void *buf, int count,

MPI Datatype datatype, MPI Status *status)

int MPI File write at all(MPI File fh, MPI Offset offset, void *buf,

int count, MPI Datatype datatype, MPI Status *status)

int MPI File write at all begin(MPI File fh, MPI Offset offset, void *buf,

int count, MPI Datatype datatype)

int MPI File write at all end(MPI File fh, void *buf, MPI Status *status)

int MPI File write ordered(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Status *status)

int MPI File write ordered begin(MPI File fh, void *buf, int count,

MPI Datatype datatype)

int MPI File write ordered end(MPI File fh, void *buf, MPI Status *status)

int MPI File write shared(MPI File fh, void *buf, int count,

MPI Datatype datatype, MPI Status *status)

int MPI Register datarep(char *datarep,

MPI Datarep conversion function *read conversion fn,

MPI Datarep conversion function *write conversion fn,

MPI Datarep extent function *dtype file extent fn,

void *extra state)

A.6.7 Language Bindings

int MPI Type create f90 complex(int p, int r, MPI Datatype *newtype)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.7. MPI-2 FORTRAN BINDINGS 317

int MPI Type create f90 integer(int r, MPI Datatype *newtype)

int MPI Type create f90 real(int p, int r, MPI Datatype *newtype)

int MPI Type match size(int typeclass, int size, MPI Datatype *type)

A.6.8 User De�ned Functions

typedef int MPI Comm copy attr function(MPI Comm oldcomm, int comm keyval,

void *extra state, void *attribute val in,

void *attribute val out, int *flag);

typedef int MPI Comm delete attr function(MPI Comm comm, int comm keyval,

void *attribute val, void *extra state);

typedef void MPI Comm errhandler fn(MPI Comm *, int *, : : :);

typedef int MPI Datarep conversion function(void *userbuf,

MPI Datatype datatype, int count, void *filebuf,

MPI Offset position, void *extra state);

typedef int MPI Datarep extent function(MPI Datatype datatype,

MPI Aint *file extent, void *extra state);

typedef void MPI File errhandler fn(MPI File *, int *, : : :);

typedef int MPI Grequest cancel function(void *extra state, int complete);

typedef int MPI Grequest free function(void *extra state);

typedef int MPI Grequest query function(void *extra state,

MPI Status *status);

typedef int MPI Type copy attr function(MPI Datatype oldtype,

int type keyval, void *extra state, void *attribute val in,

void *attribute val out, int *flag);

typedef int MPI Type delete attr function(MPI Datatype type, int type keyval,

void *attribute val, void *extra state);

typedef int MPI Win copy attr function(MPI Win oldwin, int win keyval,

void *extra state, void *attribute val in,

void *attribute val out, int *flag);

typedef int MPI Win delete attr function(MPI Win win, int win keyval,

void *attribute val, void *extra state);

typedef void MPI Win errhandler fn(MPI Win *, int *, : : :);

A.7 MPI-2 Fortran Bindings

A.7.1 Miscellany

MPI ALLOC MEM(SIZE, INFO, BASEPTR, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

318 ANNEX A. LANGUAGE BINDING

INTEGER INFO, IERROR

INTEGER(KIND=MPI ADDRESS KIND) SIZE, BASEPTR

MPI COMM CREATE ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)

EXTERNAL FUNCTION

INTEGER ERRHANDLER, IERROR

MPI COMM GET ERRHANDLER(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

MPI COMM SET ERRHANDLER(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

MPI FILE CREATE ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)

EXTERNAL FUNCTION

INTEGER ERRHANDLER, IERROR

MPI FILE GET ERRHANDLER(FILE, ERRHANDLER, IERROR)

INTEGER FILE, ERRHANDLER, IERROR

MPI FILE SET ERRHANDLER(FILE, ERRHANDLER, IERROR)

INTEGER FILE, ERRHANDLER, IERROR

MPI FINALIZED(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

MPI FREE MEM(BASE, IERROR)

<type> BASE(*)

INTEGER IERROR

MPI GET ADDRESS(LOCATION, ADDRESS, IERROR)

<type> LOCATION(*)

INTEGER IERROR

INTEGER(KIND=MPI ADDRESS KIND) ADDRESS

MPI INFO CREATE(INFO, IERROR)

INTEGER INFO, IERROR

MPI INFO DELETE(INFO, KEY, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) KEY

MPI INFO DUP(INFO, NEWINFO, IERROR)

INTEGER INFO, NEWINFO, IERROR

MPI INFO FREE(INFO, IERROR)

INTEGER INFO, IERROR

MPI INFO GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)

INTEGER INFO, VALUELEN, IERROR

CHARACTER*(*) KEY, VALUE

LOGICAL FLAG

MPI INFO GET NKEYS(INFO, NKEYS, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.7. MPI-2 FORTRAN BINDINGS 319

INTEGER INFO, NKEYS, IERROR

MPI INFO GET NTHKEY(INFO, N, KEY, IERROR)

INTEGER INFO, N, IERROR

CHARACTER*(*) KEY

MPI INFO GET VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)

INTEGER INFO, VALUELEN, IERROR

LOGICAL FLAG

CHARACTER*(*) KEY

MPI INFO SET(INFO, KEY, VALUE, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) KEY, VALUE

MPI PACK EXTERNAL(DATAREP, INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE,

POSITION, IERROR)

INTEGER INCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI ADDRESS KIND) OUTSIZE, POSITION

CHARACTER*(*) DATAREP

<type> INBUF(*), OUTBUF(*)

MPI PACK EXTERNAL SIZE(DATAREP, INCOUNT, DATATYPE, SIZE, IERROR)

INTEGER INCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI ADDRESS KIND) SIZE

CHARACTER*(*) DATAREP

MPI REQUEST GET STATUS(REQUEST, FLAG, STATUS, IERROR)

INTEGER REQUEST, STATUS(MPI STATUS SIZE), IERROR

LOGICAL FLAG

MPI TYPE CREATE DARRAY(SIZE, RANK, NDIMS, ARRAY OF GSIZES, ARRAY OF DISTRIBS,

ARRAY OF DARGS, ARRAY OF PSIZES, ORDER, OLDTYPE, NEWTYPE,

IERROR)

INTEGER SIZE, RANK, NDIMS, ARRAY OF GSIZES(*), ARRAY OF DISTRIBS(*),

ARRAY OF DARGS(*), ARRAY OF PSIZES(*), ORDER, OLDTYPE, NEWTYPE, IERROR

MPI TYPE CREATE HINDEXED(COUNT, ARRAY OF BLOCKLENGTHS,

ARRAY OF DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*), OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ARRAY OF DISPLACEMENTS(*)

MPI TYPE CREATE HVECTOR(COUNT, BLOCKLENGTH, STIDE, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI ADDRESS KIND) STRIDE

MPI TYPE CREATE INDEXED BLOCK(COUNT, BLOCKLENGTH, ARRAY OF DISPLACEMENTS,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, ARRAY OF DISPLACEMENTS(*), OLDTYPE,

NEWTYPE, IERROR

MPI TYPE CREATE RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE, IERROR)

INTEGER OLDTYPE, NEWTYPE, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

320 ANNEX A. LANGUAGE BINDING

INTEGER(KIND=MPI ADDRESS KIND) LB, EXTENT

MPI TYPE CREATE STRUCT(COUNT, ARRAY OF BLOCKLENGTHS, ARRAY OF DISPLACEMENTS,

ARRAY OF TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY OF BLOCKLENGTHS(*), ARRAY OF TYPES(*), NEWTYPE,

IERROR

INTEGER(KIND=MPI ADDRESS KIND) ARRAY OF DISPLACEMENTS(*)

MPI TYPE CREATE SUBARRAY(NDIMS, ARRAY OF SIZES, ARRAY OF SUBSIZES,

ARRAY OF STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)

INTEGER NDIMS, ARRAY OF SIZES(*), ARRAY OF SUBSIZES(*),

ARRAY OF STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERROR

MPI TYPE GET EXTENT(DATATYPE, LB, EXTENT, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI ADDRESS KIND) LB, EXTENT

MPI TYPE GET TRUE EXTENT(DATATYPE, TRUE LB, TRUE EXTENT, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI ADDRESS KIND) TRUE LB, TRUE EXTENT

MPI UNPACK EXTERNAL(DATAREP, INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT,

DATATYPE, IERROR)

INTEGER OUTCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI ADDRESS KIND) INSIZE, POSITION

CHARACTER*(*) DATAREP

<type> INBUF(*), OUTBUF(*)

MPI WIN CREATE ERRHANDLER(FUNCTION, ERRHANDLER, IERROR)

EXTERNAL FUNCTION

INTEGER ERRHANDLER, IERROR

MPI WIN GET ERRHANDLER(WIN, ERRHANDLER, IERROR)

INTEGER WIN, ERRHANDLER, IERROR

MPI WIN SET ERRHANDLER(WIN, ERRHANDLER, IERROR)

INTEGER WIN, ERRHANDLER, IERROR

A.7.2 Process Creation and Management

MPI CLOSE PORT(PORT NAME, IERROR)

CHARACTER*(*) PORT NAME

INTEGER IERROR

MPI COMM ACCEPT(PORT NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)

CHARACTER*(*) PORT NAME

INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI COMM CONNECT(PORT NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)

CHARACTER*(*) PORT NAME

INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI COMM DISCONNECT(COMM, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.7. MPI-2 FORTRAN BINDINGS 321

INTEGER COMM, IERROR

MPI COMM GET PARENT(PARENT, IERROR)

INTEGER PARENT, IERROR

MPI COMM JOIN(FD, INTERCOMM, IERROR)

INTEGER FD, INTERCOMM, IERROR

MPI COMM SPAWN(COMMAND, ARGV, MAXPROCS, INFO, ROOT, COMM, INTERCOMM,

ARRAY OF ERRCODES, IERROR)

CHARACTER*(*) COMMAND, ARGV(*)

INTEGER INFO, MAXPROCS, ROOT, COMM, INTERCOMM, ARRAY OF ERRCODES(*),

IERROR

MPI COMM SPAWN MULTIPLE(COUNT, ARRAY OF COMMANDS, ARRAY OF ARGV,

ARRAY OF MAXPROCS, ARRAY OF INFO, ROOT, COMM, INTERCOMM,

ARRAY OF ERRCODES, IERROR)

INTEGER COUNT, ARRAY OF INFO(*), ARRAY OF MAXPROCS(*), ROOT, COMM,

INTERCOMM, ARRAY OF ERRCODES(*), IERROR

CHARACTER*(*) ARRAY OF COMMANDS(*), ARRAY OF ARGV(COUNT, *)

