
CS880: Approximations Algorithms

Scribe: Tom Watson Lecturer: Shuchi Chawla
Topic: Bin Packing and Euclidean TSP Date: 2/6/2007

In the previous lecture, we saw how dynamic programming could be employed to obtain an FPTAS
for the Knapsack problem. The key idea was to morph the given instance into another instance with
additional structure — namely that the item profits weren’t too large — that allowed us to solve
it exactly, and such that an optimal solution for the morphed instance could be used to construct
a near-optimal solution for the original instance. In this lecture, we will further explore this idea
by applying it to the Bin Packing and Euclidean TSP problems. For the Bin Packing problem, our
morphed instanced will have a solution space that is small enough to search exhaustively. For the
Euclidean TSP problem, we will place geometric contraints on the morphed instance that allow us
to solve it exactly using dynamic programming.

5.1 Bin Packing

5.1.1 The Problem

The Bin Packing problem is, in a sense, complementary to the Minimum Makespan Scheduling
problem, which we studied in a previous lecture. In the latter problem, the goal is to schedule jobs
of various lengths on a fixed number of machines while minimizing the makespan, or equivalently
to pack items of various sizes into a fixed number of bins while minimizing the largest bin size. We
now consider the problem where we swap the roles of constraint and objective: all bins have a fixed
size, and we wish to minimize the number of bins needed.

Definition 5.1.1 (Bin Packing) Given items with sizes s1, . . . , sn ∈ (0, 1], pack them into the
fewest number of bins possible, where each bin is of size 1.

Note that the assumption that the bins are of size 1 is without loss of generality, since scaling the
bin size and all item sizes by the same amount results in an equivalent instance.

It is easy to see that Bin Packing is NP -hard by a reduction from the following problem.

Definition 5.1.2 (2-Partition) Given items with sizes s1, . . . , sn, can they be partitioned into
two sets of equal size?

Clearly, an instance of 2-Parition is a yes-instance if and only if the items can be packed into two
bins of size 1

2

∑n
i=1 si. Thus a polynomial-time algorithm for Bin Packing would yield a polynomial-

time algorithm for 2-Partition. In fact, even a (3/2 − ε)-approximation algorithm for Bin Packing
would yield a polynomial-time algorithm for 2-Partition: on no-instances it would clearly use at
least three bins, but on yes-instances it would use at most (3/2 − ε)2 < 3 bins.

Theorem 5.1.3 For all ε > 0, Bin Packing is NP -hard to approximate within a factor of 3/2− ε.

Corollary 5.1.4 There is no PTAS for Bin Packing unless P = NP .

1



The above result exploited the fact that OPT could be small. Can we do better if OPT is large?
The answer is yes. We will obtain an asymptotic PTAS, where we only require a (1+ε)-approximate
solution if OPT is sufficiently large.

Definition 5.1.5 An asymptotic PTAS is an algorithm that, given ε > 0, produces a (1 + ε)-
approximate solution provided OPT > C(ε) for some function C, and runs in time polynomial in
n for every fixed ε.

In particular, we will obtain the following result.

Theorem 5.1.6 There is an algorithm for Bin Packing that, given ε > 0, produces a solution using
at most (1 + ε)OPT + 1 bins and runs in time polynomial in n for every fixed ε.

Corollary 5.1.7 There is an asymptotic PTAS for Bin Packing.

Proof: Given ε > 0, running the algorithm from Theorem 5.1.6 with parameter ε/2 yields
a solution using at most (1 + ε/2 + 1/OPT )OPT bins, which is at most (1 + ε)OPT provided
OPT > 2/ε.

The following algorithm is due to W. Fernandez de la Vega and G. Lueker [4].

5.1.2 The Algorithm

We seek to prove Theorem 5.1.6. Given an instance I of Bin Packing, we would like to morph it
into a related instance that can be solved optimally, and for which an optimal solution allows us to
construct an near-optimal solution for the original instance I. Our strategy will be to reduce the
solution space so it is small enough to be searched exhaustively. One idea is to throw out small
items, since intuitively the large items seem to be the bottleneck in finding a good solution. Another
idea is to make sure there aren’t too many different item sizes. The following result confirms that
these ideas accomplish our goal.

Theorem 5.1.8 There is a polynomial-time algorithm that solves Bin Packing on instances where
there are at most K different sizes of items and at most L items can fit in a single bin, provided
K and L are constants.

Proof: Call two solutions equivalent if they are the same up to the ordering of the bins, the
ordering of the items within each bin, and the distinguishing of items of the same size. We will
show that there are polynomially many nonequivalent solutions, and thus an optimal solution can
be found by exhaustive search.

The number of configurations for a single bin is at most KL, even if we distinguished between
different orderings of the items, since a configuration can be specified by the size of each of the at
most L items in the bin. The important thing is that it is a constant.