MPI LOOKUP NAME(SERVICE NAME, INFO, PORT NAME, IERROR)

CHARACTER*(*) SERVICE NAME, PORT NAME

INTEGER INFO, IERROR

MPI OPEN PORT(INFO, PORT NAME, IERROR)

CHARACTER*(*) PORT NAME

INTEGER INFO, IERROR

MPI PUBLISH NAME(SERVICE NAME, INFO, PORT NAME, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) SERVICE NAME, PORT NAME

MPI UNPUBLISH NAME(SERVICE NAME, INFO, PORT NAME, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) SERVICE NAME, PORT NAME

A.7.3 One-Sided Communications

MPI ACCUMULATE(ORIGIN ADDR, ORIGIN COUNT, ORIGIN DATATYPE, TARGET RANK,

TARGET DISP, TARGET COUNT, TARGET DATATYPE, OP, WIN, IERROR)

<type> ORIGIN ADDR(*)

INTEGER(KIND=MPI ADDRESS KIND) TARGET DISP

INTEGER ORIGIN COUNT, ORIGIN DATATYPE,TARGET RANK, TARGET COUNT,

TARGET DATATYPE, OP, WIN, IERROR

MPI GET(ORIGIN ADDR, ORIGIN COUNT, ORIGIN DATATYPE, TARGET RANK, TARGET DISP,

TARGET COUNT, TARGET DATATYPE, WIN, IERROR)

<type> ORIGIN ADDR(*)

INTEGER(KIND=MPI ADDRESS KIND) TARGET DISP

INTEGER ORIGIN COUNT, ORIGIN DATATYPE, TARGET RANK, TARGET COUNT,

TARGET DATATYPE, WIN, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

322 ANNEX A. LANGUAGE BINDING

MPI PUT(ORIGIN ADDR, ORIGIN COUNT, ORIGIN DATATYPE, TARGET RANK, TARGET DISP,

TARGET COUNT, TARGET DATATYPE, WIN, IERROR)

<type> ORIGIN ADDR(*)

INTEGER(KIND=MPI ADDRESS KIND) TARGET DISP

INTEGER ORIGIN COUNT, ORIGIN DATATYPE, TARGET RANK, TARGET COUNT,

TARGET DATATYPE, WIN, IERROR

MPI WIN COMPLETE(WIN, IERROR)

INTEGER WIN, IERROR

MPI WIN CREATE(BASE, SIZE, DISP UNIT, INFO, COMM, WIN, IERROR)

<type> BASE(*)

INTEGER(KIND=MPI ADDRESS KIND) SIZE

INTEGER DISP UNIT, INFO, COMM, WIN, IERROR

MPI WIN FENCE(ASSERT, WIN, IERROR)

INTEGER ASSERT, WIN, IERROR

MPI WIN FREE(WIN, IERROR)

INTEGER WIN, IERROR

MPI WIN GET GROUP(WIN, GROUP, IERROR)

INTEGER WIN, GROUP, IERROR

MPI WIN LOCK(LOCK TYPE, RANK, ASSERT, WIN, IERROR)

INTEGER LOCK TYPE, RANK, ASSERT, WIN, IERROR

MPI WIN POST(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

MPI WIN START(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

MPI WIN TEST(WIN, FLAG, IERROR)

INTEGER WIN, IERROR

LOGICAL FLAG

MPI WIN UNLOCK(RANK, WIN, IERROR)

INTEGER RANK, WIN, IERROR

MPI WIN WAIT(WIN, IERROR)

INTEGER WIN, IERROR

A.7.4 Extended Collective Operations

MPI ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS,

RDISPLS, RECVTYPES, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*),

RDISPLS(*), RECVTYPES(*), COMM, IERROR

MPI EXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.7. MPI-2 FORTRAN BINDINGS 323

INTEGER COUNT, DATATYPE, OP, COMM, IERROR

A.7.5 External Interfaces

MPI ADD ERROR CLASS(ERRORCLASS, IERROR)

INTEGER ERRORCLASS, IERROR

MPI ADD ERROR CODE(ERRORCLASS, ERRORCODE, IERROR)

INTEGER ERRORCLASS, ERRORCODE, IERROR

MPI ADD ERROR STRING(ERRORCODE, STRING, IERROR)

INTEGER ERRORCODE, IERROR

CHARACTER*(*) STRING

MPI COMM CALL ERRHANDLER(COMM, ERRORCODE, IERROR)

INTEGER COMM, ERRORCODE, IERROR

MPI COMM CREATE KEYVAL(COMM COPY ATTR FN, COMM DELETE ATTR FN, COMM KEYVAL,

EXTRA STATE, IERROR)

EXTERNAL COMM COPY ATTR FN, COMM DELETE ATTR FN

INTEGER COMM KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE

MPI COMM DELETE ATTR(COMM, COMM KEYVAL, IERROR)

INTEGER COMM, COMM KEYVAL, IERROR

MPI COMM FREE KEYVAL(COMM KEYVAL, IERROR)

INTEGER COMM KEYVAL, IERROR

MPI COMM GET ATTR(COMM, COMM KEYVAL, ATTRIBUTE VAL, FLAG, IERROR)

INTEGER COMM, COMM KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL

LOGICAL FLAG

MPI COMM GET NAME(COMM, COMM NAME, RESULTLEN, IERROR)

INTEGER COMM, RESULTLEN, IERROR

CHARACTER*(*) COMM NAME

MPI COMM SET ATTR(COMM, COMM KEYVAL, ATTRIBUTE VAL, IERROR)

INTEGER COMM, COMM KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL

MPI COMM SET NAME(COMM, COMM NAME, IERROR)

INTEGER COMM, IERROR

CHARACTER*(*) COMM NAME

MPI FILE CALL ERRHANDLER(FH, ERRORCODE, IERROR)

INTEGER FH, ERRORCODE, IERROR

MPI GREQUEST COMPLETE(REQUEST, IERROR)

INTEGER REQUEST, IERROR

MPI GREQUEST START(QUERY FN, FREE FN, CANCEL FN, EXTRA STATE, REQUEST,

IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

324 ANNEX A. LANGUAGE BINDING

INTEGER REQUEST, IERROR

EXTERNAL QUERY FN, FREE FN, CANCEL FN

INTEGER (KIND=MPI ADDRESS KIND) EXTRA STATE

MPI INIT THREAD(REQUIRED, PROVIDED, IERROR)

INTEGER REQUIRED, PROVIDED, IERROR

MPI IS THREAD MAIN(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

MPI QUERY THREAD(PROVIDED, IERROR)

INTEGER PROVIDED, IERROR

MPI STATUS SET CANCELLED(STATUS, FLAG, IERROR)

INTEGER STATUS(MPI STATUS SIZE), IERROR

LOGICAL FLAG

MPI STATUS SET ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI STATUS SIZE), DATATYPE, COUNT, IERROR

MPI TYPE CREATE KEYVAL(TYPE COPY ATTR FN, TYPE DELETE ATTR FN, TYPE KEYVAL,

EXTRA STATE, IERROR)

EXTERNAL TYPE COPY ATTR FN, TYPE DELETE ATTR FN

INTEGER TYPE KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE

MPI TYPE DELETE ATTR(TYPE, TYPE KEYVAL, IERROR)

INTEGER TYPE, TYPE KEYVAL, IERROR

MPI TYPE DUP(TYPE, NEWTYPE, IERROR)

INTEGER TYPE, NEWTYPE, IERROR

MPI TYPE FREE KEYVAL(TYPE KEYVAL, IERROR)

INTEGER TYPE KEYVAL, IERROR

MPI TYPE GET ATTR(TYPE, TYPE KEYVAL, ATTRIBUTE VAL, FLAG, IERROR)

INTEGER TYPE, TYPE KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL

LOGICAL FLAG

MPI TYPE GET CONTENTS(DATATYPE, MAX INTEGERS, MAX ADDRESSES, MAX DATATYPES,

ARRAY OF INTEGERS, ARRAY OF ADDRESSES, ARRAY OF DATATYPES,

IERROR)

INTEGER DATATYPE, MAX INTEGERS, MAX ADDRESSES, MAX DATATYPES,

ARRAY OF INTEGERS(*), ARRAY OF DATATYPES(*), IERROR

INTEGER(KIND=MPI ADDRESS KIND) ARRAY OF ADDRESSES(*)

MPI TYPE GET ENVELOPE(DATATYPE, NUM INTEGERS, NUM ADDRESSES, NUM DATATYPES,

COMBINER, IERROR)

INTEGER DATATYPE, NUM INTEGERS, NUM ADDRESSES, NUM DATATYPES, COMBINER,

IERROR

MPI TYPE GET NAME(TYPE, TYPE NAME, RESULTLEN, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.7. MPI-2 FORTRAN BINDINGS 325

INTEGER TYPE, RESULTLEN, IERROR

CHARACTER*(*) TYPE NAME

MPI TYPE SET ATTR(TYPE, TYPE KEYVAL, ATTRIBUTE VAL, IERROR)

INTEGER TYPE, TYPE KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL

MPI TYPE SET NAME(TYPE, TYPE NAME, IERROR)

INTEGER TYPE, IERROR

CHARACTER*(*) TYPE NAME

MPI WIN CALL ERRHANDLER(WIN, ERRORCODE, IERROR)

INTEGER WIN, ERRORCODE, IERROR

MPI WIN CREATE KEYVAL(WIN COPY ATTR FN, WIN DELETE ATTR FN, WIN KEYVAL,

EXTRA STATE, IERROR)

EXTERNAL WIN COPY ATTR FN, WIN DELETE ATTR FN

INTEGER WIN KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE

MPI WIN DELETE ATTR(WIN, WIN KEYVAL, IERROR)

INTEGER WIN, WIN KEYVAL, IERROR

MPI WIN FREE KEYVAL(WIN KEYVAL, IERROR)

INTEGER WIN KEYVAL, IERROR

MPI WIN GET ATTR(WIN, WIN KEYVAL, ATTRIBUTE VAL, FLAG, IERROR)

INTEGER WIN, WIN KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL

LOGICAL FLAG

MPI WIN GET NAME(WIN, WIN NAME, RESULTLEN, IERROR)

INTEGER WIN, RESULTLEN, IERROR

CHARACTER*(*) WIN NAME

MPI WIN SET ATTR(WIN, WIN KEYVAL, ATTRIBUTE VAL, IERROR)

INTEGER WIN, WIN KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL

MPI WIN SET NAME(WIN, WIN NAME, IERROR)

INTEGER WIN, IERROR

CHARACTER*(*) WIN NAME

A.7.6 I/O

MPI FILE CLOSE(FH, IERROR)

INTEGER FH, IERROR

MPI FILE DELETE(FILENAME, INFO, IERROR)

CHARACTER*(*) FILENAME

INTEGER INFO, IERROR

MPI FILE GET AMODE(FH, AMODE, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

326 ANNEX A. LANGUAGE BINDING

INTEGER FH, AMODE, IERROR

MPI FILE GET ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

MPI FILE GET BYTE OFFSET(FH, OFFSET, DISP, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET, DISP

MPI FILE GET GROUP(FH, GROUP, IERROR)

INTEGER FH, GROUP, IERROR

MPI FILE GET INFO(FH, INFO USED, IERROR)

INTEGER FH, INFO USED, IERROR

MPI FILE GET POSITION(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

MPI FILE GET POSITION SHARED(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

MPI FILE GET SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI OFFSET KIND) SIZE

MPI FILE GET TYPE EXTENT(FH, DATATYPE, EXTENT, IERROR)

INTEGER FH, DATATYPE, IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTENT

MPI FILE GET VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)

INTEGER FH, ETYPE, FILETYPE, IERROR

CHARACTER*(*) DATAREP, INTEGER(KIND=MPI OFFSET KIND) DISP

MPI FILE IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI FILE IREAD AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

MPI FILE IREAD SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI FILE IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI FILE IWRITE AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.7. MPI-2 FORTRAN BINDINGS 327

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

MPI FILE IWRITE SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI FILE OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)

CHARACTER*(*) FILENAME

INTEGER COMM, AMODE, INFO, FH, IERROR

MPI FILE PREALLOCATE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI OFFSET KIND) SIZE

MPI FILE READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

MPI FILE READ ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

MPI FILE READ ALL BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI FILE READ ALL END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI STATUS SIZE), IERROR

MPI FILE READ AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

MPI FILE READ AT ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

MPI FILE READ AT ALL BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

MPI FILE READ AT ALL END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI STATUS SIZE), IERROR

MPI FILE READ ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

328 ANNEX A. LANGUAGE BINDING

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

MPI FILE READ ORDERED BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI FILE READ ORDERED END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI STATUS SIZE), IERROR

MPI FILE READ SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

MPI FILE SEEK(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

MPI FILE SEEK SHARED(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

MPI FILE SET ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

MPI FILE SET INFO(FH, INFO, IERROR)

INTEGER FH, INFO, IERROR

MPI FILE SET SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI OFFSET KIND) SIZE

MPI FILE SET VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)

INTEGER FH, ETYPE, FILETYPE, INFO, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI OFFSET KIND) DISP

MPI FILE SYNC(FH, IERROR)

INTEGER FH, IERROR

MPI FILE WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

MPI FILE WRITE ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

MPI FILE WRITE ALL BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI FILE WRITE ALL END(FH, BUF, STATUS, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.7. MPI-2 FORTRAN BINDINGS 329

<type> BUF(*)

INTEGER FH, STATUS(MPI STATUS SIZE), IERROR

MPI FILE WRITE AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

MPI FILE WRITE AT ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

MPI FILE WRITE AT ALL BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI OFFSET KIND) OFFSET

MPI FILE WRITE AT ALL END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI STATUS SIZE), IERROR

MPI FILE WRITE ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

MPI FILE WRITE ORDERED BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI FILE WRITE ORDERED END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI STATUS SIZE), IERROR

MPI FILE WRITE SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI STATUS SIZE), IERROR

MPI REGISTER DATAREP(DATAREP, READ CONVERSION FN, WRITE CONVERSION FN,

DTYPE FILE EXTENT FN, EXTRA STATE, IERROR)

CHARACTER*(*) DATAREP

EXTERNAL READ CONVERSION FN, WRITE CONVERSION FN, DTYPE FILE EXTENT FN

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE

INTEGER IERROR

A.7.7 Language Bindings

MPI SIZEOF(X, SIZE, IERROR)

<type> X

INTEGER SIZE, IERROR

MPI TYPE CREATE F90 COMPLEX(P, R, NEWTYPE, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

330 ANNEX A. LANGUAGE BINDING

INTEGER P, R, NEWTYPE, IERROR

MPI TYPE CREATE F90 INTEGER(R, NEWTYPE, IERROR)

INTEGER R, NEWTYPE, IERROR

MPI TYPE CREATE F90 REAL(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

MPI TYPE MATCH SIZE(TYPECLASS, SIZE, TYPE, IERROR)

INTEGER TYPECLASS, SIZE, TYPE, IERROR

A.7.8 User De�ned Subroutines

SUBROUTINE COMM COPY ATTR FN(OLDCOMM, COMM KEYVAL, EXTRA STATE,

ATTRIBUTE VAL IN, ATTRIBUTE VAL OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE, ATTRIBUTE VAL IN,

ATTRIBUTE VAL OUT

LOGICAL FLAG

SUBROUTINE COMM DELETE ATTR FN(COMM, COMM KEYVAL, ATTRIBUTE VAL, EXTRA STATE,

IERROR)

INTEGER COMM, COMM KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL, EXTRA STATE

SUBROUTINE COMM ERRHANDLER FN(COMM, ERROR CODE, : : :)
INTEGER COMM, ERROR CODE

SUBROUTINE DATAREP CONVERSION FUNCTION(USERBUF, DATATYPE, COUNT, FILEBUF,

POSITION, EXTRA STATE, IERROR)

<TYPE> USERBUF(*), FILEBUF(*)

INTEGER COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI OFFSET KIND) POSITION

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE

SUBROUTINE DATAREP EXTENT FUNCTION(DATATYPE, EXTENT, EXTRA STATE, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTENT, EXTRA STATE

SUBROUTINE FILE ERRHANDLER FN(FILE, ERROR CODE, : : :)
INTEGER FILE, ERROR CODE

SUBROUTINE GREQUEST CANCEL FUNCTION(EXTRA STATE, COMPLETE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE

LOGICAL COMPLETE

SUBROUTINE GREQUEST FREE FUNCTION(EXTRA STATE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE

SUBROUTINE GREQUEST QUERY FUNCTION(EXTRA STATE, STATUS, IERROR)

INTEGER STATUS(MPI STATUS SIZE), IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.8. MPI-2 C++ BINDINGS 331

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE

SUBROUTINE TYPE COPY ATTR FN(OLDTYPE, TYPE KEYVAL, EXTRA STATE,

ATTRIBUTE VAL IN, ATTRIBUTE VAL OUT, FLAG, IERROR)

INTEGER OLDTYPE, TYPE KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE,

ATTRIBUTE VAL IN, ATTRIBUTE VAL OUT

LOGICAL FLAG

SUBROUTINE TYPE DELETE ATTR FN(TYPE, TYPE KEYVAL, ATTRIBUTE VAL, EXTRA STATE,

IERROR)

INTEGER TYPE, TYPE KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL, EXTRA STATE

SUBROUTINE WIN COPY ATTR FN(OLDWIN, WIN KEYVAL, EXTRA STATE,

ATTRIBUTE VAL IN, ATTRIBUTE VAL OUT, FLAG, IERROR)

INTEGER OLDWIN, WIN KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) EXTRA STATE, ATTRIBUTE VAL IN,

ATTRIBUTE VAL OUT

LOGICAL FLAG

SUBROUTINE WIN DELETE ATTR FN(WIN, WIN KEYVAL, ATTRIBUTE VAL, EXTRA STATE,

IERROR)

INTEGER WIN, WIN KEYVAL, IERROR

INTEGER(KIND=MPI ADDRESS KIND) ATTRIBUTE VAL, EXTRA STATE

SUBROUTINE WIN ERRHANDLER FN(WIN, ERROR CODE, : : :)
INTEGER WIN, ERROR CODE

A.8 MPI-2 C++ Bindings

A.8.1 Miscellany

void* MPI::Alloc mem(MPI::Aint size, const MPI::Info& info)

static MPI::Errhandler

MPI::Comm::Create errhandler(MPI::Comm::Errhandler fn*

function)

MPI::Errhandler MPI::Comm::Get errhandler() const

void MPI::Comm::Set errhandler(const MPI::Errhandler& errhandler)

MPI::Datatype MPI::Datatype::Create darray(int size, int rank, int ndims,

const int array of gsizes[], const int array of distribs[],

const int array of dargs[], const int array of psizes[],

int order) const

MPI::Datatype MPI::Datatype::Create hindexed(int count,

const int array of blocklengths[],

const MPI::Aint array of displacements[]) const

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

332 ANNEX A. LANGUAGE BINDING

MPI::Datatype MPI::Datatype::Create hvector(int count, int blocklength,

MPI::Aint stride) const

MPI::Datatype MPI::Datatype::Create indexed block(int count,

int blocklength, const int array of displacements[]) const

static MPI::Datatype MPI::Datatype::Create struct(int count,

const int array of blocklengths[], const MPI::Aint

array of displacements[], const MPI::Datatype array of types[])

MPI::Datatype MPI::Datatype::Create subarray(int ndims,

const int array of sizes[], const int array of subsizes[],

const int array of starts[], int order) const

void MPI::Datatype::Get extent(MPI::Aint& lb, MPI::Aint& extent) const

void MPI::Datatype::Get true extent(MPI::Aint& true lb,

MPI::Aint& true extent) const

void MPI::Datatype::Pack external(const char* datarep, const void* inbuf,

int incount, void* outbuf, MPI::Aint outsize,

MPI::Aint& position) const

MPI::Aint MPI::Datatype::Pack external size(const char* datarep,

int incount) const

MPI::Datatype MPI::Datatype::Resized(const MPI::Aint lb,

const MPI::Aint extent) const

void MPI::Datatype::Unpack external(const char* datarep, const void* inbuf,

MPI::Aint insize, MPI::Aint& position, void* outbuf,

int outcount) const

static MPI::Errhandler

MPI::File::Create errhandler(MPI::File::Errhandler fn*

function)

MPI::Errhandler MPI::File::Get errhandler() const

void MPI::File::Set errhandler(const MPI::Errhandler& errhandler)

void MPI::Free mem(void *base)

MPI::Aint MPI::Get address(void* location)

static MPI::Info MPI::Info::Create()

void MPI::Info::Delete(const char* key)