If we are not careful about only counting nonequivalent solutions, we might reason that since a
solution uses at most n bins, each of which can be in one of at most KL configurations, there are
at most (KL)n solutions. This bound is not good enough, and we can do better by remembering
that it only matters how many bins of each configuration there are, not what order they’re in. If
xi denotes the number of bins with the ith configuration, then nonequivalent solutions correspond

2



to nonnegative integral solutions to the equation

x1 + x2 + · · · + xKL ≤ n,

of which there are at most
(

n + KL

KL

)

by a classic combinatorial argument. This bound is at most a polynomial of degree KL.

In light of the previous theorem, we pause to remark that in contrast to the clever FPTAS for
Knapsack we saw in the last lecture, the running time of the algorithm we are developing for Bin
Packing is prohibitively expensive. Typically, PTAS’s have a bad dependence on 1/ε. For this
reason, PTAS’s are not usually very practical and are of primarily theoretical interest.

Given instance I, we seek to morph it into an instance where Theorem 5.1.8 applies. We will first
obtain an instance I ′ by throwing out all items of size less than ε. We will worry about packing
these items later. Now at most L = d1/εe items can fit into any one bin.

There could still be as many as n different item sizes, so we need to morph I ′ further to get an
instance with a constant number K of different item sizes. One way to do this is to consider the
items in sorted order, partition them into K groups, and round each item’s size up to the largest
size in its group, yielding an instance Jup. Another way is to round each item’s size down to the
smallest size in its group, yielding an instance Jdown.

0 1
I’

0 1
J
up

0 1
J
down

Neither of these two possibilities seems ideal. We want our new instance to satisfy the following
two (informal) properties.

(1) Given a solution to the new instance, it is easy to construct a comparable solution to I ′.

3



(2) The optimum value of the new instance isn’t too much worse than the optimum value of I ′.

The instance Jup satisfies (1), since when we go back to instance I ′, the items can only shrink, which
means that the same solution is still feasible. However, it doesn’t seem to satisfy (2), since if we try
to translate the optimal solution for I ′ into a solution for Jup, all the bins could overflow, requiring
many new bins to be opened up. The instance Jdown satisfies (2) since the optimal solution for
I ′ immediately yields a feasibile solution for Jdown with the same number of bins. However, it
doesn’t seem to satisfy (1) since a solution to Jdown can’t generally be translated to a solution for
I ′ without lots of bins overflowing.

It turns out that if we select the parameters in the right way, Jup does satisfy property (2). We
can argue this by comparing Jup to Jdown. (However, our final algorithm will apply the algorithm
from Theorem 5.1.8 only to Jup, not to Jdown.)

We consider the items in sorted order and partition them into K = 1/ε2 groups of size Q = nε2

each , breaking ties arbitrarily. (The last group might have fewer items.) We tacitly ignore the
pedantic details associated with rounding these quantities to integers, as these details distract from
the essense of the algorithm. We obtain Jup by rounding each item’s size up to the size of the
largest item in its group, and similarly obtain Jdown by rounding each item’s size down to the size
of the smallest item in its group. For each of these instances, there are at most K different item
sizes.

Our algorithm will actually construct Jup and apply the algorithm from Theorem 5.1.8 to it. The
resulting solution is also a feasible solution for I ′, as noted above. We would like to show that
the number of bins this solution uses is not too much more than OPT (I ′). As usual, we will need
a lower bound on OPT (I ′) to compare with. Observe that OPT (Jdown) ≤ OPT (I ′) since each
feasible solution of I ′ is also a feasible solution of Jdown. We will use this lower bound. How much
worse than OPT (Jdown) can OPT (Jup) be? The critical observation is that a solution to Jup can
be constructed from a solution to Jdown by taking each group of items, except the last, and moving
them to the locations occupied by the items in the next group, and assigning each item of the
last group to its own new bin. Since all groups (except possibly the last) have the same size, this
correspondence can be made.

0 1
J
up

0 1
J
down

4



Since the size of every item in a group in Jup is at most the size of every item in the next group
in Jdown, it follows that every item of Jup is at most the size of the item of Jdown whose place
it’s taking. (Note that the locations of the items of the first group of Jdown aren’t filled by any
items of Jup.) This shows that the resulting solution of Jup is feasible. Moreover, it has at most Q
additional bins, one for each item in the last group. We conclude that

OPT (Jup) ≤ OPT (Jdown) + Q

≤ OPT (I ′) + Q

= OPT (I ′) + nε2

≤ OPT (I ′) + OPT (I ′)ε

= (1 + ε)OPT (I ′).

In going from the first line to the second, we used our lower bound on OPT (I ′). In going from the
third line to the fourth, we use a second lower bound on OPT (I ′), namely that no solution can do
better than to pack every bin completely, which would use at least nε bins (since every item is of
size at least ε). This reveals why we chose Q the way we did: to make sure that the number of
extra bins we used in our comparison of OPT (Jup) to OPT (Jdown) was at most εOPT (I ′).

With this result in hand, we can prove the main result of this section.

Proof of Theorem 5.1.6: We are given instance I and ε > 0. First, we construct I ′ by throwing
out all items of size less than ε, and then we construct Jup and solve it optimally using the algorithm
of Theorem 5.1.8. The resulting solution, we have argued, is a feasible solution to I ′ using at most
(1 + ε)OPT (I ′) bins. The running time so far is

O(nKL
) = O(nO(1/ε)O(1/ε)

) = poly(n).

But we still have to pack the items of size less than ε. For this, we can make use of the empty space
in the bins used by our current packing. A natural thing to do is use a greedy strategy: pack each
item of size less than ε into the first bin it fits in, only opening a new bin when necessary. We next
argue that this does the job.

If the greedy phase does not open any new bins, then the number of bins is at most (1+ε)OPT (I ′) ≤
(1 + ε)OPT (I) as shown above. Here we used the trivial lower bound OPT (I ′) ≤ OPT (I). If the
greedy phase does open a new bin, then at the end, all but the last bin must be more than 1− ε full
(since otherwise the item that caused the last bin to be opened would have fit into one of them).
Denoting by ALG the number of bins used by our algorithm’s solution, we conclude that

(1 − ε)(ALG − 1) ≤
n

∑

i=1

si ≤ OPT (I).

Here we have used a second lower bound on OPT (I). It follows that

ALG ≤ 1

1 − ε
OPT (I) + 1.

5



We have 1
1−ε = 1 + O(ε) provided ε is at most some fixed positive constant, which is no loss of

generality. Since we may run this algorithm with a smaller ε parameter than the one we are given,
this suffices to prove the theorem.

It’s worth noting what prevents this approach from giving a PTAS (instead of an asymptotic PTAS).
In the final greedy phase, we can’t say anything about how full the last bin to be opened is. This
prevents us from applying the

∑n
i=1 si ≤ OPT (I) bound to this last bin. Thus we get an extra +1

term floating around, which as a fraction of OPT , only goes down as OPT goes up, not as ε goes
down.

There are a number of heuristics for Bin Packing that give good worst case performance. See [3]
for a survey.

Finally, we remark that the practical importance of the Bin Packing problem spawned research
into algorithms for generalizations of this problem. For example, one can consider packing higher-
dimensional items into higher-dimensional bins. This generalization presents tricky issues not
present in the one-dimensional case that we considered. In the 2-dimensional case under certain
restrictions on the packing, one can get an asymptotic PTAS [2]. For higher (but still constant)
dimensions, constant factor approximations are known. However, we will not explore these results
in this course.

5.2 Euclidean TSP

5.2.1 The Problem

In this section we consider the following practically important special case of the traveling sales-
person problem (TSP).

Definition 5.2.1 (Euclidean TSP) Given n points in the d-dimensional Euclidean metric space
(for some fixed d), find a minimum length tour that visits all of them.

For simplicity, we will restrict our attention to the 2-dimensional case d = 2. The algorithm we
will present generalizes easily to higher dimensions.

The Metric TSP problem, for which we obtained a 3/2-approximation algorithm in a previous
lecture, is known to be APX-hard. Euclidean TSP in the plane is NP -hard, but it is conceivable
that the special structure of the Euclidean case allows us to overcome the obstacle that prevents
us from obtaining a PTAS for Metric TSP. We will show that this is, in fact, the case.

Theorem 5.2.2 There is a PTAS for the Euclidean TSP problem.

This result was proved independently by Arora [1] and Mitchell [5]. We will present Arora’s
algorithm and analysis.

We pause to emphasize the distinction between the problem at hand and the restriction of TSP to
planar metrics. A planar metric is one that arises as the shortest path metric of a planar graph.
The edge weights on this planar graph can be selected in any way, and need not have anything to
do with Euclidean distance. There is also a PTAS for the TSP on planar metrics, but it is quite
different from the algorithm we will present.

6



5.2.2 The Algorithm

Following the theme of the Bin Packing result and the Knapsack result from the previous lecture,
our overall strategy will be to morph the given instance into a related instance that has additional
structure that allows us to solve it optimally, and which allows us to construct a “good” solution
for the original instance from the optimal solution for the morphed instance. In short, we will first
modify the instance by moving each point a little bit so that it is in a convenient location, and then
we will further modify the instance by imposing some geometric constraints on the tours. We will
be able to solve the new instance exactly by dynamic programming, and then construct a tour for
the original instance without the cost growing by too much.