MPI::Info MPI::Info::Dup() const

void MPI::Info::Free()

bool MPI::Info::Get(const char* key, int valuelen, char* value) const

int MPI::Info::Get nkeys() const

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.8. MPI-2 C++ BINDINGS 333

void MPI::Info::Get nthkey(int n, char* key) const

bool MPI::Info::Get valuelen(const char* key, int& valuelen) const

void MPI::Info::Set(const char* key, const char* value)

bool MPI::Is finalized()

bool MPI::Request::Get status() const

bool MPI::Request::Get status(MPI::Status& status) const

static MPI::Errhandler MPI::Win::Create errhandler(MPI::Win::Errhandler fn*

function)

MPI::Errhandler MPI::Win::Get errhandler() const

void MPI::Win::Set errhandler(const MPI::Errhandler& errhandler)

A.8.2 Process Creation and Management

void MPI::Close port(const char* port name)

void MPI::Comm::Disconnect()

static MPI::Intercomm MPI::Comm::Get parent()

static MPI::Intercomm MPI::Comm::Join(const int fd)

MPI::Intercomm MPI::Intracomm::Accept(const char* port name,

const MPI::Info& info, int root) const

MPI::Intercomm MPI::Intracomm::Connect(const char* port name,

const MPI::Info& info, int root) const

MPI::Intercomm MPI::Intracomm::Spawn(const char* command,

const char* argv[], int maxprocs, const MPI::Info& info,

int root) const

MPI::Intercomm MPI::Intracomm::Spawn(const char* command,

const char* argv[], int maxprocs, const MPI::Info& info,

int root, int array of errcodes[]) const

MPI::Intercomm MPI::Intracomm::Spawn multiple(int count,

const char* array of commands[], const char** array of argv[],

const int array of maxprocs[], const MPI::Info array of info[],

int root)

MPI::Intercomm MPI::Intracomm::Spawn multiple(int count,

const char* array of commands[], const char** array of argv[],

const int array of maxprocs[], const MPI::Info array of info[],

int root, int array of errcodes[])

void MPI::Lookup name(const char* service name, const MPI::Info& info,

char* port name)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

334 ANNEX A. LANGUAGE BINDING

void MPI::Open port(const MPI::Info& info, char* port name)

void MPI::Publish name(const char* service name, const MPI::Info& info,

const char* port name)

void MPI::Unpublish name(const char* service name, const MPI::Info& info,

const char* port name)

A.8.3 One-Sided Communications

void MPI::Win::Accumulate(const void* origin addr, int origin count, const

MPI::Datatype& origin datatype, int target rank, MPI::Aint

target disp, int target count, const MPI::Datatype&

target datatype, const MPI::Op& op) const

void MPI::Win::Complete() const

static MPI::Win MPI::Win::Create(const void* base, MPI::Aint size, int

disp unit, const MPI::Info& info, const MPI::Intracomm& comm)

void MPI::Win::Fence(int assert) const

void MPI::Win::Free()

void MPI::Win::Get(const void *origin addr, int origin count, const

MPI::Datatype& origin datatype, int target rank, MPI::Aint

target disp, int target count, const MPI::Datatype&

target datatype) const

MPI::Group MPI::Win::Get group() const

void MPI::Win::Lock(int lock type, int rank, int assert) const

void MPI::Win::Post(const MPI::Group& group, int assert) const

void MPI::Win::Put(const void* origin addr, int origin count, const

MPI::Datatype& origin datatype, int target rank, MPI::Aint

target disp, int target count, const MPI::Datatype&

target datatype) const

void MPI::Win::Start(const MPI::Group& group, int assert) const

bool MPI::Win::Test() const

void MPI::Win::Unlock(int rank) const

void MPI::Win::Wait() const

A.8.4 Extended Collective Operations

void MPI::Comm::Allgather(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf, int recvcount,

const MPI::Datatype& recvtype) const = 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.8. MPI-2 C++ BINDINGS 335

void MPI::Comm::Allgatherv(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf,

const int recvcounts[], const int displs[],

const MPI::Datatype& recvtype) const = 0

void MPI::Comm::Allreduce(const void* sendbuf, void* recvbuf, int count,

const MPI::Datatype& datatype, const MPI::Op& op) const = 0

void MPI::Comm::Alltoall(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf, int recvcount,

const MPI::Datatype& recvtype) const = 0

void MPI::Comm::Alltoallv(const void* sendbuf, const int sendcounts[],

const int sdispls[], const MPI::Datatype& sendtype,

void* recvbuf, const int recvcounts[], const int rdispls[],

const MPI::Datatype& recvtype) const = 0

void MPI::Comm::Alltoallw(const void* sendbuf, const int sendcounts[],

const int sdispls[], const MPI::Datatype sendtypes[], void*

recvbuf, const int recvcounts[], const int rdispls[], const

MPI::Datatype recvtypes[]) const = 0

void MPI::Comm::Barrier() const = 0

void MPI::Comm::Bcast(void* buffer, int count,

const MPI::Datatype& datatype, int root) const = 0

void MPI::Comm::Gather(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf, int recvcount,

const MPI::Datatype& recvtype, int root) const = 0

void MPI::Comm::Gatherv(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf,

const int recvcounts[], const int displs[],

const MPI::Datatype& recvtype, int root) const = 0

void MPI::Comm::Reduce(const void* sendbuf, void* recvbuf, int count,

const MPI::Datatype& datatype, const MPI::Op& op, int root)

const = 0

void MPI::Comm::Reduce scatter(const void* sendbuf, void* recvbuf,

int recvcounts[], const MPI::Datatype& datatype,

const MPI::Op& op) const = 0

void MPI::Comm::Scatter(const void* sendbuf, int sendcount, const

MPI::Datatype& sendtype, void* recvbuf, int recvcount,

const MPI::Datatype& recvtype, int root) const = 0

void MPI::Comm::Scatterv(const void* sendbuf, const int sendcounts[],

const int displs[], const MPI::Datatype& sendtype,

void* recvbuf, int recvcount, const MPI::Datatype& recvtype,

int root) const = 0

MPI::Intercomm MPI::Intercomm::Create(const Group& group) const

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

336 ANNEX A. LANGUAGE BINDING

MPI::Intercomm MPI::Intercomm::Split(int color, int key) const

MPI::Intracomm MPI::Intracomm::Create(const Group& group) const

void MPI::Intracomm::Exscan(const void* sendbuf, void* recvbuf, int count,

const MPI::Datatype& datatype, const MPI::Op& op) const

MPI::Intracomm MPI::Intracomm::Split(int color, int key) const

A.8.5 External Interfaces

int MPI::Add error class()

int MPI::Add error code(int errorclass)

void MPI::Add error string(int errorcode, const char* string)

void MPI::Comm::Call errhandler(int errorcode) const

static int MPI::Comm::Create keyval(MPI::Comm::Copy attr function*

comm copy attr fn,

MPI::Comm::Delete attr function* comm delete attr fn,

void* extra state)

void MPI::Comm::Delete attr(int comm keyval)

static void MPI::Comm::Free keyval(int& comm keyval)

bool MPI::Comm::Get attr(int comm keyval, void* attribute val) const

void MPI::Comm::Get name(char* comm name, int& resultlen) const

void MPI::Comm::Set attr(int comm keyval, const void* attribute val) const

void MPI::Comm::Set name(const char* comm name)

static int MPI::Datatype::Create keyval(MPI::Datatype::Copy attr function*

type copy attr fn, MPI::Datatype::Delete attr function*

type delete attr fn, void* extra state)

void MPI::Datatype::Delete attr(int type keyval)

MPI::Datatype MPI::Datatype::Dup() const

static void MPI::Datatype::Free keyval(int& type keyval)

bool MPI::Datatype::Get attr(int type keyval, void* attribute val) const

void MPI::Datatype::Get contents(int max integers, int max addresses,

int max datatypes, int array of integers[],

MPI::Aint array of addresses[],

MPI::Datatype array of datatypes[]) const

void MPI::Datatype::Get envelope(int& num integers, int& num addresses,

int& num datatypes, int& combiner) const

void MPI::Datatype::Get name(char* type name, int& resultlen) const

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.8. MPI-2 C++ BINDINGS 337

void MPI::Datatype::Set attr(int type keyval, const void* attribute val)

void MPI::Datatype::Set name(const char* type name)

void MPI::File::Call errhandler(int errorcode) const

void MPI::Grequest::Complete()

static MPI::Grequest

MPI::Grequest::Start(const MPI::Grequest::Query function

query fn, const MPI::Grequest::Free function free fn,

const MPI::Grequest::Cancel function cancel fn,

void *extra state)

int MPI::Init thread(int required)

int MPI::Init thread(int& argc, char**& argv, int required)

bool MPI::Is thread main()

int MPI::Query thread()

void MPI::Status::Set cancelled(bool flag)

void MPI::Status::Set elements(const MPI::Datatype& datatype, int count)

void MPI::Win::Call errhandler(int errorcode) const

static int MPI::Win::Create keyval(MPI::Win::Copy attr function*

win copy attr fn,

MPI::Win::Delete attr function* win delete attr fn,

void* extra state)

void MPI::Win::Delete attr(int win keyval)

static void MPI::Win::Free keyval(int& win keyval)

bool MPI::Win::Get attr(const MPI::Win& win, int win keyval,

void* attribute val) const

void MPI::Win::Get name(char* win name, int& resultlen) const

void MPI::Win::Set attr(int win keyval, const void* attribute val)

void MPI::Win::Set name(const char* win name)

A.8.6 I/O

void MPI::File::Close()

static void MPI::File::Delete(const char* filename, const MPI::Info& info)

int MPI::File::Get amode() const

bool MPI::File::Get atomicity() const

MPI::Offset MPI::File::Get byte offset(const MPI::Offset disp) const

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

338 ANNEX A. LANGUAGE BINDING

MPI::Group MPI::File::Get group() const

MPI::Info MPI::File::Get info() const

MPI::Offset MPI::File::Get position() const

MPI::Offset MPI::File::Get position shared() const

MPI::Offset MPI::File::Get size() const

MPI::Aint MPI::File::Get type extent(const MPI::Datatype& datatype) const

void MPI::File::Get view(MPI::Offset& disp, MPI::Datatype& etype,

MPI::Datatype& filetype, char* datarep) const

MPI::Request MPI::File::Iread(void* buf, int count,

const MPI::Datatype& datatype)

MPI::Request MPI::File::Iread at(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype)

MPI::Request MPI::File::Iread shared(void* buf, int count,

const MPI::Datatype& datatype)

MPI::Request MPI::File::Iwrite(const void* buf, int count,

const MPI::Datatype& datatype)

MPI::Request MPI::File::Iwrite at(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype)