Before getting to the details, we first make the simplifying assumption that the smallest bounding
square of the given points has side length exactly n2. This is without loss of generality since we
can scale the given instance without affecting its solution set in any significant way. We denote the
resulting instance by I. We also observe that the smallest bounding square must have two points
on opposite sides (either one on the left side and one on the right side, or one on the bottom and
one on the top). Since every tour must traverse the distance from one of these points to the other
and back, we get the following lower bound on the optimum, which will be useful later.

Lemma 5.2.3 OPT (I) ≥ 2n2.

Now we describe the first modification we will make to our instance. We round the coordinates of
each input point to integers values, yielding an instance I ′. We can argue that this modification
doesn’t prevent us from getting a good approximation.

Lemma 5.2.4 If I ′ can be approximated within factor 1 + ε, then I can be approximated within
factor 1 + ε + 4/n.

Proof: Given a tour of I ′ of cost ALG′ ≤ (1+ε)OPT (I ′), it suffices to show that the corresponding
tour of I is of cost ALG ≤ (1 + ε + 4/n)OPT (I). Note that each point in I is at most

√
2 distance

from its location in I ′. Now given a tour in one of these two instances, the tour in the other instance
that follows the same path but “sidesteps” at each input point to visit it’s new location and come
back has additional total cost at most 2

√
2n and is at least as long as the tour that visits the input

points along straight line paths. It follows that corresponding tours in the two instances can differ
in cost by at most 2

√
2n. Hence, OPT (I ′) ≤ OPT (I)+2

√
2n and ALG ≤ ALG′ +2

√
2n, and thus

ALG ≤ (1 + ε)OPT (I ′) + 2
√

2n

≤ (1 + ε)(OPT (I) + 2
√

2n) + 2
√

2n

= (1 + ε)OPT (I) + (2 + ε)2
√

2n

≤ (1 + ε)OPT (I) + (2 + ε)
√

2
OPT (I)

n
≤ (1 + ε + 4/n)OPT (I).

We have used Lemma 5.2.3 in going from the third line to the fourth. In going from the fourth
line to the fifth, we have assumed that ε ≤ 2

√
2 − 2, which is no loss of generality. Thus given a

(1 + ε)-approximate solution to I ′, the corresponding solution to I is (1 + ε + 4/n)-approximate.

7



We would like to attempt to solve our morphed instance exactly by dynamic programming. A
natural line of attack is to break up the bounding square into four equal parts, and try to recom-
bine solutions to these four subproblems into a solution for the original problem. Each of these
subproblems would be broken up into four more subproblems in a similar way, and so on, leading
to a 4-ary tree of subproblems.

This motivates the modification we made earlier of rounding all coordinates to integer values. We
would like our base case to be when there’s just a single point, and this modification ensures that
our tree of subproblems won’t have to be too deep in order to separate two points that are close to
each other.

There seems to be a problem with this naive approach: it’s not clear how recombine optimal tours
for the four subproblems into an optimal tour for the subproblem at hand. For example, we could
have the pathological case where the optimal tour zigzags across one of the dividing lines. Our
subproblems need to take into account how they interact with each other across the dividing lines.

On each dividing line we will introduce some number of equidistant portals and only consider portal-
proper tours: ones that only cross dividing lines at portals. Then for each node in the 4-ary tree of
subproblems, we will actually have many subproblems, corresponding to different ways of entering
and exiting the square at its portals. This increases the number of subproblems, but by setting the
parameters properly, we will be able to keep the number under control. This also allows us to form
the optimal solution to the subproblem at hand by trying all possible ways of specifying how its four
subproblems interact with each other at the portals, and stitching the solutions together. We will
require that the number of portals be small enough that we can do this quickly, but large enough
that the optimum tour length doesn’t deteriorate by too much when we impose this geometric
restriction.

More details on this construction will be provided in the next lecture.

8



References

[1] S. Arora. Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and other
Geometric Problems. In FOCS, 1996, pp. 2-12.

[2] N. Bansal, A. Lodi, and M. Sviridenko. A Tale of Two Dimensional Bin Packing. In FOCS,
2005, pp. 657-666.

[3] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation Algorithms for Bin Packing:
A Survey. In Approximation Algorithms for NP-Hard Problems, Dorit S. Hochbaum (editor),
PWS Publishing Company, 1997, pp. 46-93.

[4] W. Fernandez de la Vega and G. Lueker. Bin Packing Can Be Solved within 1 + ε in Linear
Time. In Combinatorica, 1(4), 1981, pp. 349-355.

[5] J. S. B. Mitchell. Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple
Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems. In
SIAM Journal on Computing, 28, 1999, pp. 1298-1309.

9