MPI::Request MPI::File::Iwrite shared(const void* buf, int count,

const MPI::Datatype& datatype)

static MPI::File MPI::File::Open(const MPI::Intracomm& comm,

const char* filename, int amode, const MPI::Info& info)

void MPI::File::Preallocate(MPI::Offset size)

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype)

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype,

MPI::Status& status)

void MPI::File::Read all(void* buf, int count,

const MPI::Datatype& datatype)

void MPI::File::Read all(void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read all begin(void* buf, int count,

const MPI::Datatype& datatype)

void MPI::File::Read all end(void* buf)

void MPI::File::Read all end(void* buf, MPI::Status& status)

void MPI::File::Read at(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.8. MPI-2 C++ BINDINGS 339

void MPI::File::Read at(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read at all(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype)

void MPI::File::Read at all(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read at all begin(MPI::Offset offset, void* buf, int count,

const MPI::Datatype& datatype)

void MPI::File::Read at all end(void* buf)

void MPI::File::Read at all end(void* buf, MPI::Status& status)

void MPI::File::Read ordered(void* buf, int count,

const MPI::Datatype& datatype)

void MPI::File::Read ordered(void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Read ordered begin(void* buf, int count,

const MPI::Datatype& datatype)

void MPI::File::Read ordered end(void* buf)

void MPI::File::Read ordered end(void* buf, MPI::Status& status)

void MPI::File::Read shared(void* buf, int count,

const MPI::Datatype& datatype)

void MPI::File::Read shared(void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Seek(MPI::Offset offset, int whence)

void MPI::File::Seek shared(MPI::Offset offset, int whence)

void MPI::File::Set atomicity(bool flag)

void MPI::File::Set info(const MPI::Info& info)

void MPI::File::Set size(MPI::Offset size)

void MPI::File::Set view(MPI::Offset disp, const MPI::Datatype& etype,

const MPI::Datatype& filetype, const char* datarep,

const MPI::Info& info)

void MPI::File::Sync()

void MPI::File::Write(const void* buf, int count,

const MPI::Datatype& datatype)

void MPI::File::Write(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

340 ANNEX A. LANGUAGE BINDING

void MPI::File::Write all(const void* buf, int count,

const MPI::Datatype& datatype)

void MPI::File::Write all(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write all begin(const void* buf, int count,

const MPI::Datatype& datatype)

void MPI::File::Write all end(const void* buf)

void MPI::File::Write all end(const void* buf, MPI::Status& status)

void MPI::File::Write at(MPI::Offset offset, const void* buf, int count,

const MPI::Datatype& datatype)

void MPI::File::Write at(MPI::Offset offset, const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write at all(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype)

void MPI::File::Write at all(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write at all begin(MPI::Offset offset, const void* buf,

int count, const MPI::Datatype& datatype)

void MPI::File::Write at all end(const void* buf)

void MPI::File::Write at all end(const void* buf, MPI::Status& status)

void MPI::File::Write ordered(const void* buf, int count,

const MPI::Datatype& datatype)

void MPI::File::Write ordered(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::File::Write ordered begin(const void* buf, int count,

const MPI::Datatype& datatype)

void MPI::File::Write ordered end(const void* buf)

void MPI::File::Write ordered end(const void* buf, MPI::Status& status)

void MPI::File::Write shared(const void* buf, int count,

const MPI::Datatype& datatype)

void MPI::File::Write shared(const void* buf, int count,

const MPI::Datatype& datatype, MPI::Status& status)

void MPI::Register datarep(const char* datarep,

MPI::Datarep conversion function* read conversion fn,

MPI::Datarep conversion function* write conversion fn,

MPI::Datarep extent function* dtype file extent fn,

void* extra state)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.8. MPI-2 C++ BINDINGS 341

A.8.7 Language Bindings

static MPI::Datatype MPI::Datatype::Create f90 complex(int p, int r)

static MPI::Datatype MPI::Datatype::Create f90 integer(int r)

static MPI::Datatype MPI::Datatype::Create f90 real(int p, int r)

static MPI::Datatype MPI::Datatype::Match size(int typeclass, int size)

A.8.8 User De�ned Functions

typedef int MPI::Comm::Copy attr function(const MPI::Comm& oldcomm,

int comm keyval, void* extra state, void* attribute val in,

void* attribute val out, bool& flag);

typedef int MPI::Comm::Delete attr function(MPI::Comm& comm,

int comm keyval, void* attribute val, void* extra state);

typedef void MPI::Comm::Errhandler fn(MPI::Comm &, int *, : : :);

typedef MPI::Datarep conversion function(void* userbuf,

MPI::Datatype& datatype, int count, void* filebuf,

MPI::Offset position, void* extra state);

typedef MPI::Datarep extent function(const MPI::Datatype& datatype,

MPI::Aint& file extent, void* extra state);

typedef int MPI::Datatype::Copy attr function(const MPI::Datatype& oldtype,

int type keyval, void* extra state,

const void* attribute val in, void* attribute val out,

bool& flag);

typedef int MPI::Datatype::Delete attr function(MPI::Datatype& type,

int type keyval, void* attribute val, void* extra state);

typedef void MPI::File::Errhandler fn(MPI::File &, int *, : : :);

typedef int MPI::Grequest::Cancel function(void* extra state,

bool complete);

typedef int MPI::Grequest::Free function(void* extra state);

typedef int MPI::Grequest::Query function(void* extra state,

MPI::Status& status);

typedef int MPI::Win::Copy attr function(const MPI::Win& oldwin,

int win keyval, void* extra state, void* attribute val in,

void* attribute val out, bool& flag);

typedef int MPI::Win::Delete attr function(MPI::Win& win, int win keyval,

void* attribute val, void* extra state);

typedef void MPI::Win::Errhandler fn(MPI::Win &, int *, : : :);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Annex B

MPI-1 C++ Language Binding

B.1 C++ Classes

The following are the classes provided with the C++ MPI-1 language bindings:

namespace MPI {

class Comm {...};

class Intracomm : public Comm {...};

class Graphcomm : public Intracomm {...};

class Cartcomm : public Intracomm {...};

class Intercomm : public Comm {...};

class Datatype {...};

class Errhandler {...};

class Exception {...};

class Group {...};

class Op {...};

class Request {...};

class Prequest : public Request {...};

class Status {...};

};

Note that several MPI-1 functions, constants, and typedefs have been deprecated and
therefore do not have corresponding C++ bindings. All deprecated names have corre-
sponding new names in MPI-2 (albeit probably with di�erent semantics). See the table in
Section 2.6.1 for a list of the deprecated names and their corresponding new names. The
bindings for the new names are listed in Annex A.

B.2 De�ned Constants

These are required constants, de�ned in the �le mpi.h. For brevity, the types of the con-
stants are de�ned below are de�ned in the comments.

// return codes

// Type: const int (or unnamed enum)

MPI::SUCCESS

MPI::ERR_BUFFER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

342

B.2. DEFINED CONSTANTS 343

MPI::ERR_COUNT

MPI::ERR_TYPE

MPI::ERR_TAG

MPI::ERR_COMM

MPI::ERR_RANK

MPI::ERR_REQUEST

MPI::ERR_ROOT

MPI::ERR_GROUP

MPI::ERR_OP

MPI::ERR_TOPOLOGY

MPI::ERR_DIMS

MPI::ERR_ARG

MPI::ERR_UNKNOWN

MPI::ERR_TRUNCATE

MPI::ERR_OTHER

MPI::ERR_INTERN

MPI::ERR_PENDING

MPI::ERR_IN_STATUS

MPI::ERR_LASTCODE

// assorted constants

// Type: const void *

MPI::BOTTOM

// Type: const int (or unnamed enum)

MPI::PROC_NULL

MPI::ANY_SOURCE

MPI::ANY_TAG

MPI::UNDEFINED

MPI::BSEND_OVERHEAD

MPI::KEYVAL_INVALID

// Error-handling specifiers

// Type: MPI::Errhandler (see below)

MPI::ERRORS_ARE_FATAL

MPI::ERRORS_RETURN

MPI::ERRORS_THROW_EXCEPTIONS

// Maximum sizes for strings

// Type: const int

MPI::MAX_PROCESSOR_NAME

MPI::MAX_ERROR_STRING

// elementary datatypes (C / C++)

// Type: const MPI::Datatype

MPI::CHAR

MPI::SHORT

MPI::INT

MPI::LONG

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

344 ANNEX B. MPI-1 C++ LANGUAGE BINDING

MPI::SIGNED_CHAR

MPI::UNSIGNED_CHAR

MPI::UNSIGNED_SHORT

MPI::UNSIGNED

MPI::UNSIGNED_LONG

MPI::FLOAT

MPI::DOUBLE

MPI::LONG_DOUBLE

MPI::BYTE

MPI::PACKED

// elementary datatypes (Fortran)

// Type: const MPI::Datatype

MPI::INTEGER

MPI::REAL

MPI::DOUBLE_PRECISION

MPI::F_COMPLEX

MPI::F_DOUBLE_COMPLEX

MPI::LOGICAL

MPI::CHARACTER

// datatypes for reduction functions (C / C++)

// Type: const MPI::Datatype

MPI::FLOAT_INT

MPI::DOUBLE_INT

MPI::LONG_INT

MPI::TWOINT

MPI::SHORT_INT

MPI::LONG_DOUBLE_INT

// datatype for reduction functions (Fortran)

// Type const MPI::Datatype

MPI::TWOREAL

MPI::TWODOUBLE_PRECISION

MPI::TWOINTEGER

// optional datatypes (Fortran)

// Type: const MPI::Datatype

MPI::INTEGER1

MPI::INTEGER2

MPI::INTEGER4

MPI::REAL2

MPI::REAL4

MPI::REAL8

// optional datatypes (C / C++)

// Type: const MPI::Datatype

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. DEFINED CONSTANTS 345

MPI::LONG_LONG

MPI::UNSIGNED_LONG_LONG

// special datatypes for construction derived datatypes

// Type: const MPI::Datatype

MPI::UB

MPI::LB

// C++ datatypes

// Type: const MPI::Datatype

MPI::BOOL

MPI::COMPLEX

MPI::DOUBLE_COMPLEX

MPI::LONG_DOUBLE_COMPLEX

// reserved communicators

// Type: MPI::Intracomm

MPI::COMM_WORLD

MPI::COMM_SELF

// results of communicator and group comparisons

// Type: const int (or unnamed enum)

MPI::IDENT

MPI::CONGRUENT

MPI::SIMILAR

MPI::UNEQUAL

// environmental inquiry keys

// Type: const int (or unnamed enum)

MPI::TAG_UB

MPI::IO

MPI::HOST

MPI::WTIME_IS_GLOBAL

// collective operations

// Type: const MPI::Op

MPI::MAX

MPI::MIN

MPI::SUM

MPI::PROD

MPI::MAXLOC

MPI::MINLOC

MPI::BAND

MPI::BOR

MPI::BXOR

MPI::LAND

MPI::LOR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

346 ANNEX B. MPI-1 C++ LANGUAGE BINDING

MPI::LXOR

// Null handles

// Type: const MPI::Group

MPI::GROUP_NULL

// Type: See Section 10.1.7 regarding the MPI::Comm class hierarchy and

// the specific type of MPI::COMM NULL.

MPI::COMM_NULL

// Type: const MPI::Datatype

MPI::DATATYPE_NULL

// Type: const MPI::Request

MPI::REQUEST_NULL

// Type: const MPI::Op

MPI::OP_NULL

// Type: MPI::Errhandler

MPI::ERRHANDLER_NULL

// Empty group

// Type: const MPI::Group

MPI::GROUP_EMPTY

// Topologies

// Type: const int (or unnamed enum)

MPI::GRAPH

MPI::CART

// Predefined functions

// Type: MPI::Copy_function

MPI::NULL_COPY_FN

MPI::DUP_FN

// Type: MPI::Delete_function

MPI::NULL_DELETE_FN

B.3 Typedefs

The following are de�ned C++ types, also included in the �le mpi.h.

// Typedef

MPI::Aint

The rest of this annex uses the namespace notation because all the functions listed
below are prototypes. The namespace notation is not used previously because the lists of
constants and types above are not actual declarations.

// prototypes for user-defined functions

namespace MPI {

typedef void User_function(const void *invec, void* inoutvec, int len,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.4. C++ BINDINGS FOR POINT-TO-POINT COMMUNICATION 347

const Datatype& datatype);

};

B.4 C++ Bindings for Point-to-Point Communication

Except where speci�cally noted, all non-staticmember functions in this annex are virtual.
For brevity, the keyword virtual is omitted.

namespace MPI {

void Comm::Send(const void* buf, int count, const Datatype& datatype,

int dest, int tag) const

void Comm::Recv(void* buf, int count, const Datatype& datatype,

int source, int tag, Status& status) const

void Comm::Recv(void* buf, int count, const Datatype& datatype,

int source, int tag) const

int Status::Get count(const Datatype& datatype) const

void Comm::Bsend(const void* buf, int count, const Datatype& datatype,

int dest, int tag) const

void Comm::Ssend(const void* buf, int count, const Datatype& datatype,

int dest, int tag) const

void Comm::Rsend(const void* buf, int count, const Datatype& datatype,

int dest, int tag) const

void Attach buffer(void* buffer, int size)

int Detach buffer(void*& buffer)

Request Comm::Isend(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

Request Comm::Ibsend(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

Request Comm::Issend(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

Request Comm::Irsend(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

Request Comm::Irecv(void* buf, int count, const Datatype& datatype,

int source, int tag) const

void Request::Wait(Status& status)

void Request::Wait()

bool Request::Test(Status& status)

bool Request::Test()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

348 ANNEX B. MPI-1 C++ LANGUAGE BINDING

void Request::Free()

static int Request::Waitany(int count, Request array of requests[],

Status& status)

static int Request::Waitany(int count, Request array of requests[])

static bool Request::Testany(int count, Request array of requests[],

int& index, Status& status)

static bool Request::Testany(int count, Request array of requests[],

int& index)

static void Request::Waitall(int count, Request array of requests[],

Status array of statuses[])

static void Request::Waitall(int count, Request array of requests[])

static bool Request::Testall(int count, Request array of requests[],

Status array of statuses[])

static bool Request::Testall(int count, Request array of requests[])

static int Request::Waitsome(int incount, Request array of requests[],

int array of indices[], Status array of statuses[])

static int Request::Waitsome(int incount, Request array of requests[],

int array of indices[])

static int Request::Testsome(int incount, Request array of requests[],

int array of indices[], Status array of statuses[])

static int Request::Testsome(int incount, Request array of requests[],

int array of indices[])

bool Comm::Iprobe(int source, int tag, Status& status) const

bool Comm::Iprobe(int source, int tag) const

void Comm::Probe(int source, int tag, Status& status) const

void Comm::Probe(int source, int tag) const

void Request::Cancel() const

bool Status::Is cancelled() const

Prequest Comm::Send init(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

Prequest Comm::Bsend init(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

Prequest Comm::Ssend init(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

Prequest Comm::Rsend init(const void* buf, int count, const

Datatype& datatype, int dest, int tag) const

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.5. C++ BINDINGS FOR COLLECTIVE COMMUNICATION 349

Prequest Comm::Recv init(void* buf, int count, const Datatype& datatype,

int source, int tag) const

void Prequest::Start()

static void Prequest::Startall(int count, Prequest array of requests[])

void Comm::Sendrecv(const void *sendbuf, int sendcount, const

Datatype& sendtype, int dest, int sendtag, void *recvbuf,

int recvcount, const Datatype& recvtype, int source,

int recvtag, Status& status) const

void Comm::Sendrecv(const void *sendbuf, int sendcount, const

Datatype& sendtype, int dest, int sendtag, void *recvbuf,

int recvcount, const Datatype& recvtype, int source,

int recvtag) const

void Comm::Sendrecv replace(void* buf, int count, const

Datatype& datatype, int dest, int sendtag, int source,

int recvtag, Status& status) const

void Comm::Sendrecv replace(void* buf, int count, const

Datatype& datatype, int dest, int sendtag, int source,

int recvtag) const

Datatype Datatype::Create contiguous(int count) const

Datatype Datatype::Create vector(int count, int blocklength, int stride)

const

Datatype Datatype::Create indexed(int count,

const int array of blocklengths[],

const int array of displacements[]) const

int Datatype::Get size() const

void Datatype::Commit()

void Datatype::Free()

int Status::Get elements(const Datatype& datatype) const

void Datatype::Pack(const void* inbuf, int incount, void *outbuf,

int outsize, int& position, const Comm &comm) const

void Datatype::Unpack(const void* inbuf, int insize, void *outbuf,

int outcount, int& position, const Comm& comm) const

int Datatype::Pack size(int incount, const Comm& comm) const

};

B.5 C++ Bindings for Collective Communication

namespace MPI {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

350 ANNEX B. MPI-1 C++ LANGUAGE BINDING

void Intracomm::Barrier() const

void Intracomm::Bcast(void* buffer, int count, const Datatype& datatype,

int root) const

void Intracomm::Gather(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, int recvcount,

const Datatype& recvtype, int root) const

void Intracomm::Gatherv(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, const int recvcounts[],

const int displs[], const Datatype& recvtype, int root) const

void Intracomm::Scatter(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, int recvcount,

const Datatype& recvtype, int root) const

void Intracomm::Scatterv(const void* sendbuf, const int sendcounts[],

const int displs[], const Datatype& sendtype, void* recvbuf,

int recvcount, const Datatype& recvtype, int root) const

void Intracomm::Allgather(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, int recvcount,

const Datatype& recvtype) const

void Intracomm::Allgatherv(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, const int recvcounts[],

const int displs[], const Datatype& recvtype) const

void Intracomm::Alltoall(const void* sendbuf, int sendcount, const

Datatype& sendtype, void* recvbuf, int recvcount,

const Datatype& recvtype) const

void Intracomm::Alltoallv(const void* sendbuf, const int sendcounts[],

const int sdispls[], const Datatype& sendtype, void* recvbuf,

const int recvcounts[], const int rdispls[],

const Datatype& recvtype) const

void Intracomm::Reduce(const void* sendbuf, void* recvbuf, int count,

const Datatype& datatype, const Op& op, int root) const

void Op::Init(User function* function, bool commute)

void Op::Free()

void Intracomm::Allreduce(const void* sendbuf, void* recvbuf, int count,

const Datatype& datatype, const Op& op) const

void Intracomm::Reduce scatter(const void* sendbuf, void* recvbuf,

int recvcounts[], const Datatype& datatype, const Op& op)

const

void Intracomm::Scan(const void* sendbuf, void* recvbuf, int count,

const Datatype& datatype, const Op& op) const

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.6. C++ BINDINGS FOR GROUPS, CONTEXTS, AND COMMUNICATORS 351

};

B.6 C++ Bindings for Groups, Contexts, and Communicators

For both syntactic and semantic reasons, the Dup() functions listed below are not virtual.
Syntactically, they must each have a di�erent return type. Dup() and Clone are discussed
in Section 10.1.7, page 278.

namespace MPI {

int Group::Get size() const

int Group::Get rank() const

static void Group::Translate ranks (const Group& group1, int n,

const int ranks1[], const Group& group2, int ranks2[])

static int Group::Compare(const Group& group1, const Group& group2)

Group Comm::Get group() const

static Group Group::Union(const Group& group1, const Group& group2)

static Group Group::Intersect(const Group& group1, const Group& group2)

static Group Group::Difference(const Group& group1, const Group& group2)

Group Group::Incl(int n, const int ranks[]) const

Group Group::Excl(int n, const int ranks[]) const

Group Group::Range incl(int n, const int ranges[][3]) const

Group Group::Range excl(int n, const int ranges[][3]) const

void Group::Free()

int Comm::Get size() const

int Comm::Get rank() const

static int Comm::Compare(const Comm& comm1, const Comm& comm2)

Intracomm Intracomm::Dup() const

Intercomm Intercomm::Dup() const

Cartcomm Cartcomm::Dup() const

Graphcomm Graphcomm::Dup() const

Comm& Comm::Clone() const = 0

Intracomm& Intracomm::Clone() const

Intercomm& Intercomm::Clone() const

Cartcomm& Cartcomm::Clone() const

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

352 ANNEX B. MPI-1 C++ LANGUAGE BINDING

Graphcomm& Graphcomm::Clone() const

Intracomm Intracomm::Create(const Group& group) const

Intracomm Intracomm::Split(int color, int key) const

void Comm::Free()

bool Comm::Is inter() const

int Intercomm::Get remote size() const

Group Intercomm::Get remote group() const

Intercomm Intracomm::Create intercomm(int local leader, const

Comm& peer comm, int remote leader, int tag) const

Intracomm Intercomm::Merge(bool high) const

};

B.7 C++ Bindings for Process Topologies

namespace MPI {

Cartcomm Intracomm::Create cart(int ndims, const int dims[],

const bool periods[], bool reorder) const

void Compute dims(int nnodes, int ndims, int dims[])

Graphcomm Intracomm::Create graph(int nnodes, const int index[],

const int edges[], bool reorder) const

int Comm::Get topology() const

void Graphcomm::Get dims(int nnodes[], int nedges[]) const

void Graphcomm::Get topo(int maxindex, int maxedges, int index[],

int edges[]) const

int Cartcomm::Get dim() const

void Cartcomm::Get topo(int maxdims, int dims[], bool periods[],

int coords[]) const

int Cartcomm::Get cart rank(const int coords[]) const

void Cartcomm::Get coords(int rank, int maxdims, int coords[]) const

int Graphcomm::Get neighbors count(int rank) const

void Graphcomm::Get neighbors(int rank, int maxneighbors, int

neighbors[]) const

void Cartcomm::Shift(int direction, int disp, int& rank source,

int& rank dest) const

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.8. C++ BINDINGS FOR ENVIRONMENTAL INQUIRY 353

Cartcomm Cartcomm::Sub(const bool remain dims[]) const

int Cartcomm::Map(int ndims, const int dims[], const bool periods[])

const

int Graphcomm::Map(int nnodes, const int index[], const int edges[])

const

};

B.8 C++ Bindings for Environmental Inquiry

namespace MPI {

void Get processor name(char* name, int& resultlen)

void Errhandler::Free()

void Get error string(int errorcode, char* name, int& resultlen)

int Get error class(int errorcode)

double Wtime()

double Wtick()

void Init(int& argc, char**& argv)

void Init()

void Finalize()

bool Is initialized()

void Comm::Abort(int errorcode)

};

B.9 C++ Bindings for Pro�ling

namespace MPI {

void Pcontrol(const int level, : : :)

};

B.10 C++ Bindings for Status Access

namespace MPI {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

354 ANNEX B. MPI-1 C++ LANGUAGE BINDING

int Status::Get source() const

void Status::Set source(int source)

int Status::Get tag() const

void Status::Set tag(int tag)

int Status::Get error() const

void Status::Set error(int error)

};

B.11 C++ Bindings for New 1.2 Functions

namespace MPI {

void Get version(int& version, int& subversion);

};

B.12 C++ Bindings for Exceptions

namespace MPI {

Exception::Exception(int error code);

int Exception::Get error code() const;

int Exception::Get error class() const;

const char* Exception::Get error string() const;

};

B.13 C++ Bindings on all MPI Classes

The C++ language requires all classes to have four special functions: a default constructor,
a copy constructor, a destructor, and an assignment operator. The bindings for these func-
tions are listed below; their semantics are discussed in Section 10.1.5. The two constructors
are not virtual. The bindings prototype functions using the type hCLASSi rather than list-
ing each function for every MPI class; the token hCLASSi can be replaced with valid MPI-2
class names, such as Group, Datatype, etc., except when noted. In addition, bindings are
provided for comparison and inter-language operability from Sections 10.1.5 and 10.1.9.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.13. C++ BINDINGS ON ALL MPI CLASSES 355

B.13.1 Construction / Destruction

namespace MPI {

hCLASSi::hCLASSi()

hCLASSi::�hCLASSi()

};

B.13.2 Copy / Assignment

namespace MPI {

hCLASSi::hCLASSi(const hCLASSi& data)

hCLASSi& hCLASSi::operator=(const hCLASSi& data)

};

B.13.3 Comparison

Since Status instances are not handles to underlying MPI objects, the operator==() and
operator!=() functions are not de�ned on the Status class.

namespace MPI {

bool hCLASSi::operator==(const hCLASSi& data) const

bool hCLASSi::operator!=(const hCLASSi& data) const

};

B.13.4 Inter-language Operability

Since there are no C++ MPI::STATUS IGNORE and MPI::STATUSES IGNORE objects, the
results of promoting the C or Fortran handles (MPI STATUS IGNORE and
MPI STATUSES IGNORE) to C++ is unde�ned.

namespace MPI {

hCLASSi& hCLASSi::operator=(const MPI hCLASSi& data)

hCLASSi::hCLASSi(const MPI hCLASSi& data)

hCLASSi::operator MPI hCLASSi() const

};

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

356 ANNEX B. MPI-1 C++ LANGUAGE BINDING

B.13.5 Function Name Cross Reference

Since some of the C++ bindings have slightly di�erent names than their C and Fortran
counterparts, this section maps each language neutral MPI-1 name to its corresponding
C++ binding.

For brevity, the \MPI::" pre�x is assumed for all C++ class names.
Where MPI-1 names have been deprecated, the <none> keyword is used in the \Mem-

ber name" column to indicate that this function is supported with a new name (see An-
nex A).

Where non-void values are listed in the \Return value" column, the given name is that
of the corresponding parameter in the language neutral speci�cation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.13. C++ BINDINGS ON ALL MPI CLASSES 357

MPI Function C++ class Member name Return value

MPI ABORT Comm Abort void

MPI ADDRESS <none>
MPI ALLGATHERV Intracomm Allgatherv void

MPI ALLGATHER Intracomm Allgather void

MPI ALLREDUCE Intracomm Allreduce void

MPI ALLTOALLV Intracomm Alltoallv void

MPI ALLTOALL Intracomm Alltoall void

MPI ATTR DELETE <none>

MPI ATTR GET <none>
MPI ATTR PUT <none>

MPI BARRIER Intracomm Barrier void

MPI BCAST Intracomm Bcast void

MPI BSEND INIT Comm Bsend init Prequest request

MPI BSEND Comm Bsend void

MPI BUFFER ATTACH Attach buffer void

MPI BUFFER DETACH Detach buffer void* buffer

MPI CANCEL Request Cancel void

MPI CARTDIM GET Cartcomm Get dim int ndims

MPI CART COORDS Cartcomm Get coords void

MPI CART CREATE Intracomm Create cart Cartcomm newcomm

MPI CART GET Cartcomm Get topo void

MPI CART MAP Cartcomm Map int newrank

MPI CART RANK Cartcomm Get rank int rank

MPI CART SHIFT Cartcomm Shift void

MPI CART SUB Cartcomm Sub Cartcomm newcomm

MPI COMM COMPARE Comm static Compare int result

MPI COMM CREATE Intracomm Create Intracomm newcomm

MPI COMM DUP Intracomm Dup Intracomm newcomm

Cartcomm Dup Cartcomm newcomm

Graphcomm Dup Graphcomm newcomm

Intercomm Dup Intercomm newcomm

Comm Clone Comm& newcomm

Intracomm Clone Intracomm& newcomm

Cartcomm Clone Cartcomm& newcomm

Graphcomm Clone Graphcomm& newcomm

Intercomm Clone Intercomm& newcomm

MPI COMM FREE Comm Free void

MPI COMM GROUP Comm Get group Group group

MPI COMM RANK Comm Get rank int rank

MPI COMM REMOTE GROUP Intercomm Get remote group Group group

MPI COMM REMOTE SIZE Intercomm Get remote size int size

MPI COMM SIZE Comm Get size int size

MPI COMM SPLIT Intracomm Split Intracomm newcomm

MPI COMM TEST INTER Comm Is inter bool flag

MPI DIMS CREATE Compute dims void

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

358 ANNEX B. MPI-1 C++ LANGUAGE BINDING

MPI Function C++ class Member name Return value

MPI ERRHANDLER CREATE <none>

MPI ERRHANDLER FREE Errhandler Free void

MPI ERRHANDLER GET <none>

MPI ERRHANDLER SET <none>
MPI ERROR CLASS Get error class int errorclass

MPI ERROR STRING Get error string void

MPI FINALIZE Finalize void

MPI GATHERV Intracomm Gatherv void

MPI GATHER Intracomm Gather void

MPI GET COUNT Status Get count int count

MPI GET ELEMENTS Status Get elements int count

MPI GET PROCESSOR NAME Get processor name void

MPI GRAPHDIMS GET Graphcomm Get dims void

MPI GRAPH CREATE Intracomm Create graph Graphcomm newcomm

MPI GRAPH GET Graphcomm Get topo void

MPI GRAPH MAP Graphcomm Map int newrank

MPI GRAPH NEIGHBORS COUNT Graphcomm Get neighbors count int nneighbors

MPI GRAPH NEIGHBORS Graphcomm Get neighbors void

MPI GROUP COMPARE Group static Compare int result

MPI GROUP DIFFERENCE Group static Difference Group newgroup

MPI GROUP EXCL Group Excl Group newgroup

MPI GROUP FREE Group Free void

MPI GROUP INCL Group Incl Group newgroup

MPI GROUP INTERSECTION Group static Intersect Group newgroup

MPI GROUP RANGE EXCL Group Range excl Group newgroup

MPI GROUP RANGE INCL Group Range incl Group newgroup

MPI GROUP RANK Group Get rank int rank

MPI GROUP SIZE Group Get size int size

MPI GROUP TRANSLATE RANKS Group static Translate ranks void

MPI GROUP UNION Group static Union Group newgroup

MPI IBSEND Comm Ibsend Request request

MPI INITIALIZED Is initialized bool flag

MPI INIT Init void

MPI INTERCOMM CREATE Intracomm Create intercomm Intercomm newcomm

MPI INTERCOMM MERGE Intercomm Merge Intracomm newcomm

MPI IPROBE Comm Iprobe bool flag

MPI IRECV Comm Irecv Request request

MPI IRSEND Comm Irsend Request request

MPI ISEND Comm Isend Request request

MPI ISSEND Comm Issend Request request

MPI KEYVAL CREATE <none>

MPI KEYVAL FREE <none>
MPI OP CREATE Op Init void

MPI OP FREE Op Free void

MPI PACK SIZE Datatype Pack size int size

MPI PACK Datatype Pack void

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.13. C++ BINDINGS ON ALL MPI CLASSES 359

MPI Function C++ class Member name Return value

MPI PCONTROL Pcontrol void

MPI PROBE Comm Probe void

MPI RECV INIT Comm Recv init Prequest request

MPI RECV Comm Recv void

MPI REDUCE SCATTER Intracomm Reduce scatter void

MPI REDUCE Intracomm Reduce void

MPI REQUEST FREE Request Free void

MPI RSEND INIT Comm Rsend init Prequest request

MPI RSEND Comm Rsend void

MPI SCAN Intracomm Scan void

MPI SCATTERV Intracomm Scatterv void

MPI SCATTER Intracomm Scatter void

MPI SENDRECV REPLACE Comm Sendrecv replace void

MPI SENDRECV Comm Sendrecv void

MPI SEND INIT Comm Send init Prequest request

MPI SEND Comm Send void

MPI SSEND INIT Comm Ssend init Prequest request

MPI SSEND Comm Ssend void

MPI STARTALL Prequest static Startall void

MPI START Prequest Start void

MPI TESTALL Request static Testall bool flag

MPI TESTANY Request static Testany bool flag

MPI TESTSOME Request static Testsome int outcount

MPI TEST CANCELLED Status Is cancelled bool flag

MPI TEST Request Test bool flag

MPI TOPO TEST Comm Get topo int status

MPI TYPE COMMIT Datatype Commit void

MPI TYPE CONTIGUOUS Datatype Create contiguous Datatype

MPI TYPE EXTENT <none>
MPI TYPE FREE Datatype Free void

MPI TYPE HINDEXED <none>
MPI TYPE HVECTOR <none>

MPI TYPE INDEXED Datatype Create indexed Datatype

MPI TYPE LB <none>

MPI TYPE SIZE Datatype Get size int

MPI TYPE STRUCT <none>

MPI TYPE UB <none>
MPI TYPE VECTOR Datatype Create vector Datatype

MPI UNPACK Datatype Unpack void

MPI WAITALL Request static Waitall void

MPI WAITANY Request static Waitany int index

MPI WAITSOME Request static Waitsome int outcount

MPI WAIT Request Wait void

MPI WTICK Wtick double wtick

MPI WTIME Wtime double wtime

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

MPI Function Index

MPI ACCUMULATE, 119
MPI ADD ERROR CLASS, 181
MPI ADD ERROR CODE, 182
MPI ADD ERROR STRING, 182
MPI ALLGATHER, 158
MPI ALLGATHERV, 159
MPI ALLOC MEM, 48
MPI ALLREDUCE, 162
MPI ALLTOALL, 160
MPI ALLTOALLV, 161
MPI ALLTOALLW, 165
MPI BARRIER, 163
MPI BCAST, 153
MPI CLOSE PORT, 96
MPI COMM ACCEPT, 97
MPI COMM C2F, 51
MPI COMM CALL ERRHANDLER, 183
MPI COMM CLONE, 279
MPI COMM CONNECT, 98
MPI COMM COPY ATTR FUNCTION,

200
MPI COMM CREATE, 146
MPI COMM CREATE ERRHANDLER, 62
MPI COMM CREATE KEYVAL, 199
MPI COMM DELETE ATTR, 202
MPI COMM DELETE ATTR FUNCTION,

200
MPI COMM DISCONNECT, 107
MPI COMM DUP FN, 199
MPI COMM ERRHANDLER FN, 62
MPI COMM F2C, 51
MPI COMM FREE KEYVAL, 200
MPI COMM GET ATTR, 201
MPI COMM GET ERRHANDLER, 63
MPI COMM GET NAME, 178
MPI COMM GET PARENT, 88
MPI COMM JOIN, 107
MPI COMM NULL COPY FN, 199
MPI COMM NULL DELETE FN, 200
MPI COMM SET ATTR, 201

MPI COMM SET ERRHANDLER, 62
MPI COMM SET NAME, 177
MPI COMM SPAWN, 84
MPI COMM SPAWN MULTIPLE, 89
MPI COMM SPLIT, 147
MPI DATAREP CONVERSION FUNCTION,

253
MPI DATAREP EXTENT FUNCTION, 252
MPI EXSCAN, 166
MPI FILE C2F, 51
MPI FILE CALL ERRHANDLER, 184
MPI FILE CLOSE, 213
MPI FILE CREATE ERRHANDLER, 64
MPI FILE DELETE, 214
MPI FILE ERRHANDLER FN, 65
MPI FILE F2C, 51
MPI FILE GET AMODE, 217
MPI FILE GET ATOMICITY, 258
MPI FILE GET BYTE OFFSET, 235
MPI FILE GET ERRHANDLER, 65
MPI FILE GET GROUP, 216
MPI FILE GET INFO, 219
MPI FILE GET POSITION, 235
MPI FILE GET POSITION SHARED, 240
MPI FILE GET SIZE, 216
MPI FILE GET TYPE EXTENT, 249
MPI FILE GET VIEW, 223
MPI FILE IREAD, 233
MPI FILE IREAD AT, 229
MPI FILE IREAD SHARED, 237
MPI FILE IWRITE, 234
MPI FILE IWRITE AT, 229
MPI FILE IWRITE SHARED, 237
MPI FILE OPEN, 211
MPI FILE PREALLOCATE, 215
MPI FILE READ, 230
MPI FILE READ ALL, 231
MPI FILE READ ALL BEGIN, 243
MPI FILE READ ALL END, 244
MPI FILE READ AT, 227

360

MPI Function Index 361

MPI FILE READ AT ALL, 227
MPI FILE READ AT ALL BEGIN, 242
MPI FILE READ AT ALL END, 242
MPI FILE READ ORDERED, 238
MPI FILE READ ORDERED BEGIN, 245
MPI FILE READ ORDERED END, 245
MPI FILE READ SHARED, 236
MPI FILE SEEK, 234
MPI FILE SEEK SHARED, 239
MPI FILE SET ATOMICITY, 257
MPI FILE SET ERRHANDLER, 65
MPI FILE SET INFO, 218
MPI FILE SET SIZE, 215
MPI FILE SET VIEW, 221
MPI FILE SYNC, 258
MPI FILE WRITE, 232
MPI FILE WRITE ALL, 232
MPI FILE WRITE ALL BEGIN, 244
MPI FILE WRITE ALL END, 244
MPI FILE WRITE AT, 228
MPI FILE WRITE AT ALL, 228
MPI FILE WRITE AT ALL BEGIN, 242
MPI FILE WRITE AT ALL END, 243
MPI FILE WRITE ORDERED, 239
MPI FILE WRITE ORDERED BEGIN, 245
MPI FILE WRITE ORDERED END, 246
MPI FILE WRITE SHARED, 236
MPI FINALIZED, 43
MPI FREE MEM, 48
MPI GATHER, 154
MPI GATHERV, 155
MPI GET, 116
MPI GET ADDRESS, 67
MPI GET VERSION, 21
MPI GREQUEST CANCEL FUNCTION,

172
MPI GREQUEST COMPLETE, 173
MPI GREQUEST FREE FUNCTION, 171
MPI GREQUEST QUERY FUNCTION, 171
MPI GREQUEST START, 170
MPI GROUP C2F, 51
MPI GROUP F2C, 51
MPI INFO C2F, 51
MPI INFO CREATE, 44
MPI INFO DELETE, 45
MPI INFO DUP, 47
MPI INFO F2C, 51
MPI INFO FREE, 47

MPI INFO GET, 45
MPI INFO GET NKEYS, 46
MPI INFO GET NTHKEY, 46
MPI INFO GET VALUELEN, 46
MPI INFO SET, 44
MPI INIT THREAD, 196
MPI IS THREAD MAIN, 198
MPI LOOKUP NAME, 100
MPI OP C2F, 51
MPI OP F2C, 51
MPI OPEN PORT, 96
MPI PACK EXTERNAL, 78
MPI PACK EXTERNAL SIZE, 79
MPI PUBLISH NAME, 99
MPI PUT, 114
MPI QUERY THREAD, 197
MPI REDUCE, 162
MPI REDUCE SCATTER, 163
MPI REGISTER DATAREP, 252
MPI REQUEST C2F, 51
MPI REQUEST F2C, 51
MPI REQUEST GET STATUS, 41
MPI SCAN, 164
MPI SCATTER, 156
MPI SCATTERV, 157
MPI SIZEOF, 297
MPI STATUS C2F, 54
MPI STATUS F2C, 54
MPI STATUS SET CANCELLED, 177
MPI STATUS SET ELEMENTS, 176
MPI TYPE C2F, 51
MPI TYPE COPY ATTR FUNCTION, 205
MPI TYPE CREATE DARRAY, 73
MPI TYPE CREATE F90 COMPLEX, 294
MPI TYPE CREATE F90 INTEGER, 295
MPI TYPE CREATE F90 REAL, 294
MPI TYPE CREATE HINDEXED, 66
MPI TYPE CREATE HVECTOR, 66
MPI TYPE CREATE INDEXED BLOCK,

40
MPI TYPE CREATE KEYVAL, 205
MPI TYPE CREATE RESIZED, 69
MPI TYPE CREATE STRUCT, 67
MPI TYPE CREATE SUBARRAY, 70
MPI TYPE DELETE ATTR, 207
MPI TYPE DELETE ATTR FUNCTION,

205
MPI TYPE DUP, 207

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

362 MPI Function Index

MPI TYPE DUP FN, 205
MPI TYPE F2C, 51
MPI TYPE FREE KEYVAL, 206
MPI TYPE GET ATTR, 207
MPI TYPE GET CONTENTS, 187
MPI TYPE GET ENVELOPE, 185
MPI TYPE GET EXTENT, 68
MPI TYPE GET NAME, 180
MPI TYPE GET TRUE EXTENT, 69
MPI TYPE MATCH SIZE, 298
MPI TYPE NULL COPY FN, 205
MPI TYPE NULL DELETE FN, 205
MPI TYPE SET ATTR, 206
MPI TYPE SET NAME, 179
MPI UNPACK EXTERNAL, 79
MPI UNPUBLISH NAME, 100
MPI WIN C2F, 51
MPI WIN CALL ERRHANDLER, 183
MPI WIN COMPLETE, 127
MPI WIN COPY ATTR FUNCTION, 203
MPI WIN CREATE, 110
MPI WIN CREATE ERRHANDLER, 63
MPI WIN CREATE KEYVAL, 202
MPI WIN DELETE ATTR, 204
MPI WIN DELETE ATTR FUNCTION,

203
MPI WIN DUP FN, 202
MPI WIN ERRHANDLER FN, 63
MPI WIN F2C, 51
MPI WIN FENCE, 126
MPI WIN FREE, 111
MPI WIN FREE KEYVAL, 203
MPI WIN GET ATTR, 204
MPI WIN GET ERRHANDLER, 64
MPI WIN GET GROUP, 112
MPI WIN GET NAME, 180
MPI WIN LOCK, 130
MPI WIN NULL COPY FN, 202
MPI WIN NULL DELETE FN, 202
MPI WIN POST, 128
MPI WIN SET ATTR, 204
MPI WIN SET ERRHANDLER, 64
MPI WIN SET NAME, 180
MPI WIN START, 127
MPI WIN TEST, 129
MPI WIN UNLOCK, 131
MPI WIN WAIT, 128

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

